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ABSTRACT 

 

The characterization of anthropogenic contamination and understanding of the 

associated risks for humans and the environment is a challenge, since tens of thousands 

of compounds are constantly discharged into different environmental compartments. The 

hydrosphere has a very powerful potential to disseminate contaminants of emerging 

concern (CECs), which can then reach other compartments such as soil, plants, and 

sediments, so evaluation of its contamination is essential. The identification of CECs in 

aquatic systems is analytically difficult, since there is a need to achieve increasingly low 

detection limits (µg L-1 and ng L-1) and cover the widest possible range of compounds. 

Expanding knowledge about aquatic contamination requires the use of sensitive methods 

that allow unequivocal identification of CECs, which may be achieved by methods using 

liquid or gas chromatography coupled with high resolution mass spectrometry. In 

addition, sensitive analytical methods should be associated with in silico prediction by 

(quantitative) structure-activity relationship ((Q)SAR) tools and multi-criteria decision 

analysis ranking methods, in order to not only obtain conclusions about contaminants 

present in the environment, but also to identify those of most concern. Considering these 

issues, the present thesis is divided into three chapters. 

Chapter 1 describes an adapted analytical method for the identification of 

pharmaceuticals and metabolites in raw hospital wastewater, using three different 

identification strategies: i) for confirmed compounds (when analytical standards are 

available); ii) for suspect compounds (when analytical standards are not available); and 

iii) for metabolites by common fragmentation profile. The method employed a custom 

database containing up to 1380 compounds. Six samples collected monthly were analyzed 

by liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (LC-

QTOF MS). A total of 35 metabolites and 43 pharmaceuticals were identified. Risk 

assessment of the identified compounds was performed using in silico (Q)SAR prediction 

methods.  

Chapter 2 presents a study of the degradation of diazepam (DZP), a 

pharmaceutical identified in all the samples analyzed, as described in Chapter 1, by solar 

photo-Fenton treatment, which is an advanced oxidation process (AOP). The 

identification of previously reported and new transformation products (TPs) formed 

during DZP degradation was performed by LC-QTOF MS analysis. In addition, a method 
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for the preconcentration of DZP and its TPs was developed, based on dispersive liquid-

liquid microextraction (DLLME). The extraction method was fast, cheap, easy, and 

efficient. In the absence of this preconcentration step, it was not possible to identify one 

of the TPs formed during the solar photo-Fenton process. In this study, (Q)SAR tools 

were also used to predict some of the toxicological parameters of DZP and its TPs. These 

predictions showed mutagenicity alerts for two TPs, reflecting their higher toxicity, 

compared to DZP itself. 

Chapter 3 describes a more embracing approach. Surface water analysis was 

carried out by LC-QTOF MS, with application of a screening methodology using a 

database containing information about 3250 compounds belonging to different CEC 

classes. After LC-QTOF MS screening analyses of 27 river samples, it was possible to 

identify 150 compounds (133 compounds as suspects, and 17 compounds as confirmed). 

In silico predictions for the identified compounds were performed using (Q)SAR tools, 

providing information about eight different selected endpoints. The great number of 

compounds and predicted endpoints hindered the general evaluation of toxicity. 

Therefore, in order to obtain a better understanding of the risk of each identified 

compound, two different multi-criteria decision analysis ranking methods (toxicological 

priority index (ToxPi) and technique for order of preference by similarity to ideal solution 

(TOPSIS)) were used, considering a different weight for each endpoint. After ranking, 

the ToxPi and TOPSIS results were evaluated and showed similarity for the first 20 

priority compounds. TOPSIS showed high robustness in sensitivity tests, indicating its 

suitability as an appropriate tool for use in association with screening results, which could 

support quantitative analytical methods performed subsequently. 

Throughout the different studies, it was possible to propose strategies for 

identification, degradation, extraction, toxicity evaluation, and ranking of 

microcontaminants present in aquatic environments. It was possible to obtain new results 

never previously reported, highlighting the contribution and importance of the study for 

research concerning contamination of the aquatic environment and possible treatment 

methods.   

Keywords: Screening analysis, high resolution mass spectrometry, transformation 

products, in silico (Q)SAR predictions, multi-criteria decision-making methods. 
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RESUMO 

 

A caracterização e compreensão da contaminação antropogênica e dos seus riscos 

para o homem e o meio ambiente é um desafio, uma vez que dezenas de milhares de 

compostos são constantemente despejados em diferentes compartimentos ambientais. A 

hidrosfera tem potencial muito poderoso para disseminar contaminantes de preocupação 

emergente (CECs), os quais podem atingir outros compartimentos como solo, plantas e 

sedimentos. Portanto, a avaliação de sua contaminação é essencial. A identificação de 

CECs em sistemas aquáticos é analiticamente complexa, sendo necessário atingir limites 

de detecção cada vez mais baixos (μg L-1 e ng L-1) e abranger a maior gama possível de 

compostos. Tal necessidade requer o uso de métodos sensíveis que permitem a 

identificação inequívoca de CECs e, para isso, uma possibilidade é o uso da cromatografia 

líquida ou a gás associada a espectrometria de massa de alta resolução. Além disso, os 

métodos analíticos podem ser associados a predições in silico por métodos de relações 

quantitativas entre a estrutura e atividade ((Q)SAR) e métodos de tomada de decisão 

multicritério, a fim de não apenas obter conclusões sobre os contaminantes presentes no 

ambiente, mas também para identificar aqueles que merecem maior atenção. 

Considerando essas questões, a presente tese está dividida em três capítulos. 

O Capítulo 1 descreve um método analítico para a identificação de fármacos e 

metabólitos em efluente hospitalar bruto, usando três estratégias de identificação: i) 

compostos confirmados (quando padrões analíticos estão disponíveis); ii) para compostos 

suspeitos (quando padrões analíticos não estão disponíveis); e iii) para metabólitos com 

perfil de fragmentação comum. O método empregou uma base de dados personalizada 

contendo 1380 compostos. Seis amostras coletadas mensalmente foram analisadas por 

cromatografia líquida acoplada à espectrometria de massa por tempo de vôo (LC-QTOF 

MS). Um total de 35 metabólitos e 43 fármacos foram identificados. A avaliação de risco 

dos compostos identificados foi realizada usando métodos de predição in silico (Q)SAR. 

O Capítulo 2 apresenta um estudo da degradação do diazepam (DZP), fármaco 

identificado em todas as amostras analisadas no Capítulo 1, através do processo de foto-

Fenton solar, que é um processo avançado de oxidação (AOP). A identificação de 

produtos de transformação (TPs) formados durante a degradação do DZP foi realizada 

pela análise em um sistema LC-QTOF MS. Além disso, um método para a pré-
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concentração de DZP e seus TPs foi desenvolvido, baseado em microextração líquido-

líquido dispersiva (DLLME). O método de extração proposto é rápido, barato, fácil e 

eficiente. Na ausência desta etapa de pré-concentração, não foi possível identificar um 

dos TPs formados durante o processo de foto-Fenton solar. Neste estudo, métodos 

(Q)SAR também foram usados para predizer alguns dos parâmetros toxicológicos do 

DZP e seus TPs. Essas predições mostraram alertas de mutagenicidade para dois TPs, 

refletindo sua maior toxicidade, em comparação com o próprio DZP. 

O Capítulo 3 descreve uma abordagem mais abrangente. Análise de águas 

superficiais, realizada por LC-QTOF MS, com aplicação de uma metodologia de 

screening utilizando bases de dados contendo informações sobre 3250 compostos 

pertencentes a diferentes classes de CEC. Após análise screening de 27 amostras de rios, 

foi possível identificar 150 compostos (133 compostos suspeitos e 17 compostos 

confirmados). As predições in silico dos compostos identificados foram realizadas usando 

métodos (Q)SAR, para oito variáveis selecionadas. O grande número de compostos e as 

diferentes variáreis preditas dificultaram a avaliação geral da toxicidade. Portanto, a fim 

de obter uma melhor compreensão do risco de cada composto identificado, foram 

utilizados dois métodos de tomada de decisão multicritério (toxicological priority index 

(ToxPi) e technique for order of preference by similarity to ideal solution (TOPSIS)), 

considerando diferentes pesos para cada uma das variáveis. Após a classificação, os 

resultados de ToxPi e TOPSIS foram avaliados e mostraram similaridade para os 20 

compostos mais preocupantes. O TOPSIS mostrou alta robustez em testes de 

sensibilidade, indicando ser uma ferramenta apropriada para uso em associação com 

resultados de análise screening, o que pode apoiar e direcionar o desenvolvimento de 

métodos analíticos quantitativos como segunda etapa. 

Ao longo dos diferentes estudos, foi possível propor estratégias de identificação, 

degradação, extração, avaliação de toxicidade e classificação de microcontaminantes 

presentes em ambientes aquáticos. Foi possível obter novos resultados nunca antes 

reportados, evidenciando a contribuição e importância do estudo para a pesquisa sobre 

contaminação do meio aquático e possíveis métodos de tratamento. 

Palavras-chave: Análise screening, espectrometria de massa de alta resolução, produtos 

de transformação, predições in silico (Q)SAR, métodos de tomada de decisão 

multicritério.  
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INTRODUCTION 

 

The world’s population has grown significantly in recent decades, from 2.5 billion 

inhabitants in 1950 to 7.8 billion in April 2021, with projections of 9 billion in 2050, 

according to the United States Census Bureau [1]. Concomitantly, the high demands of 

mostly urbanized modern society are driving significant increases in environmental 

stress, associated with the indiscriminate exploitation of natural resources. This 

exploitation generates massive amounts of waste and is responsible for the release of 

thousands of anthropogenic substances into the environment [2,3]. 

Considering natural resources, water is indispensable for the existence and 

maintenance of life, so action to ensure its quality is essential. The main way to assess 

water quality is to investigate the presence of a wide range of contaminants in the aquatic 

environment, including study of the occurrence of micropollutants in different aqueous 

matrices. Many microcontaminants, known as contaminants of emerging concern 

(CECs), are compounds that are widely used, but are mostly not covered by legislation. 

They can be found in aqueous matrices and represent still unknown risks to humans and 

to the environment [4]. CECs belong to different classes of compounds, such as 

pharmaceuticals, pesticides, plasticizers, flame retardants, illicit drugs, and hormones, in 

addition to metabolites and transformation products of these substances [5]. 

Considering the different classes of CECs, it is very important to define two 

classifications that can sometimes lead to misunderstanding: “metabolites” and 

“transformation products”. “Metabolite” is a definition that should be used for 

compounds transformed within or on the human body, animal bodies, and plants. 

Compounds generated by modifications occurring outside these organisms, such as those 

produced by bacteria and fungi in the environment, by chemical reactions in sewage and 

drinking water treatment plants, and by photodegradation, hydrolysis, or oxidation, 

should be defined as “transformation products” (TPs) [6]. A scheme illustrating the 

transformations and the proper definitions is presented in Figure 1. 
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Figure 1. Differences between metabolites and transformation products. Adapted from 

Kümmerer, 2009 [6]. 

 

Different CECs are present in the aquatic environment at trace and ultra-trace 

levels (µg L-1 and ng L-1) [7], originating from a variety of sources including agricultural 

and livestock activities, industrial effluents, leachates from landfills, and hospital and 

domestic wastewaters [8]. In order to address this problem, the implementation of 

environmental monitoring programs has been considered imperative in recent years, 

representing the first step of actions aiming at the control of environmental pollution. The 

scientific literature contains many studies carried out to identify aquatic contamination 

and to try to understand its dynamics and the different routes by which microcontaminants 

can reach aqueous media including drinking water [9–12], surface water [13–17], 

groundwater [18–20], and effluents [4,5,13,16].  

To carry out the monitoring of microcontaminants, the development of 

appropriate methods for multi-residue analysis is essential. In order to achieve adequate 

sensitivity, an efficient first step of extraction/preconcentration is necessary, such as using 

solid phase extraction (SPE). SPE is a technique that can provide high analyte recovery 

rates, high robustness, and high sample concentration factors, as well as the availability 

of a wide range of commercially available sorbents [21–24]. Besides SPE, extraction 

methodologies based on dispersive liquid-liquid microextraction (DLLME) offer the 

advantages of being extremely fast and simple, using only a few microliters of solvents. 

They are less expensive than SPE and can be applied to different organic compounds in 
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a wide variety of matrices [25]. However, DLLME is less sensitive than SPE [26], 

achieving lower sample concentration factors. 

After the extraction/preconcentration step, the samples must be analyzed using 

specific and sensitive analytical techniques capable of detecting the analytes of interest 

(the microcontaminants), in the presence of many impurities. With technological 

advances, it has become possible to monitor microcontaminants present at very low 

concentrations. The use of liquid chromatography coupled with high resolution mass 

spectrometry (LC-HRMS) allows the separation, detection, identification, and 

quantification of a wide range of pollutants at very low concentration levels [27,28]. In 

this case, the detection and identification of CECs is achieved using information 

contained in mass spectrum data, such as the exact masses of the molecular ion and 

characteristic fragments, isotopic pattern, and double-bond equivalency (DBE) [29,30]. 

This type of methodology enables target and nontarget analyses, as well as the screening 

of suspect compounds, without the need for analytical standards. Such strategies have 

been applied in several studies [31,32] and are very well accepted by the scientific 

community. Another advantage is the possibility of retrospective data processing, without 

any need for additional analyses [33]. 

In the monitoring and analysis of microcontaminants, the use of analytical 

standards can assist in identification of the analyte, since in addition to the fragmentation 

profile of the compound (using at least two characteristic fragments), information 

regarding its retention time can assist in confirming its identify, when detected in a sample 

[23]. However, in many cases, analytical standards may be difficult to obtain or be 

unavailable (especially for TPs). In addition, the development of quantitative 

methodologies is expensive and time-consuming, especially if qualitative analyses 

(screening) have not been performed previously. Therefore, it is necessary to develop new 

strategies capable of circumventing these limitations. One strategy that can be used is to 

perform initial qualitative analysis, using HRMS combined with customized databases 

that usually contain information for a few thousand compounds [34–38]. From the results 

obtained with the qualitative method, it is possible to develop a quantitative method that 

is more focused, saving time and economic resources. A wide-ranging custom database 

can be constructed by collecting information about the chemical formulas and exact 

masses of compounds and their characteristic fragments, available in free access 

databases and in the scientific literature. It should be noted that a customized database is 
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a dynamic tool that must be constantly updated whenever information about new 

compounds and their fragments becomes available [33]. 

Many microcontaminants present in effluents pass through treatment plants, 

where they are not completely removed by conventional biological processes [39], so they 

are consequently released into the environment. Hence, there is a need for additional 

treatment processes capable of maximizing the removal of recalcitrant 

microcontaminants such as CECs, before the treated effluent is discharged to the 

environment. The development of methodologies based on AOPs to degrade many 

organic compounds is becoming increasingly common [40]. The efficiency of AOPs is 

due to the formation of hydroxyl radicals (HO•), which have high oxidizing power at 

atmospheric pressure and ambient temperature, but do not have selectivity [41]. Various 

AOPs have been applied for the degradation of CECs [42]. In a more environmentally 

friendly approach, the solar photo-Fenton process (SPFP) offers a very efficient 

alternative, because it uses solar radiation (UV) to form hydroxyl radicals, instead of the 

artificial radiation used in other processes [41,43]. However, when AOPs are used to 

degrade CECs, besides the original compound, it is necessary to identify and monitor the 

TPs generated during the treatment process, since the TPs can sometimes be more toxic 

and persistent than the parent compound [44,45]. 

After screening analyses, the use of in silico prediction provides a valuable tool to 

evaluate the toxicological parameters of the screened compounds and TPs, guiding the 

development of quantitative methodologies and improving risk assessment of the 

quantified compounds. Undertaking experimental studies to assess the risk of each 

compound requires a lot of time, considerable financial resources, and a large number of 

animal tests. An approach that circumvents all of these issues is in silico prediction based 

on (quantitative) structure-activity relationship ((Q)SAR) models [46]. These are 

computational mathematical modeling methods that are robust, economical, and 

applicable for use in risk assessment and toxicity prediction [47]. The predictions are 

based on the assumption that the chemical structure of a molecule contains characteristics 

responsible for its physical, chemical, and biological properties. Consequently, the 

activity of a compound can be determined using numerical descriptors, and mathematical 

predictions can be used for the activities of structurally similar compounds [47–49]. 

The results obtained with (Q)SAR model predictions can be very useful. However, 

when dozens of compounds are evaluated and many endpoints are predicted, the amount 

of data produced can make it difficult to identify the compounds that could present the 
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greatest risk to the environment. In this situation, the use of multi-criteria decision-

making analysis (MCDA) can provide safer evaluation, considering the different 

endpoints predicted by the (Q)SAR tools [50]. Examples of MCDA ranking methods are 

ToxPi and TOPSIS. These two different techniques are able to rank the compounds 

considering different endpoints, which can have different weights, in order to determine 

the environmental risk scores. ToxPi was proposed by Reif et al. [51] as a dimensionless 

score index that allows the integration of several endpoints to provide a classification, 

considering the weighted average among all endpoints. TOPSIS is a ranking method 

based on the Euclidean distance between a “positive ideal” solution and a “negative ideal” 

solution, with the best alternative being the one presenting the closest proximity to the 

ideal positive alternative and the greatest possible distance from the ideal negative 

alternative [50]. 
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Chapter 1  

Investigation of pharmaceuticals and their metabolites 

in Brazilian hospital wastewater by LC-QTOF MS 

screening combined with a preliminary exposure and 

in silico risk assessment 
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Introduction 

 

Pharmaceuticals are biologically active compounds that after administration 

follow different routes in the human body, until being excreted either as metabolites or in 

unchanged form. Until a few decades ago, very little attention was given to 

pharmaceuticals discharged into the environment, and even less to their metabolites [52]. 

For example, the first published study concerning the harm caused by pharmaceuticals in 

the environment dates from 2004 [53]. Pharmaceuticals are a very important class of 

compounds that contribute significantly to human health and life, but the damage caused 

by them and their metabolites in the environment is still not completely understood [54].  

A large number of studies have focused on quantitative screening of 

pharmaceuticals in different aquatic environmental matrices [55–60], but fewer works 

have investigated the presence of their metabolites in the same matrices [61–64]. Studies 

concerning the presence of these compounds are essential as a first step, prior to the 

introduction of appropriate legislation. As an example, in the European Union, there is a 

“watch list” of priority substances, implemented to facilitate assessment of the risks 

presented by chemicals found in surface waters. In this program, the member states should 

monitor the substances present in the list, at least once per year, for up to four years, in 

order to improve the information available for identifying the substances of greatest 

concern. In the last update by the European Commission, in 2020, besides 

pharmaceuticals, the metabolite o-desmethylvenlafaxine [65] was included in the “watch 

list”. This was a very important indication that not only the active compounds, but also 

their metabolites, require attention concerning the possible harm caused by them to 

humans and the environment. 

 

Objectives  

 

This study concerns a screening analysis of pharmaceuticals and their metabolites 

by LC-QTOF MS, using different strategies for identification of the compounds: i) 

compounds identified as “confirmed”, when analytical standards were available; ii) 

compounds screening as “suspect”, when analytical standards were not available, but 

there was identification of the molecular ion and at least two characteristic fragments with 
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m/z errors below 5 ppm; and iii) evaluation of the presence of non-expected/non-related 

metabolites, using a “common fragmentation” strategy.  

Besides screening, this study evaluates the risk assessment of pharmaceuticals and 

metabolites using in silico predictions employing various (Q)SAR models.  

 

Main results 

 

The results showed that the applied screening strategy was very helpful for 

understanding the composition of raw hospital wastewater (RHW). The extended 

database, which included 1111 pharmaceuticals and 272 metabolites, enabled the 

identification of 43 pharmaceuticals and 31 metabolites in the samples analyzed. In 

addition, 4 metabolites were identified using the “common fragmentation” method. The 

strategy adopted, consisting of an initial qualitative analysis with broad scope, was 

important as a first step, prior to performing quantitative analysis in a more efficient way 

[66].  

Due to their physicochemical properties, pharmaceuticals and their metabolites 

are incompletely removed in conventional wastewater treatment plants [67], resulting in 

their release into the environment. This is of great concern, especially in countries such 

as Brazil, where aggravating factors are that only 43% of the population has access to 

sewage collection and treatment [68], and RHW may often be discharged into the 

environment without any prior treatment. In the case of the RHW studied here, it did not 

receive any treatment before being discharged together with domestic effluent. In the 

study city, only 80% of wastewater is treated [69], so it is possible for untreated RHW to 

enter the environment, increasing the potential for contamination by a very large number 

of pharmaceuticals and metabolites. This situation provides further justification of the 

need to study the composition of this effluent and perform risk assessment. Even when 

effluents are treated, the removal of pharmaceuticals and metabolites in conventional 

wastewater treatment plants depends on the physicochemical properties of the 

compounds, as well as the treatment conditions (considering the wastewater composition, 

temperature, and solids retention time, among other factors), which can influence the 

efficiency of the process [70]. 

Metabolites can represent a very important part of pharmacological contamination 

in effluents and other matrices of environmental relevance, for several reasons: i) Some 
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pharmaceuticals may not be found in the effluents or in the environment in their original 

forms, because during the metabolization process they are transformed into more stable 

forms (metabolites), which should therefore be the structures monitored [71]; ii) Some 

studies have reported an increase in the average concentration of pharmaceuticals in 

effluents (output), relative to influents (input). This can be explained by the fact that some 

compounds may be excreted conjugated with glucuronic acid or other polar groups, with 

the conjugated metabolite subsequently being cleaved by microorganisms, consequently 

returning to the unchanged (active) form of the pharmaceutical [71]; iii) There are some 

pharmaceuticals that only become bioactive after transformation of the parent compounds 

into metabolites [72]. For these three reasons, it is clear that screening of metabolites 

needs to be carried out concomitantly with screening of drugs in environmental matrices, 

because both the pharmaceuticals and the metabolites can present substantial risks to 

human health and the environment. 

This study demonstrates the effectiveness of a metabolite monitoring strategy 

complemented by in silico (Q)SAR prediction, an excellent tool for assessment of the 

potential environmental risks of contaminants, especially in the aquatic environment. The 

results indicate the importance of developing studies of this type, in order to understand 

the composition of effluents and enable the implementation of appropriate control 

measures. The strategy enables identification of the most concerning compounds present 

in aquatic matrices, contributing to the development of robust and effective monitoring 

methods that consider both pharmaceuticals and their metabolites in effluents and other 

environmental matrices. This can then enable the proposal of efficient new advanced 

treatment processes for the removal of metabolites from effluents. 

All the methods, results, and conclusions are presented in Paper I and 

Supplementary Material I. 
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This work evaluates the occurrence of pharmaceuticals, with special emphasis on their metabolites, in 

raw hospital wastewater (HWW) using wide-scope screening based on liquid chromatography coupled 

to high resolution mass spectrometry. The applied strategy uses an extended purpose-built database, 

containing >1000 pharmaceuticals and 250 metabolites. Raw HWW samples from a hospital located in 

south Brazil were collected over six months, with a monthly sampling frequency. Accurate-mass full- 

spectrum data provided by quadrupole-time of flight MS allowed the identification of 43 pharmaceuticals and 

up to 31 metabolites in the samples under study. Additionally, other four metabolites not  included in the 

initial database could be identified using a complementary strategy based on the common fragmen- 

tation pathway between the parent compound and its metabolites. Nine metabolites derived from four 

pharmaceuticals were identified in the raw HWW samples, whereas their parent compounds were not 

found in these samples. The results of this work illustrate the importance of including not only parent 

pharmaceuticals but also their main metabolites in screening analysis. Besides, the inclusion of in silico 

QSAR predictions allowed assessing the environmental fate and effect of pharmaceuticals and metabo- 

lites in terms of biodegradability, as possible Persistent, Bioaccumulative and Toxic (PBT) compounds, 

and their potential hazard to the aquatic environment. 

© 2019 Elsevier B.V. All rights reserved. 

 

 

* Corresponding author. 

E-mail address: carla.sirtori@ufrgs.br (C. Sirtori). 

 
https://doi.org/10.1016/j.scitotenv.2019.134218 

0048-9697/© 2019 Elsevier B.V. All rights reserved. 

Contents lists available at ScienceDirect 

 

Science of the Total Environment 
 

journal  homepage: www.elsevier.com/locate/scitotenv  

https://doi.org/10.1016/j.scitotenv.2019.134218
mailto:carla.sirtori@ufrgs.br
https://doi.org/10.1016/j.scitotenv.2019.134218
http://www.sciencedirect.com/science/journal/00489697
http://www.elsevier.com/locate/scitotenv


16  
 

1. Introduction 

 
Nowadays, multiple studies have shown that the main route of 

entry of compounds with pharmacological activity into the envi- 

ronment occurs through urban and hospital wastewater (HWW) 

(Comber et  al.,  2018;  Hernández  et  al.,  2019a,  2019b;  Nguyen et 

al., 2018). Hospitals, clinics and emergency rooms deserve spe- cial 

attention because the continuous disposal of pharmaceuticals 

derived from the innumerable activities carried out within these 

establishments (anaesthesia, cancer treatment, diagnosis, analge- 

sia, etc.) (Frédéric and Yves, 2014). 

Advances in analytical chemistry have allowed the monitoring of 

a large variety of emerging contaminants in water at very low 

concentrations (sub-ppb levels). As a result, pharmaceutical com- 

pounds such as analgesics, antibiotics, anti-inflammatories and 

contrast media have frequently been detected in the aquatic envi- 

ronment (Al-Qaim et al., 2014; Botero-Coy et al., 2018; Fatta- 

Kassinos et al., 2011; Gracia-Lor et al., 2012; Olalla et al., 2018; 

Pérez-Alvarez et al., 2018). 

Pharmaceuticals are excreted through the faeces or urine (Gaso- 

Sokac et al., 2017), after total or partial metabolism, with the conse- 

quent impact on the aquatic environment (Han and Lee, 2017). A 

rapid search in the literature reveals many studies about pharma- 

ceuticals screening in the aquatic environment in the last years 

around the world (Pérez-Alvarez et al., 2018; Singer et al., 2016; 

Tewari et al., 2013). However, the number of studies reporting the 

screening and identification of human metabolites in  wastewater is 

less significant (Aceña et al., 2016; Asghar et al., 2018; Brown and 

Wong, 2018; Evgenidou et al., 2015; Gracia-Lor et al., 2014; 

Kovalova et al., 2013). 
The mechanisms  involved  in  drugs  metabolism  in  humans 

mainly correspond to oxidations, reductions and hydrolysis (phase 

I metabolism), or to the transference of a polar group to the phar- 

maceuticals basic structure forming conjugates such as glu- 

curonides or sulfates (phase II metabolism) (Frédéric and Yves, 

2014). In some cases, the drugs only become bioactive after the 

transformation of the parent compound into metabolites 

(Mompelat et al., 2009). Several factors such as age, gender, ethnic- 

ity or the time of administration may influence the pharmacokinet- 

ics of these compounds (Chikhani and Hardman, 2016). Commonly, 

with greater polarity (mobility) and stability, the metabolites may 

still contain structural similarities to the parent compounds and 

present pharmacophore groups attaining similar (or unknown) 

activity, being hazardous to the environment from an (eco)toxico- 

logical point of view (Trontelj, 2012). 
According to Santos et al. (2013), concentrations higher than 

tens ng L—1, for some substances, might result in relevant ecotoxi- 

cological impact, presenting a risk to aquatic organisms. For these 

reasons, the implementation of tests for identifying the potential 

toxicity of different drugs, as well as of their metabolites and trans- 

formation products, in different trophic levels has gained more and 

more attention in scientific community (Cruz-morató et al., 2014; Li 

et al., 2014). According to Al Aukidy et al. (2014) the degree of risk 

of a compound present in wastewater is site-specific, and depends 

on a combination of several factors: (i) compound concen- tration 

and toxicity, (ii) compound removal efficiency in the wastewater 

treatment plant (WWTP), and (iii) the dilution factor. Considering 

the expected high concentrations of pharmaceuticals in raw HWW 

released from hospitals and health care centers, a comprehensive 

insight in monitoring and, therefore, a more realis- tic knowledge on 

the occurrence of these compounds in this  type of samples, is 

essential to contribute to an adequate selection of treatment 

processes for the total or partial elimination of the recal- citrant or 

more toxic compounds. 

The presence of metabolites in the aquatic environment is a fact 

that needs to be studied in more depth. Assessing only the parent 

compounds in the aquatic environment may not be sufficient for a 

proactive risk assessment. The first step for evaluating the presence 

of metabolites in environmental samples is their reliable identifica- 

tion. This is an analytical challenge due to the huge number of com- 

pounds that may be present, many of them still unknown or nor 

sufficiently documented. They are commonly present at low con- 

centrations in highly complex matrices, and reference standards are 

not available for many of them (Camacho-Muñoz and Kasprzyk-

Hordern, 2015). Thus, the screening of these compounds in hospital 

wastewater demands powerful techniques for their detection and 

reliable identification. The use of liquid chromatogra- phy coupled to 

mass spectrometry (LC-MS) allows the detection, identification and 

quantification of a wide range of organic pollu- tants at the low 

concentration levels required (Mosekiemang et al., 2019; Wang et 

al., 2017). When dealing with emerging contami- nants, there is a 

clear trend towards the use of high resolution MS (HRMS), which 

allows wide-scope screening of a large number of compounds 

thanks to the valuable information contained in accurate-mass full-

spectrum data (Hernández et al., 2019a, 2019b; Singer et al., 2016). 

With the same instrument, target, suspect and non-target analyses 

can be performed, as well as retrospective data treatment at any 

time, without the need of additional analysis or ref- erence standards 

(Partridge et al., 2018). Thus, the identification of pharmaceuticals 

metabolites and TPs has been efficiently made by retrospective 

analysis of QTOF MS data in wastewater samples (Hernández et al., 

2014; Ibáñez et al., 2017). 
In addition to the concentration data reported, the risk assess- 
ment of pharmaceuticals and metabolites in the aquatic environ- 

ment should be further investigated. For this purpose, predicted 

environmental concentrations and in     silico (quantitative) 

structure-activity relationships ((Q)SAR) predictions are useful 

tools (Mansour et al., 2016; Roos et al., 2012; Thomas et al., 2019). 

Only few studies have reported the contribution of wastewater 

from a large health care institution to the environment contamina- 

tion in developing countries (Botero-Coy et al., 2018; Diwan et al., 

2009; Mansour et al., 2016; Martins et al., 2008; Wilde et al., 2012). 

This is an issue of concern because raw wastewater is sometimes 

directly discharged to the aquatic environment, without any treat- 

ment. Therefore, negative environmental impact can be expected 

due to the presence of pharmaceuticals, among other compounds. 

In the present work, an analytical strategy for wide-scope screen- 

ing of a large number of pharmaceuticals and metabolites in raw 

HWW has been applied based on the use of LC-QTOF MS. A target 

screening for compounds which reference standards were avail- 

able, together with a suspect screening using a purpose-built data- 

base containing  around 1000  pharmaceuticals and 250 

metabolites, has been applied for both detection and identification 

of the compounds present in raw HWW. An investigation of non- 

expected/non reported metabolites has been also performed by 

searching for common fragments shared with the parent com- 

pound. Finally, a preliminary risk assessment of the pharmaceuti- 

cal human metabolites was carried out by means of in silico 
quantitative structure-activity relationship (QSAR). 

 

 
2. Experimental 

 
2.1. Chemicals 

 
HPLC grade methanol (MeOH) was purchased from Scharlab 

(Barcelona, Spain) and formic acid (purity 98%) was provided by 

Merck (Darmstadt, Germany). All analytical pharmaceutical stan- 
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dards used were purchased from different providers with purity 

>98.99% and used as received. 

For QTOF MS analysis, HPLC-grade water was obtained from a 

Milli-Q water purification system (Millipore Ltd., Bedford, MA, 

USA). HPLC-grade MeOH and sodium hydroxide (>99%) were 

obtained from Scharlab (Barcelona, Spain).  Leucine-enkephalin 

and formic acid were purchased from Sigma-Aldrich. 

 
2.2. Hospital wastewater and study site characterization 

 
The studied hospital is considered as a large health center in 

Brazil. It has 128,000 m2 of  built  area  with  699 inpatient  units, 87 

units of intensive care treatment, 47 emergency  rooms  and 188 

outpatient rooms. Besides the metropolitan population (~4.3 

million), the investigated hospital is responsible for treating 

patients from all over the state of Rio Grande do Sul, and therefore 

predicting its entire coverage population is quite difficult. Accord- 

ing to the data provided by the hospital, along 2018, 31,288 patients 

were hospitalized and >569,000 people had medical appointments. 

Additionally, >3 million clinical diagnostic tests, 47,546 surgical 

procedures, 3515 births and 425 transplants were carried out in 

this institution. 
Six raw HWW samples were collected monthly from February 

to July 2017, in a hospital located in the city of Porto Alegre (in south 

Brazil). The raw HWW was collected periodically in the early hours 

of the morning (8:00–9:00 am).This raw HWW is directly discarded 

into the public sewage system to be subsequently trea- ted in 

municipal wastewater treatment plants. The main physico- 

chemical parameters monitored in raw HWW samples collected 

were: pH, conductivity, biochemical oxygen demand (BOD), dis- 

solved organic carbon (DOC), chemical oxygen demand (COD), 

BOD/COD ratio, phosphate and chloride concentrations, total sus- 

pended solids (TSS) and total solids (TS) (see Table S1 in Supple- 

mentary Material). All methods employed to characterise this 

wastewater matrix were taken from Standard Methods for the 

Examination of Water and Wastewater (American Public Health 

Association, 1998). 

 
2.3. Sample preparation and instrumentation 

 
Raw HWW samples were collected in suitable glass bottles and 

immediately stored in refrigerated thermal boxes during transport 

from the study site to the laboratory. Upon arrival in the labora- 

tory, the samples were filtered through cellulose acetate mem- 

branes of two different porosities (1 lm and 0.45 lm) and stored 

at —20 °C.  Solid  phase  extraction (SPE)  was performed  according to 
Hernández et al. (2015). Instrumentation used in sample analy- 

sis was based on LC-QTOF MS. More details about sample prepara- 

tion and instrumentation are shown on Section S2 (Supplementary 

Material). 

 
2.4. General strategy 

 
The identification of metabolites and pharmaceuticals parent 

compounds was performed by using the customised database 

associated to commercial software, which extracted from the raw 

data the potential compounds (pharmaceuticals and metabolites) 

and their fragments, when known. This approach has been success- 

fully employed by Ibáñez et al. (2017) for the screening of a large 

number of compounds. The initial database was supplemented with 

118 pharmaceuticals routinely used in the studied hospital and 

which had not been included in the original database. For each 

pharmaceutical, the main metabolites, when information was 

available, were also included. Large  free-search  databases,  such as 

METLIN (https://metlin.scripps.edu/landing_page.php?pgcon- 

tent=mainPage), or scientific literature were checked. When 

characteristic fragments of pharmaceuticals and/or of metabolites 

were found, they were also added to the database to facilitate fas- 

ter and more reliable identification of the compounds. 

The extended database of pharmaceuticals (1111 compounds) 

and metabolites (272) employed in this study contained: i) 202 

compounds for which the analytical reference standard was avail- 

able at the laboratory, i.e. the retention time was known and there 

was information on empirical fragment ions (target screening); ii) 

107 compounds for which the reference standard was not available 

at the laboratory, but whose fragmentation profiles were known 

(suspect screening); iii) 1074 compounds for which only the ele- 

mental composition was  known (i.e.  the theoretical exact  mass). In 

this case, for potential positives in samples it was necessary to 

consider the information about molecular ion (generally  in   the low 

energy function (LE)) as well about the fragments (typically 

observed in high energy function (HE)), and to evaluate whether the 

potential fragments were consistent with the chemical struc- ture of 

the compound (suspect screening). It should be noted that for all 

compounds, the presence of a characteristic isotopic pattern 

(mainly due to the presence of a chlorine or bromine atom in the 

molecule), was also taken into account. 
In a final  step,  the  presence  of  additional  chromatographic 

peaks (usually in the HE acquisition) in the narrow-window 

extracted ion chromatograms (nw-XICs) at m/z fragments corre- 

sponding to the parent compound was also evaluated in order to 

investigate the presence of potential metabolites not included in the 

database. This strategy, which assumes that many metabo- 

lites/TPs share the fragmentation pathway with the parent com- 

pound (Ibáñez et al., 2016, 2017), was applied for all 

pharmaceuticals detected in the raw HWW samples analysed. 

In the present work, metabolites and parent compounds found 

in the samples were divided into two groups: group ‘c’, which stands 

for ‘confirmed’, i.e. compounds which were confirmed by retention 

time, and at least one fragment ion in addition to the (de)protonated 

molecule (i.e. compounds for which the analytical reference 

standard was available at laboratory); group ‘s’, which stands for 

‘suspect’, i.e. compounds tentatively identified by the presence of 

two or more plausible fragments, but for which no ref- erence 

standard was available. 

 

2.5. Prediction of the environmental concentrations in the raw hospital 

wastewater 

 
A worst-case scenario was used for the PEC calculations in the 

influent wastewater of the studied hospital. It is important to note 

that the influent samples studied did not undergo any treatment 

prior to analysis, fact that can justified high PEC values (lg L—1). The 

following premises were considered: (i) the amount of phar- 

maceuticals used in the hospital considering the maximum influ- 

xes; (ii) the maximum fraction of the pharmaceuticals excreted 

unchanged were released through the sewer system; (iii) a negligi- 

ble elimination in the sewer system, and (iv) the pattern of use was 

evenly temporally and spatially distributed (Wilde et al.,  2012). The 

water consumption, according data provided by the hospital 

management, reaches 25,000 m3 per month. The PEC of the studied 

pharmaceuticals was calculated by the Eq. (1) (Escher et al., 2011). 

 
A × E× 106 

PECRHWW ¼ 
365 × VHWW 

(1) 

where: PECHWW is the  predicted  concentration in  the raw HWW (lg 

L—1). A is the amount of pharmaceutical used per year (g yr—1). E is 
the excretion factor of the unchanged pharmaceutical (%). V is the 
volume of wastewater generated per day (L day—1). 365 is the 

number of days in a year, i.e. a daily release is considered, and 106 

https://metlin.scripps.edu/landing_page.php?pgcontent=mainPage
https://metlin.scripps.edu/landing_page.php?pgcontent=mainPage
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is the conversion factor from g L—1 to lg L—1. The same approach 

was used to calculate the PEC for the metabolites. 

The estimation of the Predicted No Effect Concentration (PNEC) 

was based on toxicity screening by means of Quantitative Structure 

Activity Relationship (QSAR) obtained by the software US EPA ECO- 

SAR V2.0 (ECOSAR, 2012). It was considered the lowest predicted 

value of LC/LD/EC50 for each pharmaceutical and metabolite calcu- 

lated according to Eq. (2) (Mansour et al., 2016). For the PNEC cal- 

culation, three different ecotoxicological endpoints were 

considered, such as Green algae, Daphnid and Fish. 

3. Results and discussion 

 
3.1. Pharmaceuticals parent compounds screening 

 
Up to 43 pharmaceutical parent compounds were identified in 

the raw HWW (Table S2 in Supplementary Material), correspond- 

ing to different therapeutic groups. Caffeine, a natural alkaloid pre- 

sent in coffee and other beverages, products containing cocoa or 

chocolate, dietary supplements, and in some medications, such as 

some analgesic formulations (Gracia-Lor et al., 2017), was also 
found. In addition to caffeine, acetaminophen, atenolol, codeine, 

PNEC 
ECOSAREcotoxicityGreenalgae=daphnid=fish 

1000 
2 diazepam, metoclopramide and trimethoprim were  observed  in 

all the 6 samplings. Metronidazole was identified in five out of 

The theoretical risk quotient (RQ) of each pharmaceutical 

released in the health institution influent wastewater was calcu- 

lated according to Eq. (3), whereas the RQ of the mixture of phar- 

maceuticals was accounted by the model of addition toxicity 

according to Eq. (4) (Escher et al., 2011). 
 

 
 

2.6. In silico quantitative structure-activity relationship (QSAR) models 

used for the predictions and risk assessment 

 
The structure of the pharmaceuticals and metabolites were 

transformed into SMILES strings by means of ChemBioDraw Ultra 

(v.12) and subjected to in silico predictions by different software 

and models. The log KOW   and log BCF  values  were predicted by EPI 

SuiteTM KOWWIN v1.68 and BCFBAF v3.01 programs, respec- tively. 

The persistence and biodegradability was predicted by EPI SuiteTM 

BIOWIN v4.10. The predicted ready biodegradability of the 

combined BIOWIN 1–7 models (Boethling and Costanza, 2010; 

Pavan and Worth, 2008)is pointed out as ‘‘yes” or ‘‘no” based on the 

following criteria: ‘‘yes” if the BIOWIN 3 result is ‘‘weeks”, ‘‘days” or 

‘‘days to weeks” and in the case of BIOWIN 5 the proba- 

bility is ≥0.5. If these criteria were not met the prediction is ‘‘no” 

(US EPA, 2012). The Prometheus software (Pizzo et al., 2016) was 

used for predicting and ranking the pharmaceuticals/metabolites 

depending on its persistence (P), bioaccumulation (B), and toxicity 

(T), i.e. PBT compounds, for the hazard assessment according to 

Registration, Evaluation, Authorization and Restriction of Chemi- 

cals (REACH) (REACH Commission regulation, 2011). Moreover, the 

mutagenicity activity was predicted by means of VEGA QSAR 

v.1.1.4  software  (Benfenati  et  al.,  2013).A  consensus  approach 

six samples, and clindamycin, metformin, fluconazole, lidocaine, 

metoprolol and tramadol were found in four of the collected 

samples. 

It is worth noticing that the group of pharmaceuticals with the 
highest occurrence were antibiotics. The presence of these com- 
pounds in wastewater is of concern, since they can promote bacte- 
rial resistance. Besides, they are not completely removed by 
conventionally wastewater  treatment  systems  (Kümmerer, 2009a, 
2009b). Ben et al. (2017) demonstrated the prevalence of antibiotic 
resistance in WWTP effluents from China and indicated 

the risk of dissemination of antibiotic resistance genes into the 
environment with the discharge or reuse of those effluents. The 
authors also pointed out those disinfection systems play an impor- 
tant role in eliminating antibiotic resistance in effluents, but addi- 
tional studies related to this process are needed. Similar situations 
of antibiotic resistance associated to wastewaters/effluents have 
been reported in different countries, such as  Romania,  Canada and, 
Italy, among others (Neudorf et al., 2017; Szekeres et  al., 2017; 
Turolla et al., 2018), and even in pristine areas such as the Antarctic 
(Hernández et al., 2019a, 2019b). 

 
3.2. Metabolites screening 

 
As stated in the experimental section, the large group of com- 

pounds included into the database was searched using two differ- 
ent strategies. Fig. 1 shows the identification of a metabolite when 
information about retention time and fragment ions was available. 
A chromatographic peak was observed at 10.01 min, which might 
correspond to losartan carboxylic acid (shift <0.1 min in relation 
to the reference standard). The LE spectrum showed the m/z corre- 
sponding to the protonated molecule ([M + H]+, C22H22N6O2Cl+ of m/z 
437.1493) with a measured mass error of 1.4 ppm in relation to the 
theoretical exact mass. The isotopic patt—ern characteristic of 
a chlorine atom was also observed. Similarly, the XICs of the main 
fragment ions were extracted from the HE function at the same 
retention time. The two main fragment ions were found at m/z 

was used by applying the Mutagenicity (Ames test) CONSENSUS 235.0978 Da  (corresponding  to  C    H  N+)  and   m/z  190.0657 
14    11    4 

model (v1.0.2). It performs an analysis among the CAESAR model 
(v.2.1.13), ISS model (v.1.0.2), KNN/Read-Across model (v.1.0.0), 
and SarPy/IRFMN model (v.1.0.7)  to  predict the  mutagenicity by a 
consensus score from 0 to  1  (as  the consensus score approach to 
1 more reliable is the prediction). Concerning carcinogenicity 
activity, VEGA QSAR software (Benfenati et al., 2013) was applied 
for the predictions. It provides the results in four different models 
for carcinogenicity: (i) Carcinogenicity model (IRFMN/Antares) 
(version 1.0.0), (ii) Carcinogenicity model (CAESAR) (version 

(C14H8N+), with mass errors lower than 3 ppm. 
However, the above described ideal situation did not occur for 

many metabolites, as ion fragments were not available in the data- 
base. Fig. 2 illustrates the tentative identification of  4- methylamino 
antipyrine (4-MAA). The LE spectrum in ESI positive ion mode of the 
chromatographic peak at 2.44 min, showed an abundant signal at 
m/z 218.1288 (Fig. 2a, bottom) which might correspond to the 
protonated molecule of 4-MAA (C12H16N3O+, expressed as [M + H]+, 
with a mass error of 0.5 ppm). The HE spec- 

2.1.9), (iii) Carcinogenicity model (ISS) (version 1.0.2), and (iii) Car- trum showed two fragment ions at m/z 159.0917 (C  H   N+, corre- 
10  11    2 

cinogenicity model (IRFMN/ISSCAN-CGX) (version 1.0.0). In gen- sponding to the loss of C2H5NO) and m/z 97.076 (C5 H9N+), both 
eral, VEGA QSAR provides an applicability domain index (ADI). If 
the ADI is lower than 0.75, it might indicate that there are differ- 
ences in the target compound compared to  the similar one found in 
the database. 

with mass errors below 2 ppm (Fig. 2a, top). The structure of these 
fragment ions was justified on the basis of their measured accurate 
masses, and all were compatible with the structure of the candi- 
date. Moreover, the fragment ions were in accordance to the infor- 

RQ ¼ 
PEC 

PNEC 
 

 

RQmixt:   ¼ 
 

i¼1 

  PECi 

PNECi 
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Fig. 1. Identification of the metabolite losartan carboxylic acid in RHWW: (a) nw-XICs (0.02 Da mass  window)  for  m/z corresponding  to  the protonated  molecule  in LE function 

and for its two main fragment ions in HE function. (b) Combined LE and HE spectra for chromatographic peak at 10.0 min. Elemental composition and mass error for the 

observed ions are shown. 

 
 

 

Fig. 2. Tentative identification of 4-methylamino antipyrine (4-MAA): (a) nw-XICs at 0.02 Da for m/z corresponding to the protonated molecule in LE function and main fragment 

ions in HE: (b) Combined LE and HE spectra of the potential metabolite. 

 

mation reported by Gómez et al. (2010). Accordingly, all these data 

strongly supported the tentative identification of the compound as 

4-MAA. 

In addition, the common fragmentation pattern approach was 

applied in order to investigate other metabolites not included in the 

list of suspects. This strategy allowed the identification of 4 

additional metabolites. For all pharmaceuticals and metabolites 

found in the samples, the presence of additional chromatographic 

peaks at m/z of the parent compound in the LE function and/or of 

the different fragments, commonly in the HE function, was evalu- 

ated. These signals could be related to the presence of other possi- 

ble new metabolites (Ibáñez et al., 2016, 2017). 
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Fig. 3. Detection and tentative identification of fluconazole glucuronide: (a) from bottom to top, nw-XICs at 0.02 Da mass window for m/z 307.112 in LE  function (corresponding 

to the protonated molecule of fluconazole, 5.11 min), m/z 238.0792 and 220.069 (corresponding to its main fragments in HE), m/z 483.1463 in LE function (corresponding to 

fluconazole glucuronide, 2.8 min). (b) LE and HE spectra of chromatographic peak at 2.8 min. 

 

An illustrative example of positive findings using the common 
fragmentation strategy is shown in Fig. 3. The XIC at the m/z of flu- 
conazole (C13H13N6OF+  m/z 307.1119, as [M + H]+) in the  LE  func- tion,  
showed  a  chroma,2tographic   peak   at   the   expected   retention time 
of the parent pharmaceutical (5.11 min), but also a minor peak at 2.80 
min (Fig. 3a, bottom). Moreover, XICs at the positive fragment ions of 
fluconazole (m/z 238.079 and 220.069) indicated that both 
compounds shared these fragment ions too (Fig. 3a, middle). There- 
fore, the peak at 2.80 min was treated as a potential metabolite/TP. 
After investigating the LE function (Fig. 3a, top), the accurate mass was 
assigned to m/z 483.1463 (Fig. 3b, bottom), which corresponded 

b-D-glucuronide were identified. In addition, for nine of the 
metabolites identified in this study (4-AAA, 4-AA, 4-FAA and 4- MAA 
from dipyrone; albendazole sulfoxide from albendazole; 4- hydroxy 
omeprazole sulfide, 5-hydroxy omeprazole and omeprazole sulfone 
N-oxide from omeprazole, and desalkyl vera- pamil D617 from 
verapamil) their parent compounds (active prin- ciple) were not 
identified in the raw HWW samples. These results illustrate the 
importance of performing metabolites screening when 
investigating the occurrence of pharmaceuticals in the aquatic 
environment, because metabolites can be present in the samples 
even if the parent compounds are not. 

to the elemental composition C   H   N O F+   (error 4.8 ppm). This Han and Lee (2017) evaluated the significance of the metabo- 
19    21    6    7 2 

implied an increase of C6H8O6 from fluconazole, which could be 
associated to a glucuronide moiety. Therefore, fluconazole- 
glucuronide was proposed as a reasonable structure for this poten- 
tial metabolite. The HE spectrum confirmed the presence of the glu- 
curonide moiety by the typical loss of 176 Da in positive ionization 
mode (Fabregat et al., 2013). Similar situations were observed for 
codeine glucuronide, hydrocodone glucuronide and azithromycin 
metabolite 591. 

Glucuronide metabolites are important for both toxicology and 
pharmacokinetics of many drugs (Trontelj, 2012). Although a drug 
bound to a glucuronide losses its pharmacological activity, there 
may be situations where deconjugation occurs (e.g. in the wastew- 
ater treatment plant), releasing the original compound and recov- 
ering its pharmacological activity. For this reason, conjugated 
compounds could also represent an environmental risk due to its 
back transformation. 

Considering this approach 31 metabolites were identified by the 
use of the expanded home-made database (Table 1). Five metabo- 
lites (4-AAA, 4-FAA and 4-MAA, from dipyrone; atenolol acid; and 
D,L,O-desmethyl venlafaxine) were identified in all raw HWW 
samples analysed. Also, the dipyrone  metabolite  4-AA was found 
in 5 out of the 6 analysed samples. It is interesting to note that 
although dipyrone (a non-steroidal anti-inflammatory drug) was 
not detected in the samples (Section 3.3), its metabolites (4-AAA, 4-
FAA, 4-MAA, 4-AA (Gómez et al., 2008) were identified and four of 
them were among the most frequently seen, indicating the 
importance of this complementary analysis of drugs and metabo- 
lites. In half of the samples analysed, metabolites originated from 
trimethoprim hydroxylation and also N,O-didesmethyl venlafaxine 

lites in the environmental risk assessment of pharmaceuticals 
consumed by humans. These authors concluded that some 
metabolites may potentially present similar or even greater risk 
than their parent active pharmaceutical ingredient in the aquatic 
environment. Consequently, the inclusion of metabolites in quali- 
tative (screening) and quantitative monitoring of environmental 
and wastewater samples is essential, including effluent samples, 
because they are frequently discharged directly into the aquatic 
environment. 

In addition to  human metabolites, some compounds found in the 

samples may be the result of biotic and  abiotic  processes  in the 

aqueous media (Michael et al., 2014). The raw HWW sample 

analysed in this work do not undergo any treatment before it is 

discarded into the public sewage system. It is possible that some 

aerobic or anaerobic organism are present in the sewer pipeline, but 

considering the high flow rate of sewage discharged and the lack of 

sunlight, the biotic process is predominant and it could be inferred 

that just few  transformation  products (TPs).  Evgenidou et al. 

(2015) provided an extensive literature survey about the 

occurrence of biotic and abiotic TPs in influents and effluents of 

WWTPs. Some metabolites found in this study, such as the ones 

of dipyrone (4-AAA, 4-AA, 4-FAA, and 4-MAA), atorvastatin (o-/p- 

hydroxyatovastatin), metoprolol (a-hydroxy metoprolol), 

metronidazole (hydroxy metronidazole), and venlafaxine (D.L.O.- 

desmethyl venlafaxine) were also found in influents and effluents of 

WWTPs. 
In the present work, seven phase II metabolites were identified 

in the influent raw HWW, such as the glucuronide derivatives of 

codeine, hydrocodone, fluconazole, diphenhydramine, and 
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Table 1 

Metabolites identified in the RHWW samples evaluated. 
 

Therapeutic class Pharmaceutical Metabolite February March April May June July Statusa 

Analgesics/anti-inflammatory Dipyrone 4-AAA x x x x x x c 
 (CAS: 68-89-3) (CAS:83-15-8)        

  4-AA x x x x x  c 
  (CAS:83-07-8)        

  4-FAA x x x x x x c 
  (CAS: 1672-58-8)        

  4-MAA x x x x x x s 
  (CAS: 856307-27-2)        

 Acetaminophen 3-cysteinyl acetaminophen    x  x s 
 (CAS: 103-90-2) (CAS: 53446-10-9)        

  3-methoxy acetaminophen x   x   s 

  
Codeine 

(CAS: 3251-55-6) 

Codeine-glucuronidec 

     
x 

  
s 

 (CAS: 76-57-3) 

Hydrocodone 

(CAS: 20736-11-2) 

Hydrocodone-glucuronidec 

 
x 

      
s 

 (CAS: 125-29-1)         

Anthelmintic drug Albendazole Albendazole sulfoxide    x   s 
 (CAS: 54965-21-8) (CAS: 54029-12-8)        

Cardiovascular disease Atenolol Atenolol acid x x x x x x s 
 (CAS: 29122-68-7) (CAS: 56392-14-4)        

 Metoprolol 

(CAS: 37350-58-6) 

a-Hydroxy metoprolol 

(CAS: 56392-16-6) 

  x  x  s 

 Losartan Losartan carboxylic acid x      c 
 (CAS: 114798-26-4) Losartan Metabolite 1 x    x  s 
  (CAS: 141675-57-2)        

  Losartan Metabolite 2 x    x  s 

  
Atorvastatin 

(CAS:141675-59-4) 

o/p-hydroxyatorvastatinb 

     
x 

  
s 

 
Antibiotics 

(CAS: 134523-00-5) 

Azithromycin 
 

Azithromycin met 591c 

     
x 

  
s 

 (CAS: 83905-01-5) (Descladinose)        

 Clindamycin N-desmethyl clindamycin     x  s 
 (CAS: 18323-44-9) (CAS: 22431-45-4)        

  Clindamycin sulfoxide     x  s 

  
Fluconazole 

(CAS: 22431-46-5) 

Fluconazole-glucuronidec 

    
x 

   
s 

 (CAS: 86386-73-4) (CAS: 136134-23-1)        

 Metronidazole Hydroxy metronidazole  x     c 
 (CAS: 443-48-1) (CAS: 4812-40-2)        

 Trimethoprim 

(CAS: 738-70-5) 

a-Hydroxy trimethoprim 

29606-06-2 

  x x   s 

  Trimethoprim 1-N-oxide   x    s 
  (CAS: 27653-68-5)        

  Trimethoprim 3-N-oxide   x    s 
  (CAS: 27653-67-4)        

Antihistaminic Diphenhydramine Diphenhydramine N-oxide    x   s 
 (CAS: 58-73-1) 3922-74-5        

  Diphenhydramine N-b-D-glucuronide    x x x s 
  (CAS: 137908-78-2)        

Psychiatric drugs Venlafaxine D,L,O-Desmethylvenlafaxine x x x x x x c 
 (CAS: 93413-69-5) N,O-Didesmethylvenlafaxineb-D-glucuronide  x  x  x s 

Calcium antagonist Verapamil Desalkyl verapamil D617     x  s 
 (CAS: 52-53-9) (CAS: 77326-93-3)        

Proton pump inhibitors Omeprazole 4-Hydroxy omeprazole sulfide      x s 
 (CAS: 73590-58-6) (CAS: 103876-98-8)        

  5-Hydroxy omeprazole   x    c 
  (CAS: 103876-99-9)        

  Omeprazolesulfone N-oxide   x    s 

  (CAS: 158812-85-2)        

4-AAA: N-acetyl-4-aminoantipyrine; 4-AA: 4-aminoantipyrine; 4-FAA: N-formyl-4-aminoantipyrine; 4-MAA: 4-methylaminoantipyrine. 
a Status: ‘c’ for ‘confirmed’ and ‘s’ for ‘suspect’. 
b Identified in positive and negative ionization modes. 
c Compound not included in the database applied in this study. Their identification was made possible after applying the common fragmentation pathway strategy. 

 
venlafaxine. A phase II sulfide derivative metabolite of omeprazole 

was also identified. Brown and Wong (2018) have evaluated the 

occurrence and distribution of pharmaceuticals and their phase II 

metabolite conjugates in a WWTPs reflecting the importance of 

analyzing the  contribution  of  such  metabolites in the  discharge 

of emerging contaminants from wastewaters in the environment. 

Thus, raw HWW might be one of the main contributor of phase II 

metabolites to WWTPs. 

3.3. Preliminary risk assessment of pharmaceuticals and metabolites 

 
3.3.1. Exposure assessment 

The PECs (lg L—1) of pharmaceuticals and metabolites in the 

influent wastewater are shown in Fig. S1 (Supplementary Mate- 

rial). The excretion rates and predicted eco-toxicity used for the PEC 

calculations can be seen in Tables S3–S6 (Supplementary Material). 

For some metabolites, values of PEC in the influent 



 

 
 
 
 
 

 
Risk Quotient (RQ) log scale Risk Quotient (RQ) log scale 

 
 
 

4-AAA 

4-AA 

4-FAA 

4-MAA 

3-cysteinyl acetaminophen 

3-methoxy acetaminophen 

Albendazole sulfoxide 

Atenolol acid 

o-hydroxyatorvastatin 

p-hydroxyatorvastatin 

Descladinose 

N-desmethyl clindamycin 

Clindamycin sulfoxide 

Codeine-glucuronide 

Diphenhydramine N-oxide 

Diphenhydramine N-?-D-glucuronide 

Fluconazole-glucuronide 

Hydrocodone-glucuronide 

Losartan carboxylic acid 

Losartan Metabolite 1 

Losartan Metabolite 2 

a-Hydroxy metoprolol 

Hydroxy metronidazole 

4-Hydroxy omeprazole sulfide 

5-Hydroxy omeprazole 

Omeprazole sulfone N-oxide 

a-Hydroxy trimethoprim 

Trimethoprim 1-N-oxide 

Trimethoprim 3-N-oxide 

D.L.O-Desmethyl venlafaxine 

N.O-Didesmethyl venlafaxine ß-D-glucuronide 

Desalkyl verapamil D617 

Dipyrone 
Antipyrine/Phenazone 

Acetaminophen (Paracetamol) 
Albendazole 

Atenolol 
Atorvastatin 
Azithromycin 
Clindamycin 

Codeine 
Diphenhydramine 

Fluconazole 
Hydrocodone 

Losartan 
Metoprolol 

Metronidazole 
Omeprazole 

Trimethoprim 
Venlafaxine 

Verapamil 
Aciclovir 

Atazanavir 
Bupivacaine 

Carbamazepine 
Cefepime 
Cetirizine 

Ciprofloxacin 
Diazepam 

Dimethylbiguanide/metformin 
Gabapentin 

Levofloxacin 
Lidocaine 

Lincomycin 
Metoclopramide 

Morphine 
Nystatin 

Ofloxacin 
Ondansetron 
Paliperidone 

Pregabalin 
Propranolol 
Quetiapine 
Ranitidine 

Sulfamethoxazole 
Sulpiride 
Tramadol 
Tyrosine 
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1–50 lg L—1. The higher values for dipyrone and its metabolites in 

raw HWW in this study could be compared with those stated by 
Feldmann et al. (2008), who reported the occurrence of dipyrone 
and metabolites in different locations of the municipal sewage sys- 

tem of Berlin (Germany) in concentrations above 50 lg L—1. 

Usually, a PEC/PNEC ratio with a log of ~10 is seen as a trigger 

value (European Commission, 1996). A more  accurate  criterion for 

risk assessment was proposed using log RQ < 1 as a minimum 

risk for aquatic organisms,  1 < log RQ < 10  as  medium risk, and log 

RQ > 10 as  high  risk (Franquet-Griell et  al.,  2015;  Hernando et al., 

2006). As shown in Fig. 4, acetaminophen, losartan, and car- 

bamazepine exceed the trigger value for high risk. Besides, aceta- 

minophen exceeded the RQ  for  the  two-ecotoxicological endpoints 

Green algae and Daphnid. Due to the environmental con- cern, such 

compounds should be checked in further biotests. Some 

pharmaceuticals could be considered as medium risk such as dipy- 
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rone, atorvastatin, codeine, metronidazole, omeprazole, venlafax- 

ine, bupivacaine, and lidocaine as their log RQ exceeded the trigger 

value of 1 for at least one endpoint. The RQmixt for the pharmaceu- 

ticals achieved 117.47, 62.325, and 22.45 for the end points Green 

algae, Daphnid and Fish, respectively. Considering the Green algae 

and Daphnid, the RQmixt achieved levels found by Escher et al. (2011) 

in  their study  for  a  general hospital, the RQmixt  found in the present 

work was lower. To understand this difference, it must be taken into 

account the distinct number and type of pharmaceu- ticals 

investigated in both studies. 

Concerning the metabolites, 4-AAA, 4-AA, 4-FAA, 4-MAA, and 4- 

hydroxy omeprazole sulfide exceeded the trigger value of log RQ 

10. The metabolites 3-methoxy acetaminophen, losartan car- 

boxylic acid, D.L.O.-desmethyl venlafaxine, and desalkyl verapamil 

D617 were classified as medium risk (1 < log RQ > 10).The RQmixt for 

the metabolites achieved 532.58, 106.11, and 36.17 for the end- 

points Green algae, Daphnid and Fish, respectively. 

Investigating the occurrence of pharmaceuticals in influent raw 

HWW is of relevance, especially in some developing countries where 

raw HWW may be directly discharged into the aquatic environment. 

It has been reported that several compounds in WWTPs were found 

at the same level as in HWW, indicating a similarity in usage pattern 

in hospitals and households (Azuma et al., 2019). The PEC of pharma- 

ceuticals in the influent raw HWW were at levels from few ng L—1 

(atorvastatin) up to >400 lg L—1 (cefepime). Measured concentra- 

tions of pharmaceuticals hospital effluent at lg L—1 levels were also 
reported by Azuma et al. (2019). The PEC of psychiatric compounds 

screened in this study such as quetiapine, venlafaxine and the 

metabolite D.L.O-desmethyl venlafaxine were predicted in concen- 

trations lower than 1 lg L—1, which is at the same level as the mea- 

sured concentrations reported in hospital WWTP influent in Greece 

(Kosma et al., 2019). Oliveira et al. (2015) analysed 185 pharmaceu- 

ticals and personal care products (PPCPs) belonging to >20 therapeu- 

tic categories in raw HWW of mid-sized hospitals, and the 

concentrations found for some pharmaceuticals were in the same 

level as the PEC provided by our study. 

 
3.4. In silico risk assessment by QSAR 

 
The persistence of the parent compounds and human metabo- 

lites found in the raw HWW was assessed by in silico predictions pro- 

vided by the BIOWIN models of the U.S. EPA EPI Suite software. The 

predicted values can be seen in Table S7 (Supplementary Material). 

Fig. 5 shows the BIOWIN 5 MITI (Japanese Ministry of International 

Trade and Industry biodegradation database) predictions for the 

parent compounds and human metabolites. Among the parent com- 

pounds, only gabapentin was predicted with >0.5 and by combining 

the BIOWIN 1–7 predictions, it was expected as probably ready 

biodegradable. However, Herrmann et al. (2015), who studied the 

biodegradability of gabapentin by means of OECD 301D reported 

that this compound is not readily biodegradable. 
Concerning metabolites, the wide majority were predicted as 

not readily biodegradable.  In  general, by comparing  the  BIOWIN 

5 values of the parent compounds and of human metabolites, an 

increase was observed for metabolites. Such behavior could be 

explained according to the generalized ‘‘rules of thumb” for 

biodegradation, such as hydroxylation and insertion of groups sus- 

ceptible to enzymatic hydrolysis. Values of BIOWIN 5 > 0.5 were 

predicted for the metabolites 3-methoxi acetaminophen, 

hydrocodone-glucuronide and N,O-didesmethyl venlafaxine b-D- 

glucuronide. The predicted increase in biodegradability might be 

due the phase II metabolism of the glucuronidation process. The 

metabolite a-hydroxy metoprolol was predicted with a value of 

0.4926, which is around the trigger values of BIOWIN 5. However, 

by combining the BIOWIN 1–7 predictions, a-hydroxy metoprolol 

was not predicted as readily biodegradable. Studies concerning 

the biodegradation of beta-blockers TPs have identified some of 

them as ready biodegradable compounds (Rastogi et al., 2014, 

2015a, 2015b). These authors tested 4-hydroxypropranolol glu- 

curonide by means of OECD 301D test showing that the glu- 

curonide derivative of 4-hydroxypropranolol is not readily 

biodegradable, but it undergoes a biotic transformation. Such 

behavior could also take place for the glucuronide metabolite 

derivatives. 

The hazard concerning pharmaceuticals and human metabo- 

lites found in this work was assessed by evaluating their PBT, 

mutagenicity and carcinogenicity predictions. The software Pro- 

metheus was used to rank the parent compounds and metabolites 

as PBT compounds. The in silico values predicted can be seen in 

Table S8 (Supplementary Material). A threshold of 0.5 of the total 

score was used to discriminate non-PBT (<0.5) and the potentially 

PBT or vPvB (≥0.5) compounds (Pizzo et al., 2016). Fig. S2 (Supple- 

mentary Material) shows the predicted PBT values for the parent 

compounds and metabolites. Although most of the structures were 

ranked below the threshold value of 0.5, some compounds such as 

the pharmaceuticals albendazole, fluconazole, cetirizine, diazepam 

and ondanestron were around this value (>0.45). The metabolite 

fluconazole-glucuronide was predicted with 0.494 and therefore 

might be classified as PBT taking into account the uncertainty of the 

predictions (Pizzo et al., 2016). 
The predicted values and applied VEGA QSAR models for Muta- 

genicity (Ames test) CONSENSUS model are summarized in Tables 

S9–S10 (Supplementary Material) and Table 2. It is worth to men- 

tion that the end-point does not address any dose-dependence on 

the results. The predictions provide a consensus score from 0 to 1. 

The score 1 usually corresponds to structures inside the ADI and 

due to presence of experimental value in at least one of the four 

models comprised into the CONSENSUS model. Among the parent 

compounds, mutagenicity alerts with  Exp. values were predicted for 

dipyrone, metronidazole, antipyrine/phenazone and ciprofloxa- cin. 

Conversely, non-mutagenicity alerts by consensus score of 1 were 

pointed out for 8 compounds. The metabolite hydroxy 

metronidazole was pointed out with a consensus score 1, being 

classified as mutagenic compound. Most of the parent compounds 

were predicted with a consensus score below 0.75, indicating 

structural differences among the predicted compounds and the 

structures present in the predictive models. Accordingly, such pre- 

dictions could be classified as of moderate or low reliability. Taking 

those structures of parent compounds (see Table S10, Supplemen- 

tary Material) and metabolites (see Table 2) with a consensus score 

of 1 aside, and analyzing the compounds which have presented a 

consensus score >0.75 (i.e. good reliability), most of compounds 

were predicted as non-mutagenic among the parent compounds 

calculated with high RQ, acetaminophen, losartan, and carba- 

mazepine were predicted as non-mutagenic compounds. 
Concerning the carcinogenicity assessment, different VEGA QSAR 

models were applied as can be seen in Table S11 (Supplementary 

Material). In regard to the analgesics, dipyrone presented contrasted 

predictions in ANTARES and ISS models and were reported as Exp. 

values for non-carcinogenic (NC) and carcinogenic (C). In relation to 

the dipyrone metabolites, 4-AAA, 4-AA, 4-FAA, 4-MAA most of alerts 

predicted the metabolites as carcinogenic compounds. Aceta- 

minophen was predicted with contradicting alerts as Exp. values 

towards carcinogenicity in two different models. The same behavior 

was also predicted for its human metabolites 3-cisteinyl acetamino- 

phen and 3-methoxy acetaminophen, probably because their pre- 

dictions are based on the structure of the parent compound. 

Codeine and hydrocodone and its metabolites were predicted as 

non-carcinogenic with good and moderate reliability according to 

some models. The antihelmintic drug albendazole and the metabo- 

lite albendazole sulfoxide presented contradicting predictions, 

which could be pointed out as inconclusive predictions. 
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Table 2 

In silico QSAR predictions for Mutagenicity (Ames test) CONSENSUS model of the pharmaceuticals and metabolites investigated in the present study according to VEGA QSAR 

v.1.1.4 software. 
 

Pharmaceutical Mutagenicity Consensus score Metabolite Mutagenicity Consensus score 

Dipyrone Mut. 1a 4-AAA Mut. 0.35 
   4-AA Non-Mut. 0.3 
   4-FAA Mut. 0.35 
   4-MAA Non-Mut. 0.3 

Acetaminophen Non-Mut. 1a 3-Cysteinyl acetaminophen Mut. 0.35 
   3-Methoxy acetaminophen Non-Mut. 0.45 

Albendazole Mut. 0.25 Albendazole sulfoxide Non-Mut. 0.2 

Atenolol Non-Mut. 1a Atenolol acid Non-Mut. 0.82 

Atorvastatin Non-Mut. 1a o/p-Hydroxyatorvastatin Non-Mut. 0.4 

Azithromycin Non-Mut. 1a Descladinose Non-Mut. 0.9 

Clindamycin Mut. 0.25 N-desmethyl clindamycin Mut. 0.25 

   Clindamycin sulfoxide Mut. 0.25 

Codeine Non-Mut. 1a Codeine-glucuronide Non-Mut. 0.6 

Diphenhydramine Non-Mut. 1a Diphenhydramine N-oxide Non-Mut. 0.47 
 

   Diphenhydramine N-b-D-glucuronide Non-Mut. 0.35 

Fluconazole Non-Mut. 0.35 Fluconazole-glucuronide Non-Mut. 0.3 

Hydrocodone Non-Mut. 0.82 Hydrocodone-glucuronide Non-Mut. 0.25 

Losartan Non-Mut. 0.35 Losartan carboxylic acid Non-Mut. 0.4 
   Losartan Metabolite 1 Non-Mut. 0.4 
   Losartan Metabolite 2 Non-Mut. 0.4 

 

Metoprolol Non-Mut. 1a a-Hydroxy metoprolol Non-Mut. 0.72 

Metronidazole Mut. 1a Hydroxy metronidazole Mut. 1a 

Omeprazole Mut. 0.2 4-Hydroxy omeprazole sulfide Mut. 0.3 
   5-Hydroxy omeprazole Non-Mut. 0.35 
   Omeprazole sulfone N-oxide Mut. 0.2 

Trimethoprim Mut. 0.43 a-Hydroxy trimethoprim Mut. 0.35 
   Trimethoprim 1-N-oxide Mut. 0.43 
   Trimethoprim 3-N-oxide Mut. 0.43 

Venlafaxine Non-Mut. 0.75 D,L,O-Desmethylvenlafaxine Non-Mut. 0.75 

   N,O-Didesmethylvenlafaxineb-D-glucuronide Non-Mut. 0.57 

Verapamil Non-Mut. 0.82 Desalkyl verapamil D617 Non-Mut. 0.82 

Mut.: positive alert for mutagenicity. Non-Mut.: negative alert for mutagenicity. 

Consensus score: 0–1. 
a Means that the alert and consensus are based in an Exp. value. 

 

 
Among the cardiovascular drugs assessed in this study, atenolol 

was predicted as carcinogenic by the ANTARES models with exper- 

imental value, whereas the metabolite atenolol acid was predicted 

as non-carcinogenic by 3 models and as carcinogenic with moder- 

ate reliability by the ISSCAN-CGX model. Metoprolol and its 

metabolite a-hydroxy metoprolol were predicted as non- 

carcinogenic by most of the models. Atorvastatin and its metabo- 

lites o/p-hydroxy atorvastatin were predicted as carcinogenic com- 

pounds by the ANTARES model with good reliability. Losartan and 

its metabolites were predicted as non-carcinogenic with moderate 

reliability by the ANTARES model. 

The different models applied predicted the most of antibiotics 

and its metabolites as carcinogenic compounds. The calcium 

antagonist verapamil was predicted as non-carcinogenic with 

experimental value by the ANTARES model, whereas its metabolite 

desalkyl verapamil D617 was predicted with contradicting alerts 

according to the model assessed. 

Several pharmaceuticals found in the raw HWW were predicted 

with carcinogenicity alert with experimental value in at least one 

model such as carbamazepine, gabapentin, quetiapine, sul- 

famethoxazole. The other pharmaceuticals were predicted with 

different alerts in different models, which could in some extent 

indicate that the prediction for these compounds by applying a 

consensus model, are inconclusive. 

In summary, the combination of exposure and in silico QSAR 
models as  complimentary  tools can improve the risk assessment of 
pharmaceuticals and metabolites. For instance, the three human 

metabolites of trimethoprim (a-hydroxy trimethoprim, trimetho- 

prim 1-N-oxide, and trimethoprim 3-N-oxide) were predicted with 

lower PEC values (0.89, 0.38 and 0.38 lg L—1) and, consequently, 

lower RQ values. If the risk assessment would only be based on 

 
the exposure assessment (i.e. PEC and EC50/LC50 values), the poten- 

tial hazard might be underestimated, because of the in silico (Q)SAR 

predictions provided by different VEGA QSAR models have pointed 

out these three metabolites with positive alerts regarding muta- 

genicity and carcinogenicity. Nevertheless, the alerts do not pro- 

vide any dose response relationship. Besides, the metabolites of 

trimethoprim were predicted as not biodegradable (i.e. persistent 

in the environment), which is problematic due to the continuous 

release in the environment. 

By combining the analytical methodology applied for monitor- 

ing the occurrence in HWW with a risk assessment based on expo- 

sure (i.e. PEC and Risk Quotient), hazardous and fate in the 

environment predictions by means of in silico (Q)SAR models, a list 

of priority pharmaceuticals and metabolites for further monitoring 

studies could be pointed out: albendazole, fluconazole, cetirizine, 

diazepam, ondanestron, metronidazole, dipyrone, carbamazepine, 

ciprofloxacin, levofloxacin, ofloxacin, 4-AAA, 4-AA, 4-FAA, 4-MAA, 

fluconazole-glucuronide, 4-hydroxy omeprazole sulfide. However, 

according to uncertainties in the risk assessment, some pharma- 

ceuticals and metabolites could be included in a list of pharmaceu- 

ticals and metabolites under attention and also considered for 

further studies such as clindamycin, omeprazole, trimethropim, 

metoclopramide, ondansetron, 3-cysteinyl acetaminophen, N- 

desmethyl clindamycin, clindamycin sulfoxide, a-hydroxy 
trimethoprim, trimethoprim 1-N-oxide, trimethoprim 3-N-oxide. 

 
 

4. Conclusions 

 
In this study, a purpose-built database has been used to inves- 

tigate the presence of metabolites and pharmaceuticals in raw 
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HWW samples by LC-HRMS. With the strategy applied, consisting 

on a combination of target and suspect screening, it was possible to 

identify 31 metabolites and 43 pharmaceuticals in the  samples. The 

group of drugs most detected were antibiotics. In addition to many 

known/reported metabolites included in the database, four 

additional metabolites (fluconazole glucuronide, codeine glu- 

curonide, hydrocodone glucuronide and azithromycin metabolite 

591) were found after applying the common fragmentation path- 

way approach with their parents. This study highlights the impor- 

tance of using wide-scope screening, including both 

pharmaceuticals and metabolites, for  comprehensive   evaluation 

of pharmaceuticals occurrence in wastewaters. This is of great rel- 

evance to propose additional treatment systems in conventional 

WWTPs for an efficient removal of all these compounds. 

The risk assessment of pharmaceuticals and its metabolites 

based only on PEC and RQ (PEC/PNEC) might underestimate their 

risks to the environment and humans. Although some pharmaceu- 

ticals and metabolites were pointed out as lower or medium RQ, 

several of them were predicted as mutagen and carcinogen com- 

pounds. The inclusion of in silico QSAR predictions allowed assess- 

ing the environmental fate and effect of such compounds in terms of 

biodegradability, as possible PBT compounds and their potential 

hazard to the aqueous environment. By adding such kind of 

approach in the environmental risk assessment of pharmaceuticals 

and metabolites it is possible to perform a more proactive prioriti- 

zation of such complex mixture of compounds. In addition, reliable 

and freely available QSAR models should be further improved and 

implemented for the risk assessment of metabolites and biotic and 

abiotic transformation products. 
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S1. Physical-chemical wastewater characterisation 

Several physical-chemical parameters were monitored for each sample (Table S1). In 

general, all parameters showed variable results over the sampling period. Particular attention has 

to be paid to parameters related to organic matter (COD, BOD, DOC) and conductivity, which 

are of relevance in the processes applied in wastewater treatment plants (WWTPs). In addition, 

the presence of a representative amount of solids (SST and, especially ST) was determined in 

some samples. 

According to Carraro et al. (2016), the variability in some physical-chemical parameters 

is recurrent in raw HWW samples. As highlighted in that review, some factors, such as size of 

hospital, bed density, the number of inpatients and outpatients, the number and types of wards, 

the number and types of services, the country and the seasonality contribute to the high variability 

of this matrix. That work also noticed the high COD values commonly found in most hospital 

wastewaters. The values obtained in our study can be considered similar to those compiled by 

Carraro et al. (2016). 

An additional remark could be derived from the observed BOD/COD ratio. According to 

Kumar et al. (2010), an ideal biodegradability index is a BOD/COD ratio close to 1.0. However, 

Esplugas et al. (2004), considered that values close to 0.5 represent a considerable 

biodegradability index. In the present work, four samples (March, May, June and July) had 

BOD/COD ratios below 0.5. This fact would indicate a reduced biodegradability and, therefore, 

these wastewater samples might present some recalcitrant fractions that could limit the application 

of biological treatment systems. In turn, Kajitvichyanukul and Suntronvipart (2006) found 

BOD/COD ratios close to 0.3 for hospital wastewater sample. These authors concluded that the 

application of a chemical pre-treatment favours the reduction of toxicity of pollutants and the 

increase in biodegradability, enhancing the possibility of success of subsequent biological 

treatment (Kajitvichyanukul and Suntronvipart, 2006). 
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Table S1. Physical-chemical parameters monitored for raw HWW samples studied. 

 

Parameter 
Months sampled Method LOD LOQ 

Feb. Mar. Apr. May Jun. Jul.    

pH 
8.02 7.52 7.80 8.06 7.98 8.21 

*SMEWW 

4500-H+ B 
  

Conductivity 

(µS cm-1) 
944.0 326.0 956.0 539.3 471.0 781.0 

SMEWW 

2510 B 
1 0.2 

COD 

(mg L-1 O2) 
203 211 473 277 273 706 

SMEWW 

5220 B 
5 0.8 

BOD 

(mg L-1 O2) 
132 45 236 108 83 319 

SMEWW 

5210 B 
2 0.6 

BOD/COD 0.65 0.21 0.50 0.39 0.30 0.45 
≥ 0.5 biodegradable(Lopez 

et al., 2004) 

DOC 

(mg L-1) 
65.0 63.1 70.2 93.2 41.34 82.74 

SMEWW 

5310 
1.68 3.99 

Total Chloride 

(mg L-1) 
72.9 27.9 4.3 37.7 41.6 9.0 

SMEWW 

4110 B 
0.5 0.02 

Total Phosphate 

(mg L-1 PO4
3-) 

21.36 3.93 22.07 8.56 2.99 0.45 
SMEWW 

4500 P E 
0.03 0.006 

TSS  

(mg L-1) 
128 52 98 63 27 165 

SMEWW 

2540 D 
10 5 

TS  

(mg L-1) 
525 222 521 244 225 611 

SMEWW 

2540 B 
10 5 

*SMEWW – Standard Methods for the examination of water and wastewater (American Public 

Health Association et al., 1998).  
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S2. Sample preparation, instrumentation and general strategy 

 

Sample preparation 

Solid phase extraction (SPE) was performed according to Hernández et al. (2015). 

Briefly, 100 mL of the effluent samples were passed by gravity through 200 mg OASIS HLB 

cartridges, conditioned with 10 mL methanol and 10 mLwater. After that, SPE material was dried 

by passing airfor 15 minutes. This part was performed at Universidade Federal do Rio Grande do 

Sul (Brazil). Cartridges were packed separately and frozen for transport to the University Jaume 

I (UJI, Castellón-Spain). The analytes were eluted with 10 mL of methanol. The extracts were 

then evaporated to dryness under a constant, gentle stream of nitrogen at 40◦C and reconstituted 

with 0.5 mL of water:methanol (v/v, 90:10) (the pre-concentration factor along SPE was 200). 

Finally, the extracts were filtered through PTFE membranes (0.22 µm), collected in vials and 

further analysed by means of LC-QTOF MS. 

LC-QTOFMS instrumentation 

For analysis, a Waters Acquity UHPLC system (Waters, Milford, MA, USA) coupled to 

a hybrid quadrupole-orthogonal acceleration-TOF mass spectrometer (XEVO G2 QTOF, Waters 

Micromass, Manchester, UK), with an orthogonal Z-spray-ESI interface operating in both 

positive and negative ionisation modes, was used. Two acquisition functions were selected for 

MSE experiments: a low energy function (LE) with a fixed collision energy at 4 eV and a high 

energy function (HE), with a collision energy ramp from 15 to 40 eV. A scan time of 0.4 s was 

employed. Mass data was acquired with MassLynx v 4.1 (Waters) and processed by ChromaLynx 

application manager software (within MassLynx v 4.1). 

The chromatographic separation was performed using aCortecsC18 analytical column 

(2.1 × 100 mm, 2.7 μm) from Waters. The mobile phase was composed by water (A) and methanol 

(B), both acidified at 0.01% with formic acid, at a flow rate of 300 µL/min. The initial percentage 

of B was 10%, which was linearly increased to 90% in 14 min, followed by a 2 min isocratic 

period, and then returned to initial conditions over 2 min. The QTOF mass spectrometer was 
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operated under the following conditions: capillary voltages of 700 and 2000 V were used in 

positive and negative ionisation modes, respectively; a cone voltage of 20 V was employed; the 

desolvation temperature was set to 600 °C, the source temperature to 130 °C, and the column 

temperature to 40 °C. In all analyses, the injection volume was 25 μL.  
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S3 Pharmaceuticals parent compounds screening 
 

Table S2. Pharmaceuticals identified for raw HWW samples evaluated. 

Therapeutic class Pharmaceutical February March April May June July Status* 

Amino acid Tyrosine x      s 

Analgesic 

Acetaminophen x x x x X x c 

Antipyrine/Phenazone    x X  s 

Codeine x x x x X x s 

Hydrocodone    x X x s 

Morphine  x x    s 

Tramadol  x x x  x s 

Anesthetic 
Bupivacaine x  x    s 

Lidocaine x x x  X  c 

Angiotensin-

receptor blocker 
Losartan x    X  c 

Antibiotic 

Azithromycin    x X  c 

Cefepime     x x s 

Ciprofloxacin     x  c 

Clindamycin x x x  x  c 

Levofloxacin     x x s 

Lincomycin     x  c 

Metronidazole  x x x x x c 

Ofloxacin     x x s 

Sulfamethoxazole   x x  x c 

Trimethoprim x x x x x x c 

Anticonvulsant 

Carbamazepine  x     c 

Diazepam x x x x x x s 

Gabapentin x     x s 

Pregabalin    x   s 

Antidepressant 
Sulpiride   x x  x s 

Venlafaxine x      c 

Antiemetic Ondansetron   x   x s 

Antifungal 
Fluconazole  x  x x x c 

Nystatin      x s 

Antihistamine 
Cetrizine   x  x  s 

Diphenhydramine x      s 

Antihyperglycemic 
Dimethylbiguanide/ 

Metformin 
x   x x x c 

Antilipemic Atorvastatin     x  c 

Antipsychotic 
Paliperidone      x s 

Quetiapine x      c 

Antiretroviral Atazanavir x      c 

Antiulcerative Ranitidine  x  x x  s 

Antiviral Aciclovir    x x  s 

Beta-blocker 

Atenolol x x x x x x c 

Metoprolol x  x x  x s 

Propranolol x  x    c 

CNS stimulant Caffeine x x x x x x s 

Prokinetic agents Metoclopramide x x x x x x s 

*Status: ‘c’for ‘confirmed’ and ‘s’ for ‘suspect’ 
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S4. Data and in silico QSAR predictions used for the risk assessment of 

pharmaceuticals and metabolites 

Metabolites
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Figure S1. Predicted environmental concentration (PEC) (g L-1) of the studied (A) 

pharmaceuticals and (B) metabolites. X-axis is in log scale.* Not found in thelist of 

pharmaceuticals provided by the hospital institution; ** Excretion rate not found.  
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Table S3. Emission related data of the selected pharmaceuticals investigated. 

Pharmaceutical 
Anual Amount 

(kg yr-1)* 
Excretion rate as 

active compound (%) 
Excretion rate reference 

Dipyrone 353.04 10 (Nikolova et al., 2012) 

Antipyrine/Phenazone 0 nf nf 

Acetaminophen (Paracetamol) 136.821 20 (Steventon et al., 2011) 

Albendazole 1.98672 1 https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/020666s005s006lbl.pdf 

Atenolol 0.6744 90 (Wilde et al., 2012) 

Atorvastatin 0.10908 2 (Williams and Feely, 2002) 

Azithromycin 3.2832 12 (Bakheit et al., 2017) 

Clindamycin 10.836 20 (Mitrano et al., 2009) 

Codeine 2.39904 86.1 (Chen et al., 1991) 

Diphenhydramine 0.3636 4 (Albert et al., 1975) 

Fluconazole 4.2048 80 (Brammer et al., 1991) 

Hydrocodone 0 50 (Gómez-Canela et al., 2019) 

Losartan 9.96 4 (Al-Majed et al., 2015) 

Metoprolol 3.726444 5 (Wilde et al., 2012) 

Metronidazole 19.55016 12 (Lamp et al., 1999) 

Omeprazole 3.67128 19.3 (Regårdh et al., 1990) 

Trimethoprim 5.49552 60 (Lamp et al., 1999) 

Venlafaxine 0.30375 87 https://www.accessdata.fda.gov/drugsatfda_docs/label/2008/020699s081lbl.pdf 

Verapamil 0.5088 4 https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/018817s021lbl.pdf 

Aciclovir 9.7092 90 https://www.medicines.org.uk/EMC/medicine/23721/SPC/Aciclovir+Tablets+BP+400mg 

Atazanavir 0 50 (Gómez-Canela et al., 2019) 

Bupivacaine 0.7485 100 https://en.wikipedia.org/wiki/Bupivacaine 

Carbamazepine 4.836 72 https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=7a1e523a-b377-43dc-b231-7591c4c888ea 

Cefepime 125.52 99 https://en.wikipedia.org/wiki/Cefepime 

Cetirizine 0 50 (Gómez-Canela et al., 2019) 

Ciprofloxacin 1.83144 50 https://www.drugbank.ca/drugs/DB00537 

Diazepam 0.27774 50 (Gómez-Canela et al., 2019) 

Dimethylbiguanide/metformin 11.2128 90 (Dunn and Peters, 1995) 

Gabapentin 6.2064 100 (Herrmann et al., 2015) 

Levofloxacin 0.906 83 (Zhanel et al., 2006) 

Lidocaine 28.87056 10 https://www.accessdata.fda.gov/drugsatfda_docs/label/2006/020612s008lbl.pdf 

Lincomycin 0 24.8 https://www.drugbank.ca/drugs/DB01627 

Metoclopramide 0.938904 85 https://pubchem.ncbi.nlm.nih.gov/compound/metoclopramide#section=Absorption-Distribution-and-Excretion 

Morphine 0.9896088 10 (Yeh, 1975) 

Nystatin 0.2966436 100 https://toxnet.nlm.nih.gov/cgi-bin/sis/search/a?dbs+hsdb:@term+@DOCNO+3138 

Ofloxacin 0.00702 85 https://www.drugbank.ca/drugs/DB01165 

Ondansetron 1.238064 5 (Stoltz et al., 2004) 

Paliperidone 0.0009 59 (Vermeir et al., 2008) 

Pregabalin 0.108 98 (Ben-Menachem, 2004) 

Propranolol 0.70692 10 (Wilde et al., 2012) 

https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/020666s005s006lbl.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/label/2008/020699s081lbl.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/018817s021lbl.pdf
https://www.medicines.org.uk/EMC/medicine/23721/SPC/Aciclovir+Tablets+BP+400mg
https://en.wikipedia.org/wiki/Bupivacaine
https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=7a1e523a-b377-43dc-b231-7591c4c888ea
https://en.wikipedia.org/wiki/Cefepime
https://www.drugbank.ca/drugs/DB00537
https://www.accessdata.fda.gov/drugsatfda_docs/label/2006/020612s008lbl.pdf
https://www.drugbank.ca/drugs/DB01627
https://pubchem.ncbi.nlm.nih.gov/compound/metoclopramide#section=Absorption-Distribution-and-Excretion
https://toxnet.nlm.nih.gov/cgi-bin/sis/search/a?dbs+hsdb:@term+@DOCNO+3138
https://www.drugbank.ca/drugs/DB01165
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Pharmaceutical 
Anual Amount 

(kg yr-1)* 
Excretion rate as 

active compound (%) 
Excretion rate reference 

Quetiapine 0.7941 1 https://www.drugbank.ca/drugs/DB01224 

Ranitidine 5.0694 79 (van Hecken et al., 1982) 

Sulfamethoxazole 27.4776 20 https://toxnet.nlm.nih.gov/cgi-bin/sis/search2/f?./temp/~ujlZRD:3 

Sulpiride 0 93.1 (Blanchin and Gomeni, 1984) 

Tramadol 2.5452 30 (Guthrie and Teter, 2016) 

Tyrosine 1.6833 0.42 (Agharanya et al., 1981) 

* calculated from data provided by the hospital 

 

  

https://www.drugbank.ca/drugs/DB01224
https://toxnet.nlm.nih.gov/cgi-bin/sis/search2/f?./temp/~ujlZRD:3
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Table S4. Predicted eco-toxicity data of the pharmaceuticals investigated based on the ECOSAR predictions for EC50 and LC50 towards Green 

algae, Daphnid and Fish. 

Pharmaceutical EC50Green algae (mg L−1) LC50Daphnid(mg L−1) LC50Fish(mg L−1) PNECGreen algae (mg L−1) PNECDaphnid(mg L−1) PNECFish(mg L−1) 

Dipyrone 123.65 376.94 823.97 0.12365 0.37694 0.82397 

Antipyrine/Phenazone 1.31 3.47 2.32 0.00131 0.00347 0.00232 

Acetaminophen (Paracetamol) 2.22 0.87 15.47 0.00222 0.00087 0.01547 

Albendazole 0.39 3.59 1.08 0.00039 0.00359 0.00108 

Atenolol 135.78 103.26 1096.37 0.13578 0.10326 1.09637 

Atorvastatin 0.27 0.87 0.02 0.00027 0.00087 0.00002 

Azithromycin 11.97 34.25 18.82 0.01197 0.03425 0.01882 

Clindamycin 7.94 9.63 80.75 0.00794 0.00963 0.08075 

Codeine 0.82 26.3 9.24 0.00082 0.0263 0.00924 

Diphenhydramine 0.8 1.25 9.2 0.0008 0.00125 0.0092 

Fluconazole 55.45 530.28 1631.3 0.05545 0.53028 1.6313 

Hydrocodone 4.33 5.45 44.84 0.00433 0.00545 0.04484 

Losartan 0.24 1.69 0.23 0.00024 0.00169 0.00023 

Metoprolol 8.31 9.38 81.56 0.00831 0.00938 0.08156 

Metronidazole 6.92 179.75 878.33 0.00692 0.17975 0.87833 

Omeprazole 0.38 3.26 0.78 0.00038 0.00326 0.00078 

Trimethoprim 20.74 6.38 211.62 0.02074 0.00638 0.21162 

Venlafaxine 0.65 1.06 7.68 0.00065 0.00106 0.00768 

Verapamil 0.32 0.88 0.77 0.00032 0.00088 0.00077 
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Table S5. Emission related data of the selected metabolites investigated. 

Metabolites 
Anual Amount 

of parent compound(kg yr-1)* 

Excretion rate as 

active compound(%) 
Excretion rate reference 

4-AAA 353.04 45 (Nikolova et al., 2012) 

4-AA 353.04 13.5 (Nikolova et al., 2012) 

4-FAA 353.04 22.5 (Nikolova et al., 2012) 

4-MAA 353.04 9 (Nikolova et al., 2012) 

3-cysteinyl acetaminophen 136.821 55 (McGill and Jaeschke, 2013) 

z3-methoxy acetaminophen 136.821 6 (Hamilton and Kissinger, 1982) 

Albendazole sulfoxide 1.98672 51 (Pharmacology and Marrinefl, 1986) 

Atenolol acid 0.6744 8 (Reeves et al., 1978) 

o-hydroxyatorvastatin 0.10908 nf nf 

p-hydroxyatorvastatin 0.10908 nf nf 

Descladinose 3.2832 13 (Luke and Foulds, 1997) 

N-desmethyl clindamycin 10.836 15.1 https://www.accessdata.fda.gov/drugsatfda_docs/nda/2004/050801s000_Evoclin_PharmR.pdf 

Clindamycin sulfoxide 10.836 27.57 https://www.accessdata.fda.gov/drugsatfda_docs/nda/2004/050801s000_Evoclin_PharmR.pdf 

Codeine-glucuronide 2.39904 81 (Vree and Verwey-Van Wissen, 1992) 

Diphenhydramine N-oxide 0.3636 2 (Sharma and Hamelin, 2005) 

Diphenhydramine N-β-D-glucuronide 0.3636 7 (Sharma and Hamelin, 2005) 

Fluconazole-glucuronide 4.2048 6.5 (Brammer et al., 1991) 

Hydrocodone-glucuronide 0 4 (Bluth, 2016) 

Losartan carboxylic acid 9.96 14 (Lo et al., 1995) 

Losartan Metabolite 1 9.96 nf nf 

Losartan Metabolite 2 9.96 nf nf 

α-Hydroxy metoprolol 3.726444 85 (Barclay et al., 2012) 

Hydroxy metronidazole 19.55016 26.7 (Han and Lee, 2017) 

4-Hydroxy omeprazole sulfide 3.67128 26 (Boix et al., 2014) 

5-Hydroxy omeprazole 3.67128 26 (Boix et al., 2014) 

Omeprazole sulfone N-oxide 3.67128 26 (Boix et al., 2014) 

α-Hydroxy trimethoprim 5.49552 4.9 (Sigel et al., 1973) 

Trimethoprim 1-N-oxide 5.49552 2.1 (Sigel et al., 1973) 

Trimethoprim 3-N-oxide 5.49552 2.1 (Sigel et al., 1973) 

D.L.O-Desmethyl venlafaxine 0.30375 29.4 (Gurke et al., 2015) 

N.O-Didesmethyl venlafaxine β-D-glucuronide 0.30375 19 http://primarypsychiatry.com/desvenlafaxine-frequently-asked-questions/ 

Desalkyl verapamil D617 0.5088 6.7 (Han and Lee, 2017) 

* calculated from data provided by the hospital for the parent compound;  

nf: not found 

  

https://www.accessdata.fda.gov/drugsatfda_docs/nda/2004/050801s000_Evoclin_PharmR.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/nda/2004/050801s000_Evoclin_PharmR.pdf
http://primarypsychiatry.com/desvenlafaxine-frequently-asked-questions/
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Table S6. Predicted eco-toxicity data of the metabolites investigated based on the ECOSAR predictions for EC50 and LC50 towards Green 

algae, Daphnid and Fish. 

Pharmaceutical EC50Green algae (mg L−1) LC50Daphnid(mg L−1) LC50Fish(mg L−1) PNECGreen algae (mg L−1) PNECDaphnid(mg L−1) PNECFish(mg L−1) 

4-AAA 2.53 6.91 6.05 0.00253 0.00691 0.00605 

4-AA 2.03 5.53 4.74 0.00203 0.00553 0.00474 

4-FAA 1.69 4.51 3.13 0.00169 0.00451 0.00313 

4-MAA 1.68 4.5 3.25 0.00168 0.0045 0.00325 

3-cysteinyl acetaminophen 539.54 67.29 6999.18 0.53954 0.06729 6.99918 

3-methoxy acetaminophen 3.06 1.13 22.1 0.00306 0.00113 0.0221 

Albendazole sulfoxide 4.05 76.5 157.35 0.00405 0.0765 0.15735 

Atenolol acid 59071.87 26363.02 366460.03 59.07187 26.36302 366.46003 

o-hydroxyatorvastatin 0.34 1.15 0.02 0.00034 0.00115 0.00002 

p-hydroxyatorvastatin 0.67 2.83 0.1 0.00067 0.00283 0.0001 

Descladinose 2.11 3.24 24.09 0.00211 0.00324 0.02409 

N-desmethyl clindamycin 10.82 12.51 107.48 0.01082 0.01251 0.10748 

Clindamycin sulfoxide 268.12 198.89 2138.43 0.26812 0.19889 2.13843 

Codeine-glucuronide 182282.17 75252.78 1088074.25 182.28217 75.25278 1088.07425 

Diphenhydramine N-oxide 4.78 5.85 48.81 0.00478 0.00585 0.04881 

Diphenhydramine N-β-D-glucuronide 13017.81 29311.01 58499.24 13.01781 29.31101 58.49924 

Fluconazole-glucuronide 2080.16 23855.29 99865.09 2.08016 23.85529 99.86509 

Hydrocodone-glucuronide 610468.62 211527.97 3341637.75 610.46862 211.52797 3341.63775 

Losartan carboxylic acid 1.08 5.79 0.39 0.00108 0.00579 0.00039 

Losartan Metabolite 1 11.58 18.88 22.19 0.01158 0.01888 0.02219 

Losartan Metabolite 2 11.58 18.88 22.19 0.01158 0.01888 0.02219 

α-Hydroxy metoprolol 55.49 48.31 479.03 0.05549 0.04831 0.47903 

Hydroxy metronidazole 23.19 852.41 10657.11 0.02319 0.85241 10.65711 

4-Hydroxy omeprazole sulfide 0.28 2.27 0.46 0.00028 0.00227 0.00046 

5-Hydroxy omeprazole 0.81 8.71 3.91 0.00081 0.00871 0.00391 

Omeprazole sulfone N-oxide 4.76 86.19 158.24 0.00476 0.08619 0.15824 

α-Hydroxy trimethoprim 70.87 16.71 2254.53 0.07087 0.01671 2.25453 

Trimethoprim 1-N-oxide 31.69 8.97 461.06 0.03169 0.00897 0.46106 

Trimethoprim 3-N-oxide 31.69 8.97 461.06 0.03169 0.00897 0.46106 

D.L.O-Desmethyl venlafaxine 0.53 0.5 2.31 0.00053 0.0005 0.00231 

N.O-Didesmethyl venlafaxine β-D-glucuronide 129153.97 55108.9 783629.88 129.15397 55.1089 783.62988 

Desalkyl verapamil D617 0.21 0.37 0.65 0.00021 0.00037 0.00065 
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Table S7. In silico QSAR predictions for ready biodegradability (0 means not biodegradable and 1 biodegradable) of the pharmaceuticals parent 

compounds and human metabolites found in the raw HWW. 

Compound SMILES CAS No 

Log 

Kow 

Theor. 

Log 

Kow 

Exp. 

BioWin 

1 

BioWin 

2 

BioWin 

3 

BioWin 

4 

BioWin 

5 

BioWin 

6 

BioWin 

7 

BioWin RB 

Prediction 

Dipyrone 
O=S(CN(C1=C(C)N(C)N(c2ccccc2)C1(=O))C)(O)=

O 
68-89-3 -2.61  0.6305 0.9933 2.4709 3.2926 -0.2072 0.002 -0.7105 NO 

4-AAA CC(=O)(NC1=C(C)N(C)N(c2ccccc2)C1(=O)) 83-15-8 -0.13  0.969 0.9823 2.6249 3.7042 0.1514 0.047 -0.2295 NO 

4-AA O=C1N(c2ccccc2)N(C)C(C)=C1N 83-07-8 -0.07  0.9327 0.954 2.7965 3.6027 0.1827 0.048 0.5953 NO 

4-FAA CC(N(N(C1(=O))c2ccccc2)C)=C1NC=O - 0.5  0.9757 0.9854 2.6559 3.7244 0.1927 0.0675 -0.1499 NO 

4-MAA O=C1N(c2ccccc2)N(C)C(C)=C1NC - 0.39  0.926 0.9444 2.7655 3.5824 0.1414 0.0332 0.5157 NO 

Antipyrine/Phenazone O=C1N(c2ccccc2)N(C)C(C)=C1 60-80-0 0.59 0.38 0.786 0.8943 2.8052 3.5811 0.2003 0.0962 0.3444 NO 

Acetaminophen O=C(C)Nc1ccc(O)cc1 103-90-2 0.27 0.46 1.0015 0.9886 2.8673 3.8748 0.4866 0.509 -0.1124 NO 

3-cysteinyl acetaminophen O=C(O)C(N)CSc1cc(NC(=O)(C))ccc1O 53446-10-9 -2.95  1.1713 0.9893 2.993 4.1317 0.3371 0.0876 0.2073 NO 

3-methoxy acetaminophen CC(=O)(Nc1ccc(O)c(OC)c1) 3251-55-6 0.09  1.1192 0.9981 2.7428 3.9086 0.5847 0.5965 0.0815 NO 

Albendazole O=C(OC)Nc1nc2ccc(SCCC)cc2n1 54965-21-8 3.14 3.07 0.7008 0.5623 2.5661 3.6586 0.0036 0.0306 0.4426 NO 

Albendazole sulfoxide O=C(OC)Nc1nc2ccc(S(CCC)=O)cc2n1 54029-12-8 0.97 1.27 0.6932 0.5058 2.5308 3.6355 -0.044 0.0195 0.4426 NO 

Atenolol O=C(Cc1ccc(OCC(CNC(C)C)O)cc1)N 29122-68-7 -0.03 0.16 1.33 0.9991 2.6078 3.8502 0.4115 0.2349 -0.1861 NO 

Atenolol acid CC(C)NCC(O)COc1ccc(CC(=O)(O))cc1 56392-14-4  -2.34  1.1921 0.9927 3.0245 4.0289 0.4631 0.2768 0.5686 NO 

Atorvastatin 
O=C(O)CC(O)CC(O)CCn1c(c2ccc(F)cc2)c(c3ccccc3

)c(C(=O)(Nc4ccccc4))c1C(C)C 
134523-00-5 6.36  0.5827 0.0033 2.1572 3.8463 -0.1 0 -0.6474 NO 

o-hydroxyatorvastatin 
O=C(O)CC(O)CC(O)CCn1c(c2ccc(F)cc2)c(c3ccccc3

)c(C(=O)(Nc4ccccc4O))c1C(C)C 
- 6.18  0.5628 0.0011 2.1562 3.8581 -0.0916 0 -0.6894 NO 

p-hydroxyatorvastatin 
O=C(O)CC(O)CC(O)CCn1c(c2ccc(F)cc2)c(c3ccccc3

)c(C(=O)(Nc4ccc(O)cc4))c1C(C)C 
- 5.53  0.5628 0.0011 2.1562 3.8581 -0.0916 0 -0.6894 NO 

Azithromycin 

O=C1C(C)C(OC2OC(C)C(O)C(C)(OC)C2)C(C)C(O

C3OC(C)CC(N(C)C)C3O)C(C)(O)CC(C)CN(C)C(C)

C(O)C(C)(O)C(CC)O1 

83905-01-5 3.24 4.02 -1.6578 0 0.9748 2.2994 -0.3277 0 -4.0087 NO 

Azithromycin metabolite 

591  

(Descladinose) 

CCC1C(C)(O)C(O)C(C)N(C)CC(C)CC(C)(O)C(OC2

C(O)C(N(C)C)CC(C)O2)C(C)C(O)C(C)C(=O)(O1) 
- 3.02  -0.3565 0 1.5625 2.7103 0.0126 0 -2.6624 NO 

Clindamycin 
CLC(C(C1OC(C(C(C1O)O)O)SC)NC(=O)(C2N(CC(

C2)CCC)C))C 
18323-44-9 2.01 2.16 0.5676 0.0111 2.2491 3.43 0.1013 0.0008 -1.2421 NO 

N-desmethyl clindamycin 
O=C(C1NCC(CCC)C1)NC(C2C(O)C(O)C(O)C(SC)

O2)C(CL)C 
22431-45-4 1.8  0.9333 0.278 2.5593 3.7815 0.2607 0.0021 0.0896 NO 

Clindamycin sulfoxide 
O=C(C1N(C)CC(CCC)C1)NC(C2OC(S(C)=O)C(O)

C(O)C2O)C(CL)C 
22431-46-5 -0.13  0.5599 0.0089 2.2137 3.4069 0.0537 0.0005 -1.2421 NO 

Codeine COc1c2OC3C45c2c(cc1)CC(N(CC5)C)C4C=CC3O 76-57-3 1.28 1.19 0.6931 0.7316 2.0396 3.1895 0.4191 0.0606 -0.7853 NO 

Codeine-glucuronide 
CN1CCC23C4C1Cc5c2c(OC3C(OC6C(O)C(O)C(O)

C(C(=O)(O))O6)C=C4)c(OC)cc5 
20736-11-2 -2.68  0.3046 0.0042 2.3175 3.5604 0.4637 0.0039 -0.6502 NO 

Diphenhydramine CN(C)CCOC(C1=CC=CC=C1)C2=CC=CC=C2 58-73-1 3.11 3.27 0.3295 0.0647 2.4154 3.1914 0.0412 0.0313 -1.088 NO 

Diphenhydramine N-oxide 
C[N+](CCOC(C1=CC=CC=C1)C2=CC=CC=C2)([O

-])C 
3922-74-5 2.34  0.5272 0.3372 2.6348 3.4563 0.0691 0.0574 -0.4509 NO 

Diphenhydramine N-β-D-

glucuronide 

C[N+](C)(CCOC(C1=CC=CC=C1)C2=CC=CC=C2)

C3C(C(C(C(O3)C(=O)[O-])O)O)O 
137908-78-2 0.65  0.6515 0.0823 3.1124 3.9865 0.315 0.0165 0.0742 NO 

Fluconazole Fc1cc(F)c(C(O)(Cn2ncnc2)Cn3ncnc3)cc1 86386-73-4 0.25 0.5 -1.2022 0 1.4963 3.2793 0.0597 0 -0.1142 NO 

http://chem.sis.nlm.nih.gov/chemidplus/direct.jsp?regno=56392-14-4
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Compound SMILES CAS No 

Log 

Kow 

Theor. 

Log 

Kow 

Exp. 

BioWin 

1 

BioWin 

2 

BioWin 

3 

BioWin 

4 

BioWin 

5 

BioWin 

6 

BioWin 

7 

BioWin RB 

Prediction 

Fluconazole-glucuronide 
Fc1cc(F)c(C(Cn2cncn2)(OC3C(O)C(O)C(O)C(C(=O

)(O))O3)Cn4cncn4)cc1 
136134-23-1 -0.5  -1.4319 0 1.9343 3.7797 0.2655 0 0.1536 NO 

Hydrocodone CN1CCC23C4C1Cc5c2c(c(cc5)OC)OC3C(=O)CC4 125-29-1 2.16  0.5412 0.3617 1.8571 3.0379 0.3903 0.0858 -1.4424 NO 

Hydrocodone-glucuronide 
CN1CCC23C4C1Cc5c2c(OC3C(=O)(CC4))c(OC6C(

C(C(C(C(=O)(O))O6)O)O)O)cc5 
- -3.44  0.6655 0.0909 2.3347 3.5682 0.6359 0.0248 -0.8377 NO 

Losartan 
OCc1c(nc(n1Cc2ccc(c3c(c4nnnn4)cccc3)cc2)CCCC)

CL 
114798-26-4 4.01  0.6856 0.1864 2.4414 3.4022 -0.3808 0.0006 -0.6786 NO 

Losartan carboxylic acid 
CCCCc1nc(c(n1Cc2ccc(cc2)c3ccccc3c4nnnn4)C(=O)

O)CL 
124750-92-1 4.81  0.6971 0.4091 2.3384 3.2603 -0.1509 0.0019 -0.5385 NO 

Losartan Metabolite 1 
OCc1c(nc(n1Cc2ccc(c3c(c4nnnn4)cccc3)cc2)CCC(O

)C)CL 
141675-57-2 2.88  0.7283 0.0812 2.2677 3.2395 -0.3674 0.0006 -0.42 NO 

Losartan Metabolite 2 
OCc1c(nc(n1Cc2ccc(c3c(c4nnnn4)cccc3)cc2)C(O)C

CC)CL 
141675-59-4 2.88  0.6736 0.0473 2.3426 3.308 -0.2214 0.0015 -0.0733 NO 

Metoprolol COCCc1ccc(cc1)OCC(CNC(C)C)O 37350-58-6 1.69 1.88 0.772 0.6976 2.6511 3.6336 0.3331 0.1475 0.0709 NO 

α-Hydroxy metoprolol CC(C)NCC(COc1ccc(cc1)C(COC)O)O 56392-16-6 0.56  0.8685 0.7594 2.8505 3.8085 0.4926 0.3046 0.3586 NO 

Metronidazole Cc1ncc(n1CCO)N(=O)(=O) 443-48-1 0 -0.02 0.5744 0.4414 2.7365 3.5533 0.325 0.0739 0.3396 NO 

Hydroxy metronidazole c1c(n(c(n1)CO)CCO)N(=O)(=O) 4812-40-2 -1.06  0.6709 0.5195 2.9359 3.7282 0.3414 0.0818 0.8368 NO 

Omeprazole Cc1cnc(c(c1OC)C)CS(=O)c2nc3c(n2)cc(cc3)OC 73590-58-6 3.4 2.23 0.8017 0.8925 1.9557 3.3478 0.1024 0.014 0.5414 NO 

4-Hydroxy omeprazole 

sulfide 
Oc1c(C)c(CSc2nc3ccc(OC)cc3n2)ncc1C 103876-98-8 3.59  0.7999 0.7691 2.1366 3.3537 0.0603 0.0142 0.5237 NO 

5-Hydroxy omeprazole COc1ccc2c(nc(SCc3ncc(CO)c(OC)c3C)n2)c1 103876-99-9 2.69  0.9058 0.9345 2.1905 3.5458 0.1664 0.0246 1.0386 NO 

Omeprazole sulfone N-

oxide 

O=S(c1nc2ccc(OC)cc2n1)(Cc3c(C)c(OC)c(C)cn3=O)

=O 
158812-85-2  -0.56  0.941 0.9644 2.0992 3.3204 0.0407 0.0089 -0.0996 NO 

Trimethoprim COc1cc(cc(c1OC)OC)Cc2cnc(nc2N)N 738-70-5 0.73 0.91 0.5922 0.9164 2.0385 3.3749 0.0889 0.0172 0.1677 NO 

α-Hydroxy trimethoprim OC(c1cc(OC)c(OC)c(OC)c1)c2cnc(N)nc2N 29606-06-2 -0.81  0.6887 0.9375 2.2379 3.5498 0.2484 0.0424 0.4553 NO 

Trimethoprim 1-N-oxide COc1c(OC)c(OC)cc(Cc2cn(=O)c(N)nc2N)c1 27653-68-5 0.58  0.5846 0.8972 2.0031 3.3519 0.0413 0.0109 0.1677 NO 

Trimethoprim 3-N-oxide COc1c(OC)c(OC)cc(Cc2cnc(N)n(=O)c2N)c1 27653-67-4 1.58  0.5846 0.8972 2.0031 3.3519 0.0413 0.0109 0.1677 NO 

Venlafaxine CN(C)CC(c1ccc(cc1)OC)C2(CCCCC2)O 93413-69-5 3.28  0.4129 0.1139 1.9862 3.0147 0.2373 0.1009 -1.6709 NO 

D,L,O-Desmethyl 

venlafaxine 
CN(CC(C1(O)CCCCC1)c2ccc(O)cc2)C - 2.72  0.4034 0.0395 2.1317 2.9975 0.1476 0.0668 -1.6886 NO 

N,O-Didesmethyl 

venlafaxine β-D-

glucuronide 

CNCC(c1ccc(cc1)OC2C(C(C(C(O2)C(=O)O)O)O)O)

C3(CCCCC3)O 
- -2.54   0.903 0.4368 2.7741 3.8965 0.6423 0.0722 0.2655 YES 

Verapamil 
CC(C)C(CCCN(C)CCc1cc(c(cc1)OC)OC)(C(#N))c2

cc(c(cc2)OC)OC 
52-53-9 4.8 3.79 1.0312 0.9989 1.3379 2.9251 0.3385 0.0405 -1.1742 NO 

Desalkyl verapamil D617 
CC(C)C(CCCN(C)CCc1cc(c(cc1)O)OC)(C(#N))c2cc

(c(cc2)OC)OC 
77326-93-3 4.5  1.0218 0.9966 1.4834 2.908 0.2488 0.0263 -1.1919 NO 

Aciclovir c1nc2c(n1COCCO)N=C(NC2(=O))N 59277-89-3 -1.7 -1.56 0.6618 0.5475 2.7986 3.848 0.4878 0.3134 0.1263 NO 

Atazanavir 

CC(C)(C)C(C(=O)NC(Cc1ccccc1)C(CN(Cc2ccc(cc2)

c3ccccn3)NC(=O)C(C(C)(C)C)NC(=O)OC)O)NC(=

O)OC 

198904-31-3 2.88  0.6003 0.0202 0.9626 3.1637 -1.6098 0 -2.0519 NO 

Bupivacaine CCCCN1CCCCC1C(=O)Nc2c(cccc2C)C 38396-39-3 3.44 3.41 0.8329 0.9152 2.4014 3.481 0.2434 0.0656 -2.5964 NO 

Carbamazepine c1ccc2c(c1)C=Cc3ccccc3N2C(=O)N 298-46-4 2.25 2.45 0.6351 0.4143 2.677 3.5068 0.0873 0.0364 -0.0744 NO 

Cefepime CN1(H)(CCCC1)CC2=C(N3C(C(C3(=O))NC(=O)C(

=NOC)c4csc(n4)N)SC2)C(=O)O 

88040-23-7 0.2 
 

0.777 0.5683 2.254 3.8395 -0.2741 0.0003 -1.5782 NO 

https://www.chemicalbook.com/Search_EN.aspx?keyword=158812-85-2
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Compound SMILES CAS No 

Log 

Kow 

Theor. 

Log 

Kow 

Exp. 

BioWin 

1 

BioWin 

2 

BioWin 

3 

BioWin 

4 

BioWin 

5 

BioWin 

6 

BioWin 

7 

BioWin RB 

Prediction 

Cetirizine C1CN(CCN1CCOCC(=O)O)C(c2ccccc2)c3ccc(cc3)

CL 

83881-51-0 -0.61 1.7 -0.1771 0 2.0015 2.926 -0.1343 0.0025 -2.7961 NO 

Ciprofloxacin C1CC1N2C=C(C(=O)c3cc(c(cc32)N4CCNCC4)F)C(

=O)O 

85721-33-1 0 0.28 -0.3974 0 1.917 3.2138 0.0597 0.0001 -2.2865 NO 

Diazepam CN1C(=O)CN=C(c2c1ccc(c2)CL)c3ccccc3 439-14-5 2.7 2.82 0.7678 0.8085 2.3311 3.4819 0.0837 0.0217 -0.8789 NO 

Metformin CN(C)C(=N)N=C(N)N 1115-70-4 -1.4 
 

0.6861 0.764 2.9137 3.6614 0.3287 0.2379 0.6769 NO 

Gabapentin C1CCC(CC1)(CC(=O)O)CN 60142-96-3 -1.37 -1.1 0.7086 0.6472 2.9977 3.8761 0.6822 0.7053 0.3178 YES 

Levofloxacin CC1COc2c3N1C=C(C(=O)c3cc(c2N4CCN(CC4)C)F

)C(=O)O 

100986-85-4 -0.2 -0.39 -0.6388 0 1.5132 2.9163 0.0204 0.0001 -3.3043 NO 

Lidocaine CCN(CC)CC(=O)Nc1c(cccc1C)C 137-58-6 1.66 2.44 0.7502 0.7864 2.2226 3.29 0.3134 0.1311 -1.9177 NO 

Lincomycin CCCC1CC(N(C1)C)C(=O)NC(C2C(C(C(C(O2)SC)O

)O)O)C(C)O 

154-21-2 0.29 0.2 0.8465 0.222 2.623 3.6867 0.3162 0.007 -1.0947 NO 

Metoclopramide CCN(CC)CCNC(=O)C1=CC(=C(C=C1OC)N)Cl 364-62-5 1.69 2.62 0.3254 0.0791 1.828 3.136 0.1211 0.0149 -1.6343 NO 

Morphine CN1CCC23C4C1CC5=C2C(=C(C=C5)O)OC3C(C=

C4)O 

57-27-2 0.72 0.89 0.6836 0.4657 2.1851 3.1723 0.3294 0.0395 -0.803 NO 

Nystatin CC1C=CC=CCCC=CC=CC=CC=CC(CC2C(C(CC(

O2)(CC(C(CCC(CC(CC(CC(=O)OC(C(C1O)C)C)O)

O)O)O)O)O)O)C(=O)O)OC3C(C(C(C(O3)C)O)N)O 

1400-61-9 -3.33  0.9099 0.0019 2.8834 4.1518 0.4083 0 -0.6403 NO 

Ofloxacin CC1COC2=C3N1C=C(C(=O)C3=CC(=C2N4CCN(C

C4)C)F)C(=O)O 

82419-36-1 -0.2 -0.39 -0.6388 0 1.5132 2.9163 0.0204 0.0001 -3.3043 NO 

Ondansetron CC1=NC=CN1CC2CCC3=C(C2=O)C4=CC=CC=C4

N3C 

99614-02-5 3.95  0.724 0.3879 2.3787 3.2652 0.0742 0.0253 -0.7561 NO 

Paliperidone CC1=C(C(=O)N2CCCC(C2=N1)O)CCN3CCC(CC3)

C4=NOC5=C4C=CC(=C5)F 

144598-75-4 1.95  -0.0472 0 1.6258 3.2242 -0.0717 0.0001 -1.8698 NO 

Pregabalin CC(C)CC(CC(=O)O)CN 148553-50-8 -1.78  0.8983 0.9242 3.2363 4.0469 0.5006 0.4767 0.7873 YES 

Propranolol CC(C)NCC(COC1=CC=CC2=CC=CC=C21)O 235-867-6 2.6 3.48 1.0685 0.9782 2.7523 3.7234 0.3861 0.201 0.2173 NO 

Quetiapine C1CN(CCN1CCOCCO)C2=NC3=CC=CC=C3SC4=

CC=CC=C42 

111974-69-7 1.94  0.1711 0.0009 2.2482 3.1261 -0.0087 0.0077 -1.5028 NO 

Ranitidine CNC(=C[N+](=O)[O-

])NCCSCC1=CC=C(O1)CN(C)C 

66357-35-5 0.29 0.27 0.7003 0.1886 2.2985 3.1927 -0.2302 0.0009 -0.35 NO 

Sulfamethoxazole CC1=CC(=NO1)NS(=O)(=O)C2=CC=C(C=C2)N 723-46-6 0.48 0.89 0.4479 0.1281 2.4297 3.3054 -0.1165 0.006 -0.2907 NO 

Sulpiride CCN1CCCC1CNC(=O)C2=C(C=CC(=C2)S(=O)(=O

)N)OC 

15676-16-1 0.65 0.57 0.7218 0.7062 2.0775 3.3497 0.1294 0.0159 -1.3427 NO 

Tramadol CN(C)CC1CCCCC1(C2=CC(=CC=C2)OC)O 27203-92-5 3.01 2.51/2.6

3 

0.3649 0.081 2.0921 3.1034 0.2815 0.0823 -1.43 NO 

DL-Tyrosine C1=CC(=CC=C1CC(C(=O)O)N)O 556-03-6 -1.76 0.95075

7576 

1.0583 0.9753 3.1693 3.9863 0.3783 0.2478 0.6115 NO 
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Table S8. In silico QSAR prediction of PBT values by the Prometheus software for the pharmaceuticals and human metabolites investigated in 

this study. 

Compounds SMILES LogP LogP rel. P P rel. B B rel. T T rel. Score P Score B Score T PBT PB 

Dipyrone O=C1C(=C(N(N1c2ccccc2)C)C)N(C)CS(=O)(=O)[O-] 1.28 0.2 P/vP 0.5 1.17 0.8 0.101 0.3 0.712 0.166 0.499 0.371 0.344 

4-AAA O=C(NC=2C(=O)N(c1ccccc1)N(C=2C)C)C 1.72 0.2 P/vP 0.5 1.24 0.8 1.89 0.3 0.712 0.175 0.346 0.351 0.353 

4-AA O=C1C(N)=C(N(N1c2ccccc2)C)C 1.03 0.2 P/vP 0.5 0.56 0.4 11 0.3 0.712 0.235 0.288 0.381 0.409 

4-FAA O=CNC=2C(=O)N(c1ccccc1)N(C=2C)C 3.84 0.2 P/vP 0.5 1.2 0.4 10 0.3 0.712 0.273 0.291 0.406 0.441 

4-MAA O=C2C(NC)=C(N(N2(c1ccccc1))C)C 2.24 0.2 P/vP 0.5 0.88 0.4 1.93 0.3 0.712 0.252 0.345 0.406 0.423 

Antipyrine/Phenazone O=C1C=C(N(N1c2ccccc2)C)C 0.38 1 nP 0.5 0.75 0.4 3.51 0.3 0.359 0.244 0.322 0.301 0.296 

Acetaminophen O=C(Nc1ccc(O)cc1)C 0.46 1 nP/P 0.5 0.39 0.8 54 0.7 0.571 0.102 0.133 0.214 0.242 

3-cysteinyl acetaminophen O=C(O)C(N)CSc1cc(ccc1(O))NC(=O)C 0.35 0.4 P/vP 0.5 0.47 0.4 2.39 0.3 0.712 0.23 0.336 0.39 0.405 

3-methoxy acetaminophen O=C(Nc1ccc(O)c(OC)c1)C 0.75 0.4 vP 0.5 0.15 0.8 8.01 0.4 0.854 0.09 0.266 0.274 0.277 

Albendazole O=C(OC)Nc1nc2ccc(cc2([nH]1))SCCC 2.52 0.4 P/vP 0.5 1.35 0.4 0.135 0.4 0.712 0.286 0.479 0.457 0.451 

Albendazole sulfoxide O=C(OC)Nc1nc2ccc(cc2([nH]1))S(=O)CCC 2.01 0.4 P/vP 0.5 0.62 0.4 0.057 0.3 0.712 0.237 0.533 0.433 0.411 

Atenolol O=C(N)Cc1ccc(OCC(O)CNC(C)C)cc1 0.16 1 P/vP 0.5 0.86 0.8 1.43 0.4 0.712 0.136 0.335 0.316 0.311 

Atenolol acid O=C(O)Cc1ccc(OCC(O)CNC(C)C)cc1 1.15 0.8 nP/P 0.7 0.87 0.8 1.44 0.4 0.584 0.137 0.335 0.292 0.282 

Atorvastatin 
O=C(O)CC(O)CC(O)CCn4c(c1ccc(F)cc1)c(c2ccccc2)c(C(=O)Nc

3ccccc3)c4C(C)C 
6.66 0.2 P/vP 0.5 0.97 0.4 - 0.5 0.712 0.257 0.5 0.442 0.428 

o-hydroxyatorvastatin 
O=C(O)CC(O)CC(O)CCn4c(c1ccc(F)cc1)c(c2ccccc2)c(C(=O)Nc

3ccccc3(O))c4C(C)C 
6.18 0.2 nP 0.5 0.99 0.8 - 0.5 0.359 0.148 0.5 0.269 0.23 

p-hydroxyatorvastatin 
O=C(O)CC(O)CC(O)CCn4c(c1ccc(F)cc1)c(c2ccccc2)c(C(=O)Nc

3ccc(O)cc3)c4C(C)C 
5.47 0.2 nP 0.5 1.07 0.8 - 0.5 0.359 0.156 0.5 0.275 0.237 

Azithromycin 
O=C3OC(CC)C(O)(C)C(O)C(N(C)CC(C)CC(O)(C)C(OC1OC(C

)CC(N(C)C)C1(O))C(C)C(OC2OC(C)C(O)C(OC)(C)C2)C3C)C 
4.02 1 nP 0.5 0.86 0.4 0.351 0.3 0.359 0.25 0.427 0.322 0.3 

Azithromycin metabolite 591 
O=C2OC(CC)C(O)(C)C(O)C(N(C)CC(C)CC(O)(C)C(OC1OC(C

)CC(N(C)C)C1(O))C(C)C(O)C2C)C 
1.02 0.2 nP 0.5 1.22 0.8 0.953 0.3 0.359 0.172 0.376 0.27 0.249 

Clindamycin 
O=C(NC(C1OC(C(O)C(O)C1(O))SC)C(C)Cl)C2N(C)CC(CCC)C

2 
2.16 1 nP 0.5 0.62 0.4 0.37 0.3 0.359 0.237 0.424 0.314 0.292 

N-desmethyl clindamycin O=C(NC(C1OC(C(O)C(O)C1(O))SC)C(C)Cl)C2NCC(CCC)C2 -0.6 0.2 nP 0.5 0.38 0.4 0.366 0.3 0.359 0.227 0.425 0.309 0.285 

Clindamycin sulfoxide 
O=C(NC(C1OC(C(O)C(O)C1(O))S(=O)C)C(C)Cl)C2N(C)CC(C

CC)C2 
-2.53 0.2 nP 0.5 0.39 0.4 0.573 0.3 0.359 0.227 0.401 0.305 0.285 

Codeine OC1C=CC5C4N(C)CCC25(c3c(OC12)c(OC)ccc3C4) 1.19 1 nP 0.7 1.18 0.4 0.131 0.6 0.333 0.272 0.477 0.33 0.301 

Codeine-glucuronide 
O=C(O)C6OC(OC1C=CC5C4N(C)CCC25(c3c(OC12)c(OC)ccc3

C4))C(O)C(O)C6(O) 
0.54 0.2 nP 0.5 1.68 0.8 - 0.5 0.359 0.234 0.5 0.323 0.29 

Diphenhydramine O(CCN(C)C)C(c1ccccc1)c2ccccc2 3.27 1 nP 0.5 2.02 0.4 0.241 0.3 0.359 0.356 0.448 0.374 0.357 

Diphenhydramine N-oxide [O-][N+](C)(C)CCOC(c1ccccc1)c2ccccc2 -1.66 0.2 nP/P 0.5 1.13 0.4 0.163 0.3 0.571 0.268 0.471 0.406 0.391 

Diphenhydramine N-β-D-

glucuronide 

O=C([O-

])C1OC(C(O)C(O)C1(O))[N+](C)(C)CCOC(c2ccccc2)c3ccccc3 
-1.94 0.2 nP/P 0.5 0.7 0.4 - 0.5 0.571 0.241 0.5 0.394 0.371 

Fluconazole Fc1ccc(c(F)c1)C(O)(Cn2ncnc2)Cn3ncnc3 0.25 0.2 vP 0.5 1.72 0.8 - 0.5 0.854 0.24 0.5 0.462 0.453 

Fluconazole-glucuronide 
O=C(O)C4OC(OC(c1ccc(F)cc1(F))(Cn2ncnc2)Cn3ncnc3)C(O)C(

O)C4(O) 
-1.5 0.2 P/vP 0.5 2.28 0.8 - 0.5 0.712 0.341 0.5 0.494 0.493 

Hydrocodone O=C1CCC5C4N(C)CCC25(c3c(OC12)c(OC)ccc3C4) 1.9 0.4 nP 0.7 1.36 0.4 0.094 0.6 0.333 0.287 0.505 0.341 0.309 

Hydrocodone-glucuronide 
O=C(O)C6OC(Oc5ccc4c1c5(OC2C(=O)CCC3C(N(C)CCC123)C

4))C(O)C(O)C6(O) 
-1.4 0.2 nP 0.5 2.11 0.8 - 0.5 0.359 0.307 0.5 0.36 0.332 

Losartan OCc1c(nc(n1Cc2ccc(cc2)c4ccccc4(c3nnn[nH]3))CCCC)Cl 3.25 0.4 nP 0.5 1.54 0.4 0.00007 0.3 0.359 0.303 0.752 0.389 0.33 

Losartan carboxylic acid O=C(O)c1c(nc(n1Cc2ccc(cc2)c4ccccc4(c3nn[nH]n3))CCCC)Cl 3.91 0.2 nP 0.5 1.16 0.4 0.00007 0.3 0.359 0.271 0.752 0.372 0.312 

Losartan Metabolite 1 OCc1c(nc(n1Cc2ccc(cc2)c4ccccc4(c3nnn[nH]3))CCC(O)C)Cl 1.98 0.2 nP 0.5 1.14 0.4 0.00007 0.3 0.359 0.269 0.752 0.37 0.31 
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Losartan Metabolite 2 OCc1c(nc(n1Cc2ccc(cc2)c4ccccc4(c3nnn[nH]3))C(O)CCC)Cl 2.31 0.4 nP 0.5 1.18 0.4 0.00007 0.3 0.359 0.272 0.752 0.372 0.312 

Metoprolol OC(COc1ccc(cc1)CCOC)CNC(C)C 1.88 1 nP 0.7 0.62 0.8 0.922 0.3 0.333 0.117 0.377 0.225 0.197 

α-Hydroxy metoprolol OC(c1ccc(OCC(O)CNC(C)C)cc1)COC 0.78 0.8 nP/P 0.7 0.3 0.4 2.39 0.3 0.584 0.224 0.336 0.356 0.361 

Metronidazole O=[N+]([O-])c1cnc(n1CCO)C -0.12 0.8 nP 0.9 0.5 0.8 16 0.3 0.31 0.109 0.28 0.2 0.184 

Hydroxy metronidazole O=[N+]([O-])c1cnc(n1CCO)CO -0.89 0.8 nP 0.5 0.54 0.8 1.83 0.3 0.359 0.112 0.347 0.223 0.2 

Omeprazole O=S(c1nc2ccc(OC)cc2([nH]1))Cc3ncc(c(OC)c3C)C 2.23 1 P/vP 0.5 0.88 0.4 0.181 0.3 0.712 0.252 0.465 0.431 0.423 

4-Hydroxy omeprazole 

sulfide 
Oc1c(cnc(c1C)CSc2nc3ccc(OC)cc3([nH]2))C 3 0.2 nP 0.9 2.4 0.8 0.201 0.3 0.31 0.365 0.459 0.358 0.336 

5-Hydroxy omeprazole OCc1cnc(c(c1(OC))C)CSc2nc3cc(OC)ccc3([nH]2) 3.14 0.4 P/vP 0.5 1.98 0.8 0.361 0.3 0.712 0.283 0.426 0.444 0.449 

Omeprazole sulfone N-

oxide 

O=S(=O)(c1nc2ccc(OC)cc2([nH]1))Cc3c(c(OC)c(c[n+]3([O-

]))C)C 
2.42 0.4 P/vP 0.5 0.65 0.4 0.003 0.3 0.712 0.239 0.682 0.456 0.412 

Trimethoprim n1cc(c(nc1N)N)Cc2cc(OC)c(OC)c(OC)c2 0.91 1 nP 0.5 1.96 0.8 0.196 0.4 0.359 0.279 0.454 0.34 0.316 

α-Hydroxy trimethoprim OC(c1cc(OC)c(OC)c(OC)c1)c2cnc(nc2(N))N 0.58 0.4 nP 0.5 0.79 0.4 0.622 0.4 0.359 0.247 0.381 0.312 0.297 

Trimethoprim 1-N-oxide [O-][n+]1cc(c(nc1(N))N)Cc2cc(OC)c(OC)c(OC)c2 0.83 0.4 nP 0.9 0.99 0.4 0.625 0.4 0.31 0.259 0.38 0.301 0.283 

Trimethoprim 3-N-oxide [O-][n+]1c(ncc(c1(N))Cc2cc(OC)c(OC)c(OC)c2)N 0.83 0.4 nP 0.9 0.99 0.4 0.625 0.4 0.31 0.259 0.38 0.3 0.283 

Venlafaxine OC1(CCCCC1)C(c2ccc(OC)cc2)CN(C)C 3.15 0.4 nP/P 0.7 1.53 0.4 0.17 0.4 0.584 0.302 0.464 0.428 0.42 

D,L,O-Desmethyl 

venlafaxine 
Oc1ccc(cc1)C(CN(C)C)C2(O)(CCCCC2) 2.6 0.8 nP/P 0.7 2.16 0.8 0.143 0.3 0.584 0.316 0.479 0.439 0.43 

N,O-Didesmethyl 

venlafaxine β-D-

glucuronide 

O=C(O)C3OC(Oc1ccc(cc1)C(CNC)C2(O)(CCCCC2))C(O)C(O)

C3(O) 
-0.34 0.2 nP/P 0.5 1.12 0.4 - 0.5 0.571 0.267 0.5 0.41 0.391 

Verapamil 
N#CC(c1ccc(OC)c(OC)c1)(CCCN(C)CCc2ccc(OC)c(OC)c2)C(C

)C 
3.79 1 nP 0.7 0.64 0.8 - 0.5 0.333 0.119 0.5 0.239 0.199 

Desalkyl verapamil D617 
N#CC(c1ccc(OC)c(OC)c1)(CCCN(C)CCc2ccc(O)c(OC)c2)C(C)

C 
3.03 0.4 nP 0.9 0.68 0.8 - 0.5 0.31 0.121 0.5 0.235 0.194 

Aciclovir O=C2NC(=Nc1c2(ncn1COCCO))N -0.63 0.4 P/vP 0.5 0.27 0.4 10 0.3 0.712 0.222 0.291 0.374 0.398 

Atazanavir 
O=C(OC)NC(C(=O)NN(Cc1ccc(cc1)c2ncccc2)CC(O)C(NC(=O)

C(NC(=O)OC)C(C)(C)C)Cc3ccccc3)C(C)(C)C 
4.81 0.4 nP 0.5 0.57 0.8 - 0.5 0.359 0.113 0.5 0.242 0.202 

Bupivacaine O=C(Nc1c(cccc1C)C)C2N(CCCC)CCCC2 3.11 0.4 P/vP 0.5 1.07 0.8 0.038 0.4 0.712 0.156 0.565 0.37 0.333 

Carbamazepine O=C(N)N2c3ccccc3(C=Cc1ccccc12) 2.45 1 P/vP 0.5 1.26 0.4 0.817 0.3 0.712 0.278 0.383 0.432 0.445 

Cefepime 

O=C([O-

])C4=C(C[N+]1(C)(CCCC1))CSC3N4(C(=O)C3(NC(=O)C(=NO

C)c2nc(N)sc2)) 

-5 0.2 nP 0.5 0.16 0.4 - 0.5 0.359 0.219 0.5 0.314 0.28 

Cetirizine O=C(O)COCCN1CCN(CC1)C(c2ccccc2)c3ccc(cc3)Cl 2.59 0.2 P/vP 0.5 1.15 0.4 - 0.5 0.712 0.27 0.5 0.45 0.438 

Ciprofloxacin O=C(O)C1=CN(c2cc(c(F)cc2(C1(=O)))N3CCNCC3)C4CC4 -1.03 0.4 nP/P 0.7 1 0.4 0.069 0.3 0.584 0.259 0.522 0.413 0.389 

Diazepam O=C1N(c3ccc(cc3(C(=NC1)c2ccccc2))Cl)C 2.82 1 P/vP 0.5 1.57 0.4 0.087 0.3 0.712 0.306 0.509 0.475 0.467 

Metformin N=C(N=C(N)N)N(C)C -0.6 0.4 - 0.5 0.14 0.8 425 0.3 0.5 0.089 0.24 0.217 0.211 

Gabapentin O=C(O)CC1(CN)(CCCCC1) -1.1 1 nP 0.7 0.3 0.8 1.99 0.4 0.333 0.097 0.319 0.202 0.18 

Levofloxacin O=C(O)C2=CN1c3c(OCC1C)c(c(F)cc3(C2(=O)))N4CCN(C)CC4 -0.39 1 nP 0.9 0.56 0.4 - 0.5 0.31 0.235 0.5 0.305 0.27 

Lidocaine O=C(Nc1c(cccc1C)C)CN(CC)CC 2.44 1 P/vP 0.5 1.01 0.8 0.365 0.4 0.712 0.15 0.413 0.342 0.327 

Lincomycin 
O=C(NC(C(O)C)C1OC(C(O)C(O)C1(O))SC)C2N(C)CC(CCC)C

2 
0.56 1 nP 0.5 0.45 0.4 0.376 0.3 0.359 0.229 0.423 0.31 0.287 

Metoclopramide O=C(NCCN(CC)CC)c1cc(c(N)cc1(OC))Cl 2.62 1 vP 0.5 1.57 0.8 1.19 0.4 0.854 0.217 0.345 0.412 0.431 

Morphine Oc5ccc4c1c5(OC2C(O)C=CC3C(N(C)CCC123)C4) 0.89 1 nP 0.7 1.15 0.4 0.132 0.6 0.333 0.27 0.477 0.329 0.3 

Nystatin 

O=C(O)C3C(O)CC2(O)(OC3(CC(OC1OC(C)C(O)C(N)C1(O))C

=CC=CC=CC=CCCC=CC=CC(C)C(O)C(C)C(OC(=O)CC(O)CC

(O)CC(O)CCC(O)C(O)C2)C)) 

-0.7 0.2 nP 0.5 0.54 0.4 - 0.5 0.359 0.234 0.5 0.323 0.289 

Ofloxacin O=C(O)C2=CN1c3c(OCC1C)c(c(F)cc3(C2(=O)))N4CCN(C)CC4 -0.39 1 nP 0.9 0.56 0.4 - 0.5 0.31 0.235 0.5 0.305 0.27 

Ondansetron O=C3c2c1ccccc1n(c2CCC3Cn4ccnc4C)C 2.68 0.4 vP 0.5 2.03 0.8 0.799 0.3 0.854 0.293 0.384 0.474 0.5 
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Paliperidone 
O=C1C(=C(N=C2N1CCCC2(O))C)CCN5CCC(c4noc3cc(F)ccc3

4)CC5 
3.75 0.2 nP 0.5 1.5 0.4 0.045 0.3 0.359 0.299 0.546 0.363 0.327 

Pregabalin O=C(O)CC(CN)CC(C)C -1.78 0.4 nP 0.7 0.5 0.8 8.01 0.4 0.333 0.109 0.266 0.204 0.19 

Propranolol OC(COc1cccc2ccccc12)CNC(C)C 3.48 1 nP 0.5 1.89 0.8 1.22 0.6 0.359 0.267 0.308 0.309 0.309 

Quetiapine OCCOCCN4CCN(C2=Nc1ccccc1Sc3ccccc23)CC4 -0.09 0.2 P/vP 0.5 0.99 0.4 0.114 0.3 0.712 0.258 0.492 0.441 0.429 

Ranitidine O=[N+]([O-])C=C(NC)NCCSCc1oc(cc1)CN(C)C 0.27 1 nP/P 0.5 0.39 0.4 - 0.5 0.571 0.227 0.5 0.384 0.36 

Sulfamethoxazole O=S(=O)(Nc1noc(c1)C)c2ccc(N)cc2 0.89 1 P/vP 0.5 0.38 0.4 4 0.4 0.712 0.227 0.29 0.376 0.402 

Sulpiride O=C(NCC1N(CC)CCC1)c2cc(ccc2(OC))S(=O)(=O)N 0.57 1 nP 0.7 0.59 0.4 0.172 0.4 0.333 0.236 0.463 0.31 0.28 

Tramadol OC2(c1cccc(OC)c1)(CCCCC2(CN(C)C)) 2.57 1 nP/P 0.7 1.31 0.4 0.236 0.3 0.584 0.282 0.45 0.414 0.406 

DL-Tyrosine O=C(O)C(N)Cc1ccc(O)cc1 -2.15 1 nP 0.7 0.31 0.8 3.02 0.4 0.333 0.097 0.301 0.2 0.18 
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Figure S2. In silico QSAR prediction of PBT values by the Prometheus software for the (A) 

pharmaceuticals and (B) human metabolites investigated in this study. 
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Table S9. In silico QSAR predictions for Mutagenicity (Ames test) CONSENSUS model of the pharmaceuticals and metabolites investigated in 

the present study according to VEGA QSAR v.1.1.4 software. 

Compound SMILES Assessment 
Used 

models 

Predicted 

Consensus 

Mutagen 

activity 

Mutagenic 

Score 

Non-

Mutagenic 

Score 

Model Caesar 

assessment 

Model ISS 

assessment 

Model SarPy 

assessment 

Model KNN 

assessment 

Dipyrone 
O=C1C(=C(N(N1c2ccccc2)

C)C)N(C)CS(=O)(=O)[O-] 
Mutagenic 1 Mutagenic 1 0 

Mutagenic 

(moderate reliability) 

Mutagenic 

(experimental value) 

Mutagenic  

(moderate reliability) 

Mutagen  

(moderate reliability) 

4-AAA 
O=C(NC=2C(=O)N(c1ccccc

1)N(C=2C)C)C 
Mutagenic 4 Mutagenic 0.35 0.15 

NON-Mutagenic 

(moderate reliability) 

Mutagenic  

(low reliability) 

Mutagenic  

(moderate reliability) 

Mutagen  

(moderate reliability) 

4-AA 
O=C1C(N)=C(N(N1c2ccccc

2)C)C 
NON-Mutagenic 4 NON-Mutagenic 0.1 0.3 

NON-Mutagenic 

(moderate reliability) 

Mutagenic 

 (low reliability) 

Mutagenic 

 (low reliability) 

NON-Mutagen 

(moderate reliability) 

4-FAA 
O=CNC=2C(=O)N(c1ccccc1

)N(C=2C)C 
Mutagenic 4 Mutagenic 0.35 0.15 

NON-Mutagenic 

(moderate reliability) 

Mutagenic  

(low reliability) 

Mutagenic (moderate 

reliability) 

Mutagen (moderate 

reliability) 

4-MAA 
O=C2C(NC)=C(N(N2(c1ccc

cc1))C)C 
NON-Mutagenic 4 NON-Mutagenic 0.1 0.3 

NON-Mutagenic 

(moderate reliability) 

Mutagenic  

(low reliability) 

Mutagenic (low 

reliability) 

NON-Mutagen 

(moderate reliability) 

Antipyrine/ 

Phenazone 

O=C1C=C(N(N1c2ccccc2)C

)C 
NON-Mutagenic 4 NON-Mutagenic 0 1 

NON-Mutagenic 

(experimental value) 

NON-Mutagenic 

(Experimental value) 

NON-Mutagenic 

(experimental value) 

NON-Mutagen 

(experimental value) 

Acetaminophen O=C(Nc1ccc(O)cc1)C NON-Mutagenic 2 NON-Mutagenic 0 1 
NON-Mutagenic 

(moderate reliability) 

NON-Mutagenic 

(experimental value) 

Possible NON-

Mutagenic (moderate 

reliability) 

NON-Mutagen 

(experimental value) 

3-cysteinyl 

acetaminophen 

O=C(O)C(N)CSc1cc(ccc1(O

))NC(=O)C 
Mutagenic 4 Mutagenic 0.35 0.15 

Mutagenic 

 (low reliability) 

Mutagenic 

 (moderate reliability) 

Possible NON-

Mutagenic 

 (moderate reliability) 

Mutagen 

 (moderate reliability) 

3-methoxy 

acetaminophen 
O=C(Nc1ccc(O)c(OC)c1)C NON-Mutagenic 4 NON-Mutagenic 0.15 0.45 

NON-Mutagenic 

(moderate reliability) 

Mutagenic 

 (moderate reliability) 

Possible NON-

Mutagenic  

(moderate reliability) 

NON-Mutagen 

(moderate reliability) 

Albendazole 
O=C(OC)Nc1nc2ccc(cc2([n

H]1))SCCC 
Mutagenic 4 Mutagenic 0.25 0.15 

Mutagenic  

(low reliability) 

NON-Mutagenic 

(moderate reliability) 

Mutagenic  

(low reliability) 

Mutagen (moderate 

reliability) 

Albendazole sulfoxide 
O=C(OC)Nc1nc2ccc(cc2([n

H]1))S(=O)CCC 
NON-Mutagenic 4 NON-Mutagenic 0.1 0.2 

Mutagenic  

(low reliability) 

NON-Mutagenic (low 

reliability) 

Mutagenic (low 

reliability) 

NON-Mutagen 

(moderate reliability) 

Atenolol 
O=C(N)Cc1ccc(OCC(O)CN

C(C)C)cc1 
NON-Mutagenic 1 NON-Mutagenic 0 1 

NON-Mutagenic 

(moderate reliability) 

NON-Mutagenic 

(moderate reliability) 

NON-Mutagenic (good 

reliability) 

NON-Mutagen 

(experimental value) 

Atenolol acid 
O=C(O)Cc1ccc(OCC(O)CN

C(C)C)cc1 
NON-Mutagenic 4 NON-Mutagenic 0 0.82 

NON-Mutagenic 

(good reliability) 

NON-Mutagenic 

(moderate reliability) 

NON-Mutagenic (good 

reliability) 

NON-Mutagen  

(good reliability) 

Atorvastatin 

O=C(O)CC(O)CC(O)CCn4c(

c1ccc(F)cc1)c(c2ccccc2)c(C(

=O)Nc3ccccc3)c4C(C)C 

NON-Mutagenic 

(Consensus score: 

1) 

1 NON-Mutagenic 0 1 
NON-Mutagenic 

(moderate reliability) 

NON-Mutagenic  

(low reliability) 

NON-Mutagenic (low 

reliability) 

NON-Mutagen 

(experimental value) 

o-

hydroxyatorvastatin 

O=C(O)CC(O)CC(O)CCn4c(

c1ccc(F)cc1)c(c2ccccc2)c(C(

=O)Nc3ccccc3(O))c4C(C)C 

NON-Mutagenic 

(Consensus score: 

0.4) 

4 NON-Mutagenic 0 0.4 
NON-Mutagenic 

(moderate reliability) 

NON-Mutagenic  

(low reliability) 

NON-Mutagenic (low 

reliability) 

NON-Mutagen 

(moderate reliability) 

p-

hydroxyatorvastatin 

O=C(O)CC(O)CC(O)CCn4c(

c1ccc(F)cc1)c(c2ccccc2)c(C(

=O)Nc3ccc(O)cc3)c4C(C)C 

NON-Mutagenic 

(Consensus score: 

0.4) 

4 NON-Mutagenic 0 0.4 
NON-Mutagenic 

(moderate reliability) 

NON-Mutagenic (low 

reliability) 

NON-Mutagenic (low 

reliability) 

NON-Mutagen 

(moderate reliability) 
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Compound SMILES Assessment 
Used 

models 

Predicted 

Consensus 

Mutagen 

activity 

Mutagenic 

Score 

Non-

Mutagenic 

Score 

Model Caesar 

assessment 

Model ISS 

assessment 

Model SarPy 

assessment 

Model KNN 

assessment 

Azithromycin 

O=C3OC(CC)C(O)(C)C(O)C

(N(C)CC(C)CC(O)(C)C(OC

1OC(C)CC(N(C)C)C1(O))C(

C)C(OC2OC(C)C(O)C(OC)(

C)C2)C3C)C 

NON-Mutagenic 

(Consensus score: 

1) 

3 NON-Mutagenic 0 1 
NON-Mutagenic 

(experimental value) 

NON-Mutagenic (good 

reliability) 

NON-Mutagenic 

(experimental value) 

NON-Mutagen 

(experimental value) 

Descladinose 

(Azithromycin 

metabolite 591) 

O=C2OC(CC)C(O)(C)C(O)C

(N(C)CC(C)CC(O)(C)C(OC

1OC(C)CC(N(C)C)C1(O))C(

C)C(O)C2C)C 

NON-Mutagenic 

(Consensus score: 

0.9) 

4 NON-Mutagenic 0 0.9 
NON-Mutagenic 

(good reliability) 

NON-Mutagenic  

(good reliability) 

NON-Mutagenic  

(good reliability) 

NON-Mutagen  

(good reliability) 

Clindamycin 

O=C(NC(C1OC(C(O)C(O)C

1(O))SC)C(C)Cl)C2N(C)CC(

CCC)C2 

Mutagenic 

(Consensus score: 

0.25) 

4 Mutagenic 0.25 0.15 
Suspect Mutagenic 

(low reliability) 

Mutagenic  

(moderate reliability) 

Mutagenic  

(low reliability) 

NON-Mutagen 

(moderate reliability) 

N-desmethyl 

clindamycin 

O=C(NC(C1OC(C(O)C(O)C

1(O))SC)C(C)Cl)C2NCC(CC

C)C2 

Mutagenic 

(Consensus score: 

0.25) 

4 Mutagenic 0.25 0.15 
Suspect Mutagenic 

(low reliability) 

Mutagenic 

 (moderate reliability) 

Mutagenic  

(low reliability) 

NON-Mutagen 

(moderate reliability) 

Clindamycin 

sulfoxide 

O=C(NC(C1OC(C(O)C(O)C

1(O))S(=O)C)C(C)Cl)C2N(C

)CC(CCC)C2 

Mutagenic 

(Consensus score: 

0.25) 

4 Mutagenic 0.25 0.15 
Suspect Mutagenic 

(low reliability) 

Mutagenic  

(moderate reliability) 

Mutagenic 

 (low reliability) 

NON-Mutagen 

(moderate reliability) 

Codeine 
OC1C=CC5C4N(C)CCC25(c

3c(OC12)c(OC)ccc3C4) 

NON-Mutagenic 

(Consensus score: 

1) 

4 NON-Mutagenic 0 1 
NON-Mutagenic 

(experimental value) 

NON-Mutagenic 

(experimental value) 

NON-Mutagenic 

(experimental value) 

NON-Mutagen 

(experimental value) 

Codeine-glucuronide 

O=C(O)C6OC(OC1C=CC5C

4N(C)CCC25(c3c(OC12)c(O

C)ccc3C4))C(O)C(O)C6(O) 

NON-Mutagenic 

(Consensus score: 

0.6) 

4 NON-Mutagenic 0 0.6 
NON-Mutagenic 

(moderate reliability) 

NON-Mutagenic 

(moderate reliability) 

NON-Mutagenic 

(moderate reliability) 

NON-Mutagen 

(moderate reliability) 

Diphenhydramine 
O(CCN(C)C)C(c1ccccc1)c2c

cccc2 

NON-Mutagenic 

(Consensus score: 

1) 

2 NON-Mutagenic 0 1 
NON-Mutagenic 

 (low reliability) 

NON-Mutagenic 

(experimental value) 

NON-Mutagenic  

(low reliability) 

NON-Mutagen 

(experimental value) 

Diphenhydramine N-

oxide 

[O-

][N+](C)(C)CCOC(c1ccccc1

)c2ccccc2 

NON-Mutagenic 

(Consensus score: 

0.47) 

4 NON-Mutagenic 0 0.47 
NON-Mutagenic  

(low reliability) 

NON-Mutagenic 

(moderate reliability) 

NON-Mutagenic 

 (low reliability) 

NON-Mutagen  

(good reliability) 

Diphenhydramine N-

ß-D-glucuronide 

O=C([O-

])C1OC(C(O)C(O)C1(O))[N

+](C)(C)CCOC(c2ccccc2)c3

ccccc3 

NON-Mutagenic 

(Consensus score: 

0.35) 

4 NON-Mutagenic 0.05 0.35 
NON-Mutagenic 

(moderate reliability) 

NON-Mutagenic  

(low reliability) 

Mutagenic 

 (low reliability) 

NON-Mutagen 

(moderate reliability) 

Fluconazole 
Fc1ccc(c(F)c1)C(O)(Cn2ncn

c2)Cn3ncnc3 

NON-Mutagenic 

(Consensus score: 

0.35) 

4 NON-Mutagenic 0.15 0.35 
NON-Mutagenic 

(moderate reliability) 

NON-Mutagenic  

(low reliability) 

NON-Mutagenic 

(moderate reliability) 

Mutagen  

(moderate reliability) 

Fluconazole-

glucuronide 

O=C(O)C4OC(OC(c1ccc(F)c

c1(F))(Cn2ncnc2)Cn3ncnc3)

C(O)C(O)C4(O) 

NON-Mutagenic 

(Consensus score: 

0.3) 

4 NON-Mutagenic 0 0.3 
NON-Mutagenic  

(low reliability) 

NON-Mutagenic  

(low reliability) 

NON-Mutagenic  

(low reliability) 

NON-Mutagen 

(moderate reliability) 

Hydrocodone 
O=C1CCC5C4N(C)CCC25(c

3c(OC12)c(OC)ccc3C4) 

NON-Mutagenic 

(Consensus score: 

0.82) 

4 NON-Mutagenic 0 0.82 
NON-Mutagenic 

(good reliability) 

NON-Mutagenic 

(moderate reliability) 

NON-Mutagenic  

(good reliability) 

NON-Mutagen 

 (good reliability) 

Hydrocodone-

glucuronide 

O=C(O)C6OC(Oc5ccc4c1c5(

OC2C(=O)CCC3C(N(C)CC

C123)C4))C(O)C(O)C6(O) 

NON-Mutagenic 

(Consensus score: 

0.25) 

4 NON-Mutagenic 0.15 0.25 
NON-Mutagenic  

(low reliability) 

NON-Mutagenic 

(moderate reliability) 

NON-Mutagenic  

(low reliability) 

Mutagen  

(moderate reliability) 
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Compound SMILES Assessment 
Used 

models 

Predicted 

Consensus 

Mutagen 

activity 

Mutagenic 

Score 

Non-

Mutagenic 

Score 

Model Caesar 

assessment 

Model ISS 

assessment 

Model SarPy 

assessment 

Model KNN 

assessment 

Losartan 

OCc1c(nc(n1Cc2ccc(cc2)c4c

cccc4(c3nnn[nH]3))CCCC)C

l 

NON-Mutagenic 

(Consensus score: 

0.35) 

4 NON-Mutagenic 0.15 0.35 
NON-Mutagenic 

(moderate reliability) 

NON-Mutagenic  

(low reliability) 

Possible NON-

Mutagenic  

(moderate reliability) 

Mutagen ( 

moderate reliability) 

Losartan carboxylic 

acid 

O=C(O)c1c(nc(n1Cc2ccc(cc

2)c4ccccc4(c3nn[nH]n3))CC

CC)Cl 

NON-Mutagenic 

(Consensus score: 

0.4) 

4 NON-Mutagenic 0 0.4 
NON-Mutagenic 

(moderate reliability) 

NON-Mutagenic 

 (low reliability) 

Possible NON-

Mutagenic  

(moderate reliability) 

NON-Mutagen 

 (low reliability) 

Losartan Metabolite 1 

OCc1c(nc(n1Cc2ccc(cc2)c4c

cccc4(c3nnn[nH]3))CCC(O)

C)Cl 

NON-Mutagenic 

(Consensus score: 

0.4) 

4 NON-Mutagenic 0 0.4 
NON-Mutagenic 

(moderate reliability) 

NON-Mutagenic  

(low reliability) 

Possible NON-

Mutagenic  

(moderate reliability) 

NON-Mutagen 

 (low reliability) 

Losartan Metabolite 2 

OCc1c(nc(n1Cc2ccc(cc2)c4c

cccc4(c3nnn[nH]3))C(O)CC

C)Cl 

NON-Mutagenic 

(Consensus score: 

0.4) 

4 NON-Mutagenic 0 0.4 
NON-Mutagenic 

(moderate reliability) 

NON-Mutagenic  

(low reliability) 

Possible NON-

Mutagenic  

(moderate reliability) 

NON-Mutagen  

(low reliability) 

Metoprolol 
OC(COc1ccc(cc1)CCOC)CN

C(C)C 

NON-Mutagenic 

(Consensus score: 

1) 

1 NON-Mutagenic 0 1 
NON-Mutagenic 

(good reliability) 

NON-Mutagenic  

(low reliability) 

NON-Mutagenic  

(good reliability) 

NON-Mutagen 

(experimental value) 

a-Hydroxy 

metoprolol 

OC(c1ccc(OCC(O)CNC(C)C

)cc1)COC 

NON-Mutagenic 

(Consensus score: 

0.72) 

4 NON-Mutagenic 0 0.72 
NON-Mutagenic 

(good reliability) 

NON-Mutagenic 

 (low reliability) 

NON-Mutagenic  

(good reliability) 

NON-Mutagen 

 (good reliability) 

Metronidazole 
O=[N+]([O-

])c1cnc(n1CCO)C 

Mutagenic 

(Consensus score: 

1) 

4 Mutagenic 1 0 
Mutagenic 

(experimental value) 

Mutagenic 

(experimental value) 

Mutagenic 

(experimental value) 

Mutagen  

(experimental value) 

Hydroxy 

metronidazole 

O=[N+]([O-

])c1cnc(n1CCO)CO 

Mutagenic 

(Consensus score: 

1) 

3 Mutagenic 1 0 
Mutagenic 

(experimental value) 

Mutagenic  

(moderate reliability) 

Mutagenic 

(experimental value) 

Mutagen  

(experimental value) 

Omeprazole 
O=S(c1nc2ccc(OC)cc2([nH]

1))Cc3ncc(c(OC)c3C)C 

Mutagenic 

(Consensus score: 

0.2) 

4 Mutagenic 0.2 0.1 
Mutagenic 

 (low reliability) 

NON-Mutagenic 

 (low reliability) 

Possible NON-

Mutagenic  

(low reliability) 

Mutagen  

(moderate reliability) 

4-Hydroxy 

omeprazole sulfide 

Oc1c(cnc(c1C)CSc2nc3ccc(

OC)cc3([nH]2))C 

Mutagenic 

(Consensus score: 

0.3) 

4 Mutagenic 0.3 0.1 
Mutagenic 

(moderate reliability) 

NON-Mutagenic  

(low reliability) 

Possible NON-

Mutagenic (low 

reliability) 

Mutagen 

 (moderate reliability) 

5-Hydroxy 

omeprazole 

OCc1cnc(c(c1(OC))C)CSc2n

c3cc(OC)ccc3([nH]2) 

NON-Mutagenic 

(Consensus score: 

0.35) 

4 NON-Mutagenic 0.05 0.35 
Mutagenic  

(low reliability) 

NON-Mutagenic 

 (low reliability) 

Possible NON-

Mutagenic  

(moderate reliability) 

NON-Mutagen 

(moderate reliability) 

Omeprazole sulfone 

N-oxide 

O=S(=O)(c1nc2ccc(OC)cc2([

nH]1))Cc3c(c(OC)c(c[n+]3([

O-]))C)C 

Mutagenic 

(Consensus score: 

0.2) 

4 Mutagenic 0.2 0.1 
NON-Mutagenic 

 (low reliability) 

Mutagenic 

 (low reliability) 

Possible NON-

Mutagenic  

(low reliability) 

Mutagen  

(moderate reliability) 

Trimethoprim 
n1cc(c(nc1N)N)Cc2cc(OC)c(

OC)c(OC)c2 

Mutagenic 

(Consensus score: 

0.43) 

4 Mutagenic 0.43 0.05 
Mutagenic 

 (good reliability) 

Mutagenic  

(low reliability) 

NON-Mutagenic 

 (low reliability) 

Mutagen  

(moderate reliability) 

a-Hydroxy 

trimethoprim 

OC(c1cc(OC)c(OC)c(OC)c1)

c2cnc(nc2(N))N 

Mutagenic 

(Consensus score: 

0.35) 

4 Mutagenic 0.35 0.05 
Mutagenic  

(moderate reliability) 

Mutagenic 

 (low reliability) 

NON-Mutagenic  

(low reliability) 

Mutagen  

(moderate reliability) 

Trimethoprim 1-N-

oxide 

[O-

][n+]1cc(c(nc1(N))N)Cc2cc(

OC)c(OC)c(OC)c2 

Mutagenic 

(Consensus score: 

0.43) 

4 Mutagenic 0.43 0.05 
Mutagenic  

(good reliability) 

Mutagenic 

 (low reliability) 

NON-Mutagenic 

 (low reliability) 

Mutagen 

 (moderate reliability) 
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Compound SMILES Assessment 
Used 

models 

Predicted 

Consensus 

Mutagen 

activity 

Mutagenic 

Score 

Non-

Mutagenic 

Score 

Model Caesar 

assessment 

Model ISS 

assessment 

Model SarPy 

assessment 

Model KNN 

assessment 

Trimethoprim 3-N-

oxide 

[O-

][n+]1c(ncc(c1(N))Cc2cc(OC

)c(OC)c(OC)c2)N 

Mutagenic 

(Consensus score: 

0.43) 

4 Mutagenic 0.43 0.05 
Mutagenic  

(good reliability) 

Mutagenic  

(low reliability) 

NON-Mutagenic  

(low reliability) 

Mutagen  

(moderate reliability) 

Venlafaxine 
OC1(CCCCC1)C(c2ccc(OC)

cc2)CN(C)C 

NON-Mutagenic 

(Consensus score: 

0.75) 

4 NON-Mutagenic 0 0.75 
NON-Mutagenic 

(good reliability) 

NON-Mutagenic 

(moderate reliability) 

NON-Mutagenic  

(good reliability) 

NON-Mutagen 

(moderate reliability) 

D,L,O-Desmethyl 

venlafaxine 

Oc1ccc(cc1)C(CN(C)C)C2(

O)(CCCCC2) 

NON-Mutagenic 

(Consensus score: 

0.75) 

4 NON-Mutagenic 0 0.75 
NON-Mutagenic 

(good reliability) 

NON-Mutagenic 

(moderate reliability) 

NON-Mutagenic  

(good reliability) 

NON-Mutagen 

(moderate reliability) 

N,O-Didesmethyl 

venlafaxine ß-D-

glucuronide 

O=C(O)C3OC(Oc1ccc(cc1)C

(CNC)C2(O)(CCCCC2))C(O

)C(O)C3(O) 

NON-Mutagenic 

(Consensus score: 

0.57) 

4 NON-Mutagenic 0 0.57 
NON-Mutagenic 

(moderate reliability) 

NON-Mutagenic (low 

reliability) 

NON-Mutagenic 

(moderate reliability) 

NON-Mutagen  

(good reliability) 

Verapamil 

N#CC(c1ccc(OC)c(OC)c1)(

CCCN(C)CCc2ccc(OC)c(OC

)c2)C(C)C 

NON-Mutagenic 

(Consensus score: 

0.82) 

4 NON-Mutagenic 0 0.82 
NON-Mutagenic 

(good reliability) 

NON-Mutagenic 

(moderate reliability) 

NON-Mutagenic  

(good reliability) 

NON-Mutagen  

(good reliability) 

Desalkyl verapamil 

D617 

N#CC(c1ccc(OC)c(OC)c1)(

CCCN(C)CCc2ccc(O)c(OC)

c2)C(C)C 

NON-Mutagenic 

(Consensus score: 

0.82) 

4 NON-Mutagenic 0 0.82 
NON-Mutagenic 

(good reliability) 

NON-Mutagenic 

(moderate reliability) 

NON-Mutagenic  

(good reliability) 

NON-Mutagen 

 (good reliability) 

Aciclovir O=C2NC(=Nc1c2(ncn1COC

CO))N 

Mutagenic 

(Consensus score: 

0.15) 

4 Mutagenic 0.15 0.05 Mutagenic  

(low reliability) 

NON-Mutagenic 

 (low reliability) 

Mutagenic 

 (low reliability) 

Mutagen  

(low reliability) 

Atazanavir O=C(OC)NC(C(=O)NN(Cc1

ccc(cc1)c2ncccc2)CC(O)C(N

C(=O)C(NC(=O)OC)C(C)(C

)C)Cc3ccccc3)C(C)(C)C 

Mutagenic 

(Consensus score: 

0.15) 

4 Mutagenic 0.15 0.15 Mutagenic  

(low reliability) 

Mutagenic 

 (low reliability) 

Mutagenic  

(low reliability) 

NON-Mutagen 

(moderate reliability) 

Bupivacaine O=C(Nc1c(cccc1C)C)C2N(C

CCC)CCCC2 

NON-Mutagenic 

(Consensus score: 

0.65) 

4 NON-Mutagenic 0 0.65 NON-Mutagenic 

(good reliability) 

NON-Mutagenic  

(low reliability) 

NON-Mutagenic 

(moderate reliability) 

NON-Mutagen (good 

reliability) 

Carbamazepine O=C(N)N2c3ccccc3(C=Cc1c

cccc12) 

NON-Mutagenic 

(Consensus score: 

0.35) 

4 NON-Mutagenic 0.15 0.35 Mutagenic  

(moderate reliability) 

NON-Mutagenic 

 (low reliability) 

NON-Mutagenic 

(moderate reliability) 

NON-Mutagen 

(moderate reliability) 

Cefepime O=C([O-

])C4=C(C[N+]1(C)(CCCC1)

)CSC3N4(C(=O)C3(NC(=O)

C(=NOC)c2nc(N)sc2)) 

NON-Mutagenic 

(Consensus score: 

0.38) 

4 NON-Mutagenic 0.1 0.38 Mutagenic  

(low reliability) 

Mutagenic (low 

reliability) 

NON-Mutagenic (good 

reliability) 

NON-Mutagen 

(moderate reliability) 

Cetirizine O=C(O)COCCN1CCN(CC1)

C(c2ccccc2)c3ccc(cc3)Cl 

NON-Mutagenic 

(Consensus score: 

0.43) 

4 NON-Mutagenic 0.05 0.43 Mutagenic  

(low reliability) 

NON-Mutagenic  

(low reliability) 

NON-Mutagenic (good 

reliability) 

NON-Mutagen 

(moderate reliability) 

Ciprofloxacin O=C(O)C1=CN(c2cc(c(F)cc

2(C1(=O)))N3CCNCC3)C4C

C4 

Mutagenic 

(Consensus score: 

1) 

2 Mutagenic 1 0 Mutagenic 

(experimental value) 

Mutagenic  

(low reliability) 

Mutagenic 

(experimental value) 

Mutagen  

(moderate reliability) 

Diazepam O=C1N(c3ccc(cc3(C(=NC1)

c2ccccc2))Cl)C 

NON-Mutagenic 

(Consensus score: 

1) 

4 NON-Mutagenic 0 1 NON-Mutagenic 

(experimental value) 

NON-Mutagenic 

(experimental value) 

NON-Mutagenic 

(experimental value) 

NON-Mutagen 

(experimental value) 

Metformin N=C(N=C(N)N)N(C)C NON-Mutagenic 

(Consensus score: 

0.35) 

4 NON-Mutagenic 0.05 0.35 Mutagenic  

(low reliability) 

NON-Mutagenic  

(low reliability) 

Possible NON-

Mutagenic  

(moderate reliability) 

NON-Mutagen 

(moderate reliability) 
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Compound SMILES Assessment 
Used 

models 

Predicted 

Consensus 

Mutagen 

activity 

Mutagenic 

Score 

Non-

Mutagenic 

Score 

Model Caesar 

assessment 

Model ISS 

assessment 

Model SarPy 

assessment 

Model KNN 

assessment 

Gabapentin O=C(O)CC1(CN)(CCCCC1) NON-Mutagenic 

(Consensus score: 

0.83) 

4 NON-Mutagenic 0 0.83 NON-Mutagenic 

(good reliability) 

NON-Mutagenic (good 

reliability) 

NON-Mutagenic (good 

reliability) 

NON-Mutagen 

(moderate reliability) 

Levofloxacin O=C(O)C2=CN1c3c(OCC1C

)c(c(F)cc3(C2(=O)))N4CCN(

C)CC4 

Mutagenic 

(Consensus score: 

0.72) 

4 Mutagenic 0.72 0 Mutagenic  

(good reliability) 

Mutagenic 

 (low reliability) 

Mutagenic  

(good reliability) 

Mutagen 

 (good reliability) 

Lidocaine O=C(Nc1c(cccc1C)C)CN(C

C)CC 

NON-Mutagenic 

(Consensus score: 

0.5) 

4 NON-Mutagenic 0 0.5 NON-Mutagenic 

(moderate reliability) 

NON-Mutagenic 

(moderate reliability) 

Possible NON-

Mutagenic  

(moderate reliability) 

NON-Mutagen  

(low reliability) 

Lincomycin O=C(NC(C(O)C)C1OC(C(O

)C(O)C1(O))SC)C2N(C)CC(

CCC)C2 

NON-Mutagenic 

(Consensus score: 

0.3) 

4 NON-Mutagenic 0 0.3 NON-Mutagenic (low 

reliability) 

NON-Mutagenic 

 (low reliability) 

NON-Mutagenic (low 

reliability) 

NON-Mutagen 

(moderate reliability) 

Metoclopramide O=C(NCCN(CC)CC)c1cc(c(

N)cc1(OC))Cl 

Mutagenic 

(Consensus score: 

0.35) 

4 Mutagenic 0.35 0.15 Mutagenic  

(moderate reliability) 

Mutagenic  

(low reliability) 

Mutagenic (moderate 

reliability) 

NON-Mutagen 

(moderate reliability) 

Morphine Oc5ccc4c1c5(OC2C(O)C=C

C3C(N(C)CCC123)C4) 

NON-Mutagenic 

(Consensus score: 

1) 

3 NON-Mutagenic 0 1 NON-Mutagenic 

(experimental value) 

NON-Mutagenic 

(moderate reliability) 

NON-Mutagenic 

(experimental value) 

NON-Mutagen 

(experimental value) 

Nystatin O=C(O)C3C(O)CC2(O)(OC

3(CC(OC1OC(C)C(O)C(N)C

1(O))C=CC=CC=CC=CCCC

=CC=CC(C)C(O)C(C)C(OC(

=O)CC(O)CC(O)CC(O)CCC

(O)C(O)C2)C)) 

NON-Mutagenic 

(Consensus score: 

0.67) 

4 NON-Mutagenic 0 0.67 NON-Mutagenic 

(moderate reliability) 

NON-Mutagenic 

(moderate reliability) 

NON-Mutagenic 

(moderate reliability) 

NON-Mutagen  

(good reliability) 

Ofloxacin O=C(O)C2=CN1c3c(OCC1C

)c(c(F)cc3(C2(=O)))N4CCN(

C)CC4 

Mutagenic 

(Consensus score: 

0.72) 

4 Mutagenic 0.72 0 Mutagenic  

(good reliability) 

Mutagenic  

(low reliability) 

Mutagenic  

(good reliability) 

Mutagen  

(good reliability) 

Ondansetron O=C3c2c1ccccc1n(c2CCC3

Cn4ccnc4C)C 

Mutagenic 

(Consensus score: 

0.3) 

4 Mutagenic 0.3 0.1 NON-Mutagenic (low 

reliability) 

NON-Mutagenic  

(low reliability) 

Mutagenic  

(moderate reliability) 

Mutagen  

(moderate reliability) 

Paliperidone O=C1C(=C(N=C2N1CCCC2

(O))C)CCN5CCC(c4noc3cc(

F)ccc34)CC5 

NON-Mutagenic 

(Consensus score: 

0.45) 

4 NON-Mutagenic 0.05 0.45 NON-Mutagenic 

(moderate reliability) 

Mutagenic  

(low reliability) 

NON-Mutagenic 

(moderate reliability) 

NON-Mutagen 

(moderate reliability) 

Pregabalin O=C(O)CC(CN)CC(C)C NON-Mutagenic 

(Consensus score: 

0.83) 

4 NON-Mutagenic 0 0.83 NON-Mutagenic 

(good reliability) 

NON-Mutagenic (good 

reliability) 

NON-Mutagenic (good 

reliability) 

NON-Mutagen 

(moderate reliability) 

Propranolol OC(COc1cccc2ccccc12)CNC

(C)C 

NON-Mutagenic 

(Consensus score: 

1) 

3 NON-Mutagenic 0 1 NON-Mutagenic 

(experimental value) 

NON-Mutagenic 

(moderate reliability) 

NON-Mutagenic 

(experimental value) 

NON-Mutagen 

(experimental value) 

Quetiapine OCCOCCN4CCN(C2=Nc1c

cccc1Sc3ccccc23)CC4 

NON-Mutagenic 

(Consensus score: 

0.2) 

4 NON-Mutagenic 0 0.2 NON-Mutagenic (low 

reliability) 

NON-Mutagenic  

(low reliability) 

NON-Mutagenic (low 

reliability) 

NON-Mutagen  

(low reliability) 

Ranitidine O=[N+]([O-

])C=C(NC)NCCSCc1oc(cc1)

CN(C)C 

NON-Mutagenic 

(Consensus score: 

1) 

3 NON-Mutagenic 0 1 NON-Mutagenic 

(experimental value) 

NON-Mutagenic 

 (low reliability) 

NON-Mutagenic 

(experimental value) 

NON-Mutagen 

(experimental value) 
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Compound SMILES Assessment 
Used 

models 

Predicted 

Consensus 

Mutagen 

activity 

Mutagenic 

Score 

Non-

Mutagenic 

Score 

Model Caesar 

assessment 

Model ISS 

assessment 

Model SarPy 

assessment 

Model KNN 

assessment 

Sulfamethoxazole O=S(=O)(Nc1noc(c1)C)c2cc

c(N)cc2 

NON-Mutagenic 

(Consensus score: 

1) 

1 NON-Mutagenic 0 1 NON-Mutagenic 

(good reliability) 

Mutagenic  

(low reliability) 

NON-Mutagenic (good 

reliability) 

NON-Mutagen 

(experimental value) 

Sulpiride O=C(NCC1N(CC)CCC1)c2c

c(ccc2(OC))S(=O)(=O)N 

NON-Mutagenic 

(Consensus score: 

0.75) 

4 NON-Mutagenic 0 0.75 NON-Mutagenic 

(good reliability) 

NON-Mutagenic 

(moderate reliability) 

NON-Mutagenic (good 

reliability) 

NON-Mutagen 

(moderate reliability) 

Tramadol OC2(c1cccc(OC)c1)(CCCCC

2(CN(C)C)) 

NON-Mutagenic 

(Consensus score: 

0.75) 

4 NON-Mutagenic 0 0.75 NON-Mutagenic 

(good reliability) 

NON-Mutagenic 

(moderate reliability) 

NON-Mutagenic (good 

reliability) 

NON-Mutagen 

(moderate reliability) 

D,L-Tyrosine O=C(O)C(N)Cc1ccc(O)cc1 NON-Mutagenic 

(Consensus score: 

1) 

1 NON-Mutagenic 0 1 NON-Mutagenic 

(moderate reliability) 

NON-Mutagenic (good 

reliability) 

Possible NON-

Mutagenic  

(moderate reliability) 

NON-Mutagen 

(experimental value) 
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Table S10. In silico QSAR predictions for Mutagenicity (Ames test) CONSENSUS model of the 

pharmaceuticals investigated in the present study according to VEGA QSAR v.1.1.4 software. 

 

Pharmaceutical Mutagenicity 
Consensus 

score 

Antipyrine/Phenazone Non-Mut. 1* 

Aciclovir Mut. 0.15 

Atazanavir Mut. 0.15 

Bupivacaine Non-Mut. 0.65 

Carbamazepine Non-Mut. 0.35 

Cefepime Non-Mut. 0.38 

Cetirizine Non-Mut. 0.43 

Ciprofloxacin Mut. 1* 

Diazepam Non-Mut. 1* 

Metformin Non-Mut. 0.35 

Gabapentin Non-Mut. 0.83 

Levofloxacin Mut. 0.72 

Lidocaine Non-Mut. 0.5 

Lincomycin Non-Mut. 0.3 

Metoclopramide Mut. 0.35 

Morphine Non-Mut. 1* 

Nystatin Non-Mut. 0.67 

Ofloxacin Mut. 0.72 

Ondansetron Mut. 0.3 

Paliperidone Non-Mut. 0.45 

Pregabalin Non-Mut. 0.83 

Propranolol Non-Mut. 1* 

Quetiapine Non-Mut. 0.2 

Ranitidine Non-Mut. 1* 

Sulfamethoxazole Non-Mut. 1* 

Sulpiride Non-Mut. 0.75 

Tramadol Non-Mut. 0.75 

DL-Tyrosine Non-Mut. 1* 

Mut.: positive alert for mutagenicity 

Non-Mut.: negative alert for mutagenicity. 

Consensus score: 0-1. 

* means that the alert and consensus are based in an Exp. value. 
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Table S11. In silico QSAR predictions of the pharmaceuticals and human metabolites found in raw HWW concerning the Carcinogenicity as 

endpoint by different models provided by the VEGA QSAR v.1.1.4 software. 

Compound SMILES 
Assessment 

CARC_ANTARES 

Assessment 

CARC_CAESAR 

Assessment  

CARC_ISS 

Assessment  

CARC_ISSCAN-CGX 

Dipyrone O=C1C(=C(N(N1c2ccccc2)C)C)N(C)CS(=O)(=O)[O-] 
NON-Carcinogen 

(experimental value) 

NON-Carcinogen (low 

reliability) 

Carcinogen 

(experimental value) 

Carcinogen  

(moderate reliability) 

4-AAA O=C(NC=2C(=O)N(c1ccccc1)N(C=2C)C)C 
Carcinogen  

(low reliability) 

Carcinogen  

(low reliability) 

Carcinogen  

(moderate reliability) 

Carcinogen  

(moderate reliability) 

4-AA O=C1C(N)=C(N(N1c2ccccc2)C)C 
Carcinogen 

(moderate reliability) 

Carcinogen  

(low reliability) 

Carcinogen  

(moderate reliability) 

Carcinogen  

(moderate reliability) 

4-FAA O=CNC=2C(=O)N(c1ccccc1)N(C=2C)C 
Carcinogen 

(moderate reliability) 

Carcinogen  

(good reliability) 

Carcinogen  

(moderate reliability) 

Carcinogen  

(moderate reliability) 

4-MAA O=C2C(NC)=C(N(N2(c1ccccc1))C)C 
Carcinogen  

(moderate reliability) 

NON-Carcinogen  

(moderate reliability) 

Carcinogen  

(moderate reliability) 

Carcinogen  

(moderate reliability) 

Antipyrine/Phenazone O=C1C=C(N(N1c2ccccc2)C)C 
Carcinogen  

(experimental value) 

Carcinogen  

(experimental value) 

Carcinogen 

(experimental value) 

Carcinogen  

(experimental value) 

Acetaminophen O=C(Nc1ccc(O)cc1)C 
NON-Carcinogen 

(experimental value) 

NON-Carcinogen  

(low reliability) 

Carcinogen  

(moderate reliability) 

Carcinogen  

(experimental value) 

3-cysteinyl 

acetaminophen 
O=C(O)C(N)CSc1cc(ccc1(O))NC(=O)C 

Possible NON-Carcinogen 

(moderate reliability) 

Carcinogen  

(low reliability) 

Carcinogen  

(moderate reliability) 

Carcinogen  

(good reliability) 

3-methoxy acetaminophen O=C(Nc1ccc(O)c(OC)c1)C 
Possible NON-Carcinogen 

(moderate reliability) 

Carcinogen  

(low reliability) 

Carcinogen  

(good reliability) 

Carcinogen  

(good reliability) 

Albendazole O=C(OC)Nc1nc2ccc(cc2([nH]1))SCCC 
Possible NON-Carcinogen 

(moderate reliability) 

NON-Carcinogen  

(low reliability) 

Carcinogen  

(moderate reliability) 

Possible NON-Carcinogen  

(low reliability) 

Albendazolesulfoxide O=C(OC)Nc1nc2ccc(cc2([nH]1))S(=O)CCC 
Carcinogen  

(good reliability) 

Carcinogen  

(low reliability) 

Carcinogen  

(low reliability) 

Possible NON-Carcinogen  

(low reliability) 

Atenolol O=C(N)Cc1ccc(OCC(O)CNC(C)C)cc1 
Carcinogen  

(experimental value) 

NON-Carcinogen  

(low reliability) 

NON-Carcinogen  

(low reliability) 

Carcinogen  

(moderate reliability) 

Atenolol acid O=C(O)Cc1ccc(OCC(O)CNC(C)C)cc1 
Possible NON-Carcinogen 

(moderate reliability) 

NON-Carcinogen  

(moderate reliability) 

NON-Carcinogen 

(low reliability) 

Carcinogen  

(moderate reliability) 

Atorvastatin O=C(O)CC(O)CC(O)CCn4c(c1ccc(F)cc1)c(c2ccccc2)c(C(=O)Nc3ccccc3)c4C(C)C 
Carcinogen  

(good reliability) 

NON-Carcinogen  

(moderate reliability) 

Carcinogen 

(low reliability) 

Carcinogen  

(low reliability) 

o-hydroxyatorvastatin O=C(O)CC(O)CC(O)CCn4c(c1ccc(F)cc1)c(c2ccccc2)c(C(=O)Nc3ccccc3(O))c4C(C)C 
Carcinogen  

(good reliability) 

NON-Carcinogen  

(moderate reliability) 

Carcinogen  

(low reliability) 

Carcinogen  

(low reliability) 

p-hydroxyatorvastatin O=C(O)CC(O)CC(O)CCn4c(c1ccc(F)cc1)c(c2ccccc2)c(C(=O)Nc3ccc(O)cc3)c4C(C)C 
Carcinogen  

(good reliability) 

NON-Carcinogen  

(moderate reliability) 

Carcinogen  

(low reliability) 

Carcinogen  

(low reliability) 

Azithromycin 
O=C3OC(CC)C(O)(C)C(O)C(N(C)CC(C)CC(O)(C)C(OC1OC(C)CC(N(C)C)C1(O))C(C)

C(OC2OC(C)C(O)C(OC)(C)C2)C3C)C 

Carcinogen  

(low reliability) 

Carcinogen  

(low reliability) 

NON-Carcinogen  

(moderate reliability) 

Carcinogen  

(low reliability) 

Descladinose 

(Azithromycin met 591) 

O=C2OC(CC)C(O)(C)C(O)C(N(C)CC(C)CC(O)(C)C(OC1OC(C)CC(N(C)C)C1(O))C(C)

C(O)C2C)C 

Carcinogen  

(low reliability) 

Carcinogen  

(low reliability) 

NON-Carcinogen 

 (moderate reliability) 

Carcinogen  

(low reliability) 

Clindamycin O=C(NC(C1OC(C(O)C(O)C1(O))SC)C(C)Cl)C2N(C)CC(CCC)C2 
Carcinogen  

(low reliability) 

Carcinogen  

(low reliability) 

Carcinogen  

(moderate reliability) 

Possible NON-Carcinogen 

 (low reliability) 

N-desmethylclindamycin O=C(NC(C1OC(C(O)C(O)C1(O))SC)C(C)Cl)C2NCC(CCC)C2 
Carcinogen  

(low reliability) 

NON-Carcinogen 

(moderate reliability) 

Carcinogen  

(moderate reliability) 

Possible NON-Carcinogen  

(low reliability) 

Clindamycinsulfoxide O=C(NC(C1OC(C(O)C(O)C1(O))S(=O)C)C(C)Cl)C2N(C)CC(CCC)C2 
Carcinogen  

(low reliability) 

Carcinogen  

(low reliability) 

Carcinogen  

(moderate reliability) 

Possible NON-Carcinogen 

 (low reliability) 

Codeine OC1C=CC5C4N(C)CCC25(c3c(OC12)c(OC)ccc3C4) 
NON-Carcinogen 

(experimental value) 

NON-Carcinogen 

(experimental value) 

NON-Carcinogen 

(experimental value) 

NON-Carcinogen 

(experimental value) 
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Codeine-glucuronide O=C(O)C6OC(OC1C=CC5C4N(C)CCC25(c3c(OC12)c(OC)ccc3C4))C(O)C(O)C6(O) 
Carcinogen  

(low reliability) 

NON-Carcinogen  

(low reliability) 

NON-Carcinogen  

(moderate reliability) 

Carcinogen (low 

reliability) 

Diphenhydramine O(CCN(C)C)C(c1ccccc1)c2ccccc2 
Possible NON-Carcinogen 

(low reliability) 

NON-Carcinogen  

(low reliability) 

NON-Carcinogen  

(low reliability) 

NON-Carcinogen 

(experimental value) 

Diphenhydramine N-

oxide 
[O-][N+](C)(C)CCOC(c1ccccc1)c2ccccc2 

Carcinogen  

(moderate reliability) 

Carcinogen  

(low reliability) 

NON-Carcinogen  

(low reliability) 

Possible NON-Carcinogen 

(moderate reliability) 

Diphenhydramine N-ß-D-

glucuronide 
O=C([O-])C1OC(C(O)C(O)C1(O))[N+](C)(C)CCOC(c2ccccc2)c3ccccc3 

Carcinogen  

(low reliability) 

NON-Carcinogen 

 (low reliability) 

NON-Carcinogen 

 (low reliability) 

Carcinogen (moderate 

reliability) 

Fluconazole Fc1ccc(c(F)c1)C(O)(Cn2ncnc2)Cn3ncnc3 
Carcinogen  

(experimental value) 

Carcinogen  

(experimental value) 

NON-Carcinogen  

(low reliability) 

Carcinogen (experimental 

value) 

Fluconazole-glucuronide O=C(O)C4OC(OC(c1ccc(F)cc1(F))(Cn2ncnc2)Cn3ncnc3)C(O)C(O)C4(O) 
Carcinogen  

(low reliability) 

NON-Carcinogen  

(low reliability) 

NON-Carcinogen  

(low reliability) 

Possible NON-Carcinogen 

(low reliability) 

Hydrocodone O=C1CCC5C4N(C)CCC25(c3c(OC12)c(OC)ccc3C4) 
Carcinogen 

 (low reliability) 

NON-Carcinogen  

(moderate reliability) 

NON-Carcinogen  

(good reliability) 

Carcinogen  

(low reliability) 

Hydrocodone-glucuronide O=C(O)C6OC(Oc5ccc4c1c5(OC2C(=O)CCC3C(N(C)CCC123)C4))C(O)C(O)C6(O) 
Carcinogen  

(moderate reliability) 

NON-Carcinogen  

(low reliability) 

NON-Carcinogen  

(moderate reliability) 

Carcinogen  

(moderate reliability) 

Losartan OCc1c(nc(n1Cc2ccc(cc2)c4ccccc4(c3nnn[nH]3))CCCC)Cl 
Possible NON-Carcinogen 

(moderate reliability) 

NON-Carcinogen  

(low reliability) 

NON-Carcinogen  

(low reliability) 

Carcinogen  

(low reliability) 

Losartan carboxylic acid O=C(O)c1c(nc(n1Cc2ccc(cc2)c4ccccc4(c3nn[nH]n3))CCCC)Cl 
Possible NON-Carcinogen 

(moderate reliability) 

Carcinogen 

 (low reliability) 

NON-Carcinogen  

(low reliability) 

Carcinogen  

(low reliability) 

Losartan Metabolite 1 OCc1c(nc(n1Cc2ccc(cc2)c4ccccc4(c3nnn[nH]3))CCC(O)C)Cl 
Possible NON-Carcinogen 

(moderate reliability) 

Carcinogen  

(low reliability) 

NON-Carcinogen  

(low reliability) 

Carcinogen  

(low reliability) 

Losartan Metabolite 2 OCc1c(nc(n1Cc2ccc(cc2)c4ccccc4(c3nnn[nH]3))C(O)CCC)Cl 
Possible NON-Carcinogen 

(moderate reliability) 

Carcinogen 

 (low reliability) 

NON-Carcinogen  

(low reliability) 

Carcinogen  

(low reliability) 

Metoprolol OC(COc1ccc(cc1)CCOC)CNC(C)C 
NON-Carcinogen 

(experimental value) 

NON-Carcinogen  

(low reliability) 

NON-Carcinogen  

(low reliability) 

Carcinogen  

(moderate reliability) 

a-Hydroxy metoprolol OC(c1ccc(OCC(O)CNC(C)C)cc1)COC 
Possible NON-Carcinogen 

(moderate reliability) 

NON-Carcinogen  

(low reliability) 

NON-Carcinogen 

 (low reliability) 

Carcinogen  

(moderate reliability) 

Metronidazole O=[N+]([O-])c1cnc(n1CCO)C 
Carcinogen 

 (experimental value) 

Carcinogen  

(experimental value) 

Carcinogen 

 (experimental value) 

Carcinogen  

(experimental value) 

Hydroxy metronidazole O=[N+]([O-])c1cnc(n1CCO)CO 
Carcinogen  

(good reliability) 

NON-Carcinogen  

(low reliability) 

Carcinogen  

(good reliability) 

Carcinogen  

(good reliability) 

Omeprazole O=S(c1nc2ccc(OC)cc2([nH]1))Cc3ncc(c(OC)c3C)C 
Carcinogen  

(experimental value) 

Carcinogen  

(experimental value) 

Carcinogen  

(low reliability) 

Carcinogen  

(moderate reliability) 

4-Hydroxy omeprazole 

sulfide 
Oc1c(cnc(c1C)CSc2nc3ccc(OC)cc3([nH]2))C 

Carcinogen  

(good reliability) 

Carcinogen  

(moderate reliability) 

Carcinogen 

 (low reliability) 

Carcinogen  

(moderate reliability) 

5-Hydroxy omeprazole OCc1cnc(c(c1(OC))C)CSc2nc3cc(OC)ccc3([nH]2) 
Carcinogen  

(good reliability) 

Carcinogen 

 (moderate reliability) 

Carcinogen  

(low reliability) 

Carcinogen  

(moderate reliability) 

Omeprazole sulfone N-

oxide 
O=S(=O)(c1nc2ccc(OC)cc2([nH]1))Cc3c(c(OC)c(c[n+]3([O-]))C)C 

Carcinogen  

(good reliability) 

NON-Carcinogen 

 (low reliability) 

Carcinogen  

(low reliability) 

Carcinogen  

(moderate reliability) 

Trimethoprim n1cc(c(nc1N)N)Cc2cc(OC)c(OC)c(OC)c2 
Carcinogen  

(moderate reliability) 

NON-Carcinogen  

(low reliability) 

Carcinogen  

(low reliability) 

Carcinogen  

(moderate reliability) 

a-Hydroxy trimethoprim OC(c1cc(OC)c(OC)c(OC)c1)c2cnc(nc2(N))N 
Carcinogen  

(moderate reliability) 

NON-Carcinogen  

(low reliability) 

Carcinogen  

(low reliability) 

Carcinogen  

(moderate reliability) 

Trimethoprim 1-N-oxide [O-][n+]1cc(c(nc1(N))N)Cc2cc(OC)c(OC)c(OC)c2 
Carcinogen  

(moderate reliability) 

Carcinogen  

(moderate reliability) 

Carcinogen 

 (moderate reliability) 

Carcinogen 

 (moderate reliability) 

Trimethoprim 3-N-oxide [O-][n+]1c(ncc(c1(N))Cc2cc(OC)c(OC)c(OC)c2)N 
Carcinogen 

 (moderate reliability) 

Carcinogen 

 (low reliability) 

Carcinogen  

(moderate reliability) 

Carcinogen  

(moderate reliability) 
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Venlafaxine OC1(CCCCC1)C(c2ccc(OC)cc2)CN(C)C 
Carcinogen  

(low reliability) 

Carcinogen  

(low reliability) 

NON-Carcinogen  

(low reliability) 

Carcinogen  

(moderate reliability) 

D,L,O-Desmethyl 

venlafaxine 
Oc1ccc(cc1)C(CN(C)C)C2(O)(CCCCC2) 

Carcinogen  

(low reliability) 

Carcinogen  

(low reliability) 

NON-Carcinogen  

(low reliability) 

Carcinogen  

(moderate reliability) 

N,O-Didesmethyl 

venlafaxine ß-D-

glucuronide 

O=C(O)C3OC(Oc1ccc(cc1)C(CNC)C2(O)(CCCCC2))C(O)C(O)C3(O) 
Carcinogen  

(moderate reliability) 

NON-Carcinogen  

(moderate reliability) 

NON-Carcinogen  

(low reliability) 

Carcinogen  

(moderate reliability) 

Verapamil N#CC(c1ccc(OC)c(OC)c1)(CCCN(C)CCc2ccc(OC)c(OC)c2)C(C)C 
NON-Carcinogen 

(experimental value) 

NON-Carcinogen 

(good reliability) 

NON-Carcinogen 

 (low reliability) 

Carcinogen  

(moderate reliability) 

Desalkyl verapamil D617 N#CC(c1ccc(OC)c(OC)c1)(CCCN(C)CCc2ccc(O)c(OC)c2)C(C)C 
Carcinogen  

(low reliability) 

NON-Carcinogen 

 (good reliability) 

NON-Carcinogen  

(low reliability) 

Carcinogen  

(moderate reliability) 

Aciclovir O=C2NC(=Nc1c2(ncn1COCCO))N 
NON-Carcinogen 

(EXPERIMENTAL value) 

Carcinogen (low 

reliability) 

NON-Carcinogen (low 

reliability) 

Carcinogen (low 

reliability) 

Atazanavir 
O=C(OC)NC(C(=O)NN(Cc1ccc(cc1)c2ncccc2)CC(O)C(NC(=O)C(NC(=O)OC)C(C)(C)C)

Cc3ccccc3)C(C)(C)C 

Carcinogen (moderate 

reliability) 

NON-Carcinogen (good 

reliability) 

Carcinogen (low 

reliability) 

Carcinogen (good 

reliability) 

Bupivacaine O=C(Nc1c(cccc1C)C)C2N(CCCC)CCCC2 
Carcinogen (low 

reliability) 

Carcinogen (low 

reliability) 

NON-Carcinogen (low 

reliability) 

Carcinogen (moderate 

reliability) 

Carbamazepine O=C(N)N2c3ccccc3(C=Cc1ccccc12) 
Carcinogen 

(EXPERIMENTAL value) 

Carcinogen (low 

reliability) 

NON-Carcinogen (low 

reliability) 

Carcinogen (good 

reliability) 

Cefepime O=C([O-])C4=C(C[N+]1(C)(CCCC1))CSC3N4(C(=O)C3(NC(=O)C(=NOC)c2nc(N)sc2)) 
Carcinogen (low 

reliability) 

NON-Carcinogen (low 

reliability) 

Carcinogen (low 

reliability) 

Carcinogen (moderate 

reliability) 

Cetirizine O=C(O)COCCN1CCN(CC1)C(c2ccccc2)c3ccc(cc3)Cl 
Possible NON-Carcinogen 

(moderate reliability) 

NON-Carcinogen (low 

reliability) 

NON-Carcinogen (low 

reliability) 

Carcinogen (low 

reliability) 

Ciprofloxacin O=C(O)C1=CN(c2cc(c(F)cc2(C1(=O)))N3CCNCC3)C4CC4 
NON-Carcinogen 

(EXPERIMENTAL value) 

NON-Carcinogen (low 

reliability) 

Carcinogen (moderate 

reliability) 

Carcinogen (good 

reliability) 

Diazepam O=C1N(c3ccc(cc3(C(=NC1)c2ccccc2))Cl)C 
NON-Carcinogen 

(EXPERIMENTAL value) 

NON-Carcinogen 

(EXPERIMENTAL 

value) 

NON-Carcinogen 

(EXPERIMENTAL 

value) 

NON-Carcinogen 

(EXPERIMENTAL value) 

Metformin N=C(N=C(N)N)N(C)C 
Possible NON-Carcinogen 

(moderate reliability) 

NON-Carcinogen 

(moderate reliability) 

NON-Carcinogen (low 

reliability) 

Possible NON-Carcinogen 

(low reliability) 

Gabapentin O=C(O)CC1(CN)(CCCCC1) 
Carcinogen 

(EXPERIMENTAL value) 

Carcinogen 

(EXPERIMENTAL 

value) 

Carcinogen 

(EXPERIMENTAL 

value) 

Carcinogen 

(EXPERIMENTAL value) 

Levofloxacin O=C(O)C2=CN1c3c(OCC1C)c(c(F)cc3(C2(=O)))N4CCN(C)CC4 
Carcinogen (low 

reliability) 

NON-Carcinogen (low 

reliability) 

Carcinogen (moderate 

reliability) 

Carcinogen (moderate 

reliability) 

Lidocaine O=C(Nc1c(cccc1C)C)CN(CC)CC 
Carcinogen (low 

reliability) 

NON-Carcinogen (low 

reliability) 

NON-Carcinogen 

(moderate reliability) 

Carcinogen (low 

reliability) 

Lincomycin O=C(NC(C(O)C)C1OC(C(O)C(O)C1(O))SC)C2N(C)CC(CCC)C2 
Carcinogen (low 

reliability) 

Carcinogen (low 

reliability) 

NON-Carcinogen (low 

reliability) 

Possible NON-Carcinogen 

(low reliability) 

Metoclopramide O=C(NCCN(CC)CC)c1cc(c(N)cc1(OC))Cl 
Carcinogen (good 

reliability) 

Carcinogen (moderate 

reliability) 

Carcinogen (moderate 

reliability) 

Carcinogen (good 

reliability) 

Morphine Oc5ccc4c1c5(OC2C(O)C=CC3C(N(C)CCC123)C4) 
Carcinogen (low 

reliability) 

NON-Carcinogen 

(moderate reliability) 

NON-Carcinogen 

(moderate reliability) 

Carcinogen (low 

reliability) 

Nystatin 
O=C(O)C3C(O)CC2(O)(OC3(CC(OC1OC(C)C(O)C(N)C1(O))C=CC=CC=CC=CCCC=C

C=CC(C)C(O)C(C)C(OC(=O)CC(O)CC(O)CC(O)CCC(O)C(O)C2)C)) 

Carcinogen (low 

reliability) 

NON-Carcinogen (low 

reliability) 

NON-Carcinogen 

(moderate reliability) 

Carcinogen (moderate 

reliability) 

Ofloxacin O=C(O)C2=CN1c3c(OCC1C)c(c(F)cc3(C2(=O)))N4CCN(C)CC4 
Carcinogen (low 

reliability) 

NON-Carcinogen (low 

reliability) 

Carcinogen (moderate 

reliability) 

Carcinogen (moderate 

reliability) 

Ondansetron O=C3c2c1ccccc1n(c2CCC3Cn4ccnc4C)C 
NON-Carcinogen 

(EXPERIMENTAL value) 

Carcinogen (low 

reliability) 

NON-Carcinogen (low 

reliability) 

Carcinogen (moderate 

reliability) 
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Paliperidone O=C1C(=C(N=C2N1CCCC2(O))C)CCN5CCC(c4noc3cc(F)ccc34)CC5 
Carcinogen (moderate 

reliability) 

NON-Carcinogen 

(moderate reliability) 

Carcinogen (low 

reliability) 

Carcinogen (low 

reliability) 

Pregabalin O=C(O)CC(CN)CC(C)C 
Possible NON-Carcinogen 

(low reliability) 

Carcinogen (low 

reliability) 

NON-Carcinogen (low 

reliability) 

Possible NON-Carcinogen 

(low reliability) 

Propranolol OC(COc1cccc2ccccc12)CNC(C)C 
Carcinogen (low 

reliability) 

NON-Carcinogen (low 

reliability) 

NON-Carcinogen (low 

reliability) 

Carcinogen (good 

reliability) 

Quetiapine OCCOCCN4CCN(C2=Nc1ccccc1Sc3ccccc23)CC4 
Carcinogen 

(EXPERIMENTAL value) 

Carcinogen (low 

reliability) 

NON-Carcinogen (low 

reliability) 

Carcinogen (low 

reliability) 

Ranitidine O=[N+]([O-])C=C(NC)NCCSCc1oc(cc1)CN(C)C 
NON-Carcinogen 

(EXPERIMENTAL value) 

NON-Carcinogen (low 

reliability) 

NON-Carcinogen (low 

reliability) 

Carcinogen (low 

reliability) 

Sulfamethoxazole O=S(=O)(Nc1noc(c1)C)c2ccc(N)cc2 
Possible NON-Carcinogen 

(moderate reliability) 

NON-Carcinogen 

(moderate reliability) 

Carcinogen (low 

reliability) 

Carcinogen 

(EXPERIMENTAL value) 

Sulpiride O=C(NCC1N(CC)CCC1)c2cc(ccc2(OC))S(=O)(=O)N 
Possible NON-Carcinogen 

(moderate reliability) 

Carcinogen (low 

reliability) 

NON-Carcinogen 

(moderate reliability) 

Carcinogen (low 

reliability) 

Tramadol OC2(c1cccc(OC)c1)(CCCCC2(CN(C)C)) 
NON-Carcinogen 

(EXPERIMENTAL value) 

Carcinogen (low 

reliability) 

NON-Carcinogen (low 

reliability) 

Possible NON-Carcinogen 

(low reliability) 

Tyrosine O=C(O)C(N)Cc1ccc(O)cc1 
Possible NON-Carcinogen 

(good reliability) 

NON-Carcinogen 

(moderate reliability) 

NON-Carcinogen (good 

reliability) 

Possible NON-Carcinogen 

(good reliability) 
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Proposal of a new, fast, cheap, and easy method 

using DLLME for extraction and 

preconcentration of diazepam and its 

transformation products generated by a solar 

photo-Fenton process 
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Introduction 

 

Diazepam (DZP), a pharmaceutical used as an anticonvulsant, sedative, muscle 

relaxant, hypnotic, and anxiolytic, has been detected in different aqueous matrices [73]. 

DZP was one of the pharmaceuticals identified in all the samples analyzed in the study 

detailed in Chapter 1, although there have been only a few studies concerning its 

degradation. The degree of metabolization of DZP can vary between 50 and 95%, and the 

compound presents recalcitrance to photodegradation [74]. Since DZP is not completely 

removed by conventional treatment processes in wastewater treatment plants, it is 

necessary to study the use of additional processes, such as AOPs, to improve its removal 

[75]. Among the AOPs, SPFP offers some advances, especially the use of solar UV 

radiation [43]. However, when AOPs such as SPFP are employed, it is essential to be able 

to identify the main TPs generated during the treatment, because some TPs may be more 

toxic and less biodegradable, compared to the original compound [76]. For this purpose, 

in addition to sensitive analytical techniques, it is necessary to use extraction and 

preconcentration steps to enable the detection of TPs formed at lower concentrations 

during degradation processes. The commonest method employed for the preconcentration 

of TPs is undoubtedly SPE, despite having a number of disadvantages. Another option is 

to use DLLME, which is especially attractive in terms of time and cost [77]. In addition 

to compound identification, an increasingly accepted approach to evaluate toxicity is by 

in silico predictions using (Q)SAR methods, which can provide information about the 

biological activity and physicochemical properties of TPs, by considering their chemical 

structures [78]. 

 

Objectives 

 

The aims of the present study were as follows: i) Firstly, to degrade DZP by SPFP, 

with identification of the TPs formed during the process, and to use (Q)SAR tools to 

predict the toxicological parameters of DZP and the TPs; ii) Secondly, to develop, 

optimize, and apply a DLLME extraction methodology for DZP and its TPs present in 

ultrapure water (UPW), simulated wastewater (SW), and raw hospital wastewater 

(RHW). 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/anticonvulsant
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/muscle-relaxant
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/muscle-relaxant
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Main results 

 

During the degradation of DZP by SPFP, it was possible to identify six TPs. The 

identification of TPs is a very difficult and complex process, since no analytical standards 

are generally available. The strategy adopted in this work was based on the appearance 

and disappearance of chromatographic peaks, followed by tentative proposal of the 

structures and fragmentation profiles of the TPs. This kind of work requires in-depth 

knowledge of high resolution mass spectrometry, as well as the many possible 

compounds that could be formed, given the nonspecific nature of the SPFP reaction. 

Considering this, excellent results were achieved in identifying and elucidating six TPs, 

especially because three of them have never been described previously in the literature. 

For all the TPs proposed in this work, the criteria adopted included determination 

of the exact mass, elemental composition with mass errors below 5 ppm for the molecular 

ion and all the proposed fragments, and double bond equivalence (DBE). This involved 

a more laborious process, but ensured greater reliability of the results. From the study of 

the appearance of the TPs during the process, it was possible to propose a degradation 

pathway, a very important result that has never been reported previously for the 

degradation of DZP using SPFP.  

In a degradation study where the goal is to identify the TPs formed, it is essential 

to ensure that all the TPs are detected. For this, two possible strategies can be adopted. 

One is to start with a high concentration of the study compound, although this precludes 

any similarity with environmental levels of contamination. Another option is to work at 

environmental concentrations, although an extraction step is necessary. Different initial 

concentrations lead to different responses using the same SPFP, since lower 

concentrations mean that there is less competition for reaction with the available hydroxyl 

radicals [79]. In order to study the process at near-environmental concentrations, lower 

concentrations of DZP were tested, in association with different extraction methods. 

A comparison was performed between classical SPE and a DLLME method for 

the extraction of DZP and its TPs. The DLLME method was optimized, validated, and 

applied using three different aqueous matrices (ultrapure water (UPW), simulated 

wastewater (SW), and raw hospital wastewater (RHW)). Although some differences were 

noted between the DLLME method and the traditional SPE method, the same TPs were 
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identified in both cases, so the results were the same for the two methodologies. However, 

DLLME was much less expensive (~32-fold lower cost), compared to SPE. The DLLME 

method was also at least four times faster than SPE, as well as being easier and requiring 

only small amounts of organic solvent. Given these characteristics, DLLME is an 

attractive method that may be used to concentrate samples degraded by SPFP, since 

without this step it would not be possible to identify all the TPs formed during the 

treatment process. The most important achievement in this work was the development of 

a cheap and fast extraction method for TPs, especially envisaging its use in routine 

analyses where time and cost considerations are paramount. The use of the technique can 

also make the difference between whether or not a TP formed is actually detected. Until 

the publication of this study, there were no reports in the literature concerning a DLLME 

extraction method validated for TPs, further demonstrating the importance of innovation 

and searching for new analytical approaches to identify TPs formed during SPFP. 

 The in silico predictions showed mutagenicity alerts for three TPs that might 

therefore present greater environmental risk than DZP. This result reinforced the 

importance of the study and the need to develop efficient methodologies for the 

assessment of compound degradation, considering not only the parent compound, but also 

all the TPs formed during the process. The only way to do this is to develop 

methodologies for the monitoring of TPs during degradation process, until achieving the 

maximum rates of degradation of the analyte and all the TPs formed during the process, 

especially when high mineralization rates are not achieved. 

All the methods, results, and conclusions are presented in Paper II and 

Supplementary Material II. 

 

 

 

 

 

 

 

 

 

 

 



68 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PAPER II 

 



Water Research 184 (2020) 116183 69 
 

 

 

Proposal of a new, fast, cheap, and easy method using DLLME for 

extraction and preconcentration of diazepam and its transformation 

products generated by a solar photo-Fenton process 

Raquel Wielens Becker, Marcelo Luís Wilde, Débora Salmoria Araújo, Diogo Seibert Lüdtke, 
Carla Sirtori∗ 

Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, CEP: 91501-970, Porto Alegre-RS, Brazil 

 

 

a r t i c l e i n f o a b s t r a c t 
 

  

Article history: 

Received 16 March 2020 

Revised 26 June 2020 

Accepted 13 July 2020 

Available online 13 July 2020 

 
Keywords: 

Advanced oxidation processes 

Pathway 

Extraction technique 

Doehlert  optimization 

In silico risk assessment 

This work evaluated the formation of transformation products (TPs) during the degradation of diazepam (DZP) 

by a solar photo-Fenton process. Six TPs were identified, three of them for the first time. After elucidation of 

the TPs, a new, cheap, fast, and easy method was employed  to extract and preconcentrate DZP and its TPs,  

using dispersive  liquid-liquid  microextraction  (DLLME).  The  method  was optimized  us- ing factorial and 

Doehlert  designs,  with  the  best  results obtained using acetonitrile as disperser solvent and chloroform as 

extraction solvent, with volumes of 1000 and 650 μL, respectively. When DZP degra- dation was performed in 

ultrapure water, the  extraction/preconcentration  of DZP and  its TPs  by DLLME was very similar to the results 

obtained using a traditional SPE method. However, when hospital wastew- ater was used as the matrix, more 

limited extraction efficiency was  obtained using DLLME,  compared  to SPE. Meanwhile, all the TPs extracted 

by SPE were also extracted by the DLLME technique. Furthermore, DLLME was much less expensive than SPE, 

besides being faster, easier, and requiring only small amounts of organic solvents. This work reports a new 

and very important tool for the extraction and preconcen- tration of TPs formed during degradation using 

techniques such as advanced oxidation processes (AOPs), since without this step it would not be possible to 

identify all the  TPs  formed  in some complex  wastew- ater matrices. 

© 2020 Elsevier Ltd. All rights reserved. 

 

 
1. Introduction 

 
Neurological disorders, such as epilepsy, among others, are 

some of the most important classes of diseases affecting the global 

population. The treatment of these illnesses frequently involves the 

prescription of benzodiazepines, with diazepam (DZP) being one of 

the most important of these compounds. DZP has anticonvulsant, 

anxiolytic, sedative, and muscle relaxant properties (Dudley et al., 

2019; Sulaiman, 2017). It has been estimated that following inges- 

tion, 5–50% of the DZP dose is excreted unchanged, consequently 

entering the environment (West and Rowland, 2012). In a previous 

study, Becker et al. (2020) reported that DZP is commonly found in 

hospital wastewater (RHW). In aquatic environments, DZP has been 

detected in a wide range of concentrations, ranging from 20 ng L−1 

(river water) to 600 ng L−1 (hospital wastewater) (Almeida et al., 

2015; Khan et al., 2018). 
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The widespread global consumption of DZP and its constant re- 

lease into the environment have stimulated studies of the degra- 

dation of this pharmaceutical. Conventional wastewater treatments 

are unable to  completely  eliminate  this  type   of   compound,   so the 

development and application of advanced oxidation processes (AOPs) 

may offer a solution, since they can provide highly  effective and rapid 

degradation of organic compounds  (Bosio  et  al.,  2019). The efficiency 

of AOPs is  due to the formation of  hydroxyl  rad- icals (HO•), which 

are highly oxidizing, very reactive,  and non- selective (Bautitz and 

Nogueira, 2010). The degradation of DZP has been studied using 

different AOPs including heterogeneous pho- tocatalysis (Bosio et al., 

2019; Sulaiman, 2017) and the heteroge- neous photo-Fenton process 

(Valcárcel et al., 2012). Although these processes are attractive options 

for use in DZP degradation, they employ artificial sources of UV  

irradiation. As a more environmen- tally friendly approach, the use of 

solar radiation can considerably reduce the cost of the treatment, 

making the solar  photo-Fenton (SPF) process one of the most 

economic and efficient techniques (Bautitz and Nogueira, 2010; 

Giménez et al., 2015). 
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The  use  of  the  SPF  process  for  degradation  of  DZP  has been 

shown to be a viable option (Bautitz and Nogueira, 2010; Cuervo 

Lumbaque et al., 2019), despite DZP being considered a re- 

calcitrant compound (Banaschik et al., 2018; Kosjek et al., 2012). 

Nonetheless, it is very important to investigate the formation of 

transformation products (TPs) that may be more toxic than the 

parent compound (Lambropoulou and Nollet, 2014; Postigo and 

Richardson, 2014). Evaluation of the formation of TPs requires 

sensitive techniques such as UHPLC-QTOF MS for their identifi- 

cation, using exact masses, since commercial standards are not 

usually available. In addition, predictions of toxicity, biodegrad- 

ability, mutagenicity, and carcinogenicity provide valuable informa- 

tion about TPs. For this purpose, computational methods such as 

QSAR (quantitative structure-activity relationships), VEGA, and EPI 

Suite, among other methodologies, are increasingly used for assess- 

ment of the environmental risk of different compounds, including 

TPs (Della-Flora et al., 2020; Jentzsch et al., 2016; Westphal et al., 

2020; Yuval et al., 2017). 

It is  important to be able   to   detect   the   maximum   possi- ble 

number of TPs formed during a  degradation  process  be- cause, 

sometimes, the less abundant TP could be the most 

toxic/mutagenic/carcinogenic intermediate. To do this, it is neces- 

sary to use methodologies for the extraction and preconcentration 

of the TPs formed, since they may be present at very low con- 

centrations. Currently, solid-phase extraction (SPE) is the technique 

most widely used for this purpose (Campos-Mañas et al., 2019; 

Senta et al., 2019). However, although this methodology is very 

efficient and a large number of different solid-phase  extractants are 

commercially available, it requires large volumes of solvents and can 

involve lengthy procedures. As an alternative, microex- traction 

using dispersive liquid-liquid microextraction (DLLME) is very fast, 

simple, environmentally friendly, and less expensive. This technique, 

which was proposed in 2006 (Rezaee et al., 2006), uses only a few 

microliters of extraction and disperser solvents and can be applied 

for different organic compounds present in a variety of matrices 

(Carasek et al., 2018). 

The present work has two aspects. Firstly, identification was 

made of the TPs formed during an SPF process for the degradation 

of DZP, together with a predictive risk assessment of these com- 

pounds. Secondly, an optimized methodology for the extraction of 

DZP and its TPs by DLLME was developed, which was applied for the 

SPF degradation of DZP in three different aqueous matrices: ul- 

trapure water (UPW), simulated wastewater (SW), and raw hospital 

wastewater (RHW). 

 

2. Experimental 

 
2.1. Chemicals 

 
Diazepam 98% and Diazepam-D5  (Sigma  Aldrich,  USA)  were used. 

To chromatographic analyses, methanol LC-MS grade from Merck  

(Germany),  ultrapure  water  (18.2   M▲•cm,   Millipore,  USA) and 

formic acid (98–100%)  from  Sigma  Aldrich  (USA)  were  used. SPF 

experiments were performed using  iron  solution  (FeSO4 •7H2 O, P.A), 

hydrogen  peroxide  (35%  w/v),  sodium  hydroxide  and  sulfu- ric acid 

(P.A.) for pH adjustment. To DLLME performance, ace- tonitrile (HPLC), 

ethanol (P.A.), methanol (P.A.), chloroform (P.A.), trichlorethylene 

(P.A.) and dichloromethane (P.A.) were tested. To compare DLLME to a 

traditional preconcentration method (SPE), Oasis HLB® (6 mL, 200 

mg) cartridges were used. 

 

2.2. Instrumentation 

 
All analysis to identified  DZP degradation and its TPs  gener- ated 

by SPF process were performed using a Shimadzu Nexera 

X2 UHPLC system connected to an Impact II QTOF mass spec- 

trometer (BrukerDaltonics). QTOF operation parameters were: cap- 

illary voltage, 4000 V; end plate offset, 500  V;  nebulizer  pres- sure,  

4  bar  (N2);  dry  gas,  8  Lmin−1  (N2)  and  dry  temperature, 
200  °C.  The  QTOF  MS  system  operated  in  broadband  collision– 
induced dissociation (bbCID) acquisition mode, which provided MS 

and MS/MS spectra at the same time. The chromatographic system 

was equipped with a reversed phase Hypersyl GOLD analytical col- 

umn (150 mm x 2.1 mm x 3 μm), thermostated at 35 °C. QTOF 

MS system was equipped with an electrospray ionization source 

(ESI), operating in positive ionization mode. Mobile phase was (A) 

MeOH acidified with 0.1% (v/v) formic acid and (B) H2O acidified 

with 0.1% (v/v) formic acid , at a flow rate of 0.5 mL min−1. The 

gradient elution program was: 0 min, 95% B; 1 min, 95% B; 11 min, 

5% B; 14 min, 5% B; 16 min, 95% B; 20 min, 95% B. All the MS in- 

formation was recorded over the m/z range from 50 to 1200, using 

a scan rate of 2 Hz. The bbCID mode allows operation with two 

different collision energies: low collision energy of 10 eV (MS) and 

high collision energy variation from 20 eV to 40 eV (MS/MS). All data 

were processed using DataAnalysis 4.2 software and Target- 

Analysis 1.3, both from BrukerDaltonics. 

 
2.3. Primary elimination of diazepam and TPs identification 

 
The SPF process for the degradation of DZP, prior to identifi- cation 

of the TPs, was carried  out using a solar batch  photore- actor (1 L) 

equipped with a magnetic stirrer. Before the experi- ments, the initial 

pH of the DZP solution was adjusted to 5.0 using 

H2 SO4 (0.05 mol L−1). After initial tests, this pH was selected be- cause 
use of the classical photo-Fenton pH (2.8–3.0) (Bassam et al., 

2012) would imply higher reagent consumption  for acidification  of the 

medium. After pH adjustment, addition was made of 5 mg  L−1 Fe2+  

(using a 10 g  L−1  Fe2+  stock  solution)  and  hydrogen  peroxide at an 

initial concentration of 50  mg  L−1  (using  a  35%  w/v  solu- tion), in 

this order, followed by exposure to solar radiation for ini- tiation of the 

treatment process. The solar UV radiation was mea- sured with a solar 

energy meter (SP-2000, ICEL), which provided data  in  terms  of  

incident  UV  (W  m−2).  These  data  were  used  to 

calculate the t30W values (Nogueira et al., 2005). An initial solution 

of DZP at a concentration of 1000 μg L−1, prepared in ultrapure water 
(UPW), was used to identify TPs formed during the degrada- 

tion process. Subsequently, different water matrices and initial DZP 

concentrations were employed in the experimental  assays  (detailed in 

Section 2.7). 
The reaction time was initially obtained as the clock time, with 

subsequent transformation to  t30W after the experiment. During the 

treatment process, eight samples were collected at different times, 

filtered using a 0.22 μm PVDF syringe filter, and analyzed by LC-

QTOF MS to identify the formation of possible TPs, consider- ing the 

appearance of new chromatographic peaks during the pro- cess. 

Data from the TP analyses were processed using Data Analy- sis 4.2 

software, selecting the elemental composition and double- bond 

equivalency (DBE) options. In most cases, possible elemental 

compositions for the ions were assigned with a maximum error of 

±5 ppm. After the identification of TPs, a DZP degradation pathway 
was proposed. 

 
2.4. In silico quantitative structure-activity relationship (QSAR) 

models used for prediction and risk assessment 

 
The structure of the DZP and its TPs were transformed into 

SMILES strings by means of ChemBioDraw Ultra (v.12) and sub- 

jected to in silico predictions by freely available and different soft- 

ware and models. The log KOW and log BCF values were predicted by 

EPI SuiteTM KOWWIN v1.68 and BCFBAF v3.01 programs, re- 

spectively. The persistence and biodegradability were predicted by 
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EPI SuiteTM BIOWIN v4.10. The predicted ready biodegradability of 

the combined BIOWIN 1–7 models (Boethling and Costanza, 2010; 
Pavan and Worth, 2008) is pointed out as “yes” or “no” based 

on the following criteria: “yes” if the BIOWIN 3 result is “weeks”, 

“days” or “days to weeks” and in the case of BIOWIN 5 the proba- 

bility is ≥ 0.5. If these criteria were not met the prediction is “no” 

(US EPA, 2012). 

The Prometheus software (Pizzo et al., 2016) was used for pre- 

dicting and ranking the DZP and TPs depending on its persistence 

(P), bioaccumulation (B), and toxicity (T), i.e. PBT compounds, for 

the hazard assessment according to Registration, Evaluation, Au- 

thorization and Restriction of Chemicals (REACH) (REACH Commis- 

sion regulation, 2011). 

Moreover, the mutagenicity activity was predicted by means of 

VEGA QSAR v.1.1.4 software (Benfenati et al., 2013) and CASE Ul- 

tra (Chakravarti et al., 2012; Saiakhov et al., 2014, 2013). A con- 

sensus approach was used by applying the Mutagenicity (Ames test) 

CONSENSUS model (v1.0.2). It performs an analysis  among the 

CAESAR model (v.2.1.13), ISS model (v.1.0.2), KNN/Read-Across 

model (v.1.0.0), and SarPy/IRFMN model (v.1.0.7) to predict the 

mutagenicity by a consensus score from  0  to 1 (as  the  consen- sus 

score approach to 1 more reliable is the prediction). Concern- ing 

carcinogenicity activity, VEGA QSAR software (Benfenati et al., 

2013) was applied for the  predictions.  It  provides  the  results in 

four different models for carcinogenicity: (i) Carcinogenicity model 

(IRFMN/Antares) (version 1.0.0), (ii) Carcinogenicity model 

(CAESAR) (version 2.1.9), (iii) Carcinogenicity model (ISS) (version 

1.0.2), and (iii) Carcinogenicity model (IRFMN/ISSCAN-CGX) (ver- 

sion 1.0.0). In general, VEGA QSAR provides an applicability do- main 

index (ADI). If the ADI is lower than 0.75,  it might indicate that there 

are differences in the target compound compared to the similar one 

found in the database. CASE Ultra modes (GT_Expert, GT1_BMUT 

and PHARMA_MUT) statistical and ruled-based system according to 

ICH M7 guidelines for mutagenicity was applied as well (ICH, 2017). 

 
2.5. Analytical measurements during the SPF treatment process 

 
During  all  the  SPF  treatments,  the  total  iron  and   hydro- gen 

peroxide concentrations were monitored. The total iron con- tent 

was determined by a colorimetric method employing 1,10- 

phenanthroline, according to ISO  (1988),  using  a  Cary  50  UV– Vis 

spectrophotometer. Hydrogen peroxide was determined by a 

spectrophotometric method employing ammonium metavanadate 

(Nogueira et al., 2005). 

 
2.6. DLLME method 

 
Preconcentration  using  the DLLME  technique   was   performed 

to improve the detection of TPs during DZP degradation. In 

preliminary  tests,  the  best   combination  of  extraction  solvent (ES) 

and disperser solvent (DS) was selected for maximizing analyte 

extraction efficiency. For this, nine ES/DS pairs were eval- uated: 

chloroform/acetonitrile, chloroform/methanol, chloroform/ ethanol,

 trichloroethylene/acetonitrile, trichloroethylene/ 

methanol, trichloroethylene/ethanol, dichloromethane/acetonitrile, 

dichloromethane/methanol, and dichloromethane/ethanol. In these 

tests, a SPF degradation process was performed under the same 

conditions  as  the  experiment  for  identification  of  the  TPs,  with 

treatment for 120  min.  The  volumes  of  ES  and  DS  were  initially set 

at 100 and 400 μL, respectively. A 7.5 mL aliquot of the  sample was 

transferred to a glass centrifugation tube with a  conical  base. The  

solvent  mixture  was rapidly dispersed in  the  sample, resulting 

in the instantaneous formation of an emulsion (microdrops). The 

emulsion was centrifuged at 2000 rpm for 5 min, after which the 

organic phase was removed using a microsyringe and transferred 

to a 2 mL chromatography vial. The solvent was evaporated under 

a gentle stream of nitrogen and the  extract  was  reconstituted with 

500 μL of water:methanol (90:10 v/v), prior to analysis using UHPLC-

QTOF MS. The DS/ES combination that provided the best extraction 

of DZP and its TPs was selected and a 23 factorial design with a 

central point was used to evaluate the effects of the DS and ES 

volumes, as well as the ionic strength (Na2SO4   concentration). An 

optimization of the experimental DLLME conditions was then 

performed according to a Doehlert design, with the volumes of DS 

and ES as the variables. 

 
2.7. DLLME method for extraction of TPs in different matrices 

 
The optimized DLLME variables for extraction of the TPs were tested 

in new SPF assays performed using the different  matrices (UPW, SW, 

and RHW), under the same SPF conditions  described above, but with 

an initial DZP concentration of 500 μg L−1. The SW composition was 

adapted from OECD (OECD, 2001), simulating the organic content of 

real hospital wastewater, as follows: 160 mg L−1 of peptone, 110 mg 

L−1  of beef extract, 30 mg L−1  of urea, 2 mg 

L−1 of Mg2 SO4 •7H2 O, and 4 mg L−1   of   CaCl2 •2H2 O.   For   the   anal- ysis 
using RHW, a sample of wastewater was collected at a hospi- 

tal in the city of Porto Alegre (Rio Grande do Sul, Brazil). All the 

degradation experiments using the different matrices were  carried out 

in duplicate. 

 
2.8. Cost and time evaluation of the DLLME technique 

 
The cost and time requirements of the DLLME method were 

obtained considering the value of the reagents and  the  ex- traction 

time, and were compared to a standard SPE method (Hernández et 

al., 2015). 

 
 

3. Results and discussion 

 
3.1. Elucidation of proposed transformation products 

 
Since TPs may be generated in low concentrations during a 

degradation process, an initial experiment was performed  to  iden- tify 

the TPs using a  solution  of  DZP  at 1000  μg  L−1  in UPW,  with- out 

application of any extraction or preconcentration method.  Be- fore 

addition of ferrous iron and  hydrogen  peroxide,  the  pH  of the 

solution was adjusted  to  5.  The  SPF  process  was  carried  out for 120 

min, with aliquots collected at  0,  15,  30,  45,  60,  90,  and 120 min. In 

order to stop the degradation process, the hydrogen peroxide was 

quenched with excess of sodium bisulfite. The results obtained for the 

total iron concentration, hydrogen peroxide con- sumption, and DZP 

degradation are provided in Section S1 (Supple- mentary Material). 
After the SPF process, the  collected samples were filtered and 

analyzed by LC-QTOF MS for identification of  possible  TPs,  based on 

the appearance of new chromatographic peaks. This resulted  in the 

identification of five proposed TPs (TP1-TP5). After optimiza- tion of 

the DLLME process (Section 3.3), additional samples were collected for 

LC-QTOF MS analyses, in order to discover any pos- sible TPs that had 

not been  identified in the first experiment,  but were detectable after 

sample preconcentration by DLLME. This re- sulted in the identification 

and proposal of another new TP (TP6), showing the importance of using 

a suitable  extraction  method  for the analysis of TPs during treatment 

processes. 

Elucidation of the structures of TPs is a complex task that re- 

quires consideration of many parameters in order to propose the 

most representative structure. Section S2 (Supplementary Material) 

shows the results provided by the analytical  software  for all the TPs 

identified, including the experimental and calculated masses 
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(protonated molecules), the best formula proposed for each m/z, 

the error (in ppm), and DBE (double-bond equivalence) informa- 

tion, besides de MS spectra of each TP, with the fragments pro- 

posed. 

For all the data presented, low errors (below 5 ppm) indicated 

that the proposed elemental composition was in agreement with 

the exact experimental mass. In order to ensure a reliable fragmen- 

tation pattern for each TP, collision energies between 20 and 40 eV 

were applied in broadband collision-induced dissociation (bbCID) 

acquisition mode. 

The SPF degradation of DZP proceeds according to different 

pathways (Fig. 1). In one of these pathways (Fig. 1A), the degrada- 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
Fig. 1. Proposal pathway to DZP degradation during SPF treatment. 
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tion starts with the reaction of a hydroxy radical with the N–CH3 

group leading to a resonance-stabilized radical with an electron- 

donating group. Further reaction of this radical leads to hydrox- 

ylation and formation of TP2 (m/z 301.0738), which can undergo 

radical C-aryl cleavage to generate TP1  (m/z  225.0425)  or  rad- ical 

N-demethylation to form TP5 (nordiazepam; m/z 271.0633). TP5 is 

known to be a major metabolite of DZP (Greenblatt et al., 1980) and 

has been identified in different water matrices (Aymerich et al., 

2016; López-Serna et al., 2012; Wang  et  al., 2017). Both DZP and 

nordiazepam are pharmacologically-active compounds (Greenblatt 

et al., 1981). A second degradation path- 

way is  triggered by  the  radical hydroxylation  of DZP  at  the  α- 

carbonyl position, generating a radical which is stabilized by reso- 

nance with an electron-withdrawing group (Fig. 1B). The resulting 

radical is trapped by another hydroxyl radical to yield the highly 

reactive α-hydroxy ketone, which under oxidative conditions un- 

dergoes carbon-carbon bond cleavage, ultimately leading to forma- 

tion of the oxidized product TP6 (m/z 301.0738). Finally, Fig. 1C 

shows the direct oxidation pathway of the sp2 nitrogen of aryl C–H 

bonds, resulting in formation of the corresponding N-oxide, TP3 

(m/z 301.0738). In addition, hydroxylation at any of the aromatic C–

H bonds leads to the formation of TP4 (m/z 301.0738), which can 

exist as several oxidized positional isomers (for clarity, only one is 

shown). 
Although the transformation of DZP to TP5 is very well estab- 

lished, the aromatic hydroxylation is not clearly reported in the 

current literature. Only a few studies describing the degradation of 

DZP have tried to elucidate its TPs. Some proposals for TP4 were 

published by Kosjek et al., al.(2012) and Helbling et al., al.(2010). 

However, these authors were unable to indicate which aromatic 

ring was hydroxylated, since the MS spectra showed common frag- 

ments and several isomeric products were possible (see Section S2, 

Supplementary Material). Other TPs proposed here (TP1, TP2, TP3, 

and TP6) have not been previously reported in the literature. Only 

one study (Bautitz et al., 2012) reported four structural isomers with 

m/z 301, which could correspond to the addition of one hy- droxyl 

radical in different positions of DZP, but no structure was proposed. 

Besides all the data provided by the Data Analysis software, an- 

other parameter used in proposal  of  the  structures  was  the  log KOW 

of each structure. Given the use of a nonpolar chromato- graphic 

separation column, the log KOW value should increase with increase of 

the retention time. The proposed structures were in agreement with 

this parameter, since the log KOW values predicted by the EPI 

SuiteKOWWIN v.1.68 software were 2.82, 0.41, 1.23, 1.70, 2.22, 2.87, 

and 3.40 for DZP, TP1, TP2, TP3, TP4, TP5, and TP6, re- 
spectively. 

 

 
3.2. In silico risk assessment of DZP and its TPs 

 
The persistence of DZP and its TPs was assessed by in silico pre- 

dictions provided by the BIOWIN models of the EPI Suite software. 

The predicted values are shown in Table S2 (Section S3, Supplemen- 

tary Material). Fig. 2A shows the BIOWIN 5 MITI (Japanese Ministry 

of International Trade and Industry biodegradation database) pre- 

dictions for the analyzed compounds. Since values higher than 0.5 

indicate possible biodegradability, the predictions suggested that 

DZP and all the TPs were persistent. 

All the TPs were predicted to  be non-readily  biodegradable  us- ing 

both the BIOWIN 5 model and the VEGA IRFM model. Such behavior 

could be explained according to the generalized “rules of thumb” for 

biodegradation, where the presence of chlorine in the molecule 

increases the recalcitrance. 

Assessment of the potential mutagenicity and carcinogenicity of 

DZP and the TPs was performed using Prometheus software to ob- 

tain the PBT values. The predicted in  silico values are shown  in  Ta- ble 
S3 (Section S3, Supplementary Material).  A  total  score  thresh- old of 
0.5 was  used  to  discriminate  non-PBT  (<0.5)  and  poten- tially PBT 

or vPvB (≥0.5) compounds (Pizzo et al., 2016). Fig. 2B shows the 

predicted PBT values for DZP and its TPs. All  the  struc- tures were 
ranked below the threshold value of 0.5, with the ex- ception of TP6 

(PBT = 0.514). However, the TPs could be PBT com- pounds, 

considering the uncertainty of the predictions (Pizzo et al., 2016) and 
the fact that the values  were close to the  threshold value. 

The results obtained using the VEGA QSAR toolbox and CASE 

Ultra models for the prediction of carcinogenicity and mutagenic- ity 

are summarized in Table S4 (Section S3, Supplementary Mate- rial). 

According to the VEGA QSAR models for Mutagenicity (Ames test) 

CONSENSUS (A), none of the molecules evaluated gave a pos- itive 

alert. The predictions provide a consensus score from 0 to 1, 

where a score of 1 usually corresponds to structures inside the ADI, 

with the presence of the experimental value in at least one of the 

four CONSENSUS models. A consensus score below 0.75 indi- cates 

structural differences among the predicted compounds, with the 

structures present in the predictive models and the predictions with 

low consensus scores being classified as having moderate or low 

reliability. In the present case, the structures studied were not 

similar to the models, so these results could not be considered reli- 

able. The VEGA carcinogenicity models IRFMN/Antares (B), CAESAR 

(C), ISS (D), and IRFMN/ISSCAN-CGX (E) showed no carcinogenic- 

ity alerts for DZP, with all of the models having experimental val- ues 

available. Evaluation of the TPs using the different models re- sulted 

in no positive alerts with good reliability. There were some positive 

alerts with moderate reliability, but divergences were ob- served 

between the models, so no reliable conclusions could be reached. 

Considering the QSAR Toolbox results, no alerts were reported 
considering DNA alerts for AMES  by  OASIS  (A)  and  DNA   alerts for 

CA and MNT by OASIS (B). However, in vitro  mutagenicity (Ames 

test) alerts by ISS (C) and in vitro mutagenicity (micronu- cleus) alerts 

by ISS (D) identified two types of alerts. N-methylol derivative alerts 

for TP1 and TP2 are shown in Fig. 2C, while H- acceptor-path3-H-

acceptor alerts found for all the molecules are provided in Section 

S4 (Supplementary Material). An aromatic N- acyl amine alert was 

obtained  for  TP6.  CASE  Ultra  analysis  of DZP and the TPs was 

performed using three models: i) the CASE ULTRA GT_EXPERT 

model, which identified mutagenicity alerts for TP1 and TP2, due to 

the N-methylol derivative group; ii) the CASE ULTRA GT1_BMUT 

model, which identified two more alerts for TP1, while four more 

alerts were obtained for TP2 (in addition to the mutagenicity alerts 

for TP1 and TP2 due to the N-methylol deriva- tive, also predicted 

by QSAR Toolbox) and iii)  PHARM_BMUT model,   which   identified    

N-methylol    derivative    alert    for TP1. 

The risk assessment analysis results predicted possible risks of 

mutagenicity associated with TP1 and TP2, especially due to the N- 

methylol derivative group present in these TPs. The potential toxicity of 

this class of compounds is probably associated with the generation 

of formaldehyde by hydrolysis, since formaldehyde is a highly reactive 

genotoxic agent (Ashby and Tennant,  1988; Benigni and Bossa, 2008). 

These results showed the importance of TPs evaluation and the need 

for a preconcentration/extraction method that enables the 

identification of TPs during treatment processes. 

 
3.3. DLLME method 

 
The development of a DLLME preconcentration/extraction 

method for the TPs generated during DZP degradation started with 

selection of the best solvent pair (DS/ES). Nine pairs of solvents 
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Fig. 2.  In silico risk assessment by QSAR for DZP and TPs, (A) Biodegradability prediction; (B) PBT prediction; (C) Mutagenicity alert predicted for TP1, TP2, and TP6. 
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Fig. 3. Doehlert design level tests for the two variables studied and results obtained in Doehlert desing that allowed to represent (A) levels of  the  variables; (B)  response 

surface; and (C) contour plot for ES volume vs. DS volume, on DZP and TPs area, after extraction by DLLME. 

 
were tested and the best response was obtained when acetonitrile was 

used as DS and chloroform was used as ES. Throughout the 

optimization of the preconcentration/extraction method, the ana- 

lytical response adopted was the summation  of  the peak areas  of DZP 

and the TPs. 

After identifying the best solvent pair for extraction of the TPs, 

evaluation was made of the effects of several variables that could 

influence the extraction efficiency. Three main variables were se- 

lected for investigation: i) DS volume (μL), ii) ES volume (μL), and 

(iii) ionic strength (mol L−1  Na2SO4 ).  The  centrifugation  was  set  at 2000  
rpm  for 5 min,  this  parameter was not studied since  litera- 

ture studies shows that centrifugation is responsible for the phases 

separation and should not be much longer, once this could lead to a 

degradation of the analytes (Ahmad et al., 2015; Andruch et al., 

2013; Nowak et al., 2020). Although the pH of the solution during 

the dispersion process could have an influence on the extraction 

efficiency, the pH was not a variable studied here. The pH was set at 

5, because slightly acidic conditions favor the photo-Fenton re- 

action, while pH above 6 can cause iron precipitation (Cuervo Lum- 

baque et al., 2019). 

A 23 factorial design  was used  with  the three  defined  variables, 

in order to provide an indication of their effects. After analysis of 

the results, a more refined design was applied to obtain the best 

condition. The variable values and the response surface of the 23 

factorial design are provided in Section S5 (Supplementary Mate- rial). 

The results indicated that the extraction was favored at the maximum 

DS and ES  volumes,  although  this  experimental  design did not define 

an optimum point. The ionic strength  of  the  solu- tion, in the  range  

studied,  showed  no  statistically  significant  ef- fect on the analytical 

response, and was not considered for the 

followed design. Given these results, a new experiment was pro- posed, 

based  on a Doehlert design, to determine the best condition for the 

extraction of DZP and its TPs, considering only two vari- ables, namely 

the volumes of DS and ES.  It is important to  high- light that, to 

identification of  the best conditions for each  vari- able, in both 

experimental designs, the desirability function, pro- posed by Derringer 

and  Suich in  1980  (Derringer and Suich, 1980) was used. A very usual 

tool frequently applied in response surface methodology, desirability 

function brings efficiency, economy, and objectivity in the optimization 

process  (Bezerra  et  al.,  2008)  and was applied for different variables 

and their responses. Desirability 

scale ranges between d = 0 (for a  non-desirable  response  value) and 

d = 1 (for a  more desirable value)  and  it was  calculated for 

individual values. The desirability function D is calculated by com- 
bining the  individual  desirability  values  with  the  geometric  mean: D 

= (d1 × d2 × ... dm)1/m (Ferreira et al., 2007). The desirability graphics 

of each experimental design  can  be  seen  in  sections  S5 and S6 
(Supplementary Material). 

Fig. 3A shows the different levels of the two variables selected 

in the Doehlert design. The ranges tested were 400–1000  μL of  DS and 

100–500 μL of ES, with  a  total  of  thirteen  experiments  (fur- ther 

details are provided in  Section S6, Supplementary  Material). The 

results of the Doehlert design experiments were used to con- struct the 

response surface graph shown in  Fig. 3B and C, according Eq. (1). 

z = −2057159, 08 + 12608, 57 ∗ x − 6, 70 ∗ x2 + 8750, 05 ∗ y 

−8, 36 ∗ y 2 + 2, 38 ∗ x ∗ y + 0 (1) 

where z = Σ (DZP area + TPs area); x = DS volume and y = ES volume. 
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Fig. 4.  DZP degradation (A) in different matrices; (B) TPs formation in ultrapure water; (C) simulated wastewater; and (D) hospital wastewater. 

 
 
 

Considering the response only around the experimental condi- 

tions (blue points), the best response was obtained when the max- 

imum values of DS and ES were used (1000 μL of DS and 500 μL 

of ES). 

All the statistical parameters  of  the Doehlert  design  are  shown in 

Section S6 (Supplementary Material). The maximum explainable 

variation of the model was  94%  (radjusted  = 0.94),   demonstrating that 

the model presented a good fit, enabling  prediction  of   the best 

extraction condition. The maximum predicted response was obtained 

using around 1000 μL of DS and 650 μL of ES. A new ex- periment was 

then performed to test the best condition predicted by the model, 

resulting in a  difference of 7.9% between the pre- dicted and 

experimental values. Consequently, the optimized con- dition for 

extraction of DZP and its TPs was defined as the use of 1000  μL of 

DS and 650  μL of ES,  dispersed  in 7.5  mL of  the sample at pH 5, with 

centrifugation of the mixture for 5 min at 2000 rpm, followed by 

collection of the lower phase with a microsyringe. The extract was 

evaporated, the sample was reconstituted with 500 μL of 

H2O:methanol (90:10 v/v), and analysis was performed  by  LC- QTOF 

MS. 

 
3.4. Use of DLLME for preconcentration/extraction of DZP and its TPs 

present in different matrices 

 
The method developed to extract DZP and its TPs in the SPF 

degradation experiments was applied using three different matri- 

ces: UPW, SW, and RHW. An initial solution of DZP at 500 μg L−1 was 

used in these experiments. The SPF experimental parameters are 

provided in Fig. S18 (Section S7, Supplementary Material). 

Fig. 4A shows the results for degradation of DZP in the three 

different matrices,  obtained using the optimized  DLLME   extrac- tion 

procedure. The analytical response employed was the ratio between 

the observed and initial DZP concentrations (C/C0). The analytical curve 
presented an  r2 value of 0.9987 and the limits of 

detection and quantification were 2.8 and 8.6 μg L−1, respectively. 

As expected, the nature of the matrix had a significant influence on 

the degradation process. In the  UPW, only DZP  was  initially present in 

the solution, so the hydroxyl radicals only acted in the degrada- 

tion of DZP and the TPs. Very fast degradation of DZP was observed 

in the SW, despite the presence of other organic compounds. How- 

ever, very slow degradation occurred in the RHW, which could be 
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tion of DZP in RHW, kobs  was 3.09 × 10 min t 30W, with r   of 

 

attributed to the highly complex nature of the matrix, with the 

presence of many organic compounds, including other pharmaceu- 

ticals and human metabolites, as reported in a previous study em- 

ploying RHW (Becker et al., 2020). In the case of RHW, the hy- droxyl 

radicals generated during the solar photo-Fenton process were not 

selective towards DZP and its TPs, so competition involv- ing other 

molecules led to slower degradation of DZP. 

The experimental data for the degradation of DZP at an initial 

concentration of 500 μg L−1 in the different matrices were  fitted using 

a pseudo-first order model, performed with SigmaPlot 10 software 

(Systat Software, USA). The degradation of DZP in UPW followed 

pseudo-first order kinetics, according to Eq. (2): 

[C] = [C0] · e−kobs ·t (2) 

where, C is the concentration of DZP at time t, C0 is the initial 

concentration of DZP, and kobs is  the  degradation   rate   constant. The 

half-life (t½) for DZP  degradation  was  calculated  according  to Eq. (3): 

t1/2 = ln 2/kobs (3) 

TP and internal standard (PI) peak area as analytical response. Al- 

though the values obtained for DZP degradation in UPW and SW 

were very similar, the formation and degradation of the TPs dif- 

fered in these two matrices. In UPW, DZP degradation by the SPF 

process resulted in very fast formation of TPs, with maximum for- 

mation of TP2, TP3, TP4, TP5, and TP6 at t30W of 14.7 min, after 

which these TPs were considered degraded. An exception was TP1, 

which showed maximum formation at t30W of  29.7  min,   which was 

reasonable, considering  that TP1 was formed by degradation of TP2. 

After t30W of 118.7 min, it is  not possible  to detect TP3, TP4, TP5, 

and TP6, while it was possible to detect TP2 and TP1 un- til t30W of 

169.7 and 211.8 min, respectively. This was of concern, since TP1 

and TP2 presented mutagenic characteristics and were the most 

persistent TPs. 

In the treatment of the SW, there was  rapid  formation  of  the TPs, 

while their initial degradation rates were slower, compared to the 

UPW treatment. The formation of TP1 was lower, compared  to the 

UPW treatment, and after  t30W  of  131  min,  it  was  not  possi- ble to 

detect TP1, TP3, TP4, and TP5.  After  t30W of  193.2 min,  TP2 and TP6 

could still be detected in low amounts, while no TPs were 

For DZP degradation in UPW, the value of k 
 

obs was 6.07 × 10−2 

detectable after t30W of 246.9 min. 
The degradation of DZP in the RHW was significantly slower 

min−1 t30W, with r2 of 0.9967 (p < 0.0001), C0 of 1.0064,  and  a half- life 
time (t½) of t30W = 11.42 min. 

DZP degradation in SW also followed pseudo-first order kinet- 

ics, with the same equations Eqs. (2) and (3). The kobs value was 4.93 

× 10−2 min−1 t30W, with r2 of 0.9950 (p < 0.0001), C0 of 
1.0080, and a half-life time (t½) of t30W = 14.06 min. 

The degradation of DZP in RHW presented different order ki- 

netics, with the process being  biphasic (Langdon et al., 2011). In the 

first stage, the degradation followed pseudo-first order kinetics, 

while no degradation was observed in the second stage (Eq. (4)). 

This was indicative of the existence of one degradable fraction and 

another recalcitrant fraction, shown by the y-intercept (y0). 

[C] = [C0] · e−kobs ·t  +  y0 (4) 

In Eq. (4), C is the concentration  of  DZP  at  time  t,  C0   is  the initial 

DZP  concentration,  kobs is  the  degradation  rate   constant, and 

y0represents the recalcitrant fraction. The half-life (t½) of DZP 

degradation was calculated according to Eq. (3). For the degrada- 

than in the other matrices, which was directly reflected in the for- 

mation and degradation of the  TPs.  Even  after  t30W  of  208.2  min, all 

the TPs were identified in the degraded samples. During this treatment 

process, it was only possible to detect TP1 after t30W  of 
208.2 min, which could be explained by the fact that there was 
less formation of TP2, so  consequently  there  was  lower  formation of 

TP1, since the latter was formed from TP2. 

In addition to evaluation of the formation of the TPs in the dif- 

ferent matrices, it was possible to determine the preconcentration 

factor of  the method for  these  matrices. Consistent with the  effect of 

the matrix on DZP degradation, the preconcentration factor also 

differed according to the matrix.  This  could  be  explained  by  the fact 

that the extraction was not exclusive for the compounds iden- tified, 

but could also have involved other substances present, par- ticularly in 

the case of a complex real matrix such as RHW. Con- sidering DZP and 

all the  TPs, the preconcentration factor values for the UPW matrix 

ranged between 5.9 and 13. For the SW matrix, 

−2 −1 2 the preconcentration factor values were in the range from 4.3 to 
8.6, while  for  the  RHW  matrix,  lower  values  of  between 1.9  and 

0.9672 (p <0.0001), a half-life time (t½) of t30W = 22.43 min, and 

y0 = 0.5226. 
After analysis of the degradation of DZP in the different matri- 

ces, investigation was made of the formation and degradation of the 

TPs (Fig. 4). Since the most of TPs are new and unknown com- 

pounds, analytical standards are not available. Concerning the DPZ 

TPs, only TP5 (a DZP metabolite known as nordiazepam) has com- 

mercially analytical standard available. Accordingly, no quantitative 

analysis was developed for the TPs and the evaluation of formation 

and further degradation of TPs was based on the ratio between the 

7.1 were obtained. More details are presented in Table S12 (Section 

7, Supplementary Material). 

The importance of preconcentration was shown by the fact that TP1 

was not detected in samples analyzed without extraction and 

preconcentration, but could be identified after application of the 

extraction methods (SPE and DLLME). Considering the predicted 

mutagenicity of TP1 (as an example), it is clearly important that an 

extraction method should be available for the extraction and con- 

centration of TPs during solar photo-Fenton degradation processes. 

 
Table 1 

Time demand and cost evaluation for DZP and its TPs extraction by DLLME and SPE. 
 

Extraction technique Materials and reagents Cost 

Value per sample extraction(a) USD 

Temporary Demand 

Value for 01 sample extraction USD Time for 01 sample extraction 

(min) 

DLLME Chloroform 0.07 0.43 15 
 Acetonitrile 0.21  

 Methanol  PA∗ 0.08  

 Dichloromethane   PA∗ 0.06  

SPE Methanol HPLC/UV 1.03 13.72 70 

 Oasis® HLB Cartridge 12.69  

a Value of material and reagents used for one sample. 
∗  Solvents  used  to  clean  the  microsyringe. 
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3.5. Time demand and cost evaluation of DLLME 

 
Cost  and  time  evaluations  were  performed  by  comparing the 

DLLME technique  and   a   standard   SPE   method   described in the 

literature for extraction of pharmaceuticals and TPs (Hernández et 

al., 2015). For this comparison, the values of con- sumables, 

solvents, and reagents were considered. Permanent ma- terials 

(such as the manifold used in SPE and  the  microsyringe used in 

DLLME), the cost of LC-QTOF MS analysis, the working hours of the 

analyst, and equipment maintenance costs were not considered. 

The results (Table 1) showed that SPE  was  much  more  expen- sive 

than DLLME. The cost of SPE was US$ 13.44 per extraction, due to the 

high cost of the extraction cartridge. Furthermore, a long time of 70 

min was required for the extraction and resuspension of one sample in 

the SPE procedure. In contrast, the DLLME method presented a cost of 

US$ 0.43 and a time requirement of 15 min per sample extraction. 

The development of an accessible preconcentration  methodol- ogy 

is very important, since it allows analyses to be readily per- formed 

during a degradation process, without concern about ad- ditional cost 

implications, enabling significant improvement in the ability to detect 

and identify TPs. 

 
 

4. Conclusions 

 
In this work, it was possible to elucidate six transformation 

products generated during SPF degradation of DZP, four of which 

had not been reported previously in the literature. In risk as- 

sessment of the TPs, two of the compounds (TP1 and TP2) pre- 

sented mutagenicity alerts, indicating that they could present a 

greater environmental risk, compared to the parent compound. This 

demonstrated the need to understand the mechanisms of DZP 

degradation, as well as to use an effective method capable of de- 

grading both DZP and its TPs, especially given that DZP is consid- 

ered a recalcitrant compound. 

The proposed DLLME method for extraction and preconcentra- tion 

of DZP  and  its  TPs  was  shown  to  be  fast,  cheap,  and  sim- ple. Its 

use enabled the elucidation of a TP that could not be detected without 

preconcentration. When the SPF treatment was performed in UPW, 

the proposed DLLME method provided a pre- concentration  rate that 

was very similar  to   that   of   SPE.   When the SPF treatment was 

performed in RHW, the DLLME method showed a lower 

preconcentration efficiency, compared to SPE, but nonetheless 

achieved the same goal, since it succeeded in extract- 

ing/preconcentrating all the TPs  also  found   by   the  SPE   method. In 

terms of the cost and time of the method, DLLME was much cheaper 

and faster than SPE, with a significant reduction of the quantity of 

solvents used in the process. 
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Section S1. DZP degradation  

Figure S1. DZP (1000 µg L-1) degradation; Fe2+ and H2O2 consumption during SPF 

process in ultrapure water matrix to initial TPs identification. 

 

In this case, DZP degradation follows a pseudo-first order kinetic (according 

Equation 1). 

[𝐶] = [𝐶0] ∙ 𝑒
−𝑘𝑜𝑏𝑠∙𝑡 (1) 

where C is the concentration of DZP at time t, C0 is the initial concentration of the 

DZP and kobs is the degradation rate constant. 

The half-life (t½) of DZP degradation was calculated according to Equation 2. 

𝑡1
2⁄
= ln2

𝑘⁄ 𝑜𝑏𝑠
 (2) 

The experimental data and the determination of the degradation rate constant were 

fitted with the software SigmaPlot 10 (Systat Software, USA). To this experiment, that 

was performed with a 1000 µg L-1 DZP solution, the k was determined 1.19×10−2 min−1 

t30W with an r2 of 0.9929 (p < 0.0001), C0 of 0.9946 and a half-life time (t½) of t30W = 

58.25min. 
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Section S2. TPs elucidation during DZP degradation  

 

Table S1. Experimental data of DZP and its TPs generated by SPF treatment. 

 

Comp. 
Ion formula Experimental Calculated Error 

(ppm) 
mSigma DBE* 

Rt
# 

(min) [M+H]+ mass mass 

DZP C16H14ClN2O 285.0792 285.0789 -0.9 2.2 10.5 8.8 

DZP F1 C16H13ClN2NaO 307.0613 307.0609 -1.4 1.4 10.5  

DZP F2 C15H14ClN2 257.0837 257.084 1 9.6 9.5  

DZP F3 C14H10ClN2 241.0528 241.0527 -0.4 167 10.5  

DZP F4 C14H11ClN 228.0571 228.0575 1.5 17.5 9.5  

DZP F5 C15H14N2 222.1147 222.1151 1.9 9.8 10  

DZP F6 C14H11N 193.0883 193.0886 1.5 12 10  

DZP F7 C9H9ClNO 182.0363 182.0367 2.2 9.9 5.5  

DZP F8 C10H8N2O 172.0628 172.0631 1.8 5 8  

DZP F9 C8H9ClN 154.0417 154.0418 0.6 7.2 4.5   

TP1 DZP C10H10ClN2O2 225.0425 225.0425 0.2 9.6 6.5 5.7 

TP1 DZP F1 C10H9ClN2NaO2 247.0247 247.0245 -1.1 177 6.5  

TP1 DZP F2 C8H7ClNO 168.0209 168.0211 0.7 6.8 5.5   

TP2 DZP C16H14ClN2O2 301.0746 301.0738 -2.7 4 10.5 6.7 

TP2 DZP F1 C16H13ClN2NaO2 323.0567 323.0558 -2.8 104.3 10.5  

TP2 DZP F2 C15H14ClN2O 273.0796 273.0789 -2.6 6.4 9.5  

TP2 DZP F3 C14H11ClNO 244.0526 244.0524 -1.1 31.8 9.5  

TP2 DZP F4 C15H14N2O 238.1106 238.1101 -2.3 2.1 10  

TP2 DZP F5 C11H14ClN2 209.0835 209.084 2.5 165.5 5.5  

TP2 DZP F6 C9H9ClNO 182.0367 182.0367 0.1 34.4 5.5  

TP2 DZP F7 C10H8N2O 172.0631 172.0631 0.1 n.a. 8  

TP2 DZP F8 C8H9ClN 154.0417 154.0418 0.9 11.9 4.5   

TP3 DZP C16H14ClN2O2 301.0745 301.0738 -2.3 8.8 10.5 7.2 

TP3 DZP F1 C15H14ClN2O 273.0795 273.0789 -2.1 39.2 9.5  

TP3 DZP F2 C14H11ClNO 244.0529 244.0524 -2.3 44.7 9.5  

TP3 DZP F3 C14H11NO 209.0842 209.0835 -3.2 41.9 10  

TP3 DZP F4 C9H9ClNO2 198.0317 198.0316 -0.2 18.6 5.5  

TP3 DZP F5 C8H9ClNO 170.0366 170.0367 0.8 16.6 4.5   

TP4 DZP C16H14ClN2O2 301.0743 301.0738 -1.4 3.9 10.5 8.0 

TP4 DZP F1 C16H13ClN2NaO2 323.056 323.0558 -0.8 78.8 10.5  

TP4 DZP F2 C15H14ClN2O 273.0791 273.0789 -0.5 10.3 9.5  

TP4 DZP F3 C14H11ClNO 244.0526 244.0524 -1.1 20.5 9.5  

TP4 DZP F4 C15H14N2O 238.1104 238.1101 -1.4 33.8 10  

TP4 DZP F5 C11H14ClN2 209.0833 209.084 3.1 181.9 5.5  

TP4 DZP F6 C9H9ClNO 182.0365 182.0367 0.9 32.2 5.5  

TP4 DZP F7 C10H8N2O 172.0631 172.0631 -0.1 n.a. 8  

TP4 DZP F8 C8H9ClN 154.0415 154.0418 1.7 20.7 4.5   

TP5 DZP 

(Nordiazepam) 
C15H12ClN2O 271.0633 271.0633 -0.3 15.9 10.5 8.5 
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TP5 DZP F1 C14H12ClN2 243.0677 243.0684 2.8 57.5 9.5  

TP5 DZP F2 C14H9ClN 226.0431 226.0418 -5.9 198.7 10.5  

TP5 DZP F3 C14H12N2 208.0989 208.0995 3 24 10  

TP5 DZP F4 C8H6ClN2 165.0216 165.0214 -1.2 77.7 6.5  

TP5 DZP F5 C7H7ClN 140.026 140.0262 1.4 15 4.5   

TP6 DZP C16H14ClN2O2 301.0739 301.0738 -0.4 16.3 10.5 9.2 

TP6 DZP F1 C15H14ClN2O 273.079 273.0789 -0.4 66.7 9.5  

TP6 DZP F2 C14H11ClNO 244.0524 244.0524 0 35.4 9.5  

TP6 DZP F3 C15H14N2O 238.1102 238.1101 -0.7 25.1 10  

TP6 DZP F4 C11H14ClN2 209.0834 209.084 2.8 165 5.5  

TP6 DZP F5 C9H9ClNO 182.0365 182.0367 1.5 9.2 5.5  

TP6 DZP F6 C10H8N2O 172.0631 172.0631 0 7.8 8  

TP6 DZP F7 C8H9ClN 154.0416 154.0418 1.5 33.6 4.5  

*DBE = double-bond equivalency; #Rt = retention time  



85 
 

 

 

 

 

 

 

 

 

Figure S2. Mass spectrum and fragments proposed for DZP. 

 

 

 

 

 

 

 

 

Figure S3. Mass spectrum and fragments proposed for TP1. 
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Figure S4. Mass spectrum and fragments proposed for TP2. 

 

 

 

 

 

 

 

 

 

Figure S5. Mass spectrum and fragments proposed for TP3. 
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Figure S6. Mass spectrum and fragments proposed for TP4-1. 

 

 

 

 

 

 

 

 

Figure S7. Mass spectrum and fragments proposed for TP4-2. 
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Figure S8. Mass spectrum and fragments proposed for TP5. 

 

 

 

 

 

 

 

 

 

Figure S9. Mass spectrum and fragments proposed for TP6. 
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Section S3. In silico risk assessment of DZP and its TPs 

Table S2. In silico QSAR predictions for ready biodegradability (0 means not biodegradable and 1 biodegradable) of DZP and its TPs. 

Compound CAS 
log BCF 

(regression) 

log 

Kow 

Theo 

log 

Kow 

Exp 

BIOWIN 

1 

BIOWIN 

2 

BIOWIN 

3 

BIOWIN 

4 

BIOWIN 

5 

BIOWIN 

6 

BIOWIN 

7 

Biodegradability 

Predictions 
VEGA IRFM model 

Diazepam 439-14-5 1.528 2.7 2.82 0.7678 0.8085 2.3311 3.4819 0.1532 0.0338 -0.8789 NO NON Readily Biodegradable (low reliability) 

TP1  0.5 0.41  0.8271 0.8337 2.6019 3.6932 0.238 0.0890 -0.3485 NO NON Readily Biodegradable (low reliability) 

TP2  0.226 1.23  0.9189 0.9114 2.4557 3.5883 0.2494 0.0514 -0.6406 NO NON Readily Biodegradable (low reliability) 

TP3  0.5 1.7  0.7602 0.7708 2.2958 3.4588 0.0726 0.0202 -1.3166 NO NON Readily Biodegradable (low reliability) 

TP4 I a  1.131 2.22  0.876 0.893 2.3521 3.4985 0.1658 0.0326 -0.7028 NO NON Readily Biodegradable (low reliability) 

TP4 I b  1.131 2.22  0.876 0.893 2.3521 3.4985 0.1658 0.0326 -0.7028 NO NON Readily Biodegradable (low reliability) 

TP4 I c  0.909 2.22  0.876 0.893 2.3521 3.4985 0.1658 0.0326 -0.7028 NO NON Readily Biodegradable (low reliability) 

TP 4 II a  0.541 1.66  0.7479 0.5799 2.3301 3.4936 0.1658 0.0326 -0.9209 NO NON Readily Biodegradable (low reliability) 

TP 4 II b  1.131 2.22  0.7479 0.5799 2.3301 3.4936 0.1658 0.0326 -0.9209 NO NON Readily Biodegradable (low reliability) 

TP 4 II c  1.131 2.22  0.7479 0.5799 2.3301 3.4936 0.1658 0.0326 -0.9209 NO NON Readily Biodegradable (low reliability) 

TP 4 II d  1.131 2.22  0.7479 0.5799 2.3301 3.4936 0.1658 0.0326 -0.9209 NO NON Readily Biodegradable (low reliability) 

TP 4 II e  0.541 1.66  0.7479 0.5799 2.3301 3.4936 0.1658 0.0326 -0.9209 NO NON Readily Biodegradable (low reliability) 

TP 5  1.6 2.87 2.93 0.7745 0.8374 2.3621 3.5021 0.1354 0.0340 -0.7993 NO NON Readily Biodegradable (low reliability) 

TP-6  1.908 3.4  0.7602 0.7708 2.2958 3.4588 0.1138 0.0230 -0.7589 NO NON Readily Biodegradable (low reliability) 
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Table S3. In silico QSAR prediction of PBT values by the Prometheus software for DZP and its TPs. 

Compound LogP 

LogP 

rel. P P rel. B B rel. T T rel. Score P Score B Score T PBT PB 

Diazepam 2.82 1 P/vP 0.5 1.57 0.4 0.087 0.3 0.712 0.306 0.509 0.475 0.467 

TP 1 1.17 0.2 P/vP 0.5 0.66 0.4 0.876 0.3 0.712 0.239 0.38 0.406 0.413 

TP 2 2.73 0.4 P/vP 0.5 1.49 0.4 0.085 0.3 0.712 0.298 0.51 0.47 0.461 

TP 3 1.1 0.4 P/vP 0.5 1.33 0.4 0.084 0.3 0.712 0.284 0.51 0.461 0.45 

TP 4 I a 2.98 0.8 P/vP 0.5 1.6 0.4 0.057 0.3 0.712 0.309 0.533 0.481 0.469 

TP 4 I b 2.98 0.8 P/vP 0.5 1.68 0.4 0.057 0.3 0.712 0.317 0.533 0.486 0.475 

TP 4 I c 2.98 0.8 P/vP 0.5 1.66 0.4 0.084 0.4 0.712 0.315 0.512 0.481 0.474 

TP 4 II a 2.98 0.8 P/vP 0.5 1.57 0.4 0.12 0.4 0.712 0.306 0.487 0.471 0.467 

TP 4 II b 2.98 0.8 P/vP 0.5 1.6 0.4 0.057 0.3 0.712 0.309 0.533 0.481 0.469 

TP 4 II c 2.98 0.8 P/vP 0.5 1.71 0.4 0.057 0.3 0.712 0.32 0.533 0.488 0.478 

TP 4 II d 2.98 0.8 P/vP 0.5 1.6 0.4 0.057 0.3 0.712 0.309 0.533 0.481 0.469 

TP 4 II e 2.98 0.8 P/vP 0.5 1.57 0.4 0.12 0.4 0.712 0.306 0.487 0.471 0.467 

TP 5 2.93 1 P/vP 0.5 1.57 0.4 0.085 0.3 0.712 0.306 0.51 0.475 0.467 

TP-6 3.51 0.4 P/vP 0.5 2.15 0.4 0.085 0.3 0.712 0.373 0.51 0.514 0.515 
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Table S4. Carcinogenicity and mutagenicity prediction for DZP and its TPs using 

VEGA, QSAR Toolbox and CASE Ultra models. 

+: positive alert; − negative alert; OD: out of domain 

VEGA models:Mutagenicity: (A)Ames test CONSENSUS model; Carcinogenicity models: (B) 

IRFMN/Antares; (C) CAESAR; (D) ISS; (E) IRFMN/ISSCAN-CGX. Exp (Experimental value); lr 

(low reliability); mr (moderate reliability); gr (good reliability);  

QSAR toolbox models: (A) DNA alerts for AMES by OASIS; (B) DNA alerts for CA and MNT by 

OASIS; (C) in vitro mutagenicity (Ames test) alerts by ISS; (D) in vitro mutagenicity (micronucleus) 

alerts by ISS; 

QSAR toolbox models type of alerts: N-meth der: N-methylol derivative; H: H-acceptor-path3-H-

acceptor; Ar. N-Ac. Am.: Aromatic N-acyl Amine; 

CASE Ultra models: (A) GT1_BMUT, (B) GT_EXPERT and (C) PHARM_BMUT; 

Comp. 

(Q)SAR predictions 

VEGAa QSAR Toolboxb CASE Ultra 

A B C D E A B C D A B C 

DZP − (0) − 

(Exp.) 

− 

(Exp.) 

− 

(Exp.) 

− 

(Exp.) 

NA NA NA H − − − 

TP 1 − (0.1) + (lr) − (lr) + (mr) + (lr) NA NA N-meth der H/ N-meth 

der 

+ + + 

TP 2 − (0.1) + (lr) − (gr) + (mr) + (mr) NA NA N-meth der H/ N-meth 
der 

− + − 

TP 3 − (0.05) + (lr) − (lr) − (lr) + (lr) NA NA NA H OD OD OD 

TP 4 I a − (0.05) + (lr) + (lr) − (lr) + (mr) NA NA NA H − − − 

TP 4 I b − (0.05) + (lr) − (gr) − (mr) + (mr) NA NA NA H − − − 

TP 4 I c − (0.05) + (lr) − (gr) − (mr) + (mr) NA NA NA H − − − 

TP 4 II a − (0.05) + (lr) − (lr) − (mr) + (mr) NA NA NA H − − − 

TP 4 II b − (0.05) + (lr) + (lr) − (mr) + (mr) NA NA NA H − − − 

TP 4 II c − (0.05) + (lr) − (lr) − (mr) + (mr) NA NA NA H − − − 

TP 4 II d − (0.05) + (lr) + (lr) − (mr) + (mr) NA NA NA H − − − 

TP 4 II e − (0.05) + (lr) − (lr) − (mr) + (mr) NA NA NA H − − − 

TP 5 − (0) + (lr) − (gr) − (mr) + (mr) NA NA NA H − − − 

TP 6 + (0.05) − (lr) + (mr) + (mr) − (mr) NA NA Ar. N-Ac. 

Am. 

Ar. N-Ac. 

Am. 

OD + OD 
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Section S4. Mutagenicity Alerts by QSAR Toolbox for DZP and its TPs 

 

Model Alerts 

in vitro mutagenicity 

(Ames test) alerts by 

ISS 

 

 

 

 

in vitro mutagenicity 

(micronucleus) alerts 

by ISS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N-methylol derivative 
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N-methylol derivative 
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H-acceptor-path3-H-acceptor 

Aromatic N-acyl amines 
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S5. Factorial design planning and results 

 

 

Table S5. Factorial design (23) variables, experimental range and levels of the variables. 

 

Variable -1 0 +1 

X1 DS - Acetonitrile (µL) 400 550 700 

X2 ES - Chloroform (µL) 100 200 400 

X3 Ionic strength Na2SO4 (mol L-1) 0 0.1 0.2 

 

 

 

 

Table S6. Matrix for Factorial design (23), considering variables and its levels. 

Experiment X1 X2 X3 

1 - - - 

2 + - - 

3 - + - 

4 + + - 

5 - - + 

6 + - + 

7 - + + 

8 + + + 

9 0 0 0 

10 0 0 0 

11 0 0 0 

 

 

 

 

 

Table S7. Effects estimation for the independent variables and interaction between 

them. 

 

Factor 

Effect Estimates; Var.:DZP + TPs Area; R-sqr=.9729; Adj:.90966 (DLLME fatorial) 

3 factors, 1 Blocks, 11 Runs; MS Residual=112345E4 

Effect Std.Err. t(3) p -95.% +95.% Coeff. Std.Err. -95.% +95.% 

Mean/Interc. 560306,3 19351,55 28,95407 0,000090 498721 621891,6 560306,3 19351,55 498721,1 621891,6 

(1) DS (L) 166181,6 23700,72 7,01167 0,005958 90755 241607,9 83090,8 11850,36 45377,7 120803,9 

DS (Q) 19011,2 45383,42 0,41890 0,703472 
-

125419 
163441,5 9505,6 22691,71 -62709,5 81720,8 

(2) ES (L) 155369,6 23700,72 6,55548 0,007218 79943 230795,9 77684,8 11850,36 39971,7 115397,9 

(3) IS (L) 52134,4 23700,72 2,19970 0,115205 -23292 127560,7 26067,2 11850,36 -11645,9 63780,3 

1L by 2L 33705,9 23700,72 1,42215 0,250125 -41720 109132,2 16852,9 11850,36 -20860,2 54566,1 

1L by 3L 68453,1 23700,72 2,88823 0,063104 -6973 143879,4 34226,5 11850,36 -3486,6 71939,7 

2L by 3L -10042,9 23700,72 -0,42374 0,700303 -85469 65383,4 -5021,4 11850,36 -42734,6 32691,7 

PS: highlighted in red color, variables that present significant variance (p < 0.05). 
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Table S8. ANOVA of the result for factorial design tested.  

 

Factor 

ANOVA; Var.:DZP + TPs Area; R-sqr=.9729; Adj:.90966 (DLLME fatorial) 

3 factors, 1 Blocks, 11 Runs; MS Residual=112345E4 

SS df MS F p 

(1)DS (L) 5,52 E+10 1 5,52 E+10 49,16 0,006 

DS (Q) 1,97 E+08 1 1,97 E+08 0,18 0,703 

(2)ES (L) 4,83 E+10 1 4,83 E+10 42,97 0,007 

(3)IS (L) 5,44 E+09 1 5,44 E+09 4,84 0,115 

1L by 2L 2,27 E+09 1 2,27 E+09 2,02 0,250 

1L by 3L 9,37 E+09 1 9,37 E+09 8,34 0,063 

2L by 3L 2,02 E+08 1 2,02 E+08 0,18 0,700 

Error 3,37 E+09 3 1,12 E+09   

Total SS 1,24 E+11 10    
PS: highlighted in red color, variables that present significant variance (p < 0.05). 
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Figure S10. Pareto Chart of Effects for factorial design. Significant effect is observed 

when values are higher than p value, represented by the red line, with 95% of 

confidence. 
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Figure S11. Response surface of ES volume vs. DS volume on DZP and TPs area after 

extraction by DLLME. 
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Figure S12.Contour plot for ES volume vs. DS volume on DZP and TPs area after 

extraction by DLLME. 
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Figure S13. Parity plot showing the distribution of observed vs. predicted values of 

DZP and its TPs area for the factorial design experiments. 
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Figure S14. Desirability profile for variables studied in factorial design experiments 

from 0 (undesirable) to 1 (very desirable). 
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S6. Doehlert design planning and results 

 

 

Table S9. Matrix Doehlert design, considering two variables and its levels tested. 

 

Doehlert Design 

Experiment Var 1 Var 2 

1 1 0 

2 0.5 0.866 

3 -1 0 

4 -0.5 -0.866 

5 0.5 -0.866 

6 -0.5 0.866 

7 0 0 

8 0 0 

9 0 0 

10 0 0 

11 0 0 

12 0 0 

13 0 0 

 

 

 

 

 

Table S10. Effects estimation for the independent variables and interaction between 

them. 

 

Factor 

Effect Estimates; Var.:DZP + TPs Area; R-sqr=.96267; Adj:.936 (DLLME Doehlert) 

2 factors, 1 Blocks, 13 Runs; MS Residual=542966E5 

Effect Std.Err. t(7) p -95.% +95.% Coeff. Std.Err. -95.% +95.% 

Mean/Interc. 5859404 88071,9 66,52 0,00000 5651147 6067660 5859404 88071,9 5651147 6067660 

(1)DS (uL)(L) 1183103 134532,0 8,79 0,00005 864985 1501220 591551 67266,0 432493 750610 

DS (uL)(Q) -301508 93414,3 -3,23 0,01450 -522398 -80619 -150754 46707,2 -261199 -40309 

(2)ES (uL)(L) 2162050 233016,2 9,28 0,00004 1611054 2713045 1081025 116508,1 805527 1356523 

ES (uL)(Q) -668547 280242,9 -2,39 0,04848 -1331217 -5878 -334274 140121,5 -665608 -2939 

1L by 2L 143072 233016,2 0,61 0,55863 -407923 694068 71536 116508,1 -203962 347034 

PS: highlighted in red color, variables that present significant variance (p < 0.05). 
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Table S11. ANOVA of the result for Doehlert design tested. 

 

Factor 
ANOVA; Var.:DZP + TPs Area; R-sqr=.96267; Adj:.936 (DLLME Doehlert) 
2 factors, 1 Blocks, 13 Runs; MS Residual=542966E5 

SS df MS F p 
(1)DS (uL)(L) 4,20 E+12 1 4,20 E+12 77,34 0,00005  
DS (uL)(Q) 5,66 E+11 1 5,66 E+11 10,42 0,01450 

(2)ES (uL)(L) 4,67 E+12 1 4,67 E+12 86,09  0,00004 
ES (uL)(Q) 3,09 E+11 1 3,09 E+11 5,69  0,04848  
1L by 2L 2,05 E+10 1 2,05 E+10 0,38 0,55863  

Error 3,80 E+11 7 5,43 E+10   

Total SS 1,02 6E+13 12    
PS: highlighted in red color, variables that present significant variance (p < 0.05). 
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Figure S15.Pareto Chart of Effects for Doehlert design. Significant effect is observed 

when values are higher than p value, represented by the red line, with 95% of confiance. 
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Figure S16.Parity plot showing the distribution of observed vs. predicted values of DZP 

and its TPs area for the Doehlert design experiments 
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Figure S17. Desirability profile for all variables studied in Doehlert design 

experiments. 
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S7. DZP degradation in different matrices  
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Figure S18. Analytical determinations during the DZP (500 µg L-1) treatment 

processes in different matrices: A) UPW; B) SW and C) RHW. 
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Table S12. Pre-concentration rate of DZP and its TPs for SPE and DLLME in different 

matrices. 

 

Compound 

UPW RHW 

DLLME SPE DLLME SPE 

pre 

concentration 

Factor 

StDev 

(%) 

pre 

concentration 

Factor 

StDev 

(%) 

pre 

concentration 

Factor 

StDev 

(%) 

pre 

concentration 

Factor 

StDev 

(%) 

DZP 9.4 5.1 10.5 8.4 7.3 8.3 7.2 21.7 

TP1 8.4 30 9.5 11.2 - - - - 

TP2 6.2 6.9 8.3 4.1 1.9 11 7.7 5.1 

TP3 5.9 0.5 7.8 4.7 2.8 18.6 7.6 3.6 

TP4 11 11.9 7.4 21.7 2.5 1.1 8.6 15.6 

TP5 6.8 6.7 5.9 1.3 1.9 7.7 8.5 11 

TP6 13 1.4 4.6 14.2 2.5 7.8 5.1 2.4 
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Chapter 3  

Multi-criteria decision-making techniques associated 

with (Q)SAR risk assessment for ranking surface 

water microcontaminants identified using  

LC-QTOF MS 
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Introduction 

 

Different studies around the world show that the contamination of aquatic 

environments includes the presence of different classes of CECs [80–82], including 

pharmaceuticals, metabolites, and TPs. The huge number of chemicals marketed globally 

(in the region of 100,000  compounds) can lead to the contamination of surface water by 

different routes [83]. Evaluation of CECs in environmental compartments needs to be 

carefully planned, in order to try to cover as many microcontaminants as possible. For 

this purpose, the adoption of more embracing strategies for the screening of suspect 

compounds, using extensive databases containing information about thousands of 

compounds from different classes, can be one very promising way to improve 

understanding of the contamination of aquatic systems [84]. The study presented here is 

an evolution of the work developed in Chapter 1, with the aim of expanding the 

monitoring of contaminants to other levels. As discussed in the other chapters, screening 

for microcontaminants, on its own, is unable to provide a full understanding of the 

potential risks of the contamination to humans and the environment. However, the 

association of screening methodologies with in silico predictions can enable a more 

representative understanding of the risks.  

Interaction between different areas of knowledge is crucial for developing more 

realistic and applicable investigations. In the present work, the integration of techniques 

in the areas of environmental analytical science and computer engineering raised the work 

to another level, with multi-criteria decision-making (MCDM) techniques being used to 

prioritize microcontaminants present in the aquatic environment [85]. This combination 

of different methods and expertise, based on LC-QTOF MS screening → in silico 

(Q)SAR predictions → MCDM (ToxPi and TOPSIS ranking), has never been published 

before and seems to be a very promising strategy to assist in the development of more 

directed quantitative methodologies, as well as actions for the monitoring and remediation 

of contaminated aquatic systems. 

 

Objectives  

 

The aim of this study was to apply a very extensive suspect screening analysis to 

surface water, using a purpose-built database associated with MCDM techniques to rank 
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the identified microcontaminants, according to in silico (Q)SAR predictions. Statistical 

sensitivity tests were performed to evaluate the robustness of the MCDM techniques 

employed. 

 

Main results 

 

The screening methodology applied in this work, using a very large customized 

database containing information for 3250 CECs from different classes, enabled the 

identification of 150 suspected and confirmed contaminants in surface water from a 5th 

order river located in the northwest of Rio Grande do Sul State, Brazil. This is the first 

investigation of microcontaminants present in surface waters in the study area.  

The large number of compounds detected made it almost impossible to understand 

all the in silico (Q)SAR prediction data. Therefore, eight different endpoints were 

carefully selected, in order to compare the new data treatment approaches with a 

previously published study [85]. After the predictions, the endpoints were normalized and 

a simple multi-attribute rating technique (SMART) was used to apply different weights. 

The two MCMD methods ToxPi and TOPSIS were used for ranking of the detected 

compounds, according to their risk. ToxPi ranking considered a simple weighted sum as 

an aggregation function to calculate the score for ranking the compounds. TOPSIS 

calculated the weighted Euclidean distance between each compound and the previously 

established positive-ideal and negative-ideal solutions. The ToxPi and TOPSIS ranking 

techniques provided similar results, especially for the 20 highest priority compounds, but 

evaluation of the sensitivity of these two methods showed greater robustness of TOPSIS. 

The most detected class of contaminants was pesticides, as expected considering 

the high level of agricultural activity in the region. The second most detected class was 

pharmaceuticals. This result suggested the possibility of developing a quantitative 

methodology for pesticides. However, analysis of the ranking results indicated that 

despite being the second most detected class of contaminants, pharmaceuticals presented 

high possible risks to the environment. This showed the importance of associate screening 

with (Q)SAR and MCMD methods to guide the development of a more appropriate 

quantitative methodology. The findings of this study demonstrated the suitability of the 

adopted techniques for analytical environmental research, reinforcing the need to develop 
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new ideas and new multidisciplinary approaches for risk assessment and the mitigation 

and prevention of environmental contamination.  

All the methods, results, and conclusions are provided in Paper III and 

Supplementary Material III.  
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• Qualitative monitoring of 3250 

microcontaminants in surface waters 

• In silico risk assessment of 150 identified 

microcontaminants 

• TOPSIS was used for the first time to 

rank microcontaminant risk. 

• Comparison of ranking performance 

and robustness of ToxPi and TOPSIS 

• Hybrid multicriteria decision-making 

tools help in guiding future chemical 

analysis. 
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Contaminants of emerging concern (CECs) have been a focus of study for years, with investigations revealing the 

contamination of different environmental matrices (surface water, soil, air, and sediment) by diverse classes of  

microcontaminants. Understanding the contamination profiles requires identification  and  risk  assessment  of 

the microcontaminants. In the present work, analysis was made of the presence of 3250 compounds in 27 sam - 

ples from the Conceição River (Rio Grande do Sul State, Brazil), using an SPE-LC-QTOF MS method. In total, 150 

microcontaminants (confirmed and suspected) of different classes, especially pesticides and pharmaceuticals,  

were identified by an initial qualitative analysis. Subsequently, in silico predictions of eight endpoints, using 

quantitative structure-activity relationship ((Q)SAR) models, were employed to determine the risk of each pre- 

viously screened microcontaminant. This large amount of (Q)SAR data, frequently with conflicting information in  

relation to the responses of the different endpoints, makes it difficult to define which microcontaminants should 

be prioritized for analysis. Therefore, in order to rank the identified microcontaminants by risk assessment, two  

multi-criteria decision-making (MCDM) ranking techniques (ToxPi and TOPSIS), associated with a weighting  

method, were performed to establish the order of priority for further quantitative analysis of the most hazardous  

microcontaminants. The two rankings were statistically similar, especially for the 20 highest priority 

microcontaminants. Nonetheless, sensitivity tests carried out for the ToxPi and TOPSIS outputs showed higher  

performance robustness of TOPSIS, compared to ToxPi. This is the first time that such an approach (screening/
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(Q)SAR/MCDM methods) has been performed in the context of microcontaminant environmental risk evaluation 

and demonstrated to be an available strategy to help rank the most concern microcontaminants identified in  

aqueous environment samples. 

© 2021 Elsevier B.V. All rights reserved. 

 
 

 

1. Introduction 

 
Water quality is a worldwide concern, since water is indispensable for 

life. Studies have reported the presence of different classes of 

microcontaminants in the aquatic environment (Kandie et al., 2020; Park 

and Jeon, 2021; Picó et al., 2021). Depending on their chemical structures 

and concentration levels, these compounds can affect biological systems 

(Dong et al., 2015; Bradley et al., 2020). Important sources of contamina- 

tion of the aquatic environment include agricultural activities, industrial 

wastes, raw domestic and hospital wastewaters, and wastewater treat- 

ment plant effluents that are not efficiently treated (Čelić et al., 2021). 
These various sources may contain thousands of microcontaminants of 

emerging concern (CECs), encompassing different classes of substances in- 

cluding pesticides, pharmaceuticals, personal care products, and stimu- 

lants, as well as their metabolites and transformation products (TPs). 

Since there are so many CECs that may be present in the aquatic en- 

vironment, multi-residue methodologies that combine diverse identifi- 

cation strategies are essential. Generally, a first step is to perform a 

qualitative analysis for screening of microcontaminants. This initial 

evaluation is crucial for understanding the environmental contamina- 

tion, providing a guide for a second step involving the development of 

quantification methodologies for at least the most commonly occurring 

compounds (Becker et al., 2020; Čelić et al., 2021). For both qualitative 
and quantitative analyses, previous sample preparation steps are essen- 

tial for preconcentration and extraction of the analytes. The technique 

most widely used for this purpose is solid phase extraction (SPE) 

(Senta et al., 2019; Campos-Mañas et al., 2019). 

Many published studies concerning multi-residue methodologies 

are based on ultra-high performance liquid chromatography coupled 

to tandem mass spectrometry (UHPLC-MS/MS). The use of LC-MS/MS 

instrumentation typically provides highly sensitive, selective, and ro- 

bust analytical methods. However, its use depends on the availability 

of analytical standards for all the analytes of interest. Therefore, the 

broader quantitative methods imply high financial outlays for the pur- 

chase of analytical standards and for maintenance of the equipment. 

Consequently, most of the published studies have evaluated a limited 

number of substances, generally not exceeding a few hundred com- 

pounds (Aalizadeh et al., 2016; García-Galán et al., 2016; Beccaria and 

Cabooter, 2020; Campos-Mañas et al., 2020; Styszko et al., 2021). 

Qualitative methodologies based on high-resolution mass spectrom- 

etry (HRMS) allow the screening of a large number of analytes, poten- 

tially as many as thousands of compounds (Alygizakis et al., 2020; 

Menger et al., 2020; da Silva et al., 2021; Guardian et al., 2021; Liu 

et al., 2021). The use of extensive databases containing information 

about the molecular ions and fragmentation profiles of thousands of 

compounds  supports  the  use  of  these  screening  methodologies 

(Ibáñez et al., 2017; Becker et al., 2020; Čelić et al., 2021). The main ad- 
vantage of this technique is the possibility of identifying unknown com- 

pounds by nontarget screening, as well as by suspect screening when 

database information is available (Styszko et al., 2021). HRMS may be 

used to identify suspect compounds with high reliability, without the 

mandatory use of analytical standards, considering the valuable infor- 

mation provided by  accurate  full-spectrum  mass  data  (Hernández 

et al., 2019a; Hernández et al., 2019b; Čelić et al., 2021). 

Analysis  to  identify  and/or  quantify  microcontaminants  in  the 
aquatic environment is essential. However, it is also vital to undertake 

risk assessments of these compounds, which can indicate the potential 

contribution of each microcontaminant to the environmental pollution. 

Computational modeling (in silico) methods based on the (quantitative) 

structure-activity relationship ((Q)SAR) approach are powerful tools for 

risk assessment (Roos et al., 2012; Mansour et al., 2016; Thomas et al., 

2019). These prediction assays can be very fast to perform and are 

much less expensive than experimental studies, providing various end- 

points related to parameters such as toxicity, carcinogenicity, mutage- 

nicity, PBT (persistence-bioaccumulation-toxicity), KOC, and half-life, 

among others. (Q)SAR methods can be used to correlate structural char- 

acteristics and other features of the compounds to chemical properties 

and biological effects (Abramenko et al., 2020), employing computer- 

based models based on mathematical relationships generated from in- 

formation for similar structures (Sanabria et al., 2021). 

Nonetheless, when many compounds are evaluated using instru- 

mental methods of analysis and (Q)SAR tools, it can be difficult to 

identify the compounds that should be considered more or less environ- 

mentally hazardous, given the large quantity of data available. One solu- 

tion is to use tools that allow the ranking of compounds according to 

different defined endpoints. One of these tools is ToxPi GUI (Toxicolog- 

ical Priority Index Graphical User Interface) software. ToxPi is a flexible 

decision-support tool that allows the integration of different metrics 

established for each compound (KOC, half-life, carcinogenicity, and 

others), providing a ranking of compounds by transforming the data 

into a dimensionless score index, with different scales and attributing 

a different weight to each endpoint (Reif et al., 2013; Marvel et al., 

2018). A ToxPi model may be described as the recombination of individ- 

ual data sources, which may be components or metrics, into explicitly- 

weighted slices that represent one or more endpoints (Reif et al., 2013). 

Tools such as ToxPi are based on multi-criteria decision-making 

(MCDM) techniques that treat endpoints and their relative importance 

as criteria and weights, respectively, and the compounds as alternatives 

to be compared for ordering or selection. Among the techniques used in 

various areas of knowledge, one of the most widespread is TOPSIS 

(Technique for Order Preference by Similarity to Ideal Solution). 
TOPSIS is an MCDM technique that ranks alternatives in relation to the 

positive-ideal or the negative-ideal, defined from previously established 

criteria and weights, considering the characteristics assessed (Hwang 

and Yoon, 1981). Evaluation of similarity and ranking of all the options 

of interest is performed using the combination of closest proximity to 

the ideal solution and greatest distance from the negative-ideal, consid- 

ering Euclidean distances and weighted criteria (Triantaphyllou, 2000; 

Ruiz-Padillo et al., 2016). In the environmental sciences field, TOPSIS 

was used by Li et al. (2016) to assess the degree of groundwater pollu- 

tion. However, until now, no studies have used TOPSIS to rank 

microcontaminants with higher environmental risk. In addition, no re- 

ports were found in the literature that have compared screening results 
obtained using different MCDM methods. 

Therefore, the aim of the present study was to use suspect screening 

analyses to evaluate 3250 microcontaminants in surface waters, associ- 

ating (Q)SAR tools and multi-criteria decision-making techniques to 

rank the identified microcontaminants according to assessment of 

their risk. Statistical comparisons and sensitivity tests were performed 

in order to evaluate the performance and robustness of the MCDM tech- 

niques employed. 

 
2. Materials and methods 

 
2.1. Chemicals and materials 

 
The solvents used in the LC-QTOF MS analyses were acetonitrile and 

methanol (LC-MS grade), purchased from Merck. Analytical standards 
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used for the confirmation of certain compounds were purchased from 

various suppliers. A list of the standards is provided in Section I 

(Supplementary Material). Formic acid (98%) was from Merck and ultra- 

pure water (18.2 MΩ.cm) was from a Millipore purification system. 

Sample preparation was performed using Oasis HLB cartridges (500 

mg, 6 mL), purchased from Waters Corporation. Extracts were filtered 

through 0.22 μm PVDF syringe filters obtained from Allcrom. 

 
2.2. Study area and sampling 

 
Twenty-seven samples were collected at three different sampling 

points in the Conceição River (Rio Grande do Sul State, Brazil). In addi- 

tion, one sample was collected in a tributary of the river, near the 

other sampling points. The coordinates of the sampling sites are pro- 

vided in Section SII (Supplementary Material), together with a figure in- 

dicating their locations. 
Sampling was carried out at the selected points during the 2018–2019 

summer harvest, considering the agricultural calendar of the Conceição 

River region. Nine samplings were performed in two campaigns: i) the 

first campaign, with three samplings during the period of the year corre- 

sponding to preparation of the soil for planting of soybeans and maize 

(between October 21st and November 16th 2018); ii) the second cam- 

paign, with six samplings during the period of the year corresponding to 

pest and weed control of soybean and maize crops (March 3rd to 16th 

2019). The sample collected in the river tributary, protected by riparian 

forest, was used as a blank. Samples were collected biweekly, always at 

around the same time (about 9 a.m.). Nearly 2 L of sample were collected 

in plastic bottles, around 30 cm depth and 1 m from the riverside. The 

samples were refrigerated until arrival at the laboratory, where they 

were maintained at −4 °C until preparation. 

 
2.3. Screening analysis 

 
The solid phase extraction (SPE) procedure was adapted from Diaz 

et al. (2013). A complete description of the SPE procedure steps is pro- 

vided in Section SIII (Supplementary Material), together with the condi- 

tions of the chromatographic separation and details of the instrumental 

conditions of the LC and QTOF MS systems. 

For screening analysis, an extended purpose-built database was con- 

structed with data from the literature and from open access platforms 

such as mzCloud (www.mzcloud.org). The raw LC-HRMS data were 

processed using TASQ v. 2.2 (Bruker Daltonics). Compounds were posi- 

tively identified by the presence of the molecular ion, using the low 

energy (LE) function, and the presence of at least two   fragments, 

using the high energy (HE) function. The isotopic profile was also eval- 

uated, especially when chlorine and bromine atoms were present in the 

molecule. Compounds that presented molecular ions and at least two 

characteristic fragments with error below 5 ppm, but for which analyt- 

ical standards were not available, were designated as “suspected” (S), 

while compounds that presented molecular ions and at least two char- 

acteristic fragments with error below 5 ppm, and for which analytical 

standards were available, were designated as “confirmed” (C). 

The database included information about the molecular formula, m/z, 

and fragmentation profile of each compound. A total of 3250 compounds 

were added to the database and were subsequently analyzed. A total of 

2592 compounds were analyzed in positive ionization mode, 238 in neg- 

ative ionization mode, and 420 compounds in both ionization modes. 

 
2.4. In silico quantitative structure-activity relationship ((Q)SAR) 

predictions 

 
The evaluation of (Q)SAR predictions started with transformation of 

all the identified compounds in SMILES, and by searching in the 

PubChem database (https://pubchem.ncbi.nlm.nih.gov/). Eight end- 

points were predicted using different free access software packages, ac- 

cording to Table 1. For some endpoints, the data were successively 

treated before obtaining the final endpoint value. 

The mutagenicity score was predicted using VEGA, with values 

higher than 0.75 being considered indicative of mutagenicity. Predicted 

mutagenic analytes were  then  confirmed  by  means  of  alerts using 

in vivo and in vitro (Q)SAR methods. Four different models were used 

to calculate carcinogenicity. Evaluation of the combined models was 

performed according to the classification shown in Table S2 (Section IV, 

Supplementary Material). Compounds were considered carcinogenic if 

the final score was ≥0.75, because lower values indicated differences be- 

tween the database compounds and the target compounds. Compounds 

were classified as non-carcinogenic if the score was ≤0.25. Estrogen re- 

ceptor binding is similar to protein binding and can cause endocrine dis- 

ruption. The estrogen receptor binding profiler classifies chemicals as 

non-binders or binders, depending on their molecular weight and struc- 

tural characteristics (Schultz et al., 2002). 

BIOWIN 5 was used for initial biodegradability evaluation, with 

values lower and higher than 0.5 considered indicative of non- 

biodegradable and biodegradable compounds, respectively. After this 

selection, another criterion was applied, only for compounds presenting 

BIOWIN 5 scores higher than 0.5, with predictive classification of 

 
Table 1 

(Q)SAR software and data used for each endpoint calculated. 

Data Software Endpoint 
 

log KOC and log KOW QSAR Toolbox (v. 4.4.1) Mobility 

Half-life (days) QSAR Toolbox (v. 4.4.1) Persistence 

Estrogen receptor binding QSAR Toolbox (v. 4.4.1) Estrogen receptor binding 

STP total removal QSAR Toolbox (v. 4.4.1) STP (Sewage Treatment 

Plant) total removal 

BIOWIN 5 QSAR Toolbox (v. 4.4.1) Biodegradability 

Predicted ready biodegradability 

(model (IRFMN) 1.0.9) 

VEGA QSAR (v.1.1.5) 

PBT Prometheus (v. 1.0) (REACH Commission regulation, 2011). PBT (persistence, 

bio-concentration, toxicity) 

Mutagenicity score Mutagenicity (Ames test) CONSENSUS model (v1.0.2) by VEGA QSAR (v.1.1.5) (Benfenati et al., 2013) 

(consensus of models: Mutagenicity (Ames Test) model (CAESAR) 2.1.13, Mutagenicity (Ames Test) model 

(SARpy/IRFMN) 1.0.7, Mutagenicity (Ames Test) model (ISS) 1.0.2 and Mutagenicity (Ames Test) model  

(KNN/Read-Across) 1.0.0) 

Mutagenicity alerts In vitro mutagenicity (Ames test) alerts by ISS (IstitutoSuperiore di Sanità) 

And In vivo mutagenicity (Micronucleus) alerts by ISS 

QSAR Toolbox (v. 4.4.1) 

Carcinogenicity score (i) Carcinogenicity model (IRFMN/Antares) (version 1.0.0), (ii) Carcinogenicity model (CAESAR) (version 

2.1.9), (iii) Carcinogenicity model (ISS) (version 1.0.2), and (iv) Carcinogenicity model 

(IRFMN/ISSCAN-CGX) (version 1.0.0) 

Models by VEGA QSAR (v.1.1.5) (Benfenati et al., 2013) 

Mutagenicity 

 
 
 
 
 

 
Carcinogenicity 

 
 

http://www.mzcloud.org/
https://pubchem.ncbi.nlm.nih.gov/
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compounds into readily biodegradable or biodegradable ones. All other 

results were considered indicative of non-biodegradability. 

 
2.5. Multi-criteria analysis for ranking identified microcontaminants: ToxPi 

and TOPSIS tools 

 
Predicted endpoints were used to rank the identified compounds in 

order of environmental concern. Prior to the ranking, all the endpoints 

were normalized and adjusted using different scales to obtain linear dis- 

tributions of the values, following maximization or minimization ef- 

fects, as shown in Table S3(Section SV, Supplementary Material). In 

addition to these normalized endpoints, ToxPi and TOPSIS received 

compounds according to their toxic effects towards humans and the en- 

vironment (Eq. (7)): 

 
(7) 

 
 

The scores obtained from ToxPi and TOPSIS were used to rank the 
identified compounds. In order to compare the methods, the raw score 
values were standardized to z-scores by subtracting the population 

mean (μ) from the individual raw score (S) and then dividing the differ- 

ence by the population standard deviation (σ), as shown in Eq. (8): 

weights for each endpoint as input data. These weights were defined 

by the Simple Multi-Attribute Rating Technique (SMART), because 

ToxPi uses this weighting method, so comparison with the TOPSIS tech- 

z ¼ 
S−μ 

(8) 

nique was possible. SMART calculates weights for criteria (wi) from di- 

rect values (xi) assigned to them according to a preset scale regarding 

their relative importance, using Eq. (1): 

wi ¼
 xi      

× 100% (1) 
i 

 

Therefore, the endpoints were firstly ranked and related to the fol- 

lowing xi values: i) 1 for physicochemical properties (half-life, mobility, 

PBT, and total removal); ii) 2 for in vitro measurements (biodegradabil- 

ity) and possible endocrine disruption (estrogen receptor binding); iii) 

3 for properties that involve in vivo tests (carcinogenicity and mutage- 

nicity). Higher values represented higher toxicity of the endpoint, 

adapting the values proposed by dos Santos and Nardocci (2019). 

ToxPi uses a simple weighted sum as an aggregation function to cal- 

culate the score for ranking, employing the normalized endpoints and 

weights obtained by SMART. The ToxPi score was then calculated 

using Eq. (2): 

In order to measure the sensitivity of the results obtained and the ro- 

bustness of the two MCDM methods, sensitivity tests were performed 

by changing the endpoint weights from SMART, relative to the initial 

values, as follows: i) xi + 1, ii) xi + 2, and iii) xi − 0.5, where xi is the ini- 

tially defined value of the relative importance of the i-th endpoint. In ad- 

dition, the rankings obtained from the ToxPi and TOPSIS tools and the 

sensitivity tests results were compared using a statistical hypothesis 

test, performed with Action statistical software. The Levene and 

Shapiro-Wilk tests were performed to identify non-homogeneity and 

non-normality of the data, respectively, so that the nonparametric 

Friedman test could be used to detect differences in the rankings. The 

null hypothesis (H0) in the Friedman tests was that there were no differ- 

ences between the rankings according to tool or weights set. If the H0 

hypothesis was rejected, it was assumed that the compared rankings 

had significant differences, so post-hoc paired comparison tests could 

be applied to identify differences. Otherwise, it was assumed that 

there was no evidence to suggest differences. 

SToxPi,j  ¼ ∑
n

 wi × yij (2) 3. Results and discussion 

 

where, SToxPi,j is the ToxPi score of the j-th compound (j = 1, …, m, with 

m being the total number of compounds tentatively identified to be 

ranked), wi is the weight of the i-th endpoint (i = 1, …, n, with n = 8 

being the number of endpoints evaluated in this study), and yij is the 

normalized value of the endpoint for each compound. 

From the input data, TOPSIS calculates the weighted Euclidean dis- 

tance between each compound and the previously established 

positive-ideal solution (the compound with the ideal best environmen- 

tal value) and negative-ideal solution (the compound with the ideal 

worst environmental value). The ideal and anti-ideal solutions, denoted 

PIS and NIS, respectively, were constructed by taking the best and worst 

normalized values, respectively, of all the compounds for each endpoint, 

using Eqs. (3) and (4): 

 

(3) 

 

(4) 

 

Euclidean distances were then calculated between the evaluated 

compounds and the PIS and NIS values, denoted D+  and D−, respec- 

tively, using Eqs. (5) and (6): 
 

 
From these Euclidean distances, TOPSIS obtained the so-called 

similarity ratio, denoted STOPSIS,j, as the score used to rank the identified 

3.1. Identification of suspected and confirmed microcontaminants byLC- 

QTOF MS: screening analysis 

 
The qualitative analysis performed in this study evaluated 3250 

compounds of various classes, including pesticides, human and veteri- 
nary pharmaceuticals, and illicit drugs, as well as some metabolites. Pre- 
vious studies have reported the successful use of customized databases 

for qualitative screening analysis, where the availability of analytical 
standards is not a critical requirement (Ibáñez et al., 2017; Becker 
et al., 2020). This strategy allows the evaluation of thousands of analytes 
in the same analysis, besides the possibility of retrospective analysis. 
Conventionally, such screening can assist in guiding the selection of 
analytes, prior to the subsequent development of quantitative methods. 

In this study, the  screening analysis of the  samples  collected  from 
the Conceição River and the tributary (blank sample) enabled the iden- 
tification of a total of 150 microcontaminants, of which 17 were “con- 

firmed compounds” (C) and 133 were “suspected compounds” (S). 
Table S4 (Section SVI, Supplementary Material) shows the classification 
of all the identified microcontaminants in the samples analyzed. The 
tentatively identified analytes belonged to 12 different classes, with 
pesticides being the most representative, with 60 compounds (40%), 

 
 

followed by pharmaceuticals, with 55 compounds (36%), and metabo- 
lites of pesticides and pharmaceuticals, with 17 compounds identified 

(12%) (Fig. S2, Section SVI, Supplementary Material). The other 

microcontaminants included veterinary pharmaceuticals, illicit drugs 

and their metabolites, and plasticizers, among others. 

In addition to division according to class, the compounds were sep- 

arated using subclasses. The pesticide subclasses most frequently iden- 

tified included herbicides, fungicides, and insecticides, with 22, 18, and 

11 compounds, respectively. A total of 55 pharmaceuticals used in 

humans were detected, belonging to 18 different subclasses, with 

Dþ ¼ 

rffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffi 

j 
∑ 

n 2 

i¼1 
PIS− y , j ¼ 1, . .  . , m 

ij 
(5) 

rffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffi 
2 

D − 
j ¼ ∑ 

n 

i¼1 
NIS− y ij ¼, j 1,  .. . , m 

ð6Þ) 

STOPSIS,j ¼
 j 

 

D− 

Dj
þ þ −Dj

 

n  o 
PIS ¼ min yij     , i ¼ 1, .. . , n 

n o 

NIS ¼ max yij     , i ¼ 1, .. . , n 

i¼1 
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psychoactive substances, hormones, and antihypertensives being most 

frequently identified, with 13, 8, and 6 analytes, respectively. Two groups 

with no extended compounds identification, but that merit concern, were 

a subclass of three antibiotics (isoniazid, lincomycin, and the natural anti- 

biotic 3-phenyl-2-propenal(cinnamaldehyde)), which could be responsi- 

ble for progressive increases of antibiotic-resistant bacteria and antibiotic- 

resistant genes (Li et al., 2021), and two antineoplastic agents 

(exemestane and flutamide). The demand for chemotherapy has in- 

creased in recent years, resulting in increased occurrence of antineoplastic 

agents in the aquatic environment. This is of particular concern, because 

antineoplastic agents may present potential mutagenic, carcinogenic, 

and genotoxic effects, even at trace levels (Tousova et al., 2017; Henry 

et al., 2020). Figs. S3 and S4 (Section SVI, Supplementary Material) show 

the subclasses of pharmaceuticals and pesticides identified by screening. 

The frequencies of detection of the microcontaminants identified at 

each sampling point are shown in Table S5 (Section SVI, Supplementary 

Material). The identifications included 2-aminonicotinic acid, an anti- 

inflammatory veterinary, in 26 samples; triphenylphosphate, a plasticizer, 

in 21 samples; dodecyl benzenosulfonic acid, a saponification agent, in 25 

samples; alpha-PVP (α-pyrrolidinovalerophenone), an illicit drug, in 20 

samples; and caffeine, a natural alkaloid found in coffee, products contain- 

ing cocoa or chocolate, dietary supplements, and some pharmaceuticals 

such as analgesics (Gracia-Lor et al., 2017), in 27 samples. 

The class of pharmaceuticals deserves special attention, especially 

subclasses with high environmental risk, such as antineoplastic and an- 

tibiotic substances. Eight pharmaceuticals and two metabolites were 

detected more frequently in the samples analyzed. The compounds 4- 

acetamidoantipyrine and 4-methylamino-antipyrine, two metabolites 

of dipyrone, were present in 21 and 20 samples, respectively. Another 

highly recurrent subclass was antihypertensives, with the compounds 

acebutolol, atenolol, and propranolol identified in 25, 19, and 21 sam- 

ples, respectively. Two pharmaceuticals with psychoactive properties 

were detected: levetiracetam, in 22 samples, and memantine, in 18 

samples. Benzododecinium, an antiseptic, was identified in 24 samples. 

One antibiotic, isoniazid, was identified in 23 samples, while one anti- 

neoplastic agent, flutamide, was identified in all the samples analyzed, 

including the blank sample. 
The pesticides class presented the greatest number of compounds, as 

well as the highest number of detections in the samples analyzed. The 

area around the Conceição River is mainly agricultural and some 

analytes were identified according to the agricultural calendar, espe- 

cially during the summer soybean harvest. According to an IPEA (Insti- 

tute of Applied Economic Research, Brazil) technical note published in 

2016, 72% of the family farms in south Brazil use pesticides (Valadares 

et al., 2020). The identification of pesticides was expected, since it is 

well known that the use of pesticides in Brazilian agriculture constitutes 

a public health problem (Pignati et al., 2017), due to contamination of 

the environment, food, and humans associated with the use of increas- 

ing quantities of these substances. 

In the biocide subclass, the compounds BAC 12 and benzisothiazolone 

were detected in 24 and 25 samples, respectively. Linoleic acid, used as a 

formicide, was detected in 23 samples. Uniconazole, a growth regulator, 

was identified in 24 samples. The insect repellents DEET 

(diethyltoluamide) and icaridin were identified in 27 and 26 samples, re- 

spectively. The insecticide, herbicide, and fungicide subclasses of pesti- 

cides were frequently found, since these substances are widely used in 

the management of soybean and other crops. Large quantities of pesti- 

cides are applied throughout the summer harvest period, with different 

compounds used at different times, as shown by the analytes identified 

in the samples (Ávila et al., 2013). 

Six insecticides were identified in both sampling campaigns: 

anabasine (22 samples), chlorantraniliprole (21 samples), flubendiamide 

(27 samples), imidacloprid (25 samples), nicotine (27 samples), and 

fipronil (27 samples). Also present were the fipronil metabolites 

fipronildesulfinyl, fipronil sulfide, and fipronilsulfone, formed by photoly- 

sis, reduction, and oxidation of fipronil, respectively. These compounds 

have been detected in matrices including the aquatic environment and 

food (Li et al., 2020). 

The second pesticide subclass widely used in agriculture during the 

summer is fungicides. Six analytes and three metabolites were identified. 

Azoxystrobin, carbendazim, and cyproconazole were identified in both 

campaigns, with 27, 26, and 22 samples, respectively. CGA 321113 

(trifloxystrobin metabolite) and azoxystrobin acid (azoxystrobin metabo- 

lite) were identified in 27 and 26 samples, respectively. Fluxapyroxad was 

identified in 24 samples, especially in the second campaign. Picoxystrobin 

and prothioconazole-desthio were identified in 19 and 17 samples, re- 

spectively, notably in the second sampling period. Propiconazole was 

identified in 19 samples, notably in the first sampling campaign. 

The most frequent pesticides subclass was herbicides, used in agri- 

culture to control weeds that could compete with the main crop for nu- 

trients and water present in the soil (Ávila et al., 2013). Herbicides were 

identified in both sampling campaigns, divided into three different 

groups. The first consisted of compounds mainly identified in the first 

campaign: 2,4-D (11 samples), chlorimuronethyl (9 samples, only in 

the first campaign), imazethapyr (11 samples), simazine (9 samples, 

only in the first campaign), and deisopropylatrazine (DIA), an atrazine 

metabolite (10 samples). The second group consisted of herbicides 

mainly identified in the second campaign: isouron (17 samples) and 

molinate (19 samples). The third herbicide group consisted of com- 

pounds identified equally in both campaigns: 2-hydroxyatrazine, atra- 

zine, and deethylatrazine (DEA), with all three compounds identified 

in 27 samples, and icaridin, identified in 26 samples. 
Considering all the samples analyzed, except the blank, an average of 

53 analytes were identified in each sample, with the major compounds 

being pesticides, in accordance with the types of land use and occupa- 

tion close to the river. The activities in the study region were predomi- 

nantly soybean cultivation, other crops, and cattle ranching, so it was 

expected to identify many more pesticides than pharmaceuticals, de- 

spite the river traversing nearby urban zones. The Brazilian Institute of 

Geography and Statistics (IBGE) reported that in 2019, over 3 million 

hectares were used for soybean production in the northwest of Rio 

Grande do Sul State, the region of this study (IBGE, 2021). 

 
3.2. In silico predictions for tentatively identified microcontaminants 

 
After identification of the CECs in the samples analyzed, in silico pre- 

diction of risk was performed considering eight endpoints: half-life, mo- 

bility, carcinogenicity, mutagenicity, estrogen receptor binding, 

biodegradability, PBT, and STP total removal. The results for each end- 

point are provided in Table S6 (Section SVII, Supplementary Material). 

For some endpoints, data treatment was performed until a final 

value was reached. For example, compounds were considered biode- 

gradable when BIOWIN 5 values were higher than 0.5 and ready biode- 

gradability predictions were 1. Others cases were considered as non- 

biodegradable. Considering the BIOWIN 5 criteria, 23 biodegradable 

compounds were identified. When ready biodegradability prediction 

was applied, only 14 compounds were considered as biodegradable, 

corresponding to only 9% of the total microcontaminants identified. 

The biodegradable compounds were3-phenyl-2-propenal, L-glutamic 

acid, divalproate, dodecylbenzenesulfonic acid, ecgonine methyl ester, 

gabapentin, linoleic acid, L-lysine, methyl p-hydroxybenzoate, N- 

methyl pregabalin, norcocaine, p-hydroxybenzoic acid, and pyridoxine. 

The other 136 compounds were considered non-biodegradable. Data 

crossing between persistence and biodegradability showed that all the 

compounds considered biodegradable were also non-persistent and 

belonged to different classes. The biodegradability distribution is 

shown in Fig. 1A. 
Persistence, calculated as half-life in water, followed the criteria of dos 

Santos and Nardocci (2019): half-life < 30, non-persistent; 30 ≤half-life < 

60, moderately persistent; 60 ≤ half-life < 180, persistent; and half-life ≥ 

180, very persistent (Fig. 1B). Considering the criteria values, 42 com- 

pounds were classified as “non-persistent”, 49 as “moderately persistent”, 
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40 as “persistent”, and 19 as “very persistent”. Some concerning results 

were observed from association of the persistence data with the screening 

results. Out of 19 very persistent compounds, 8 were identified very fre- 

quently (>19 samples), with all being classified as pesticides: 5 insecti- 

cides (chlorantraniliprole, fipronil, fipronildesulfinyl, fipronilsulfone, and 

flubendiamide) and 3 fungicides (fluxapyroxad, picoxystrobin, and 

prothioconazole-desthio). The classification of very persistent 

microcontaminants included 17 halogenated pesticides, 1 halogenated 

pharmaceutical, and 1 antineoplastic agent. Only one very persistent 

compound was not halogenated. It is known that halogenated com- 

pounds can cause cancer, immunotoxicity, and neurotoxicity, and that 

they can affect the reproduction and development of humans (Davidsen 

et al., 2021), in addition to effects in the environment. 

The mobility of the analytes was investigated using the soil organic 

adsorption coefficient (KOC) classification method proposed by McCall 

et al., which is considered the best approach for non-ionic compounds 

(Navarro et al., 2012; Fenoll et al., 2015). The mobility scale values 

were adapted from dos Santos and Nardocci (2019). Values of log KOC 

(L kg−1) calculated by the MCI method, using QSAR Toolbox (v. 4.4.1), 

were assigned to 4 levels of mobility: log KOC ≥ 5 (immobile); 3 < log 

KOC  < 5 (slightly mobile); 1 < log KOC  < 3 (moderately   mobile);   and 

log KOC ≤ 1 (highly mobile). Smaller values indicate greater mobility 

and higher possibility of the CECs leaching into groundwater. The re- 

sults showed that few of the microcontaminants could be considered 

immobile or highly mobile, with most being classified as slightly mobile 

(54 compounds) or moderately mobile (81 compounds). The immobile 

compounds identified were acequinocyl, BAC 12, benzododecinium, 

losartan, sertraline, thioridazine, trifloxystrobin, and CGA 321113 

(trifloxystrobin metabolite), representing pharmaceuticals and pesti- 

cides with lower risk of leaching. Compounds identified as being highly 

mobile were 2-aminonicotinic acid, caffeine, ecgonine methyl ester, iso- 

niazid, L-lysine, pyridoxine, and theobromine, representing compounds 

of greater environmental concern, especially considering groundwater 

contamination. Some of these compounds of higher concern have low 

risk for humans, including caffeine (stimulant), L-lysine (amino acid), 

pyridoxine (vitamin), and theobromine (principle alkaloid present in 

the cocoa bean). The veterinary anti-inflammatory 2-aminonicotinic 

acid was also predicted to be highly mobile. Two compounds of high 

concern that were predicted to be highly mobile were ecgonine methyl 

ester (analogue of cocaine), which affects the central nervous system, 

and isoniazid (antibiotic), which can promote bacterial resistance. The 

mobility behaviors of the microcontaminants are shown in Fig. 1C. 

The microcontaminants identified in this study were also assessed 

using their PBT values. A threshold of 0.5 was used to distinguish non- 

PBT (<0.5) from potentially PBT compounds (≥0.5) (Pizzo et al., 

2016). Despite this established threshold, there was a degree of uncer- 

tainty in the prediction, so a range from 0.475 to 0.525 could be consid- 

ered as PBT or non-PBT. Eight compounds were identified as PBT 

(difenoconazole, fipronil, fipronil sulfide, fluxapyroxad, oxyfluorfen, 

pyraclostrobin, sertraline, and thioridazine). Eleven compounds were 

in the uncertainty zone, and 131 compounds were identified as non- 

PBT. Out of the eight PBT compounds, six were halogenated pesticides 

and two were psychoactive pharmaceuticals (Fig. 1D). 

Another physicochemical parameter predicted using the QSAR Tool- 

box software was STP Total Removal, based on the original model devel- 

oped by Clark et al. (1995). This model predicts the behavior of a 

compound in an activated sludge sewage treatment plant, with some 

variation depending on the fate of the chemical in a specific plant. The 

results showed that only eight compounds presented removal expec- 

tancy higher than 90% (bis(2-ethylhexyl) adipate, cholecalciferol, 

acequinocyl, linoleic acid, CGA 321113 (trifloxystrobin metabolite), py- 

rethrin 1, thioridazine, and spirodiclofen). Predicted removal lower 

than 10% was found for 102 compounds, indicating that conventional 

activated sludge sewage treatment was not effective for these 

microcontaminants, so more efficient techniques would be required 

for their removal (Bosio et al., 2019). 

 

Estrogen receptor binding is a property predicted using different da- 

tabases and approaches. The criteria used for estrogen receptor binding 

classification can be found on the website of the Laboratory of Mathe- 

matical Chemistry (Schultz, 2011). The compounds identified were 

evaluated using this model, with 89% of them predicted to be non- 

binding. The other 11% (17 microcontaminants) were defined as weak 

binding (7 compounds), moderate binding (3 compounds), strong 

binding (6 compounds), and very strong binding (1 compound). Benzo- 

caine was defined as weak binding (NH2 group), while all other com- 

pounds were defined as possible binding (OH group). According to the 

model used, the compounds that presented estrogen receptor binding 

could be characterized as endocrine disruptors (Schultz, 2011). 
After evaluation of mutagenicity (Ames test) using the CONSENSUS 

1.0.3 model, the results with values ≥0.75 were evaluated by QSAR Tool- 

box prediction, based on two methods: in vivo mutagenicity (micronu- 

cleus) alerts by ISS and in vitro mutagenicity (Ames test) alerts by ISS. 

Out of the 150 microcontaminants evaluated, 8-hydroxyquinoline, 

carbendazim, isoniazid, L-lysine, naphthalene acetamide, and 

phenmedipham were considered as mutagenic, with score of 1 from 

the experimental values. Diuron presented a mutagenicity score of 

0.75, considered a reliable indicator of mutagenicity. QSAR toolbox pre- 

diction using the in vivo mutagenicity (micronucleus) model alerts by 

ISS found 5 alerts of mutagenicity (Table S7, Section SVII, Supplementary 

Material). The compounds 8-hydroxyquinoline, carbendazim, isoniazid, 

and L-lysine showed H-acceptor-path3-H-acceptor alerts. Isoniazid (an- 

tibiotic) also presented hydrazines alert. On the other hand, 43 com- 

pounds were classified as non-mutagenic from the experimental values. 

Finally, carcinogenicity was evaluated using 4 different models: 

i) IRFMN/Antares 1.0.0; ii) CAESAR 2.1.9; iii) ISS 1.0.2; and iv) IRFMN/ 

ISSCAN-CGX 1.0.0. All the models used a classification scale from 0 

(non-carcinogenic) to 1 (carcinogenic), both with experimental values 

(Table S2, Section SIV, Supplementary Material). Values from 0.00 to 

0.25 were considered indicative of non-carcinogenicity, with good reli- 

ability, while values from 0.75 to 1.00 indicated carcinogenic com- 

pounds, with good reliability. For this endpoint, 13 microcontaminants 

were classified as non-carcinogenic and 21 as carcinogenic. The 13 

non-carcinogenic microcontaminants included different classes of com- 

pounds, notably pharmaceuticals and pesticides. Out of the carcinogenic 

compounds, 67% were pharmaceuticals, including hormones (23.8% of 

the carcinogenic compounds), analgesics (9.5%), and psychoactive com- 

pounds (9.5%). Considering the detection frequencies observed in the 

screening results, three compounds deserved attention: the pesticide 

atrazine, identified in all the samples analyzed, with carcinogenicity 

score of 1; the antibiotic isoniazid, identified in 23 samples, with score 

of 0.75; and 4-acetamidoantipyrine, a dipyrone metabolite, identified 

in 21 samples, with score of 0.75. As a non-carcinogenic compound, caf- 

feine was identified in all the samples, with score of 0.0. 

 
3.3. Risk assessment ranking of microcontaminants by LC-QTOF MS with 

multi-criteria decision-making techniques: ToxPi vs. TOPSIS 

 
The values obtained from the in silico (Q)SAR prediction models for 

the different endpoints were normalized (Table S3, Section SV, Supple- 

mentary Material) and weights were calculated for each endpoint 

using SMART (Eq. (1)), as indicated by the ToxPi tool. The weights ob- 

tained are presented in Fig. S5 (Section SVIII, Supplementary Material). 

All the normalized values of the criteria (endpoints) for each com- 

pound were determined, together with their weights, followed by ap- 

plication of the ToxPi and TOPSIS tools to obtain the corresponding 

scores. The two risk assessment rankings of the identified compounds 

are provided in Table 2. Fig. 2 shows the raw and standardized scores, 

sorted by ranking, for the two tools used. 

The Shapiro-Wilk test applied to the data (1 degree of freedom, 5% sig- 

nificance level) resulted in a p-value of 0.0077, so the null hypothesis of a 

normal distribution of the population was rejected, as the Fig. 2 makes 

clear. The application of Levene's test confirmed that the data from the 
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Table 2 

Ranking of the screened compounds using the ToxPi and TOPSIS tools. Gradual color scale according to order of 

priority, from red (high priority) to green (low priority). 

 

identified compounds 
 

Class 
Ranking 

ToxPI TOPSIS 

Isoniazid Pharmaceutical 1 2 

Nimesulide Pharmaceutical 2 1 

Cortisol Pharmaceutical 3 6 

Estradiol Pharmaceutical 4 5 

Methylprednisolone Pharmaceutical 5 7 

Fluconazole Pharmaceutical 6 9 

19-nortestosterone Pharmaceutical 7 3 

Naphthaleneacetamide Pesticide 8 8 

Carbendazim Pesticide 9 39 

Cortisone Pharmaceutical 10 13 

4-acetamidoantipyrine Metabolite pharmaceutical 11 22 

Saflufenacil (Heat) Pesticide 12 4 

Oxyfluorfen Pesticide 13 10 

Desvenlafaxine Pharmaceutical 14 23 

O-Desmethylvenlafaxine Pharmaceutical 15 31 

Ethinylestradiol Pharmaceutical 16 19 

L-lysine Pharmaceutical 17 27 

Antipyrine Pharmaceutical 18 12 

2-aminoflubendazole Veterinary drug 19 14 

Phenmedipham Pesticide 20 16 

Atrazine Pesticide 21 47 

Gabapentin Pharmaceutical 22 51 

8-hydroxyquinoline Pesticide 23 48 

Benzocaine Pharmaceutical 24 25 

Flutriafol Pesticide 25 17 

Carbamateethyl-N-(3-hydroxyphenyl) Pesticide 26 24 

Hydroxytestosterone Pharmaceutical metabolite 27 66 

Cholecalciferol Pharmaceutical 28 53 

Dimethylanilin (N.N-) Pigment 29 64 

Prothioconazole-desthio Pesticide metabolite 30 44 

Imazapic Pesticide 31 28 

Imidacloprid Pesticide 32 15 

HMMA Illicit drug metabolite 33 38 

4-methylamino-antipyrine Pharmaceutical metabolite 34 26 

Norethisterone Pharmaceutical 35 42 

Carbamazepine Pharmaceutical 36 76 

Flumioxazin Pesticide 37 60 

Fipronilsulfide Pesticide metabolite 38 18 

Flutamide Pharmaceutical 39 54 

Fipronil Pesticide 40 21 

Adrenalone Pharmaceutical 41 59 

Pyraclostrobin Pesticide 42 41 

Fipronilsulfone Pesticide metabolite 43 63 

Chlorantraniliprole Pesticide 44 75 

Fipronildesulfinyl Pesticide metabolite 45 83 

2-hydroxyquinoline Pharmaceutical metabolite 46 20 

Pyridoxine Pharmaceutical 47 55 

Sebuthylazin Pesticide 48 65 

Atenolol Pharmaceutical 49 57 
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2-aminonicotinic acid Veterinary drug 50 79 

Deisopropylatrazine (DIA) Pesticide metabolite 51 29 

Lincomycin Pharmaceutical 52 49 

Cyanazine Pesticide 53 73 

Paracetamol Pharmaceutical 54 69 

Acebutolol Pharmaceutical 55 82 

Deethylatrazine (DEA) Pesticide metabolite 56 58 

Exemestane Pharmaceutical 57 100 

Hydroxybupropion (as (RS.RS)-cyclic hemiketal) Pharmaceutical metabolite 58 74 

Fluxapyroxad Pesticide 59 46 

Azoxystrobinacid Pesticide metabolite 60 92 

Metominostrobin Pesticide 61 32 

Levetiracetam Pharmaceutical 62 105 

Difenoconazole Pesticide 63 45 

Pyrethrin 1 Pesticide 64 89 

Simazine Pesticide 65 91 

Fluazifop Pesticide 66 95 

Haloxyfop Pesticide 67 96 

Pyrethrins: Jasmolin II (Pyrethrin 2) Pesticide 68 35 

Diuron Pesticide 69 11 

Acetanilide Pharmaceutical 70 56 

Nikethamide Illicit drug 71 85 

Fenpropimorphcarboxylicacid Pesticide metabolite 72 77 

Ecgoninemethylester Illicit drug metabolite 73 112 

N-Methylpregabalin Pharmaceutical 74 43 

Benzovindiflupyr Pesticide 75 30 

Tebuconazole Pesticide 76 78 

Carbofuran Pesticide 77 110 

Benzisothiazol-3(2H)-one-1-2- Pesticide 78 90 

Terbuthylazine Pesticide 79 68 

Divalproate Pharmaceutical 80 108 

Diclosulam Pesticide 81 93 

Cyproconazole Pesticide 82 97 

Methoxyfenozide Pesticide 83 71 

Dihydroquinoline 2-2-4-trimethyl-1-2- Antioxidant 84 84 

Tibolone Pharmaceutical 85 80 

Octhilinone Pesticide 86 115 

Imazethapyr Pesticide 87 72 

Flubendiamide Pesticide 88 88 

Sertralina Pharmaceutical 89 40 

Azoxystrobin Pesticide 90 67 

Icaridin Pesticide 91 99 

Acequinocyl Pesticide 92 116 

Venlafaxine Pharmaceutical 93 106 

Picoxystrobin Pesticide 94 50 

Theobromine Pharmaceutical 95 114 

Methylp-hydroxybenzoate Antioxidant 96 86 

Propiconazole Pesticide 97 111 

Norcocaine Illicit drug metabolite 98 81 

Chlorfenvinphos Pesticide 99 34 

Myclobutanil Pesticide 100 109 
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Dinoterb Pesticide 101 94 

Megestrolacetate Pharmaceutical 102 52 

Propazine Pesticide 103 113 

Isouron Pesticide 104 103 

Oxyphencyclimine Pharmaceutical 105 117 

Spirodiclofen Pesticide 106 70 

Aminorex Pharmaceutical metabolite 107 118 

Bethanidine Pharmaceutical 108 87 

Uniconazole Pesticide 109 133 

Embutramide Veterinary drug 110 102 

p-Hydroxybenzoicacid Antioxidant 111 36 

Tramadol-n,n-didesmethyl Pharmaceutical metabolite 112 61 

Apophedrin Pharmaceutical 113 104 

Molinate Pesticide 114 128 

Furmecyclox Pesticide 115 120 

Fexofenadine Pharmaceutical 116 127 

Amino acids: l-glutamicacid Pharmaceutical 117 125 

2-hydroxy-atrazine Pesticide metabolite 118 107 

Chlorimuronethyl Pesticide 119 121 

Trifloxystrobin Pesticide 120 126 

Nicotine Pesticide 121 136 

2-Phenethylamine Pharmaceutical 122 123 

DEET Pesticide 123 62 

Thioridazine Pharmaceutical 124 98 

Pseudoephedrine Pharmaceutical 125 131 

Losartan Pharmaceutical 126 135 

Propranolol Pharmaceutical 127 122 

Alpha-PVP Illicit drug 128 138 

CGA 321113 (Trifloxystrobinmetabolite) Pesticide metabolite 129 119 

Amprolium Veterinary drug 130 124 

Diphenylamine Pesticide 131 130 

Oxprenolol Pharmaceutical 132 129 

Eugenol Pharmaceutical 133 132 

Naftidrofuryl Pharmaceutical 134 145 

N.N-Diethyl-m-toluamide. DEET Pesticide 135 33 

Memantine Pharmaceutical 136 101 

Caffeine Stimulant 137 140 

Phenol Pharmaceutical 138 37 

Butoxycaine Pharmaceutical 139 144 

Triphenylphosphate (TPP) Plasticizer 140 141 

Linoleicacid Pesticide 141 139 

3-phenyl-2-propenal Pharmaceutical 142 137 

Benzododecinium Pharmaceutical 143 146 

Dodecylbenzenesulphonicacid Saponifier 144 142 

Bis(2-ethylhexyl) adipate Plasticizer 145 134 

Amino acids: l-tryptophan Pharmaceutical 146 143 

Diazepam Pharmaceutical 147 147 

2,4-D Pesticide 148 148 

Ibuprofen Pharmaceutical 149 149 

Ethoxyquin Antioxidant 150 150 
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Fig. 2. (A) Ranking positions vs. raw scores calculated using ToxPi and TOPSIS. (B) Ranking positions vs. standardized scores calculated using ToxPi and TOPSIS. 

 

two scores did not present statistically significant equality of variances, so 

they were not homogeneous. These tests showed that nonparametric 

comparison tests should be used in order to assess statistically significant 

differences between the two scores (and, therefore, the two rankings). 

Comparison of the standardized ToxPi and TOPSIS scores using the 

Friedman test (5% significance level) resulted in a p-value of 0.05004, 

so the H0 hypothesis could not be rejected and there was no significant 

difference between the scores. Therefore, the results obtained for risk 

assessment ranking of the identified compounds were consistent, en- 

abling both methods to be recommended for use for this purpose. In ad- 

dition, the results supported the suitability of using TOPSIS, which has 

never been used previously for this purpose. The similarity was most 

notable for the higher positions of the rankings, indicating the com- 

pounds with greatest environmental risk. Comparison of the rankings 

using 10-position intervals showed that the standard deviations of 

means of the positions assigned by TOPSIS, in relation to the ranking 

by ToxPi (considered as the reference in this comparison) were less 

than 5.0 for the intervals 1–10, 11–20, and 141–150  (Table  S8, 

Section SVIII, Supplementary Material). This indicated that the dispersion 

of the positions from the mean remained inside the 10-position interval, 

supporting the information shown in Table 1 and Fig. 2. 

In order to measure the robustness of the two MCDM tools, sensitivity 

tests were performed between the ranking positions, considering the 

weight sets obtained from SMART. Fig. 3A and C show sets of rankings 

compared to the original ranking (with weights obtained from relative im- 

portance values of 1, 2, and 3 between endpoints). Fig. 3B and D show the 

results of the Friedman tests, with the p-values of the two sets of rankings 

having statistically significant differences (p < 0.05). Post-hoc analyses 

were performed to identify the pairs of rankings that presented significant 

differences. In the case of TOPSIS, small variations of +1 or −0.5 in the 

SMART input values did not lead to significant differences, but differences 

were evident for higher variations (+2 values). The ToxPi sensitivity tests 

results showed significant differences between all the rankings, reflecting 

higher sensitivity of the ToxPi ranking tool. Therefore, the TOPSIS tool was 

more robust than ToxPi, indicating its greater suitability for the purpose of 

the present work. The TOPSIS results demonstrated that small variations 

in the input data did not lead to major changes in the scores obtained 

and, consequently, in the rankings assigned to the compounds. This was 

an important finding, because the changes made in the weights main- 

tained the relative importance of the endpoints, with small modifications 

not altering the performance of TOPSIS. It should be noted that due to the 

subjectivity of the SMART input values used to calculate the weights, the 

high sensitivity observed for ToxPi could lead to highly variable results, af- 

fecting the ranking and, consequently, decision-making concerning the 

environmental risk of the identified compounds. In addition, the similarity 

of the results was more evident in the 20 highest positions of the TOPSIS 

rankings, as can be seen in Fig. 3A. 

The microcontaminants presenting the greatest environmental risk, 

according to both MCDM, were the drugs isoniazid and nimesulide. 

Isoniazid, identified in 23 samples, is the most prescribed antitubercular 

drug and has absorption lower than 60% in humans (Bhandari et al., 

2021). Nimesulide, detected in 4 samples, is a non-steroidal, antipyretic, 

and analgesic anti-inflammatory. Considering the first 20 ranked 

microcontaminants that presented greater risks to humans and environ- 

ment, it can be seen that for both methods, the majority of the analytes 

belonged to the class of drugs (hormones, corticosteroid, antifungal, anti- 

depressant, and analgesic/antidepressant metabolites). However, if only 

the results of the screening were considered for further quantitative anal- 

ysis, without their association with (Q)SAR and MCDM methods, it could 

be mistakenly inferred that the most frequent microcontaminants in this 

study (pesticides) would be the priority group for future chemical analy- 

ses. On the other side of the ranking, there were 10 compounds that pre- 

sented lower risks for humans and the environment. These compounds 

belonged to different classes and subclasses, presenting higher 

frequencies of detection, compared to the toxic compounds, with 

dodecylbenzenesulfonic acid, benzododecinium, linoleic acid, and ibu- 

profen present in 26, 24, 23, and 20 samples, respectively. 
The results obtained in the present study reinforced the importance 

of carrying out extensive screening studies including various classes of 

microcontaminants, as well as the need for simultaneous assessment 

of environmental risk using (Q)SAR tools. The use of MCDM methods 

proved to be essential for evaluation of the endpoints in a weighted 

way, independent of the frequency of detection of the screened 

microcontaminants, enabling appropriate decisions to be made 

concerning environmental management. 

 
4. Conclusions 

 
Qualitative analysis may be considered an important tool for the 

identification of contaminants, in a step prior to quantification. The 

major advantage of the approach used in screening analysis is the pos- 

sibility of searching many compounds, using information available in 

purpose-built or commercial databases. In this study, screening indi- 

cated the presence of 150 suspected and confirmed microcontaminants 

in surface waters, especially pesticides and pharmaceuticals. 

In silico predictions based on the use of (Q)SAR tools are easier to 

perform than experimental (in vivo or in vitro) bioassays of screened 

compounds. In this study, (Q)SAR results for the identified 

microcontaminants,  employing  eight  different  endpoints,   were 

used as input data for successful ranking of the screened analytes 

according to their toxicity towards humans and the environment. 

The application of MCDM techniques, implemented  using  the 

ToxPi and TOPSIS tools, enabled the ordering of the identified com- 

pounds in rankings according to their environmental risk. This 
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(B) Information Value 
Friedman chi square (0.05 significance level) 38.328 

Degrees of freedom 3 
p value 2.4 x 10 8 

Critical difference 58.993 

Rankings comparison 
Observed 
difference 

Significant 
difference? 

TOPSIS (1, 2, 3) – TOPSIS (0.5, 1.5, 2.5) 33 No 
TOPSIS (1, 2, 3) – TOPSIS (2, 3, 4) 44 No 
TOPSIS (1, 2, 3) – TOPSIS (3, 4, 5) 81 Yes 

TOPSIS (0.5, 1.5, 2.5) – TOPSIS (2, 3, 4) 11 No 
TOPSIS (0.5, 1.5, 2.5) – TOPSIS (3, 4, 5) 114 Yes 

TOPSIS (2, 3, 4) – TOPSIS (3, 4, 5) 125 Yes 

 

(D) Information Value 
Friedman chi square (0.05 significance level) 115.52 

Degrees of freedom 3 
p value 7.1 x 10 25 

Critical difference 58.993 

Rankings comparison 
Observed 
difference 

Significant 
difference? 

ToxPi (1, 2, 3) – ToxPi (0.5, 1.5, 2.5) 130 Yes 
ToxPi (1, 2, 3) – ToxPi (2, 3, 4) 252 Yes 
ToxPi (1, 2, 3) – ToxPi (3, 4, 5) 130 Yes 

ToxPi (0.5, 1.5, 2.5) – ToxPi (2, 3, 4) 122 Yes 
ToxPi (0.5, 1.5, 2.5) – ToxPi (3, 4, 5) 260 Yes 

ToxPi (2, 3, 4) – ToxPi (3, 4, 5) 382 Yes 

 

(A)  
150 

140 

130 

120 

110 

100 

90 

80 

70 

60 

50 

40 

30 

20 

10 

0 

(C) 
 

150 

140 

130 

120 

110 

100 

90 

80 

70 

60 

50 

40 

30 

20 

10 

0 

 
 
 

 
Compounds 

Compounds 

 
 

 

Fig. 3. (A) Sensitivity tests for TOPSIS rankings; (B) Friedman rank sum test for TOPSIS sensitivity test rankings; (C) Sensitivity tests for ToxPi rankings; (D) Friedman rank sum test for 

ToxPi sensitivity test rankings. 

 
sorting would allow management decisions to be made concerning 

priority microcontaminants, taking into account the simultaneous 

effects of several physicochemical, biological, and toxicological pa- 

rameters that are environmentally relevant, but have different rela- 

tive importance. The weighted aggregation of these parameters 

enables ranking of the identified microcontaminants, regardless of 

their detection frequency. The appropriate application of MCDM 

methods to screening results assists in selecting the priority com- 

pounds for subsequent quantitative analysis during environmental 

monitoring. 

Comparison of the rankings obtained by the two tools showed that 

there were no statistically significant differences between them, 

confirming the satisfactory consistency of the results. Sensitivity tests 

showed greater robustness of the TOPSIS technique, compared to the 

ToxPi software, in the face of small variations in the input data. Finally, 

application of the TOPSIS method is a pioneering approach with excel- 

lent potential to assist in chemical analysis decision-making in the envi- 

ronmental sciences field. 
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Section SI. Analytical Standards used to confirm the presence of analytes in the 

analysed samples  

 

Table S1. Standards used to confirm screened microcontaminants. 

Analyte Supplier Formula Rt (min) 

2,4-D  Sigma Aldrich  C8H6Cl2O3  11.5 

Atrazine Sigma Aldrich  C8H14ClN5 11 

Carbendazim Sigma Aldrich  C9H9N3O2 4.96 

Cyanazine Sigma Aldrich  C9H13ClN6 9.4 

Deethylatrazine (DEA) 

 
Dr. Ehrenstorfer 

 

C6H10ClN5 7.89 

Deisopropylatrazine (DIA) Sigma Aldrich  C5H8ClN5 6.04 

Diazepam Sigma Aldrich C16H13ClN2O 12.35 

Difenoconazole Sigma Aldrich  C19H17Cl2N3O3 14.5 

Fipronil 
Commercial 

product* 
C12H4Cl2F6N4OS 13.7 

Fipronil-sulfone Sigma Aldrich  C12H4Cl2F6N4O2S 14.17 

Flutamide Sigma Aldrich C11H11F3N2O3 12.57 

Flutriafol 
Commercial 

product* 
C16H13F2N3O 11.24 

Fluxapyroxad 
Commercial 

product* 
C18H12F5N3O 12.76 

Imidacloprid 
Commercial 

product* 
C9H10ClN5O2 6.75 

Losartan Huaian Synniken C22H23ClN6O 11.61 

Nimesulide CosmeTrade C13H12N2O5S 11.63 

Paracetamol 
Anqiu Lu’An 

Pharma 
C8H9NO2 3.62 

Propazine Sigma Aldrich  C9H16N5Cl 12.11 

Propranolol CosmeTrade C16H21NO2 9.42 

Saflufenacil 
Commercial 

product* 
C17H17ClF4N4O5S 11.88 

Simazine Sigma Aldrich  C7H12ClN5 9.65 

Tebuconazole Sigma Aldrich  C16H22ClN3O 13.93 

               *Five active ingredients were confirmed by using commercial products using the strategy 
described previously by Cardoso et al.  (2020). 

 

 

 

 

 

https://www.lgcstandards.com/GB/en/Dr-Ehrenstorfer/cat/279845
https://www.lgcstandards.com/GB/en/Dr-Ehrenstorfer/cat/279845
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Section SII. Sampling points 

Three different sampling points at Conceição riverwere selected in present work. 

Hydrographic basin of the Conceição river is a tributary of the Ijuí river and is located in 

the northwest of Rio Grande do Sul State, (28°15' to 28°50'S and 53°30' to 54°10'W) with 

approximately 811.00 km2 area, in five cities: Augusto Pestana, Boa Vista do Cadeado, 

Coronel Barros, Cruz Alta and Ijuí. The hydrographic basin of the Conceição river is 5th 

order and comprises 227 water courses, being 177 1st order, 38 2nd order, 9 3rd order, 2 

4th order water courses and the main river, 5th order totalizing a length of 650.20 km and 

an average flow throughout the year of 185 m3.s-1 (Bernardi et al. 2015). A map of 

Hydrographic basin of the Conceição river is showed below (Figure S1). Sampling points 

are located in the in the Northwest region of Brazilian state of Rio Grande do Sul. 

Coordinates are: River spring (28°28'43.0"S 53°50'50.2"W); Point 1 (28°33'23.7"S 

53°47'45.3"W); Point 2 (28°31'23.9"S 53°52'53.1"W) and Point 3 (28°27'47.6"S 

53°57'17.2"W). Besides around urban area (Cruz Alta, Boa vista do Cadeado and Augusto 

Pestana cities), the major occupation of the land around Conceição River is agriculture 

and livestock activities, so it is possible to suggest that the three principals sources of 

Conceição River contamination may be agriculture, livestock and urban activities.  

 

 

Figure S1. Sampling points location. Source: adapted from Google maps. 
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Section SIII. Sample preparation by SPE and LC-QTOF MS analyses 

Samples were filtered through a 47 mm PVDF filtering membrane, with 0.45 µm porosity 

(Allcrom). After filtration, samples were extracted and preconcentrated using Oasis HLB 

SPE cartridges (500 mg, 6 mL). The cartridges were conditioned with 3 mL of methanol, 

followed by 3 mL of ultrapure water. 200 mL of sample was percolated through the 

cartridge and afterwards the cartridge was dried for 20 minutes under air flow. For the 

elution, 2 aliquots of 4 mL of methanol were used. The eluate was evaporated to dryness 

under nitrogen flow and reconstituted in 500 µL of Water:Methanol (50:50). The extract 

was vortexed for 1 minute and filtered through a 13 mm PVDF syringe filter with 0.22 

µm posority (Allcrom) into a chromatographic vial. 

The screening analysis to identify suspect compounds was performed using a Shimadzu 

Nexera X2 UHPLC system connected to an Impact II QTOF mass spectrometer (Bruker 

Daltonics) equipped with an electrospray ionization source (ESI). MS and MS/MS 

information were recorded over the m/z range from 50 to 1200, calibrated with sodium 

formate. The QTOF MS system operated in broadband collision-induced dissociation 

(bbCID) acquisition mode, which provided MS and MS/MS spectra at the same time, 

operating with two different collision energies: low collision energy of 4 eV (MS) and 

high collision energy variation from 25 eV to 50 eV (MS/MS), using a scan rate of 2 Hz. 

In this study, three different methods were used: 

a) positive ionization mode method using a chromatographic separation column 

Hypersyl GOLD (100 mm x 2.1 mm x 1.9 μm). QTOF conditions were: capillary voltage, 

4000 V; end plate offset, 500 V; nebulizer pressure, 4 bar (N2); dry gas, 9 L min-1 (N2) and 

dry temperature, 200 °C. Chromatographic separation occurred with the column 

thermostated at 35 °C and injection volume of 15 μL. Mobile phase was (A) MeOH 
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acidified with 0.1% (v/v) formic acid and (B) H2O acidified with 0.1% (v/v) formic acid, at 

a flow rate of 0.3 mL min−1. The gradient elution program was: 0 min, 95% B; 1 min, 95% 

B; 16 min, 5% B; 18 min, 5% B; 20 min, 95% B; 22 min, 95% B. 

b) the second method to identified compounds in negative ionization mode method 

using a Hypersyl GOLD (100 mm x 2.1 mm x 1.9 μm) column. QTOF conditions were: 

capillary voltage, 2500 V; end plate offset, 500 V; nebulizer pressure, 3 bar (N2); dry gas, 

9 L min-1 (N2) and dry temperature, 200 °C. Chromatographic separation was exactly as 

in method a). 

c) positive ionization mode method using a chromatographic separation column 

Hypersyl GOLD HILIC (100 mm x 2.1 mm x 1.9 μm). QTOF conditions were the same as 

in method a). Chromatographic separation occurred with the column thermostated at 

35 °C and injection volume of 15 μL. Mobile phase was (A) Acetonitrile and (B) 

Ammonium formate 60 mmol (pH 3.7), at a flow rate of 0.25 mL min−1. The elution was 

in isocratic mode: 60% A and 40% B. After analysis, all data were processed using TASQ 

(2.2 version) software, from Bruker Daltonics. 
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Section IV. In silico quantitative structure-activity relationship ((Q)SAR) predictions 

 

Table S2. Carcinogenicity classification by Vega models. 

 

 

Section SV. MCDM tools parameters 

 

Table S3. Data treatment before ToxPi ranking. 

Endpoint Treatment Logic Normalization 

Carcinogenicity Score Linear(x) Maximizing X /Xmax 

Mutagenicity Score Linear(x) Maximizing X /Xmax 

Estrogen Receptor Binding Linear(x) Maximizing X /Xmax 

Biodegradability Linear(x) Minimizing Xmax/X 

Half-Life Sqrt(x) Maximizing X /Xmax 

Mobility Log10(x) Minimizing Xmax/X 

PBT Linear(x) Maximizing X /Xmax 

STP Total Removal Linear(x) Minimizing Xmax/X 

 

 

0 ✔ Non-carcinogenic, experimental value

0.1 *** Non-carcinogenic

0.2 ** Non-carcinogenic

0.3 * Non-carcinogenic

0.4 *** Possibly non-carcinogenic

0.5 ** Possibly non-carcinogenic

0.6 * Possibly non-carcinogenic

0.7 * Carcinogenic

0.8 ** Carcinogenic

0.9 *** Carcinogenic

1 ✔ Carcinogenic, experimental value

Score Reability 
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Section SVI. Screening analyses 

Table S4. Classification of identified compounds 

Nº Compound  Formula CAS Class Subclass 
Ionization 

Mode 
Confirmed (C) or 

Suspected (S) 
RT 

(min)  

A1 19-Nortestosterone C18H26O2 434-22-0  Pharmaceutical Hormone [M + H]+ S 13.17 

A2 2,4-D  C8H6Cl2O3  94-75-7 Pesticide Herbicide [M - H]- C 11.5 

A3 2-aminoflubendazole C14H10FN3O 82050-13-3 Veterinary drug Anti-helmintic [M + H]+ S 7.8 

A4 2-aminonicotinic acid C6H6N2O2 5345-47-1 Veterinarydrug Anti-inflammatory [M + H]+ S 0.89 

A5 2-hydroxy-atrazine C8H15N5O 2163-68-0 Pesticide metabolite Herbicide [M + H]+ S 6.36 

A6 2-hydroxyquinoline C9H7NO 59-31-4 Pharmaceutical metabolite Quinoline metabolite [M + H]+ S 6.58 

A7 2-phenethylamine C8H11N 64-04-0 Pharmaceutical Psychoactive [M + H]+ S 8.27 

A8 3-phenyl-2-propenal  C9H8O 104-55-2 Pharmaceutical Antibiotic, antitumoral [M + H]+ S 14.7 

A9 4-acetamidoantipyrine C13H15N3O2 83-15-8 Pharmaceutical Metabolite Analgesic, antipyretic [M + H]+ S 5.66 

A10 4-methylamino-antipyrine C12H15N3O 519-98-2 Pharmaceutical Metabolite Analgesic, antipyretic [M + H]+ S 0.88 

A11 8-hydroxyquinoline C9H7NO 148-24-3 Pesticide Fungicide [M + H]+ S 6.57 

A12 Acebutolol C18H28N2O4 37517-30-9 Pharmaceutical 
Antiarrhythmic and 

antihypertensive 
[M + H]+ S 0.87 

A13 Acequinocyl C24H32O4 57960-19-7 Pesticide Acaricide [M + H]+ S 9.03 

A14 Acetanilide  C8H9NO 103-84-4 Pharmaceutical Analgesic [M + H]+ S 5.92 

A15 Adrenalone C9H11NO3 99-45-6 Pharmaceutical Vasoconstrictor [M + H]+ S 0.89 

A16 Alpha-PVP C15H21NO 14530-33-7 Illicit drug Illicit drug [M + H]+ S 13.01 

A17 L-glutamic acid C5H9NO4 56-86-0 Pharmaceutical Natural psychoactive [M + H]+ S 0.88 

A18 L-tryptophan C11H12N2O2 73-22-3 Pharmaceutical Psychoactive [M + H]+ S 4.58 

A19 Aminorex C9H10N2O 2207-50-3 Pharmaceutical metabolite Psychoactive [M + H]+ S 0.89 

A20 Amprolium C14H20Cl2N4 137-88-2 Veterinary drug Anti-coccidial [M + H]+ S 0.87 

A21 Anabasine C10H14N2 494-52-0 Pesticide Insecticide [M + H]+ S 0.88 

A22 Antipyrine C11H12N2O 60-80-0 Pharmaceutical Analgesic, antipyretic [M + H]+ S 10.3 

A23 Apophedrin C8H11NO 7568-93-6 Pharmaceutical 
Nasal congestion, control 
of urinary incontinence, 

priapism and obesity 
[M + H]+ S 0.89 

A24 Atenolol C14H22N2O3 29122-68-7 Pharmaceutical Beta blocker [M + H]+ S 0.88 

A25 Atrazine C8H14ClN5 1912-24-9 Pesticide Herbicide [M + H]+ C 11 

A26 Azoxystrobin C22H17N3O5 131860-33-8 Pesticide Fungicide [M + H]+ S 12.16 

A27 Azoxystrobin acid C21H15N305 1185255-09-7 Pesticide Metabolite Fungicide [M + H]+ S 11.38 

A28 BAC 12 C21H38N+ 8001-54-5 Pesticide Biocide [M + H]+ S 14 

A29 Benzisothiazolone C7H5NOS 2634-33-5 Pesticide Biocide [M + H]+ S 9 

A30 Benzocaine C9H11NO2 94-09-7 Pharmaceutical Anesthetic [M + H]+ S 8.69 

A31 Benzododecinium C21H38N+ 10328-35-5 Pharmaceutical Antiseptic [M + H]+ S 14 

A32 Benzovindiflupyr C18H15Cl2F2N3O 1072957-71-1 Pesticide Fungicide [M + H]+ S 14.04 

A33 Bethanidine C10H15N3 55-73-2 Pharmaceutical Antihypertensive [M + H]+ S 4.56 

A34 Bis(2-ethylhexyl) adipate C22H42O4 103-23-1 Plasticizer Plasticizer [M + H]+ S 17.6 

A35 Butoxycaine C17H27NO3 3772-43-8 Pharmaceutical Anesthetic [M + H]+ S 13.81 

A36 Caffeine C8H10N4O2 58-08-2 Stimulant Stimulant [M + H]+ S 5.72 

A37 
Carbamate ethyl-N-(3-

hydroxyphenyl)- 
C9H11NO3 7159-96-8 Pesticide Herbicide [M + H]+ S 0.89 

A38 Carbamazepine C15H12N2O 298-46-4 Pharmaceutical Psychoactive [M + H]+ S 10.54 

A39 Carbendazim C9H9N3O2 10605-21-7 Pesticide Fungicide [M + H]+ C 4.96 

A40 Carbofuran C12H15NO3 1563-66-2 Pesticide Insecticide, acaricide [M + H]+ S 9.13 

A41 
CGA 321113 (Trifloxystrobin 

metabolite) 
C19H17F3N2O4 252913-85-2 Pesticide metabolite Fungicide [M + H]+ S 14.04 

A42 Chlorantraniliprole C18H14BrCl2N5O2 500008-45-7 Pesticide Insecticide [M + H]+ S 11.69 

A43 Chlorfenvinphos C12H14Cl3O4P 470-90-6 Pesticide Insecticide, acaricide [M + H]+ S 14.04 

A44 Chlorimuronethyl C15H15ClN4O6S 90982-32-4 Pesticide Herbicide [M + H]+ S 12.61 

A45 Cholecalciferol C27H44O 67-97-0 Pharmaceutical Vitamin [M + H]+ S 17.51 

A46 Cortisol/Hydrocortisone C21H30O5 50-23-7 Pharmaceutical Hormone [M + H]+ S 13.12 

A47 Cortisone C21H28O5 53-06-5 Pharmaceutical Hormone [M + H]+ S 9.59 

A48 Cyanazine C9H13ClN6 21725-46-2 Pesticide Herbicide [M + H]+ C 9.4 

A49 Cyproconazole C15H18ClN3O 94361-06-5 Pesticide Fungicide [M + H]+ S 12.75 

A50 DEET (Diethyltoluamide) C12H17NO 134-62-3 Pesticide Insect repellent [M + H]+ S 11.26 

A51 Deethylatrazine (DEA) C6H10ClN5 6190-65-4 Pesticide metabolite Herbicide [M + H]+ C 7.89 

A52 Deisopropylatrazine (DIA) C5H8ClN5 1007-28-9 Pesticide metabolite Herbicide [M + H]+ C 6.04 
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Nº Compound  Formula CAS Class Subclass 
Ionization 

Mode 
Confirmed (C) or 

Suspected (S) 
RT 

(min)  

A53 Desvenlafaxine C16H25NO2 93413-62-8 Pharmaceutical Psychoactive [M + H]+ S 6.95 

A54 Diazepam C16H13ClN2O 439-14-5 Pharmaceutical Psychoactive [M + H]+ C 12.35 

A55 Diclosulam C13H10Cl2FN5O3S 145701-21-9 Pesticide  Herbicide [M + H]+ S 10.68 

A56 Difenoconazole C19H17Cl2N3O3 119446-68-3 Pesticide  Fungicide [M + H]+ C 14.5 

A57 
Dihydroquinoline-2-2-4-

trimethyl-1-2- 
C12H15N  147-47-7 Antioxidant Antioxidant [M + H]+ S 11.25 

A58 Dimethylanilin C8H11N 121-69-7 Pigment Pigment [M + H]+ S 0.89 

A59 Dinoterb C10H12N2O5 1420-07-1 Pesticide Herbicide [M - H]- S 14.08 

A60 Diphenylamine C12H11N 122-39-4 Pesticide Fungicide [M + H]+ S 12.89 

A61 Diuron C9H10Cl2N2O 330-54-1 Pesticide Herbicide [M + H]+ S 11.44 

A62 Divalproate C8H16O2 99-66-1 Pharmaceutical Psychoactive [M + H]+ S 12.52 

A63 Dodecylbenzenesulphonic acid C18H30O3S 27176-87-0 Saponifier Saponifier [M - H]- S 16.4 

A64 Ecgonine methyl ester C10H17NO3 7143 09 - 1 Illicit drug metabolite Illicit drug metabolite [M + H]+ S 0.88 

A65 Embutramide C17H27NO3 15687-14-6 Veterinary drug 
Preparation for 

euthanasia 
[M + H]+ S 13.81 

A66 Estradiol  C18H24O2 50-28-2 Pharmaceutical Hormone [M + H]+ S 13.46 

A67 Ethinylestradiol C20H24O2 57-63-6 Pharmaceutical Hormone [M + H]+ S 13.46 

A68 Ethoxyquin C14H19NO 91-53-2 Antioxidant Antioxidant [M + H]+ S 12.15 

A69 Eugenol C10H12O2 97-53-0 Pharmaceutical Antiseptic [M + H]+ S 16.93 

A70 Exemestane C20H24O2 107868-30-4 Pharmaceutical Breast cancer treatment [M + H]+ S 13.46 

A71 Fenpropimorph carboxylic acid C20H31NO3 121098-45-1 Pesticide metabolite Fungicide [M + H]+  S 8.83 

A72 Fexofenadine C32H39NO4 83799-24-0 Pharmaceutical Antihistamine [M + H]+ S 10.95 

A73 Fipronil C12H4Cl2F6N4OS 120068-37-3 Pesticide  Insecticide [M - H]- S 13.7 

A74 Fipronil desulfinyl C12H4Cl2F6N4 205650-65-3 Pesticide metabolite Insecticide [M - H]- S 13.55 

A75 Fipronil sulfide C12H4Cl2F6N4S 120067-83-6 Pesticide metabolite Insecticide [M - H]- S 13.9 

A76 Fipronilsulfone C12H4Cl2F6N4O2S 120068-36-2 Pesticide metabolite Insecticide [M - H]- C 14.17 

A77 Fluazifop C15H12F3NO4 83066-88-0 Pesticide Herbicide [M + H]+ S 12.08 

A78 Flubendiamide C23H22F7IN2O4S 272451-65-7 Pesticide Insecticide [M - H]- S 13.77 

A79 Fluconazole C13H12F2N6O 86386-73-4 Pharmaceutical Antifungal [M + H]+ S 7.59 

A80 Flumioxazin C19H15FN2O4 103361-09-7 Pesticide  Herbicide [M + H]+ S 15.15 

A81 Flutamide C11H11F3N2O3 13311-84-7 Pharmaceutical Cancer treatment [M - H]- C 12.57 

A82 Flutriafol C16H13F2N3O 76674-21-0 Pesticide Fungicide [M + H]+ S 11.25 

A83 Fluxapyroxad C18H12F5N3O 907204-31-3 Pesticide Fungicide [M + H]+ S 12.76 

A84 Furmecyclox C14H21NO3 60568-05-0 Pesticide Fungicide [M + H]+ S 10.23 

A85 Gabapentin C9H17NO2 60142-96-3 Pharmaceutical Psychoactive [M + H]+ S 6.78 

A86 Haloxyfop C15H11ClF3NO4 69806-34-4 Pesticide Herbicide [M + H]+ S 13.99 

A87 HMMA C11H17NO2 117652-28-5 Illicit drug metabolite Illicit drug metabolite [M + H]+ S 9.59 

A88 Hydroxybupropion C13H18ClNO2 92264-81-8 Pharmaceutical metabolite Psychoactive [M + H]+ S 7.88 

A89 Hydroxytestosterone C19H28O3 2141-17-5 Pharmaceutical metabolite Hormone [M + H]+ S 13.47 

A90 Ibuprofen C13H18O2 15687-27-1 Pharmaceutical Anti-inflammatory [M + H]+ S 9.83 

A91 Icaridin C12H23NO3 119515-38-7 Pesticide Insect repellent [M + H]+ S 11.94 

A92 Imazapic C14H17N3O3 104098-48-8 Pesticide Herbicide [M + H]+ S 0.88 

A93 Imazethapyr C15H19N3O3 81335-77-5 Pesticide Herbicide [M + H]+ S 9.27 

A94 Imidacloprid C9H10ClN5O2 138261-41-3 Pesticide Insecticide [M + H]+ S 6.76 

A95 Isoniazid C6H7N3O 54-85-3 Pharmaceutical Antibiotic [M + H]+ S 0.89 

A96 Isouron C10H17N3O2 55861-78-4 Pesticide Herbicide [M + H]+ S 0.88 

A97 Levetiracetam C8H14N2O2 102767-28-2 Pharmaceutical Psychoactive [M + H]+ S 0.87 

A98 Lincomycin C18H34N2O6S 154-21-2 Pharmaceutical Antibiotic [M + H]+ S 9.04 

A99 Linoleic acid C18H32O2 60-33-3 Pesticide Formicide [M + H]+ S 15.21 

A100 L-Lysine  C6H14N2O2 56-87-1 Pharmaceutical Amino acid [M + H]+ S 0.88 

A101 Losartan C22H23ClN6O 114798-26-4 Pharmaceutical Anti hypertensive [M + H]+ C 11.61 

A102 Megestrol acetate  595-33-5 C24H32O4 Pharmaceutical Hormone [M + H]+ S 9.05 

A103 Memantine C12H21N 19982-08-2 Pharmaceutical Alzheimer's treatment [M + H]+ S 12.19 

A104 Methoxyfenozide C22H28N2O3 161050-58-4 Pesticide Insecticide [M + H]+ S 10.32 

A105 Methyl p-hydroxybenzoate C8H8O3 99-76-3 Antioxidant Antioxidant [M + H]+ S 6.42 

A106 Methylprednisolone C22H30O5 83-43-2 Pharmaceutical 
Antiallergic and anty-

inflamatory 
[M + H]+ S 13.46 

A107 Metominostrobin 2 C16H16N2O3 133408-50-1 Pesticide Fungicide [M + H]+ S 11.64 

A108 Molinate C9H17NOS 2212-67-1 Pesticide Herbicide [M + H]+ S 10.86 

A109 Myclobutanil C15H17ClN4 88671-89-0 Pesticide Fungicide [M + H]+ S 12.94 

A110 Naftidrofuryl C24H33NO3 31329-57-4 Pharmaceutical Vasodilator [M + H]+ S 0.88 

A111 Naphthalene acetamide C12H11NO 86-86-2 Pesticide Growth regulator [M + H]+ S 10 

A112 Nicotine C10H14N2 54-11-5 Pesticide Insecticide [M + H]+ S 0.88 

https://pubchem.ncbi.nlm.nih.gov/#query=C12H15N
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Nº Compound Formula CAS Class Subclass 
Ionization 

Mode 
Confirmed (C) or 

Suspected (S) 
RT 

(min)  

A113 Nikethamide C10H14N2O 59-26-7 Illicit drug 
Anti doping 

respiratory,illicit drug 
[M + H]+ S 0.88 

A114 Nimesulide C13H12N2O5S 51803-78-2 Pharmaceutical Anti-inflammatory [M - H]- C 11.63 

A115 N-Methyl pregabalin C9H19NO2 1155843-61-0 Pharmaceutical Psychoactive [M + H]+ S 10.47 

A116 Norcocaine C16H19NO4 18717-72-1 Illicit drug metabolite (cocaine) Illicit drug [M + H]+ S 6.6 

A117 Norethisterone C20H26O2 68-22-4 Pharmaceutical Hormone [M + H]+ S 14.07 

A118 Octhilinone C11H19NOS 25339-53-1 Pesticide Fungicide [M + H]+ S 13.36 

A119 Oxprenolol C15H23NO3 6452-71-7 Pharmaceutical Antihypertensive [M + H]+ S 0.87 

A120 Oxyfluorfen C15H11ClF3NO4 42874-03-3 Pesticide Herbicide [M + H]+ S 13.99 

A121 Oxyphencyclimine C20H28N2O3 125-53-1 Pharmaceutical Anticholinergic [M + H]+ S 0.88 

A122 Paracetamol C8H9NO2  103-90-2 Pharmaceutical Analgesic [M + H]+ C 3.62 

A123 Phenmedipham C16H16N2O4 13684-63-4 Pesticide  Herbicide [M + H]+ S 8.36 

A124 Phenol C6H6O 108-95-2 Pharmaceutical Antiseptic [M + H]+ S 8.75 

A125 p-Hydroxybenzoic acid C7H6O3 99-96-7 Antioxidant 
Antimicrobial 
preservative 

[M + H]+ S 6.21 

A126 Picoxystrobin C18H16F3NO4 117428-22-5 Pesticide Fungicide [M + H]+ S 13.64 

A127 Propazine C9H16N5Cl 139-40-2 Pesticide Herbicide [M + H]+ C 12.11 

A128 Propiconazole C15H17Cl2N3O2 60207-90-1 Pesticide Fungicide [M + H]+ S 14.01 

A129 Propranolol C16H21NO2 525-66-6 Pharmaceutical Antihypertensive [M + H]+ C 9.42 

A130 Prothioconazole-desthio C14H15Cl2N3O 120983-64-4 Pesticide metabolite Fungicide [M + H]+ S 13.38 

A131 Pseudoephedrine C10H15NO 90-82-4 Pharmaceutical Nasal decongestant [M + H]+ S 11.12 

A132 Pyraclostrobin C19H18ClN3O4 175013-18-0 Pesticide Fungicide [M + H]+ S 14.1 

A133 Pyrethrin 1 C21H28O3 121-21-1 Pesticide Insecticide [M + H]+ S 14.23 

A134 Pyrethrin 2 C22H28O5 121-29-9 Pesticide Insecticide [M + H]+ S 13.45 

A135 Pyridoxine C8H11NO3 65-23-6 Pharmaceutical Vitamin [M + H]+ S 0.89 

A136 Saflufenacil C17H17ClF4N4O5S 372137-35-4 Pesticide Herbicide [M + H]+ S 11.88 

A137 Sebuthylazin C9H16ClN5 7286-69-3 Pesticide Herbicide [M + H]+ S 12.34 

A138 Sertralina C17H17Cl2N 79617-96-2 Pharmaceutical Psychoactive [M + H]+ S 11.95 

A139 Simazine C7H12ClN5 122-34-9 Pesticide Herbicide [M + H]+ C 9.65 

A140 Spirodiclofen C21H24Cl2O4 148477-71-8 Pesticide Acaricide, insecticide [M + H]+ S 16.89 

A141 Tebuconazole C16H22ClN3O 80443-41-0 Pesticide Fungicide [M + H]+ C 13.93 

A142 Terbuthylazine C9H16ClN5 5915-41-3 Pesticide  Herbicide [M + H]+ S 12.35 

A143 Theobromine  C7H8N4O2 83-67-0 Pharmaceutical 
Vasodilator,diuretic, and 

heart stimulant 
[M + H]+ S 4.59 

A144 Thioridazine C21H26N2S2 50-52-2 Pharmaceutical Psychoactive [M + H]+ S 11.16 

A145 Tibolone C21H28O2 5630-53-5 Pharmaceutical Hormone [M + H]+ S 14.69 

A146 Tramadol-n,n-Didesmethyl C15H23NO2 73806-55-0 Pharmaceutical metabolite Analgesic [M + H]+ S 15.24 

A147 Trifloxystrobin C20H19F3N2O4 141517-21-7 Pesticide Fungicide [M + H]+ S 14.66 

A148 Triphenylphosphate C18H15O4P 115-86-6 Plasticizer Plasticizer [M + H]+ S 14.06 

A149 Uniconazole C15H18ClN3O 83657-22-1 Pesticide Growth control [M + H]+ S 12.75 

A150 Venlafaxine C17H27NO2 93413-69-5 Pharmaceutical Psychoactive [M + H]+ S 11.63 
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Figure S2. Classification of identified microcontaminants. 

 

 

Figure S3. Subclassification of identified pharmaceuticals. 
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Figure S4. Subclassification of identified pesticides. 
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Table S5. Identified microcontaminants by LC-QTOF MS analysis in surface waters evaluated. 

Nº Compound 

Screening Results 

Sampling Point 1   Sampling Point 2   Sampling Point 3   

Blank 

Sampling 
Campaign 

1 
Sampling Campaign 2   

Sampling 
Campaign 

1 
Sampling Campaign 2   

Sampling 
Campaign 

1 
Sampling Campaign 2   

1 2 3 4 5 6 7 8 9   1 2 3 4 5 6 7 8 9   1 2 3 4 5 6 7 8 9   

A1 19-Nortestosterone   X                                     X                     

A2 2,4-D  X X X               X X X               X X X   X   X         

A3 2-aminoflubendazole                           X                   X X       X     

A4 2-aminonicotinic acid X X X X X X   X X   X X X X X X X X X   X X X X X X X X X     

A5 2-hydroxy-atrazine X X X X X X X X X   X X X X X X X X X   X X X X X X X X X     

A6 2-hydroxyquinoline           X             X                 X                   

A7 2-phenethylamine         X                                                     

A8 3-phenyl-2-propenal  X   X           X                                             

A9 4-acetamidoantipyrine     X X X X X X     X     X X X X X X   X X X X X X X   X     

A10 4-methylamino-antipyrine   X X X X X X X X   X X X X X X   X X       X X   X     X     

A11 8-hydroxyquinoline           X                 X X   X       X   X   X           

A12 Acebutolol X X X X X X X X X   X X X X   X X X X   X X X X X X   X X     

A13 Acequinocyl   X                                             X       X     

A14 Acetanilide                                                 X             

A15 Adrenalone                             X             X                   

A16 Alpha-PVP X X X X X X X       X X X X   X   X     X X X X X X X         

A17 L-glutamic acid                                           X                   

A18 L-tryptophan   X X X X X         X X X X X             X X X   X     X     

A19 Aminorex                           X                                   

A20 Amprolium                                             X                 

A21 Anabasine   X X X X X   X X   X X X X X X X X X   X   X X X     X X     

A22 Antipyrine / Phenazone         X                                                     

A23 Apophedrin     X X   X             X X                   X X             

A24 Atenolol X X X X X X     X   X   X X X X         X X X X X X X         

A25 Atrazine X X X X X X X X X   X X X X X X X X X   X X X X X X X X X     

A26 Azoxystrobin X X X X X X X X X   X X X X X X X X X   X X X X X X X X X     

A27 Azoxystrobin acid X X X X X X X X X   X X X X X X X X X   X X X X X   X X X     

A28 BAC 12   X X X X X X X X   X X X X   X X X     X X X X X X X X X     

A29 Benzisothiazolone X X X X   X X X X   X X X X X X X X X     X X X X X X X X     

A30 Benzocaine                                           X                 X 

A31 Benzododecinium   X X X X X X X X   X X X X   X X X     X X X X X X X X X     

A32 Benzovindiflupyr       X   X X                                                 

A33 Bethanidine   X X       X X X   X         X X   X   X       X X X X X     

A34 Bis(2-ethylhexyl) adipate                                           X   X               

A35 Butoxycaine                                         X                     

A36 Caffeine X X X X X X X X X   X X X X X X X X X   X X X X X X X X X     

A37 
Carbamate ethyl-N-(3-

hydroxyphenyl)- 
                        X   X                                 

A38 Carbamazepine X   X   X   X X                                               

A39 Carbendazim X X X X X X   X X   X X X X X X X X X   X X X X X X X X X     

A40 Carbofuran X   X               X                   X                     

A41 
CGA 321113 (Trifloxystrobin 

metabolite) 
X X X X X X X X X   X X X X X X X X X   X X X X X X X X X     

A42 Chlorantraniliprole   X X X X X X X X     X X X X X   X X       X   X X X X X     

A43 Chlorfenvinphos           X                                                   

A44 Chlorimuronethyl X X X               X X X               X X X                 

A45 Cholecalciferol                                         X                     

A46 Cortisol/Hydrocortisone     X X X                           X       X     X     X     

A47 Cortisone     X     X                                                   
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Nº Compound  

Screening Results (continue...) 

Sampling Point 1   Sampling Point 2   Sampling Point 3   

Blank 
Sampling 
Campaign 

1 
Sampling Campaign 2   

Sampling 
Campaign 

1 
Sampling Campaign 2   

Sampling 
Campaign 

1 
Sampling Campaign 2   

1 2 3 4 5 6 7 8 9   1 2 3 4 5 6 7 8 9   1 2 3 4 5 6 7 8 9   

A48 Cyanazine       X X       X                   X                   X     

A49 Cyproconazole   X     X X X X X   X X X X X X X X X       X X X X X X X     

A50 DEET (Diethyltoluamide) X X X X X X X X X   X X X X X X X X X   X X X X X X X X X     

A51 Deethylatrazine (DEA) X X X X X X X X X   X X X X X X X X X   X X X X X X X X X     

A52 Deisopropylatrazine (DIA) X X X     X         X X X               X X X                 

A53 Desvenlafaxine           X                                                   

A54 Diazepam       X             X                   X                     

A55 Diclosulam   X X                 X X                 X X                 

A56 Difenoconazole               X             X     X X           X     X       

A57 
Dihydroquinoline-2-2-4-trimethyl-

1-2- 
        X       X   X             X X   X   X X X             

A58 Dimethylanilin     X X   X                       X             X       X     

A59 Dinoterb                                         X                   X 

A60 Diphenylamine   X X X             X   X               X   X X X           X 

A61 Diuron X                                                             

A62 Divalproate X     X X           X X         X       X X       X           

A63 Dodecylbenzenesulphonic acid X X X X X X   X X   X X X X X X X X X   X   X X X X X X X   X 

A64 Ecgonine methyl ester                                           X                   

A65 Embutramide                                         X                     

A66 Estradiol X                                                             

A67 Ethinylestradiol                               X                               

A68 Ethoxyquin                         X                 X                   

A69 Eugenol           X                                                   

A70 Exemestane                     X                                         

A71 Fenpropimorph carboxylic acid               X X               X X X               X X       

A72 Fexofenadine               X                                               

A73 Fipronil X X X X X X X X X   X X X X X X X X X   X X X X X X X X X     

A74 Fipronil desulfinyl   X X X X X X X X     X X X X X   X X     X X X X X X X       

A75 Fipronil sulfide      X X X   X             X X     X           X     X       

A76 Fipronilsulfone X X X X X X   X X   X X X X X X X X X   X X X X X X X X X     

A77 Fluazifop           X                                                   

A78 Flubendiamide X X X X X X X X X   X X X X X X X X X   X X X X X X X X X   X 

A79 Fluconazole               X                                               

A80 Flumioxazin                           X               X   X               

A81 Flutamide X X X X X X X X X   X X X X X X X X X   X X X X X X X X X   X 

A82 Flutriafol       X     X X X   X   X X       X X       X X X X     X     

A83 Fluxapyroxad   X X X X X X X X       X X X X X X X   X X X X X X X X X     

A84 Furmecyclox                                               X               

A85 Gabapentin X                                                             

A86 Haloxyfop                                                   X           

A87 HMMA             X                       X               X         

A88 Hydroxybupropion             X X                                     X         

A89 Hydroxytestosterone                               X                   X           

A90 Ibuprofen X   X X X X X X X     X X X X X X X       X X X X X           

A91 Icaridin X X X X X X X X X   X   X X X X X X X   X X X X X X X X X     

A92 Imazapic   X                                 X                         

A93 Imazethapyr X X X X             X X X X             X X X                 

A94 Imidacloprid X X X X X X X X X     X X X X X X X X   X X X X X   X X X     

A95 Isoniazid   X X   X X X X X     X X X X X X X X   X X X X X X   X X     

A96 Isouron   X   X X   X X X             X X X X       X X X X X X X     
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Nº Compound  

Screening Results (continue...) 

Sampling Point 1   Sampling Point 2   Sampling Point 3   

Blank 
Sampling 
Campaign 

1 
Sampling Campaign 2   

Sampling 
Campaign 

1 
Sampling Campaign 2   

Sampling 
Campaign 

1 
Sampling Campaign 2   

1 2 3 4 5 6 7 8 9   1 2 3 4 5 6 7 8 9   1 2 3 4 5 6 7 8 9   

A97 Levetiracetam X X X X X   X X X     X X X   X X X X   X   X X   X X X X     

A98 Lincomycin                           X   X                               

A99 Linoleic acid X   X X X X X X X   X   X X X X X X X   X X   X X X   X X     

A100 L-Lysine         X                               X                     

A101 Losartan     X     X                         X                         

A102 Megestrol acetate                     X       X           X         X           

A103 Memantine   X X   X     X X     X X   X   X   X   X X   X X X X X X   X 

A104 Methoxyfenozide     X     X     X           X                     X X         

A105 Methyl p-hydroxybenzoate                 X                                   X         

A106 Methylprednisolone X       X X X X X   X         X X X X           X     X X     

A107 Metominostrobin 2           X                                                   

A108 Molinate     X X   X X X X   X     X X X X X X     X X   X X X X       

A109 Myclobutanil   X                                                           

A110 Naftidrofuryl         X                                   X           X     

A111 Naphthalene acetamide                             X                                 

A112 Nicotine X X X X X X X X X   X X X X X X X X X   X X X X X X X X X     

A113 Nikethamide         X X                     X X           X               

A114 Nimesulide X       X           X                   X                     

A115 N-Methyl pregabalin X                                                             

A116 Norcocaine   X                   X   X             X                     

A117 Norethisterone X                     X   X                           X       

A118 Octhilinone         X                                           X         

A119 Oxprenolol                                                     X         

A120 Oxyfluorfen                                                   X           

A121 Oxyphencyclimine       X   X                             X   X X X             

A122 Paracetamol     X X X           X     X X X           X   X       X       

A123 Phenmedipham                                                     X         

A124 Phenol                                         X                     

A125 p-Hydroxybenzoic acid         X X             X X X       X       X           X     

A126 Picoxystrobin     X X X X X X X         X X X X X X   X     X X X X X       

A127 Propazine   X X                 X                   X                   

A128 Propiconazole X X X X X X X       X X X X   X         X X X X X X X         

A129 Propranolol X X X X X X X X X   X X   X   X X X X     X X   X   X   X     

A130 Prothioconazole-desthio       X X X X X X         X X X X X X           X X X X X     

A131 Pseudoephedrine                                     X                 X       

A132 Pyraclostrobin                                                 X             

A133 Pyrethrin 1                                               X               

A134 Pyrethrin 2           X X               X                                 

A135 Pyridoxine         X       X       X                                     

A136 Saflufenacil X   X                   X               X   X                 

A137 Sebuthylazin X   X         X     X       X       X     X           X       

A138 Sertralina                                             X                 

A139 Simazine X X X               X X X               X X X                 

A140 Spirodiclofen         X                                                     

A141 Tebuconazole   X     X X     X           X   X                 X X         

A142 Terbuthylazine X X X         X     X X     X       X     X           X       

A143 Theobromine                                             X                 

A144 Thioridazine               X                                               

A145 Tibolone                                 X                             
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Nº Compound  

Screening Results (continue...) 

Sampling Point 1   Sampling Point 2   Sampling Point 3   

Blank 
Sampling 
Campaign 

1 
Sampling Campaign 2   

Sampling 
Campaign 

1 
Sampling Campaign 2   

Sampling 
Campaign 

1 
Sampling Campaign 2   

1 2 3 4 5 6 7 8 9   1 2 3 4 5 6 7 8 9   1 2 3 4 5 6 7 8 9   

A146 Tramadol-n,n-Didesmethyl                           X                                   

A147 Trifloxystrobin       X   X X             X X X X               X X           

A148 Triphenylphosphate X X X   X X X X X     X X X   X   X X   X X   X X X   X X     

A149 Uniconazole   X X   X X X X X   X X X X X X X X X     X X X X X X X X     

A150 Venlafaxine                                                     X         

Total 47 55 64 54 62 64 46 54 52   52 47 54 56 51 52 45 49 54   56 56 57 54 58 53 49 47 48   7 

Average of compounds 
identified bysample point 

53 
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Section SVII. In silico predictions for identified microcontaminants – (Q)SAR data. 

 

Table S6. (Q)SAR results for identified microcontaminants. 

Nº  Compound 
Mobility 
(log Koc) 

Half-life 
(days) 

Biodegradability 
(Bowin 5) 

STP Total 
removal 

(%)  
PBT 

Estrogen 
Receptor 
Binding 

Mutagenicity Carcinogenicity 

A1 19-Nortestosterone 3.15 37.5 0.375 3.49 0.395 15 0.05 0.8 

A2 2,4-D  1.47 37.5 0.551 4.36 0.185 0 0 0 

A3 2-aminoflubendazole 3.63 60.0 0.133 2.52 0.405 0 0.5 0.65 

A4 2-aminonicotinic acid 1 37.5 0.546 1.87 0.314 0 0 0.5 

A5 2-hydroxy-atrazine 2.98 15.0 0.324 1.85 0.296 0 0 0.4 

A6 2-hydroxyquinoline 1.84 15.0 0.345 1.92 0.22 0 0.1 0.7 

A7 2-phenethylamine 2.7 15.0 0.401 1.96 0.273 0 0 0.375 

A8 3-phenyl-2-propenal  1.57 15.0 0.569 2.36 0.311 0 0 0.025 

A9 4-acetamidoantipyrine 1.82 37.5 0.319 1.85 0.351 0 0.35 0.75 

A10 4-methylamino-antipyrine 1.89 15.0 0.317 1.86 0.406 0 0.1 0.65 

A11 8-hydroxyquinoline 3.31 15.0 0.366 2.16 0.265 5 1 0.25 

A12 Acebutolol 1.4 37.5 0.438 2.05 0.402 0 0 0.5 

A13 Acequinocyl 5.2 37.5 0.644 93.9 0.448 0 0.15 0.75 

A14 Acetanilide 1.55 15.0 0.413 1.9 0.193 0 0 0.625 

A15 Adrenalone 2.06 15.0 0.446 1.86 0.208 10 0 0.5 

A16 Alpha-PVP 3.17 37.5 0.154 26.1 0.354 0 0 0.475 

A17 L-glutamic acid 1.13 8.7 0.924 1.85 0.188 0 0 0.325 

A18 L-tryptophan 2.51 15.0 0.496 1.85 0.273 0 0 0 

A19 Aminorex 2.57 15.0 0.185 1.9 0.29 0 0.1 0.425 

A20 Amprolium 1.12 15.0 0.116 1.85 0.411 0 OD* OD* 

A21 Anabasine 2.98 37.5 0.202 1.88 0.211 0 0 0.575 

A22 Antipyrine 2.12 15.0 0.334 1.86 0.301 0 0 1 

A23 Apophedrin 1.59 15.0 0.355 1.85 0.206 0 0 0.4 

A24 Atenolol 1.83 37.5 0.394 1.85 0.316 0 0 0.6 

A25 Atrazine 2.35 60.0 0.235 3.45 0.332 0 0 1 

A26 Azoxystrobin 3.45 60.0 0.408 3.1 0.508 0 0 0.5 

A27 Azoxystrobin acid 2.84 37.5 0.474 1.92 0.456 0 0 0.55 

A28 BAC 12 5.43 15.0 0.392 5.14 0.413 0 OD* OD* 

A29 Benzisothiazolone 1.54 15.0 0.318 1.86 0.372 0 0.05 0.45 

A30 Benzocaine 1.77 15.0 0.466 2.14 0.286 5 0.1 0.7 

A31 Benzododecinium 5.29 15.0 0.447 75.4 0.413 0 0 0.425 

A32 Benzovindiflupyr 4.33 60.0 -0.218 41 0.49 0 0.15 0.7 

A33 Bethanidine 3.07 15.0 0.384 1.99 0.206 0 0.15 0.5 

A34 Bis(2-ethylhexyl) adipate 4.56 8.7 0.821 94 0.243 0 0 0.5 

A35 Butoxycaine 3.31 37.5 0.534 32.9 0.294 0 0 0.4 

A36 Caffeine 1 15.0 0.368 1.85 0.308 0 0 0 

A37 
Carbamate Ethyl-N-(3-

hydroxyphenyl)- 
2.26 15.0 0.177 1.95 0.285 10 0.15 0.475 

A38 Carbamazepine 3.12 37.5 0.173 2.96 0.432 0 0.15 0.725 

A39 Carbendazim 2.58 37.5 0.0976 1.98 0.198 0 1 0.575 

A40 Carbofuran 1.98 37.5 0.117 2.68 0.331 0 0 0.575 

A41 
CGA 321113 (Trifloxystrobin 

metabolite) 
5.87 60.0 0.523 93.2 0.364 0 0 0.55 

A42 Chlorantraniliprole 2.69 180.0 -0.113 4.1 0.355 0 0.05 0.6 

A43 Chlorfenvinphos 3.1 60.0 -0.0262 22.2 0.47 0 0 0.625 

A44 Chlorimuronethyl 1.86 60.0 0.281 9.22 0.202 0 0 0.5 

A45 Cholecalciferol 1.38 37.5 0.183 94 0.385 15 0 0.475 

A46 Cortisol/Hydrocortisone 2.05 60.0 0.226 2.01 0.33 15 0.05 0.7 

A47 Cortisone 2.05 60.0 0.136 1.96 0.329 0 0.2 0.85 

A48 Cyanazine 2.13 180.0 0.169 2.51 0.327 0 0.1 0.375 

A49 Cyproconazole 3.08 60.0 -0.0259 4.92 0.375 0 0 0.675 
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Nº  Compound  
Mobility 
(log Koc) 

 Half-life 
(days) 

Biodegradability 
(Bowin 5) 

STP Total 
removal 

(%)  
PBT 

Estrogen 
Receptor 
Binding 

Mutagenicity Carcinogenicity 

A50 DEET (Diethyltoluamide) 2.05 37.5 0.423 2.45 0.158 0 0 0.375 

A51 Deethylatrazine (DEA) 2.02 60.0 0.214 1.98 0.31 0 0 0.55 

A52 Deisopropylatrazine (DIA) 1.84 60.0 0.287 1.9 0.295 0 0 0.55 

A53 Desvenlafaxine 3.24 60.0 -0.0658 3.9 0.439 15 0 0.625 

A54 Diazepam 3.88 37.5 0.153 4.42 0.475 0 0 0 

A55 Diclosulam 2.46 180.0 0.0381 13.3 0.391 0 0 0.5 

A56 Difenoconazole 3.77 180.0 -0.134 45.3 0.585 0 0 0.575 

A57 
Dihydroquinoline-2-2-4-trimethyl-

1-2- 
3.04 37.5 0.149 9.37 0.343 0 0 0.8 

A58 Dimethylanilin 1.9 37.5 0.274 5.51 0.258 0 0 1 

A59 Dinoterb 3.51 60.0 -0.166 16.6 0.376 0 0.15 0.6 

A60 Diphenylamine 2.92 37.5 0.164 13.2 0.358 0 0 0.425 

A61 Diuron 2.04 37.5 0.19 3.73 0.311 0 0.75 0.2 

A62 Divalproate 1.43 15.0 0.76 4.24 0.232 0 0 0.75 

A63 Dodecylbenzenesulphonic acid 4.1 15.0 0.502 69.5 0.354 0 0 0.4 

A64 Ecgonine methyl ester 1 15.0 0.591 1.85 0.277 0 0 0.475 

A65 Embutramide 2.63 37.5 0.493 5.29 0.261 0 0 0.625 

A66 Estradiol 4.19 37.5 0.212 30.5 0.398 20 0 0.95 

A67 Ethinylestradiol 4.65 60.0 -0.0902 17.5 0.403 15 0 0.825 

A68 Ethoxyquin 3.1 37.5 0.226 24.5 0.245 0 0 0.075 

A69 Eugenol 2.83 15.0 0.465 3.18 0.248 5 0 0.225 

A70 Exemestane 3.74 60.0 0.093 5.29 0.33 0 0.05 0.8 

A71 Fenpropimorph carboxylic acid 3.29 37.5 0.276 1.87 0.346 0 0 0.575 

A72 Fexofenadine 4.94 60.0 -0.099 4.36 0.47 0 0 0.475 

A73 Fipronil 3.77 180.0 0.0167 30.1 0.544 0 0.1 0.575 

A74 Fipronil desulfinyl 4.48 180.0 0.0925 41 0.502 0 0.15 0.65 

A75 Fipronil sulfide 4.73 180.0 0.0419 71.2 0.552 0 0.15 0.65 

A76 Fipronilsulfone 3.82 180.0 -0.0086 51.8 0.498 0 0.1 0.675 

A77 Fluazifop 2.91 60.0 0.649 6.64 0.414 0 0 0.725 

A78 Flubendiamide 4.2 180.0 -0.673 39.9 0.389 0 0.05 0.6 

A79 Fluconazole 3.59 180.0 0.115 1.86 0.462 0 0.15 0.825 

A80 Flumioxazin 2.96 60.0 0.258 3.28 0.468 0 0.2 0.625 

A81 Flutamide 3.06 60.0 0.139 10 0.439 0 0.25 0.725 

A82 Flutriafol 3.6 180.0 0.0981 2.62 0.503 0 0 0.625 

A83 Fluxapyroxad 4.54 180.0 0.17 12.4 0.547 0 0.05 0.575 

A84 Furmecyclox 2.63 37.5 0.293 49.6 0.406 0 0 0.6 

A85 Gabapentin 1.73 15.0 0.585 1.85 0.202 0 0 1 

A86 Haloxyfop 3.13 180.0 0.555 10.6 0.34 0 0 0.65 

A87 HMMA 2.87 37.5 0.432 2 0.236 10 0.05 0.5 

A88 Hydroxybupropion 1.82 37.5 0.244 2.82 0.375 0 0.15 0.525 

A89 Hydroxytestosterone 2.24 37.5 0.369 2.4 0.36 0 0.05 0.8 

A90 Ibuprofen 2.63 15.0 0.499 28.7 0.222 0 0 0.225 

A91 Icaridin 1.9 15.0 0.288 3.31 0.406 0 0.25 0.425 

A92 Imazapic 2.25 60.0 0.429 3.01 0.435 0 0.15 0.65 

A93 Imazethapyr 2.53 60.0 0.466 3.41 0.248 0 0 0.65 

A94 Imidacloprid 2.99 60.0 0.159 1.86 0.457 0 0.15 0.55 

A95 Isoniazid 1 37.5 0.0034 1.85 0.351 0 1 0.75 

A96 Isouron 2.19 37.5 0.301 2.23 0.398 0 0 0.4 

A97 Levetiracetam 1.07 37.5 0.388 1.85 0.193 0 0.15 0.425 

A98 Lincomycin 1.84 37.5 0.47 1.85 0.31 0 0 0.575 

A99 Linoleic acid 4.07 15.0 0.751 93.9 0.318 0 0 0.475 

A100 L-Lysine 1 8.7 0.644 1.85 0.194 0 1 0.325 

A101 Losartan 5.15 37.5 0.159 30.5 0.389 0 0.15 0.45 

A102 Megestrol acetate 3.85 60.0 0.217 30.1 0.373 0 0.05 0.7 

A103 Memantine 2.82 60.0 0.0671 9.63 0.287 0 0 0.35 

A104 Methoxyfenozide 3.04 60.0 -0.208 18.4 0.337 0 0.25 0.625 
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Nº  Compound  
Mobility 
(log Koc) 

 Half-life 
(days) 

Biodegradability 
(Bowin 5) 

STP Total 
removal 

(%) 
PBT 

Estrogen 
Receptor 
Binding 

Mutagenicity Carcinogenicity 

A105 Methyl p-hydroxybenzoate 1.94 15.0 0.626 2.21 0.209 5 0 0.45 

A106 Methylprednisolone 2.26 60.0 0.2 2.11 0.275 15 0.05 0.7 

A107 Metominostrobin 2 4.03 37.5 0.3 2.68 0.356 0 0.05 0.725 

A108 Molinate 2.26 37.5 0.212 8.13 0.357 0 0 0.55 

A109 Myclobutanil 3.78 37.5 0.113 5.21 0.444 0 0 0.625 

A110 Naftidrofuryl 4.94 60.0 0.222 86.4 0.241 0 0.05 0.525 

A111 Naphthalene acetamide 3.1 37.5 0.322 2.06 0.219 0 1 0.625 

A112 Nicotine 2.72 37.5 0.0731 1.91 0.256 0 0 0.3 

A113 Nikethamide 1.54 37.5 0.427 1.86 0.267 0 0 0.5 

A114 Nimesulide 2.75 37.5 0.0021 3.41 0.492 0 0.5 0.775 

A115 N-Methyl pregabalin 1.45 15.0 0.647 1.85 0.272 0 0 0.55 

A116 Norcocaine 2.89 15.0 0.661 2.21 0.338 0 0 0.575 

A117 Norethisterone 3.62 60.0 0.0728 5.44 0.503 0 0 0.85 

A118 Octhilinone 2.93 15.0 0.425 2.96 0.39 0 0 0.675 

A119 Oxprenolol 2.26 37.5 0.428 2.35 0.246 0 0 0.225 

A120 Oxyfluorfen 4.6 180.0 0.149 67.4 0.65 0 0.475 0.7 

A121 Oxyphencyclimine 3.66 37.5 0.311 13.5 0.338 0 0 0.75 

A122 Paracetamol 1.65 15.0 0.426 1.86 0.214 5 0 0.525 

A123 Phenmedipham 3.41 37.5 -0.262 15.3 0.434 0 1 0.55 

A124 Phenol 2.27 15.0 0.446 1.98 0.234 5 0 0 

A125 p-Hydroxybenzoic acid 1.33 15.0 0.721 2 0.193 5 0 0.25 

A126 Picoxystrobin 3.89 180.0 0.536 17.5 0.368 0 0 0.575 

A127 Propazine 2.54 60.0 0.163 5.14 0.374 0 0 0.55 

A128 Propiconazole 3.19 60.0 -0.0643 19.1 0.496 0 0 0.625 

A129 Propranolol 2.95 15.0 0.35 12.6 0.309 0 0 0.55 

A130 Prothioconazole-desthio 3.04 180.0 -0.117 6.14 0.447 0 0.05 0.7 

A131 Pseudoephedrine 1.86 15.0 0.301 1.9 0.212 0 0 0.275 

A132 Pyraclostrobin 4.68 60.0 0.0952 29.6 0.591 0 0.3 0.7 

A133 Pyrethrin 1 4.01 37.5 0.427 91.7 0.375 0 0.25 0.8 

A134 Pyrethrin 2 3.47 37.5 0.589 45.3 0.356 0 0.15 0.825 

A135 Pyridoxine 1 15.0 0.651 1.85 0.215 0 0 0.65 

A136 Saflufenacil 2.14 180.0 0.034 1.97 0.419 0 0.15 0.6 

A137 Sebuthylazin 2.63 60.0 0.239 3.45 0.369 0 0.1 0.675 

A138 Sertralina 5.23 60.0 -0.211 85 0.651 0 0.15 0.575 

A139 Simazine 2.17 60.0 0.308 2.45 0.364 0 0 0.55 

A140 Spirodiclofen 4.63 180.0 0.268 91.1 0.405 0 0 0.55 

A141 Tebuconazole 3.19 60.0 -0.0104 18.4 0.522 0 0 0.7 

A142 Terbuthylazine 2.5 60.0 0.198 11 0.33 0 0.1 0.675 

A143 Theobromine  1 15.0 0.351 1.85 0.303 0 0 0.375 

A144 Thioridazine 5.09 60.0 -0.174 91.7 0.537 0 0 0.475 

A145 Tibolone 3.66 60.0 0.0964 8.47 0.392 0 0 0.725 

A146 Tramadol-n,n-didesmethyl 2.71 37.5 0.277 4.31 0.338 0 0 0.525 

A147 Trifloxystrobin 6.48 60.0 0.456 56 0.383 0 0.15 0.55 

A148 Triphenylphosphate 4.03 37.5 -0.0331 60.7 0.384 0 0 0.375 

A149 Uniconazole 2.97 37.5 0.122 17.6 0.495 0 0 0.6 

A150 Venlafaxine 2.94 60.0 -0.0053 7.8 0.428 0 0 0.625 

             * OD (out of domain) – The method used was not applicable to this molecule. 
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Table S7. In vivo mutagenicity (Micronucleus) alerts by ISS for identified microcontaminants. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Compound Alert Structure 

8-Hydroxyquinoline 

H-acceptor-

path3-H-

acceptor 
 

Carbendazim 

H-acceptor-

path3-H-

acceptor 

 

Diuron No alert found  

Isoniazid 

Hydrazines 

 

H-acceptor-

path3-H-

acceptor  

 

L-lisine 

H-acceptor-

path3-H-

acceptor  

Naphthalene 

acetamide 
No alert found  

Phenmedipham No alert found  
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Section SVIII. Ranking by multi-criteria decision-making techniques: ToxPi vs. TOPSIS 

 

 

Figure S5. SMART model: endpoints and weights. 

 

Table S8. Statistical test results of dispersion using Standard Deviation from mean for TOPSIS 

ranking in relation to ToxPi linear ranking (standard deviation from mean = 0.95) 

Ranking range TOPSIS Standard Deviation - Mean 

1-10 3.5 

11-20 2.6 

21-30 5.3 

31-40 6.4 

41-50 5.9 

51-60 6.9 

61-70 10.6 

71-80 8.7 

81-90 6.4 

91-100 9.0 

101-110 7.7 

111-120 10.0 

121-130 7.3 

131-140 13.6 

141-150 1.7 
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GENERAL CONCLUSIONS 

 

For centuries, humans have been using all the available natural resources, without 

any concern about environment protection and preservation. It is now necessary to 

develop new approaches to identify contamination, understand the effects of the presence 

of contaminants in nature, and to develop new approaches for the recuperation of 

contaminated environments. All the studies developed during the present doctoral work 

had the aims of testing, expanding, and deepening information regarding contamination 

of aquatic environments, supported by analytical screening analysis based on LC-QTOF 

MS. A search was made for new strategies to improve the detection and identification of 

contaminants, as well as prediction of the risks posed by these substances to humans and 

the environment, using different freely available software tools.  

The first study used a purpose-built database to investigate the presence of 

metabolites and pharmaceuticals in RHW samples analyzed by LC-HRMS. The strategy 

resulted in the identification of 31 metabolites and 43 pharmaceuticals in the samples, 

with antibiotics being the most detected class. Application of the common fragmentation 

approach enabled the identification of four additional metabolites not present in the 

purpose-built database. These results demonstrated the importance of using wide-scope 

screening, including both pharmaceuticals and metabolites, for comprehensive evaluation 

of contamination caused by wastewaters. The risk assessment of pharmaceuticals and 

their metabolites based only on predicted environmental concentration (PEC), predicted 

no effect concentration (PNEC), and risk quotient (RQ) (PEC/PNEC) might 

underestimate the risks to the environment and humans. There were some cases where 

low or medium RQ values were obtained, but the compounds were predicted to be 

mutagenic and carcinogenic. The inclusion of in silico (Q)SAR predictions allowed 

assessment of the environmental fates and effects of such compounds, in terms of 

biodegradability, possible PBT, and potential hazard to the aquatic environment. The 

approach proposed in this study enables a more proactive prioritization of pharmaceutical 

and metabolite compounds in complex matrices such as RHW. This should greatly assist 

in the proposal of additional treatment systems in conventional wastewater treatment 

plants (WWTPs), in order to ensure efficient removal of all these compounds. Although 

they could be further improved, reliable and freely available (Q)SAR models can be 
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employed for the risk assessment of metabolites and biotic and abiotic TPs present in the 

aquatic environment. 

The second study explored the results of the first work, considering the problem 

of incomplete removal of pharmaceuticals during conventional wastewater treatment. 

Investigation was made of the degradation of DZP by an AOP based on SPFP, with LC-

QTOF MS used to identify TPs formed during the degradation process. It was possible to 

elucidate six transformation products generated during the degradation of DZP, four of 

which had not been reported previously in the literature. After identification of the TPs, 

in silico (Q)SAR predictions demonstrated that two of the TPs (TP1 and TP2) presented 

mutagenicity alerts, indicating that they could present a greater environmental risk, 

compared to the parent compound. This was a very important result that demonstrated the 

need for monitoring to ensure that a treatment process not only provides complete 

degradation of DZP, but also is effective in degrading all the TPs formed. The proposed 

new strategy based on a DLLME method for extraction and preconcentration of DZP and 

its TPs was shown to be fast, cheap, and simple, with its use allowing the elucidation of 

a TP that could not be detected without this step. Three different matrices were used to 

validate and test the method. For UPW and SW, the proposed DLLME method provided 

results very similar to those obtained using a traditional SPE method. For RHW, the 

DLLME method showed lower preconcentration efficiency, compared to SPE, but 

nonetheless achieved the same goal, since it succeeded in extracting/preconcentrating all 

the TPs also found by the SPE method. Considering the cost and time of the method, 

DLLME was much cheaper and faster than SPE, with a significant reduction of the 

quantity of solvents used in the process, so it would be an attractive technique for use in 

routine laboratory analyses. 

After the screening and degradation studies, the challenge was to expand the study 

to the testing of surface waters, but not considering only pharmaceuticals, metabolites, 

and TPs. Screening was performed, evaluating thousands of contaminants from different 

chemical classes, which indicated the presence of 150 suspected and confirmed 

microcontaminants in surface water, especially pesticides and pharmaceuticals. In silico 

predictions using (Q)SAR, with eight different endpoints, were performed to identify 

compounds, with the data then being used for successful ranking of the screened analytes 

according to their toxicity towards humans and the environment. The use of MCDM 

techniques (ToxPi and TOPSIS) enabled the ordering of the identified compounds 

according to their environmental risk. Comparison of the rankings obtained by the two 
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tools showed that there were no statistically significant differences between them, 

confirming the satisfactory consistency of the results. Sensitivity tests showed greater 

robustness of the TOPSIS technique, compared to ToxPi, given small variations in the 

input data. This sorting would allow management decisions to be made concerning 

priority microcontaminants, taking into account the simultaneous effects of several 

physicochemical, biological, and toxicological parameters that are environmentally 

relevant. The appropriate application of MCDM methods for screening can assist in 

selecting the priority compounds for subsequent quantitative analysis during 

environmental monitoring. The combination of these three different strategies, LC-QTOF 

MS → in silico (Q)SAR predictions → MCDM ToxPi and TOPSIS ranking, constitutes 

a pioneering approach that has excellent potential to assist in chemical analysis decision-

making in the environmental sciences field. 

During the course of these studies, there was progressive evolution, expansion, 

and incorporation of new approaches for the evaluation of environmental contamination. 

The combination of the detailed studies showed that the selection of analytical strategies 

is much more complex than only considering qualitative or quantitative analyses. The 

multidisciplinary approach developed here was demonstrated to have the potential to 

guide environmental analysis in a highly efficient way.  

The next step will be to quantify the most hazardous compounds, as well as to 

propose advanced treatment processes capable of degrading contaminants and mitigating 

environmental risks, with savings of both time and money. 
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FINAL DISPOSAL OF WASTES  

 

All the wastes generated during this work were separated, stored in appropriate 

bottles, labeled, and taken to the UFRGS Chemical Waste Management and Treatment 

Center (CGTRQ), where specialized outsourced companies were contracted for final 

disposal of the materials. 
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