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Generating accurate word-level transcripts of recorded speech for language docu-
mentation is difficult and time-consuming, even for skilled speakers of the target 
language. Automatic speech recognition (ASR) has the potential to streamline tran-
scription efforts for endangered language documentation, but the practical utility of 
ASR for this purpose has not been fully explored. In this paper, we present results 
of a study in which both linguists and community members, with varying levels of 
language proficiency, transcribe audio recordings of an endangered language under 
timed conditions with and without the assistance of ASR. We find that both time-
to-transcribe and transcription error rates are significantly reduced when correcting 
ASR for language learners of all levels. Despite these improvements, most commu-
nity members in our study express a preference for unassisted transcription, high-
lighting the need for developers to directly engage with stakeholders when designing 
and deploying technologies for supporting language documentation. 

1. Introduction1  A substantial percentage of the world’s languages are endangered 
and likely to fall out of use in this century (Krauss 1992; Moseley 2010; Seifart et 
al. 2018; Simons 2019). Although language preservation is not necessarily a prior-
ity for all speakers of endangered languages (Ladefoged 1992; Mufwene 2017), 
many endangered language communities in North America are actively working to 
create a permanent textual record of their language (Himmelman 1998) as a means 
to document their culture, to reclaim their heritage, to unify their communities, 
and to serve as a resource for language revitalization efforts, 

1 We are grateful for the cooperation and support of the Seneca Nation of Indians, especially Sandy 
Dowdy who continues to share her knowledge, voice, and enthusiasm for the Seneca language with our 
research team. This material is based upon work supported by the National Science Foundation under 
Grant No. 1761562. Any opinions, findings, and conclusions or recommendations expressed in this mate-
rial are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

http://nflrc.hawaii.edu/ldc/
http://hdl.handle.net/10125/74666
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Many aspects of language documentation are time consuming when the docu-
mentarian is not a fluent speaker of the language, which is often the case in endan-
gered language documentation efforts. As the transcription of spontaneous speech 
has come to be the focus of much documentary linguistic work, one particular 
challenge is the “transcription bottleneck” (Seifart et al. 2018; Himmelman 2018). 
A recent survey of documentary linguists found that transcribing one hour of au-
dio can take from 40 hours for word-level transcripts (Foley et al. 2018) to 60 
hours for phone-level transcripts (Michaud et al. 2018). Automatic speech recogni-
tion (ASR) technology – variously known as voice recognition, speech-to-text, or 
dictation software – has the potential to break through this barrier by automati-
cally generating text transcripts of speech samples.

Although ASR technology has been commercially available for decades and 
has long been used for specialized transcription tasks and as an assistive technol-
ogy, it is only in the last few years that it has achieved error rates low enough 
for it to be used as a substitute for manual text entry by the general population. 
Indeed, ASR technology is routinely used today on smartphones and personal as-
sistant devices by speakers of high-resource languages such as English and Man-
darin. ASR for these high-resource languages has achieved “near-human” levels of 
accuracy not only because of the introduction of the much-touted technological 
advances associated with deep learning but also because of the large amount of 
labelled audio data currently available in these languages for training deep learn-
ing models. Large corpora of this sort have existed in academic settings for some 
time for English, Mandarin, Arabic, and a few European languages (Godfrey et al. 
1992; Canavan & Zipperlen 1996; Canavan, Graff, & Zipperlen 1997; Canavan, 
Zipperlen, & Graff 1997; Cieri et al. 2004). Corporations like Google, Microsoft, 
Amazon, and Baidu have leveraged their ability to collect and access data to create 
substantial additional text and audio training corpora for these and other politi-
cally or economically important languages. The majority of the world’s languages, 
however, lack the quantities of training data necessary to train highly accurate ASR 
models. Although low-resource ASR is a growing area of interest in the speech 
signal processing research communities (Gelas et al. 2012; Thomas et al. 2013; 
Besacier et al. 2014; Nguyen et al. 2014; Metze et al. 2015; Gauthier et al. 2016; 
Scharenborg et al. 2017; Bansal et al. 2019; Stoian et al. 2020), the performance 
we see in our interactions with Siri or Alexa in a high-resource language is not 
what we can expect for a language with a few dozen hours of acoustic training 
data or for an endangered language with only a few hours of data. 

Despite relatively high error rates, low-resource ASR can offer some utility for 
language documentation. Computer-assisted transcription, in which ASR output 
serves as a first-pass transcript that is then corrected or edited by a human, has 
been used for medical transcription for decades (Rosenthal et al. 1998; Borowitz 
2001; Mohr et al. 2003; Hodgson & Coiera 2016; Goss et al. 2019). This same 
approach has the potential to be deployed for language documentation purposes. 
Despite a growing interest in developing tools, software, and frameworks that can 
be used by community members or field linguists engaged in language documenta-
tion (Strunk et al. 2014; Ćavar et al. 2016; Adams et al. 2018; Foley et al. 2018; 
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Michaud et al. 2018), there have been few empirical studies of the practical utility 
of ASR-based tools and technologies for this purpose. 

We report here on an empirical study that demonstrates the efficacy of includ-
ing ASR in a pipeline for transcribing recordings of Seneca (Onödowáʼga:), a lan-
guage indigenous to what is now the western area of New York State in the United 
States and neighboring parts of Ontario, Canada. Seneca is classified by Ethno-
logue (Eberhard et al. 2021) as level 8a (“moribund”), with roughly 50 elderly 
first-language speakers and 100 or more second-language speakers, many of whom 
have participated in language immersion programs for both adults and children. 
We compare a traditional transcription method, in which transcribers incremen-
tally listen to recordings and type what they hear, with an ASR-assisted approach. 
In this latter approach, raw speech recordings are first fed through a Seneca ASR 
system to produce a rough hypothesis of the transcription with the timestamps 
of the boundaries between utterances. The ASR output is then corrected by the 
transcriber within the speech analysis software, Praat. We find that correcting the 
output of even a relatively error-prone ASR system dramatically reduces both the 
time required to transcribe audio and the number of word-level and character-
level errors in those transcriptions. These results hold for language learners at all 
language levels, from novice linguists to knowledgeable L2 community members. 
Despite the improvements in both the speed and the quality of transcription that 
ASR can provide, some participants in our study expressed a preference for un-
assisted transcription. Our results underscore the importance of considering the 
preferences of the community of speakers and the need for a flexible approach to 
the task of endangered language transcription.

2. Background
2.1 A note on documentation   We note that the output of our work is time-stamped 
orthographic transcriptions of spontaneous speech, recorded during storytelling ses-
sions and conversations with L2 learners. Because ASR acoustic models are trained 
to associate properties of the acoustic signal with specific phones, phone(me) labels 
with reasonable boundaries can also be trivially derived from the ASR output. We 
recognize that utterance-level transcripts are not necessarily the desired end product 
that a descriptive linguist or field linguist might aim to produce. We are not explicitly 
generating a lexicon or producing English glosses or translations, nor are we using 
ASR to transcribe individually elicited grammatical forms or paradigms.

We focus specifically on speech corpus documentation – the transcription of 
spontaneous speech samples – for several reasons. First, members of the Seneca com-
munity have expressed an interest in collecting precisely this kind of data. There 
are existing grammars and lexica of Seneca that are sufficient for teaching and un-
derstanding the morphology and syntax of Seneca, but there are few recordings or 
transcripts of Seneca speakers naturally using their language to communicate. This 
community believes that creating a record of the language as it is spoken will be 
more culturally valuable and more useful for developing instructional materials for 
their language immersion programs. Secondly, even for linguists who are interested 
in generating grammars and tables, there is no particular reason that transcription 
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and analysis must be carried out simultaneously. Many linguists produce a first-pass 
transcription and later analyze and gloss the transcription, returning to their con-
sultants to ask about specific forms or constructions. Finally, we note that collecting 
and transcribing samples of spontaneous speech is now generally considered, if not a 
substitute for, then at least a supplement or complement to traditional paradigmatic 
elicitation (Himmelman 2018; Rice 2018; Seifart et al. 2018).

2.2  Automatic speech recognition (ASR)   A full description of automatic speech 
recognition is beyond the scope of this paper, but we very briefly describe here the 
two frameworks that are commonly used in speech recognition today: the statisti-
cal framework relying on Gaussian mixture models (GMMs) and hidden Markov 
models (HMMs) dominant throughout the 1990s and early 2000s, and deep neu-
ral architectures, which are dominant today, particularly in high-resource scenarios. 
Both frameworks typically combine an acoustic model (i.e., the model that associ-
ates acoustic properties of the speech signal with labelled speech segments) and a 
language model (i.e., the model that is used to predict the sequence of textual seg-
ments, such as characters, morphemes, or words). The acoustic model is trained on 
speech recordings and transcripts of those recordings, ideally, though not necessarily, 
with segment labels and time stamps. The language model is trained on any available 
text data of the language, which in most cases far exceeds the amount of transcribed 
audio data. The framework used in this study is described below in Section 4.2.

The metric typically used to evaluate ASR performance is word error rate (WER), 
the length-normalized Levenshtein distance between the output and a ground-truth 
transcript. To calculate WER, an alignment between the output of the ASR system 
(the hypothesis) and a verified human-generated transcript (the reference) is derived 
by identifying the word deletions, insertions, and substitutions that would need to be 
made to the hypothesis to make it identical to the reference. From that alignment, the 
minimum number of word insertions, deletions, and substitutions is tallied; this sum 
is divided by the total number of words in the reference; and the result is multiplied 
by 100. The closer this number is to 0, the fewer errors were produced and, hence, 
the more accurate the ASR system can be said to be. In the example below, there are 
two substitutions, denoted in all caps in the hypothesis; and one deletion and one 
insertion, both denoted with asterisks in one text and all caps in the other. The WER 
of this output is 4/6 * 100 = 66.7%.

REF: This is a  SHORT example *** sentence
HYP: THUS is AN ***   example OF  sentence 

This same metric can be calculated for characters, phones, morphs, or any other 
subword unit, depending on the goals of the research and the characteristics of the 
target language. Before the introduction of deep neural architectures, state-of-the-art 
ASR for the US English conversational telephone speech dataset Switchboard (God-
frey et al. 1992) had plateaued at a WER of 20-25% (Hinton et al. 2012). WER on 
that same dataset has now reached close to 5% (Han et al. 2017; Saon et al. 2017; 
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Xiong et al. 2018), which is roughly the WER observed when trained native speakers 
transcribe this particular dataset (Glenn et al. 2010; Xiong et al. 2018). 

Although the application of deep neural networks is certainly responsible for the 
enormous improvements in ASR accuracy over the past decade, the use of deep neu-
ral architectures would not have been possible without very large amounts of acous-
tic model training data. Switchboard includes 2000 hours of transcribed acoustic 
training data; Baidu’s proprietary ASR technology reportedly is trained on 40,000 
hours of acoustic training data. The amount of data required to train a robust ASR 
system with human-level accuracy is so large that languages with tens of millions of 
speakers like Haitian Creole and Bengali are considered “low-resource” languages 
for ASR purposes. Needless to say, while such languages have only dozens or hun-
dreds of hours of readily available transcribed audio data, it would be relatively easy 
to acquire additional data. In addition, there are likely to be many millions of words 
of available text data for training the language model, which can have a significant 
impact on recognition accuracy (Chelba et al. 2012).

The amount of data available for training an ASR system for a typical endan-
gered language is likely to be on an entirely different scale, with perhaps a handful of 
hours of transcribed audio and a few thousand words of text. Gathering additional 
data is likely to be difficult and time consuming given the small number of speakers 
and, in some cases, their reluctance to share their language with outsiders. An ASR 
system trained on such a small corpus will generally have a high WER, regardless 
of the architecture used to build the models. ASR systems for languages with fewer 
than 20 hours of acoustic training data yield WERs above 15% in the best of cir-
cumstances (Juan et al. 2015; Adams et al. 2019). When recording quality is low, the 
semantic domain is varied, the morphology is complex, or the writing system is not a 
more or less 1-to-1 character-to-phone or -syllable mapping, WERs rise substantially 
(Gelas et al. 2012; Gauthier et al. 2016; Adams et al. 2019). 

2.3  ASR-assisted transcription   ASR has been used in the service of improving the 
efficiency of speech transcription since the 1990s, with medical report transcrip-
tion among the first practical applications of this technology. When ASR was first 
proposed for medical transcription, it was assumed that automated transcription 
would soon replace medical transcriptionists entirely, enabling clinicians themselves 
to dictate their reports directly into digital medical records, making only minor ed-
its to the ASR output (e.g., Rosenthal et al. 1998). In the ensuing decades, studies 
exploring the utility of ASR for streamlining medical transcription have reported 
conflicting results, with relatively little investigation into the relationships between 
typical evaluation metrics, such as speed, accuracy, and keystroke savings, and vari-
ables such as transcriptionist skill, personal preference, and ASR word error rate 
(Goss et al. 2019). In one broad and careful study, Mohr et al. (2003) compared the 
efficiency of correcting ASR output to that of unassisted transcription, finding that 
correcting ASR output generally required more time and that medical transcription-
ists preferred standard transcription. Similar results were reported by David et al. 
(2009), who reported that the majority of medical transcriptionists surveyed were 
unenthusiastic about using ASR and found that the task of correcting ASR was more 
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cognitively taxing than standard transcription, even if it reduced the time to tran-
scribe. As the quality of ASR output for English has improved in the past several 
years, however, clinicians have noted higher satisfaction using ASR to dictate their 
reports (Goss et al. 2019).

More recently, ASR correction has been investigated for general purpose tran-
scription, often with a focus on designing interfaces for displaying ASR hypoth-
eses and optimizing methods for selecting among these hypotheses (Rodriguez et 
al. 2007; Revuelta-Martínez et al. 2012; Laurent et al. 2011). Bazillon et al. (2008) 
reported that editing ASR output is faster than transcribing manually but that the 
gains in speed vary according to whether the speech is spontaneous or prepared. 
Similarly, Akita et al. (2009) found that correcting ASR output was faster than unas-
sisted transcription of lectures but that time to transcribe increased when error rates 
increased from 10% to 25% and that the transcriptionists expressed frustration 
when correcting inaccurate ASR output. In a very careful and comprehensive study 
comparing transcription from scratch with correcting ASR under various user-inter-
face conditions, Sperber et al. (2016) found that correcting ASR was generally more 
efficient than transcribing from scratch but that the overhead associated with editing 
(e.g., backspacing, adjusting the cursor location) resulted in substantial reductions 
in speed when the number of character errors in a word to be corrected was large. In 
a follow-up study that explored the interaction between speed, error rate, and tran-
scriber baseline efficiency, Sperber et al. (2017) reported that correcting ASR output 
was faster and more accurate than from-scratch transcription, that slow transcribers 
benefitted the most from ASR, and that these improvements were larger when word 
error rates were low.

Although the results from studies of general-domain ASR-assisted transcrip-
tion suggest that there is potential utility in deploying ASR for endangered language 
documentation, there are a number of differences in the two tasks. In all of the prior 
studies, participants were transcribing a language in which they were expected to be 
proficient. Despite the lessons learned from the work on medical transcription, these 
studies generally did not include a discussion of user preference. Finally, the word 
error rates of the ASR systems used were much lower than what would typically be 
expected from an ASR for a truly low-resource endangered language.

2.4  ASR-based technologies for supporting language documentation   There is sub-
stantial support in the documentary linguistics research community for using ASR 
and ASR-adjacent technologies to support language documentation (Blokland et al. 
2015; Thieberger 2017; Gessler 2019; van Esch et al. 2019). Much of the previous 
work involving ASR for this purpose has focused on phone transcription and align-
ment. Prior work on forced alignment has found that models trained on either small 
amounts of carefully aligned data in the target language or large amounts of data 
from unrelated high-resource languages can be effectively leveraged to generate ac-
curate phone segmentations for Yoloxóchitl Mixtec (DiCanio et al. 2012; DiCanio 
et al. 2013; Strunk et al. 2014), Chatino (Ćavar et al. 2016; Adams et al., 2018), 
Bribri (Coto-Solano & Solórzano 2017), Yongning Na (Michaud et al. 2018; Adams 
et al. 2019), and Australian Kriol (Jones et al. 2019). Other work in using ASR for 
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documentation has focused on developing user-friendly front ends for ASR model 
building, which typically requires significant computational expertise (Foley et al. 
2018; Foley et al. 2019). Although these studies demonstrate the potential utility 
of speech recognition technology, whether at the phone or word level, for language 
documentation, none of these studies reports on the practical outcomes of deploying 
these systems for transcription by linguists or language community members. 

2.5  Linguistic characteristics of Seneca (Onödowáʼga:)   Seneca has a relatively 
small phonemic inventory, consisting of consonants /th, t, kh, k, ʔ, s, ʃ, h, tsh, ts, tʃh, 
tʃ, n, w/ and vowels /i, u, e, o, ɛ,̃ ɔ̃, æ, ɑ/. The orthography that our Seneca speakers 
use and that is preferred by most users of the language represents these phones in a 
mostly unambiguous one-to-one mapping as, respectively: t, d, k, g, ’, s, š, h, ts, dz, 
tš, j, n, w and i, u, e, o, ë, ö, ä, a. Although many of our speakers of Seneca argue that 
vowel length is not phonemic, vowel length is typically indicated in the orthography 
using a colon.

Traditionally, the parts of speech of Seneca are nouns, verbs, and particles. More 
recently, kinship terms have been recognized as a fourth part of speech (Koenig & 
Michelson 2010). Nouns, verbs, and kinship terms are inflected, while particles gen-
erally occur in only one form. Verbs, kinship terms, and most nouns must have a pro-
nominal prefix. The pronominal system of Seneca and of all the Iroquoian languages 
is highly complex. Seneca has 58 pronominal prefixes that identify the agent or both 
agent and patient arguments of the verb. Some analysis into meaningful elements 
is possible, but for the most part, these prefixes are treated as being synchronically 
unanalyzable. Verbs can also have one or more prepronominal prefixes. Verbs must 
have an aspect suffix, and most nouns have a noun suffix. Kinship terms have neither 
an aspect suffix nor a noun suffix, but most have an ending that can probably be 
identified as a diminutive ending (Chafe 2007).

Noun incorporation, or the compounding of a noun and verb stem to derive 
a verb stem, is extremely productive in Seneca. Verb stems can be derived from 
other verbs stems also by means of the reflexive/reciprocal and the semi-reflexive (or 
middle) prefixes, or by the benefactive or dative applicative, causative, dislocative or 
andative, distributive, inchoative, instrumental applicative, and reversative suffixes. 
Most morphemes have several allomorphs in the Iroquoian languages, and this is 
especially so for Seneca because it has undergone a large number of phonological 
changes relative to most of the other Iroquoian languages.

Verbs are pervasive in the Iroquoian languages, but the very low incidence of 
words with nominal morphology is a little misleading in that a striking property of 
the Iroquoian languages is the extent to which entities are referred to with words 
that are morphologically indistinguishable from verb forms. The Seneca word for 
‘chokecherry’ is deyagonyá’thä:’s, literally, ‘it chokes people’; the word for ‘school 
bus’ is hadiksa’danëhgwis, literally, ‘they deliver children’. There is little, if any, evi-
dence for formal syntactic constraints in Seneca. This is not to say that there are not 
syntactic constructions in which words must appear in a particular linear order, but 
in general, the relative order of verbs and nominal words, when they occur, is ac-
counted for by pragmatic principle (Koenig & Michelson 2014).
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3.  Experimental design
3.1  Participants   Five Seneca community members, all current or former partici-
pants in the adult language immersion program, with varying levels of fluency in Sen-
eca (participants S1 through S5) and five linguists with varying degrees of exposure 
to Seneca or other Iroquoian languages (participants L1 through L5) participated 
in this study. Table 1 lists the participants, ordered by their Seneca proficiency, from 
advanced to novice. All participants were adults between 18 and 50 years of age. 
 

Table 1. Study participants with IDs and description of Seneca language level

ID Seneca Language Level

S1 Advanced Seneca language apprentice

S2 Advanced Seneca language apprentice

S3 Advanced Seneca language apprentice

S4 Intermediate Seneca language apprentice

S5 Intermediate Seneca language apprentice

L1 Linguistics PhD student with some knowledge of Seneca and other Iro-
quois languages

L2 Linguistics undergrad with some knowledge of Seneca

L3 Linguistics undergrad with some knowledge of Seneca

L4 Linguistics master’s degree with some prior exposure to Seneca

L5 Linguistics undergrad with some prior exposure to Oneida, another Iro-
quois language

3.2  ASR framework   Our ASR system is built using the open-source Kaldi (Povey et 
al. 2011) ASR toolkit. We begin with the basic Kaldi tutorial recipe , which uses as 
features the usual 13-dimensional cepstral mean-variance normalized MFCCs, plus 
their first and second derivatives. The recipe2 was extended to apply LDA transfor-
mation and Maximum Likelihood Linear Transform to the features. Other training 
techniques included boosted Maximum Mutual Information (bMMI) and Minimum 
Phone Error (MPE). Both bMMI and MPE were trained over 4 iterations, and bMMI 
used a boost weight of 0.5. The language model used for decoding was a word-level 
trigram model built with KenLM (Heafield 2011).

The acoustic model was trained on approximately 270 minutes of recorded 
speech transcribed orthographically at the word level with utterance boundary time 
stamps. The recordings were produced by three women and four men, all first-lan-
guage Seneca speakers and over the age of 60. The bulk of the data was transcribed 
by young adult Seneca learners and produced by two elders of the community who 

2 https://kaldi-asr.org/doc/kaldi_for_dummies.html

https://kaldi-asr.org/doc/kaldi_for_dummies.html


Language Documentation & Conservation  Vol. 15, 2021

Automatic Speech Recognition for Supporting Endangered Language Documentation 499

gave IRB-approved verbal consent to participate in this data collection project. Oth-
er recordings were captured as part of earlier documentation efforts, in particular 
those overseen by the Wallace Chafe, author of a linguistic grammar of the Seneca 
language (Chafe 2014). These recordings were made under a variety of conditions 
with varying equipment over several decades. The small number of early recordings 
on magnetic tape, which consist of folktales and personal narratives, were digitized 
as 16-bit 16kHz WAV files approximately ten years ago. The majority of the record-
ings, which include both conversations and personal narratives, were captured as 
16-bit 44.1kHz WAV files within the last five years with a hand-held recorder or 
a smartphone using the built-in microphone. All recordings were made in casual 
settings, such as homes and community centers. All files were converted to mono 
and downsampled, where necessary, to 16kHz to be compatible with the expected 
format of audio training files in the Kaldi ASR toolkit.

The language model was trained on 1843 utterances, including the transcrip-
tions of the above recordings and a small number of texts gathered during previous 
documentation efforts for which there are no corresponding recordings. The lexicon 
extracted from this text includes 3498 unique words. This ASR system yielded a 
WER of 50.7 and a character error rate of 31.0 on the excerpt used for this study. 
Note that this a very high WER. State-of-the-art ASR systems for English, trained 
with thousands of hours of audio and millions of words of text, yield word error 
rates of around 5%, comparable to human transcription performed by skilled tran-
scriptionists (Lippmann 1997).

3.3  Transcription conditions   Two approximately 45-second audio clips were cho-
sen from a previously untranscribed audio recording of Seneca elder Sandra Dowdy, 
who founded the Seneca language immersion program for young children. Informa-
tion about the two audio clips can be found in Table 2.3 

Table 2. Characteristics of the two 45-second audio clips used for testing: 
number of words, number of characters, word error rate (WER), and character 

error rate (CER) where applicable.

# words # chars WER CER

Unassisted audio 70 402 N/A N/A

ASR-assisted audio 73 453 50.7 31.0

3 The recordings and transcripts used in this study are available on our project website at http://cs.bc.
edu/~prudhome/ADEL/products.html. In accordance with the preferences of the Seneca elders, a subset 
of the data used to train our ASR models will be archived with the Native American Languages collec-
tion at the Sam Noble Museum at the University of Oklahoma.

http://cs.bc.edu/~prudhome/ADEL/products.html
http://cs.bc.edu/~prudhome/ADEL/products.html
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One audio clip was designated to be transcribed by the participants orthograph-
ically in an unassisted fashion (i.e., without the use of ASR) using the software of 
their preference (generally Praat). The second audio clip was passed through the 
above-described ASR system. The ASR output, with hypothesized words and with 
hypothesized utterance boundary time stamps, was processed to create a TextGrid 
file. Participants opened the audio clip and TextGrid file together in Praat and then 
corrected the ASR output to produce an orthographic word-level transcript. All par-
ticipants were experienced Praat users, except for one Seneca community member 
who was given a brief in-person training before completing the tasks.

Participants were first assigned to complete the unassisted transcription task 
under timed conditions. After a break, the participants completed the ASR-assisted 
transcription task under timed conditions. Participants self-reported the time re-
quired to transcribe each audio clip. In addition, the word error rate (WER) and 
character error rate (CER) of each transcription was calculated, using as a reference 
a careful manual transcription produced by a near-fluent L2 Seneca speaker who did 
not participate in the study. After completing both transcription tasks, participants 
completed a brief survey in which they reflected on their experience transcribing 
with and without the assistance of ASR.

4.  Results   

Figure 1. From L to R: word error rate (WER), character error rate (CER), and time 
to transcribe in minutes for each participant (S1–S5, L1–L5) under the two tran-

scription conditions.
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4.1  Time-to-transcribe and error rates    As shown in the leftmost panel of Figure 
1, transcription word error rates (WER) were reduced among all participants when 
correcting ASR output. On average, WER decreased by 15.2 (range: 5.2 to 36.5) 
with ASR-assisted transcription, with a mean 31.4% relative reduction. Linguists 
decreased their WER by 21.2 (29.8% relative) on average, and Seneca community 
members decreased their WER by an average of 9.1 (33.1% relative). The reduc-
tion in WER across all participants was significant as determined by a paired t-test 
(t=5.12, p<0.001, Cohen’s d=0.79).

The center panel of Figure 1 shows that character error rates (CER) were re-
duced for all participants when performing ASR-assisted transcription. On average, 
CER was reduced by 7.2 (range: 0.6 to 17.2) using ASR-assisted transcription, with a 
mean 33% relative reduction. Linguists decreased their CER by 9.8 (30.8% relative) 
on average, while Seneca community members decreased their CER by 4.5 (35.2% 
relative). The reduction in CER across all participants was significant as determined 
by a paired t-test (t=4.25, p<0.01, Cohen’s d=0.65).

Other than the one participant who had not previously used Praat (S4), all par-
ticipants required less time when correcting ASR output than when transcribing 
unassisted, as shown in the rightmost panel of Figure 1. Transcription time was 
reduced by an average of 14.5 minutes (range: -3.25 to 40.5 minutes), with an aver-
age 31.4% relative reduction in time required to transcribe. All who had previously 
used Praat benefited from using ASR output to produce transcriptions, with linguists 
decreasing their times by 24.6 minutes (47.3%) on average and community mem-
bers decreasing their times by an average of 4.3 minutes (15.5%). Time to transcribe 
was significantly reduced (t=3.06, p<0.05, Cohen’s d=0.75) under the ASR-assisted 
condition.

As noted above, the WER rate of the ASR system used was 50.7. All participants 
but one – the linguistics student with the least knowledge of Seneca – achieved a 
WER at or lower than this baseline. Although it is concerning that this linguist in-
troduced new word errors (a phenomenon that Sperber et al. (2016) also observed 
in ASR post-editing), all participants, including this linguist, achieved a CER lower 
than the ASR baseline of 31. Notably, one linguist whose WER remained at the 
baseline saw a dramatic improvement over the CER baseline (31 to 17.6), indicating 
that she identified the ASR word errors and made mostly appropriate corrections.

We found a large negative (r=-0.68), though non-significant, correlation between 
the reduction in time to transcribe and the reduction in both WER and CER among 
the linguists but not among the community members, suggesting that linguists who 
took their time correcting the ASR output generally produced higher quality tran-
scriptions. We note that while WER and CER were nearly universally higher for 
linguists than community members, the most experienced linguist, when transcrib-
ing with ASR, achieved a WER and CER within the range of the Seneca commu-
nity members when transcribing unassisted. This bodes well for the use of ASR for 
documentation carried out by field linguists with sufficient background in the target 
language.
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4.1  Participant perceptions and preferences   After completing the transcription 
tasks, each participant responded verbally or in writing to two open-ended ques-
tions about their experience: Which transcription method was easier, and why? and 
Which transcription method did you prefer, and why? Four of the five linguists found 
correcting ASR output to be easier and preferred ASR-assisted transcription to unas-
sisted transcription. Although all but one of the Seneca community members pre-
ferred transcribing unassisted, three of the five found ASR-assisted to be the easier 
transcription method. Tables 3 and 4 provide selected excerpts from the participants’ 
responses describing their observations about ease of use and their preferences.

 

Table 3. Excerpts from the written and verbal feedback from participants 
(S=Seneca, L=Linguist) describing why they found one method of transcription 

easier than the other

ID Response to Which transcription method was easier, and why?

S1 With the ASR it’s a lot easier to hear the words that are being said because 
it’s written right there in front of you. 

S2 The ASR did a good job with the small words which reduced the amount 
of typing.

S3 With the ASR program it was easier because then I could just plainly listen 
to the recording and go based off of what I understood and fix the errors 
the ASR had output. 

S4 Praat is not always easy to use and has a steep learning curve.

S5 Although the time with the ASR was shorter, I felt like I had to go 
through the ASR and double-check the output it provided.

L1 ASR took care of some of the necessary steps, e.g., segmenting speech into 
utterances. 

L2 I felt as though I was much more capable of “transcribing” with less er-
rors with the help of the ASR than just on my own (which felt like a more 
daunting task).

L3 I had a difficult time with the ASR.

L4 Transcription from ASR was much easier for someone like me with very 
little knowledge of the morphology.
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Table 4. Excerpts from the written and verbal response from participants 
(S=Seneca, L=Linguist) describing why they preferred one transcription method 

over the other

ID Response to Which transcription method did you prefer, and why?

S1 I would prefer to do the transcribing on my own – it's more of a challeng-
ing task and really tests my knowledge and understanding of the language.

S2 In some ways I preferred using ASR since I was surprised at how much 
faster it was to correct the ASR.

S3 I personally prefer transcribing from scratch, I like being able to listen and 
understand the conversation or story. 

S5 As a second language Seneca learner, I feel it is more beneficial for me at 
the moment to “gain a good ear” for learning the writing system and hon-
ing my skills as a listener and writer.

L1 I preferred ASR because I can be more certain when I’m comparing than 
when I’m perceiving.

L2 Using ASR, I was able to focus on comparing the audio to the transcrip-
tion rather than trying to perceive what was being said.

L3 I spent more time cross-checking the transcription than actually just tran-
scribing so I preferred transcribing from scratch.

L4 I preferred correcting ASR. It very accurately transcribed particles and 
discourse markers which I regularly misidentified as parts of other words 
when I did the unassisted transcription.

5.  Discussion and future work   Our findings suggest that editing and correcting 
ASR output, even when the output has a very large number of errors, is significantly 
faster and more accurate than transcribing from scratch for language learners of all 
levels. Linguists, particularly those with little prior knowledge of the language, gen-
erally preferred ASR-assisted transcription and found it easier. While the majority of 
Seneca community members acknowledged that correcting ASR output was faster 
and required less effort, all but one stated a clear preference for transcribing without 
the use of ASR.

Recently, our team began the arduous process of using OCR to digitize and cor-
rect scans of typed and hand-written Seneca texts collected in pre-digital times by 
linguists and missionaries of the 19th and 20th centuries. These texts were produced 
without the benefit of technology, requiring hundreds or perhaps thousands of hours 
of careful manual work, and it will take many more hours to complete our digitiza-
tion project. Although most speech transcription for language documentation today 
is carried out natively on computers, often with helpful tools such as Praat or ELAN, 
speech transcription by language learners, whether linguists or language community 
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members, continues to be a time-consuming task. While technologies like automatic 
speech recognition have the potential to transform this process by reducing the time 
required to transcribe and the number of transcription errors, computer science re-
searchers hoping to deploy these systems must remember that accuracy and speed 
are but two of many possible metrics for evaluating the utility of such systems for 
this task.

Community-driven language documentation efforts often have objectives be-
yond simply producing as much text as possible in the least amount of time (Cza-
ykowska-Higgins 2009). This is particularly true when these efforts are part of a 
larger language revitalization project in which language learners are tasked with 
transcription in order to improve their own language skills. One of our Seneca team 
members noted that although ASR-assisted transcription did seem faster and easier, 
“if a person is dedicated enough to struggle through it...I believe [transcribing with-
out assistance] will make that person a stronger speaker in the end”. 

Unassisted transcription can also offer community members the opportunity to 
engage more deeply with the recordings they are transcribing as heritage artifacts. 
One Seneca apprentice mentioned that her preference for unassisted transcription 
was dependent on the content of the speech: “I know we have recordings of chil-
dren’s short stories translated into Seneca. For those I would lean more on the ASR 
output. For the ceremonial kinds of recordings, I would prefer to listen and tran-
scribe from scratch. That way I’m fully absorbing the meaning.”

In the time since we carried out this experiment, a total of 12 hours of Seneca 
recordings have been collected and transcribed. In addition, we have explored a 
variety of deep neural ASR architectures, including the available neural models in 
Kaldi, DeepSpeech (Amodei et al. 2016), wav2vec (Schneider et al. 2019), as well as 
our own fully convolutional architecture (Thai et al. 2020), both with and without 
transfer learning and data augmentation. Our best system now yields word error 
rates close to 25%. In our future work, we plan to carry out a second timed tran-
scription study in order to compare the utility of high- vs. low-WER ASR output for 
technology-assisted language documentation. Given the already low baseline tran-
scription WER of many of the Seneca language apprentices who participated in our 
study, we do not necessarily anticipate large gains in this group, but we expect that 
more accurate ASR output will further improve the transcription speed and accuracy 
for linguists. We will also attempt to recruit additional linguists with knowledge of 
Seneca and other Iroquois languages to participate in our future study since our 
results suggest that linguists are more likely than language community members to 
choose to use ASR for transcription. By recognizing the strengths and preferences of 
the full range of stakeholders engaged in endangered language documentation, we 
can help to shape the design of our own future technology-supported documentation 
and transcription projects as well as those of other research groups and language 
communities.
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