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Abstract 

Understanding the factors driving ecological and evolutionary interactions of economically 

important plant species is important for sustainability. Niches of crop wild relatives, including wild 

potatoes (Solanum section Petota), have received attention, however, such information has not been 

analyzed in combination with phylogenetic histories, genomic composition, and reproductive 

systems. We used a combination of ordinary least-squares (OLS) and phylogenetic generalized least-

squares (PGLM) analyses to identify the discrete climate classes that wild potato species inhabit in 

the context of breeding system and ploidy. Self-incompatible diploid or self-compatible polyploid 

species significantly increase the number of discrete climate niches inhabited. This result was 

sustained when correcting for phylogenetic non-independence in the linear model. Our results 

support the idea that specific breeding system and ploidy combinations increase niche divergence 

through the decoupling of geographical range and niche diversity, and therefore, these species may 

be of particular interest for crop adaptation to a changing climate.  
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Introduction 

Potato (Solanum tuberosum L.) is the most important tuber crop worldwide and is the fourth most 

important crop internationally (Castañeda-Álvarez et al. 2015). However, there is a lack of genetic 

diversity among many crops, including S. tuberosum (Jansky et al., 2013; Khoury et al., 2014), placing 

increased pressure upon crop management protocols and food security. A proven approach to 

increasing genetic diversity in crop species is through the utilization of wild relatives for crop 

improvement (Jansky et al., 2013; Mehrabi et al., 2019). Cultivated potato has 199 known wild 

relatives, forming the Solanum section Petota, inhabiting 16 countries in the Americas, and ranging 

from 38° N to 41° S (Hijmans, 2001); 72 of the most threatened and useful species to humans have 

recently been prioritized for conservation (Castañeda-Álvarez et al., 2015). These 72 species are 

most found in tropical highlands at 600 to 1200 m in elevation and possess phenotypes similar to 

cultivated potato through the production of a starchy tuber (Hijmans, 2002). 

Given the importance of maintaining the crop’s productivity, many attributes of the wild 

relatives of S. tuberosum have been defined, including their ploidy, breeding system, germplasm 

classification, endosperm balance number, single and multi-gene phylogenies, and geographic ranges 

(Hijmans, 2001; Spooner, 2001; Spooner, 2007; Castañeda-Álvarez et al., 2015; Robertson et al., 

2011). These data can be used to discover novel beneficial characteristics present within the wild 

relative germplasm such as biotic and abiotic resistances as well as to quantify trait introgression. 

Furthermore, research has identified potato as one of the crops in Sub-Saharan Africa with the 

highest potential to benefit from crop wild relatives for climate change adaptation, however, these 

results have not been integrated with biological (e.g., breeding system and ploidy) and evolutionary 

(e.g., phylogenetic tree) information (Pironon et al., 2019). Despite the wide array of information 

surrounding the wild relatives of potato, one attribute continues to be under-defined - the discrete 
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climate zones (e.g., niche) each species inhabits, and the factors involved (e.g., breeding system, 

ploidy) in driving the evolution of the highly dynamic climatic diversity in Solanum section Petota. 

Individually exploring life history traits (Wendel and Cronn, 2003; Hijmans et al., 2007; 

Köhler et al., 2010; Sessa, 2019) such as the breeding system has led to contradictory conclusions 

regarding these traits' influence on ecological niche (Peterson et al., 1999; Husband et al., 2008; 

Robertson et al., 2010; Campbell, 2013; Grossenbacher et al., 2016; Park et al., 2017; Grant, 2020), 

while exploring other traits such as ploidy (te Beest et al., 2012; Van De Peer et al., 2017; Baniaga et 

al., 2020) has shown a consistent influence. For example, diversification models Zenil-Ferguson et 

al. (2019) showed that ploidy is the most probable pathway to evolve self-compatibility across 

Solanaceae. Therefore, there exists an important interaction between ploidy and breeding system 

(Barringer, 2007; Husband et al., 2008; Robertson et al., 2010) that might impact evolutionary and 

ecological processes (Sessa, 2019). Furthermore, polyploidization facilitates self-compatibility 

because whole genome duplication provides security against inbreeding depression (Barringer, 2007; 

Husband et al., 2008; Robertson et al., 2010; Zenil-Ferguson et al., 2019); whereas self-compatible 

diploid populations often suffer from large inbreeding depression (Barringer and Geber, 2008; 

Husband and Schemske, 2017). As a result, diploid populations are more reliant on self-

incompatibility to drive adaptive changes. In Solanaceae, polyploid species show higher rates of self-

compatibility (Barringer, 2007; Husband et al., 2008; Robertson et al., 2010). This clear interaction 

between ploidy and breeding systems provides the opportunity to test two key hypotheses: first, that 

self-compatible species rely on polyploidy in order to generate the variation they need to colonize 

diverse niche space; and second, that diploid species rely on outcrossing to increase niche breadth 

through gene flow.  
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To identify the driving factors of ecological diversity in potato wild relatives, we investigated 

two biological aspects of ecological diversity - breeding system and ploidy in 72 wild relatives of 

potato. We combined species’ occurrence, climatic, biological (e.g., breeding system and ploidy), and 

phylogenetic tree of Solanum taxa to test whether the niche diversity of a given species is guided by a 

specific breeding system and ploidy interaction. To account for the potential decoupling of 

geographical range and niche breadth (Randel et al., 2009), the measure of climatic diversity is 

through the use of discrete climate-classification of each occurrence of these wild relative species. 

This work supports classic ecological theory of niche divergence without the requirement of 

inferring continuous species distributions from point-based climate descriptions by featuring the 

relationship between two common intrinsic factors of niche expansion: (1) decreased reliance on 

outcrossing reproduction of polyploid variants; and (2) increased reliance on outcrossing 

reproduction of diploid variants (Roughgarden, 1972; Barton, 1996; De Bodt et al., 2005; Johnson et 

al., 2014). 
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Materials and Methods 

Data Collection 

Data organization and analyses were conducted using the R (R Core Team, 2020) packages “raster” 

(Hijmans, 2020) and “tidyverse” (Wickham et al., 2019). We obtained 49,165 occurrence records of 

the 72 Solanum species sourced from Castañeda-Álvarez et al (2015). These occurrences represent 

the most threatened and useful wild relatives of Solanum tuberosum, the previously cleaned points were 

further filtered for those lacking latitudinal and/or longitudinal information, resulting in a total of 

37,032 total occurrence points (Castañeda-Álvarez et al., 2015). Next, the Köppen-Geiger three-tier 

climate class system was acquired from Rubel and Kottek (2010). The Köppen-Geiger climate class 

system divides climates into five main groups that are subdivided based on seasonal precipitation 

and temperature that result in 30 potential discrete classes globally (reviewed in Rubel and Kottek, 

2010). The Köppen-Geiger is one of the most widely used systems for analyzing ecological 

conditions and identifying primary types of plants of a latitudinal and longitudinal intersection. 

Three-tier climate classes were extracted at each occurrence point. The total number of climate 

classes per species was counted for each species and climate classes with three or fewer occurrences 

were removed in order to avoid “by-chance” occurrences. Using discrete climate classes allows for a 

single measure of both niche diversity and breadth. See github repository 

“https://github.com/Nfumia/Potato_nichediversity_drivers” for code and data files.  

Linear Models for Climate Classes 

A linear model was fitted using R package “stats” (R Core Team, 2020) to identify which interaction 

of biological factors is correlated with niche diversity in Solanum section Petota. We used the number 

of discrete climate classes in which each taxon can occur as a proxy for niche breadth, as these 

niches vary spatially within the five broad descriptors of tropical, dry, temperate, continental, and 
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polar each of which possessing 2-12 subclassifications. For example, S. stoloniferum has fifteen 

discrete niches in which it occurs, but S. albornozii has only one, a temperate oceanic environment. 

The number of discrete climate classes is the response variable for the model. The predictor 

variables were combinations of ploidy (Castañeda-Álvarez et al., 2015) and breeding system 

(Robertson et al., 2010; Zenil-Ferguson et al., 2019) for each species, which were coded as dummy 

variable interaction terms: self-incompatible diploid, self-compatible diploid, self-compatible 

asexually propagating polyploid, and unknown breeding system asexually propagating diploid. 

Phylogenetic Tree and Phylogenetic Linear Models 

A Bayesian molecular clock phylogeny with time-calibration of section Petota to outgroups of 

domesticated tomato (Solanum lycopersicum) and domesticated eggplant (Solanum melongena) was 

estimated using 32 plastid genomes and compared to the most recent time-calibrated phylogeny of 

Särkinen et al. (2013). Due to a lack of plastid genome availability for some species in Solanum 

section Petota, only 27 of the 72 prioritized wild relative species were present in our subsequent 

analyses. Furthermore, 32 species (27 potato wild relatives, 2 domesticated potato, 1 domesticated 

tomato, 1 tomato wild relative, 1 domesticated eggplant) were aligned using the software MAFFT 

(multiple alignment using fast Fourier transform) via maxiterate version (Katoh, 2009). MrBayes 

(Huelsenbeck and Ronquist, 2001) as implemented in the Geneious software package (Kearse et al., 

2012) was used to conduct an initial phylogenetic analysis (Vallejo-Marín and O’Brien, 2006; 

Newton et al., 1999). We used a chain length of 10 million generations with 25% (or 2.5 million) 

burn in and a subsampling frequency every 1,000 generations. The General Time Reversible (GTR) 

substitution model was employed for the Bayesian analysis with rate variation of gamma, including 4 

categories.  
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We used the Bayesian uncorrelated relaxed clock-model dating method as implemented in 

BEAST2 (Bouckaert et al., 2019). The uncorrelated relaxed clock-model allows for rate variation 

across branches and measures for rate autocorrelation between lineages. Node ages are estimated 

simultaneously in BEAST2, and, therefore, uncertainty is incorporated into the node-age estimation. 

Our Bayesian MCMC tree output was used as a starting phylogeny. The Hasegawa-Kishino-Yano 

(HKY) model for DNA base pair substitution was used to better estimate the substitution rates of 

transition versus transversion as well as the Felsenstein (F81) proposed four-parameter model. A 

Kappa of 2.0, as estimated by BEAUti2 (Bouckaert et al., 2019), was employed. Calibration points 

for the node-age estimation were sampled from Särkinen et al. (2013) to create calibration priors: (1) 

tomato – potato split circa 8 mya (95% HPD 7—10), and (2) eggplant – tomato/potato split circa 

14.3 mya (95% HPD 13-16). These calibration points reflect a normal distribution with standard 

deviations of 0.85 and 1.10 million years, respectively. Yule tree prior with uniform distribution was 

used given all ingroup and outgroup species in this study currently persist ex-situ and/or in-situ. 

Priors were manually generated for each monophyletic clade showing greater than 85% posterior 

probability from the MrBayes MCMC analysis. Default priors were used for all other parameters. A 

total of 100 million generations, 10 runs with 10 million generations each, were run in BEAST2 

(Bouckaert et al., 2019). 

Using the time-calibrated phylogeny (Figure 1), we estimated the phylogenetic generalized 

linear models’ version of the OLS models proposed in the previous section to account for potential 

phylogenetic signals in the errors (Felsenstein, 1985; Hansen, 1997). This is an important step, since 

it is possible that our explanatory variables are not tracking the evolutionary history of the Petota 

section and can incorrectly conclude strong correlations between the climatic classes and the life 

history traits (Uyeda et al., 2018). 
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These phylogenetic linear models were estimated using a maximum likelihood PGLM with 

the R package “phylolm” (Ho and Ane, 2014).  For all the PGLMs we assumed a Brownian motion 

model of evolution (Grafen, 1989; Martins and Hansen, 1997; Revell and Harmon, 2008). Outgroup 

species and cultivated potato were removed at this point due to the inability to differentiate between 

cultivated and wild occurrence of the given species. This resulted in retention of 27 potato wild 

relative species, comprising the four major monophyletic clades of section Petota (Spooner et al., 

2014), for use in the PGLMs analysis. 
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Results 

Climate Regression 

 The 72 prioritized species in the Solanum section Petota examined here occurred in 17 distinct 

climates with individual species distributions ranging from a single climate (e.g., S. albornozii, S. 

chilliasense, S. lesteri) to 15 distinct climates (e.g., S. stoloniferum). Within this range exists a spectrum of 

breeding system and ploidy combinations between and within these species and their populations, 

exhibiting different extents of climate niche diversity (Figure 2). This analysis showed that distinct 

breeding system and ploidy combinations existed in a different number of niches (p = 3.4 x 10-7), 

described as the number of discrete Köppen-Geiger climate classes. Species that possess populations 

that are self-incompatible diploid and self-compatible polyploid show the greatest mean climate 

diversity with 11 discrete climate classes (Figure 2). Self-incompatible diploid species exhibit a 

greater average niche diversity when compared to self-compatible diploid species (Figure 2). 

Furthermore, diploid species possessing populations showing polyploidization demonstrate greater 

sustained ecological divergence.  

The maximum likelihood intercept value of ecological niche diversity is 2.81±1.01 climate 

classes. Species existing as self-incompatible diploid or self-compatible polyploid have significantly 

(p-value < 0.01) larger climatic niches by 3.13±0.73 and 3.62±0.79 discrete climate classes, 

respectively (Table 1). However, other predictor (self-compatible diploid, asexually propagating 

unknown breeding system diploid) variable slope values are not significantly different from zero, 

and, therefore, they exert no measurable influence on niche diversity within Solanum section Petota. 

Overall, the model explained a moderate amount of variance with an adjusted R-square of 0.39. 
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Evolutionary Climate Regression 

In the PGLMs fitted using our estimated time-calibrated phylogeny (Figure 3), we found an 

estimated intercept value of 6.43±1.67 (Table 2). The PGLMs confirmed the correlations of OLS 

models, with self-incompatible diploid (3.98±1.04) and self-compatible polyploid (2.57±0.98) 

significantly increasing ecological diversity (Table 2). As with OLS, the other predictor variables in 

PGLMs are not significantly different from zero. 
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Discussion 

Clarifying the impacts of plant traits on niche divergence is important to understanding the structure 

of global patterns of biodiversity and evolution in plant lineages (Cavender‐Bares et al., 2009). 

Furthermore, life history traits can provide clues about the potential resiliency of plants with 

increased development of wild areas leading to changes in habitat and climate for many species. 

However, resilience may be tightly linked with other characteristics. In Solanum section Petota, the 

interaction of two specific characters, breeding system and ploidy, explain a large portion of the 

variation in niche divergence. The models presented here, OLS and PGLMs, explain 39% and 44% 

(R-squared), respectively, of the climatic niche variation present within Solanum section Petota with 

two alternate ends of the biological spectrum serving as the most significant predictors. On one end, 

self-incompatible diploid species exhibit the greatest significant correlation to climatic niche diversity 

within potato wild relatives. Such sustained diversity is likely the result of constant capacity for 

outcrossing between these species and their subsequent heterogenous design, fashioning an adaptive 

and resilient population through long-distance gene flow (Loveless and Hamrick, 1984). Due to the 

interaction between ploidy and breeding system, self-incompatible diploid species show niche 

diversity similar to self-compatible polyploid species, confirming the dynamic nature of the Solanaceae 

system (Barringer, 2007; Husband et al., 2008; Robertson et al., 2010; Zenil-Ferguson et al., 2019). 

However, self-fertilizing polyploid species have a short-term advantage as they can colonize new 

environments with very few individuals.  

For all the Solanaceae family self-incompatible diploid has been shown to be the ancestral 

state (Zenil-Ferguson et al., 2019), they also have faster net diversification compared to all self-

compatibles, both diploid and polyploid (Wright et al., 2013). The expectation given the success of 

these lineages in diversification is that self-incompatible diploids should have broader niches, an 
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unexpected result was that self-compatible polyploids diversified in a similar way. Evolutionarily this 

may be a temporal effect, polyploids are successful in short time scales and this may explain the 

success in diversification identified here, however, this study does not disentangle evolutionary 

timescales. Our results suggest that self-compatible diploids appear evolutionarily transient, and the 

evolution of self-compatibility appears to occur very rarely without a polyploidy event in Solanaceae. 

This suggests that polyploidy is just an evolutionary byproduct of trying to become self-compatible, 

allowing for rapid establishment in many new environments.  

Self-compatible polyploid species have increased climatic niche diversity which, given their 

increased genetic variation and plasticity through additional sets of chromosomes, make them 

capable of adaptive and resilient population generation (Soltis and Soltis, 1999). Polyploidy allows 

self-fertilizing section Petota species to maintain and derive novel diversity typically observed in 

outcrossing/self-incompatible diploid populations. These differences between breeding system and 

ploidy with niche diversity provide support for the use of these variable combinations as driving 

evolutionary forces, with qualitative results (Figure 2) being supported by OLS (Table 1) and 

PGLMs (Table 2).  

Our results suggest the potential to use ecologically plastic species to enhance the 

adaptability of cultivated potato lines in the face of climate change. The ultimate goal of this 

investigation is increased beneficial genetic variation among cultivated potato varieties developed 

through introgression of the various wild adaptations. However, the wild species have limited cross-

compatibility with S. tuberosum, as evidenced in their endosperm balance numbers. Therefore, time is 

needed in order to operationalize this diversity in agricultural fields, so that favorable environmental 

adaptations from a subset of ecologically plastic species, can be introgressed while breaking linkages 

to agronomically unfavorable traits. 



21 
 

The impact of breeding system on the evolution of climatic niche diversity amongst plants is 

still unclear and the Solanum section Petota system contributes important evidence for a multilayered 

role where breeding system and ploidy interact synergistically with one another. In one case, self-

incompatible breeding systems play a large role in sustaining niche diversity over time (Park et al., 

2017) when species are diploid, possessing limited reproductive barriers. In contrast, self-compatible 

breeding systems comparatively increase niche diversity when species are polyploid, by enhancing 

their ability to reach, reproduce, establish, and adapt (Campbell, 2013) with the biological safety net 

of increased “buffering capacity” through genetic variation (Wendel and Cronn, 2003). Further 

investigations could focus on the decoupling of breeding system and ploidy; however, due to the 

self-incompatibility conferred by S-RNases found in polyploid populations of Solanaceae this is 

challenging (Robertson, 2010; Barringer, 2007; Husband et al., 2008). Furthermore, this study was 

not able to completely decouple ploidy and breeding system interactions due to lack of data on 

particular species’ breeding systems, exemplifying the need for more than DNA collection. 

Additionally, a limitation of this analysis is the limited number of species available for PGLMs, 

which was due to a lack of publicly available plastid genome sequence data.  

Increasing effective genetic diversity through polyploidization has the potential to increase 

the number of niches to a similar extent as would occur with an outcrossing diploid population. The 

breeding system is the main driver of niche divergence in the self-incompatible diploid populations, 

while only a secondary contributor in the self-compatible polyploid populations. Despite the 

biological differences, the resulting niche diversity is not seen in a difference of preferred climate 

type but rather the extent of climatic diversity (Figure 4). Through decoupling geographical range 

size and niche breadth (Randel et al., 2009), this study tests classic theory by utilizing a highly 

diverse, economically important section of plants. Our findings lend credence to the hypothesis that 

these ecologically plastic responses evolved over millions of years in species with populations of self-
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incompatible diploids and self-compatible polyploids, and, therefore, these species should be 

prioritized for conservation and for use to adapt our cultivated varieties to a changing climate.  
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Figures and Tables 

Figure 1. Time-calibrated uncorrelated relaxed molecular clock phylogeny with outgroups and cultivated varieties of 

potato included as generated with BEAST2. 
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Figure 2. Boxplot of niche diversity by breeding system and ploidy interaction in potato wild relative species. Many 

species exist containing multiple subpopulations with differing biological factors, as seen by combination of such factors 

on the x-axis.  
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Figure 3. Dual figure with time-calibrated molecular clock phylogeny (left) with climatic niche diversity (i.e., number 

of climate classes occupied) (right). On the left side, the x-axis scale bars represent millions of years and the 

background coloration of the phylogenetic tree highlights widely accepted clades of Solanum section Petota. On the right 

side, the number of climate classes a species occurs in is represented by the size of the horizontal bar and measured with 

the x-axis scale bar and the coloration of the horizontal bars represent species biological attributes as breeding system 

with ploidy. 
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Figure 4. Pie chart of climate class proportions by breeding system/ploidy combinations.  
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Table 1. Results from the linear model for climatic niche diversity following Gaussian distribution. The number of 

discrete climate classes in which each taxon can occur (i.e., a proxy for niche breadth) is the response variable, Climate 

Niche Diversity. The predictor variables are combinations of ploidy and breeding system for each species, which were 

coded as dummy variable interaction terms: self-incompatible diploid, self-compatible diploid, self-compatible asexually 

propagating polyploid, and unknown breeding system asexually propagating diploid. Values of reported in column 2 

are the maximum likelihood estimates and standard error of the estimates (surrounded by parentheses).  
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Table 2. Results from phylogenetic linear models for climatic niche diversity following Brownian motion. The number 

of discrete climate classes in which each taxon can occur (i.e., a proxy for niche breadth) is the response variable, 

Climate Niche Diversity. The predictor variables are combinations of ploidy and breeding system for each species, 

which were coded as dummy variable interaction terms: self-incompatible diploid, self-compatible diploid, self-compatible 

asexually propagating polyploid, and unknown breeding system asexually propagating diploid. Values of reported in 

column 2 are the maximum likelihood estimates and standard error of the estimates (surrounded by parentheses). 
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Abstract 

Food production strategies and patterns are being altered by climate change. Enhancing the 

adaptation of important food crops to novel climate regimes will be critical to maintaining world 

food supplies. Climate change is altering the suitability of production areas for crops such as potato 

(Solanum tuberosum L.). Future productivity, resilience, and sustainability of this crop will be 

dependent on breeding for climate adaptation, including through the introgression of novel traits 

from its wild relatives. To better understand the future production climatic envelopes of potatoes, 

and the potential of its wild relatives to contribute to adaptation to these environments, we 

estimated the climate of potato in four future scenarios and overlapped the current climate of 72 

wild relative species and potato with this future climate. We discovered a shift of up to 12% by 

potato into novel climate by 2070 and varying magnitudes of overlap by wild relatives with potato, 

primarily driven by the extent of endemism. To address the threat of change to novel climate and 

with the wealth of data available for the agrobiodiversity in potato wild relatives, we systematically 

developed a prioritization value inspired by the logic of the breeder’s equation for locating 

potentially beneficial species possessing local adaptability, climatic plasticity, and interspecific 

crossability. In doing so, 26 unique species by discrete climate combinations are found, highlighting 

the presence of unique species to use in adapting potato to the local climate. Further, the 20 highest 

prioritized values belong to diploid species, enforcing the drive to shift into diploid breeding by the 

potato research community, where introgression of the local climate adaptability traits may be more 

streamlined.   
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Introduction 

Potato (Solanum tuberosum L.) is the fourth most widely cultivated crop globally and the most 

important tuber for human consumption (>1 billion people annually; FAOSTAT, 2017). The tubers 

of potato provide a rich and complex source of carbohydrates and essential nutrients, including 

dietary fiber, vitamins, minerals, protein, and antioxidants (Bach et al. 2012).  Potato thrives in a 

relatively narrow climate niche, for example, tuberization has been empirically shown to diminish at 

temperatures above 17 °C, negatively impacting productivity (Stol et al. 1991; Haverkort 1990, 

Hijmans 2003). Future yield projections under climate change indicate a likely production decline in 

major potato growing regions (Raymundo et al. 2018, Dahal et al. 2019). Changes in potato 

agronomic practices (e.g., pesticides, fertilizers, and irrigation) have increased the geographic range 

of production and production per unit area (Hijmans 2001, Hijmans 2003, Murchie et al. 2009, 

Devaux et al. 2014).  Such agronomic practices may help mitigate the impacts of climate change 

induced production decline and crop improvement can champion these efforts by providing new 

crop varieties that are more resilient to abiotic stresses.  

Potato breeding has generally seen steady improvement with occasional flurries of activity, 

one such time of rapid improvement was after the late blight epidemics of the 19th century (Jansky 

and Spooner 2018). Most selections were made from open pollinated populations as specific crosses 

of cultivars were rarely successful until the mid-20th century (Krantz 1924, Krantz 1946, Comai 

2005, Jansky and Thompson 1990, Bradshaw and MacKay 1994). Improvement in potato yield in 

the last century was mostly due to agronomics while improvements in quality traits have been 

attributed to genetics. Potato is a clonally propagated, autotetraploid crop with a narrow genetic base 

compared to the wild relatives (Spooner et al., 2014). These factors continue to make breeding 

difficult despite recent efforts to incorporate new diversity (Jansky 2009), including introgression 

with potato wild relatives (hereafter PWR). Modern cultivars of potato possess relatively little 
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difference in the percentage of heterozygous loci nor the frequency of homozygous from cultivars 

developed in the past two-centuries (Hirsch et al. 2013, Vos et al. 2015). Additionally, cultivar 

turnover is very slow in many regions, for example with cultivars in North America being grown for 

40-50 years (reviewed in Singh et al., 2019).  Using PWR has helped to introduce genetic diversity 

and valuable agronomic traits, most importantly disease resistance into breeding lines (Hijmans 

2001; Jansky et al. 2013; Castañeda-Álvarez et al. 2015; Zhang et al. 2017).  

PWR are a highly diverse set of species found in Solanum section Petota (Castañeda-Álvarez et 

al. 2015). These species have a range of ploidy and meiotic behavior (disomic, polysomic, and 

mixed-somic inheritance), occasionally causing meiotic problems when crossed with the crop (Key 

1970). Many attributes of the PWR have been defined, including their ploidy, mating system, 

germplasm classification, endosperm balance number, phylogenetic relationships, and geographic 

ranges in order to operationalize their use in breeding (Hijmans 2001, Spooner & Hijmans 2001, 

Spooner & Hettersheid 2007, Castañeda-Álvarez et al. 2015, Zenil-Ferguson et al., 2019). The goal 

of plant breeding is to move the population mean of a given trait to a more beneficial value for the 

particular human use it is intended, the speed with which this can be done is often measured using 

the breeder’s equation (Lush 1943), which conceptualizes efficiency after accounting for genetic 

variance and selection intensity. The framework has not been explored in the context of climate 

change projections and crop wild relatives.  

Global food security is threatened by climate change, impacting production and land use 

change (Foley et al., 2011; Ramankutty et al., 2018; Mehrabi et al., 2020). Historic climatic events and 

shifts have placed pressure on crop cultivars by creating novel abiotic and biotic stresses (Lesk et al. 

2016). Future projections provide a way to create realistic assessments of means and variances of 

future climate scenarios. Adaptation strategies include: (i) sourcing crop populations (e.g. landraces, 
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varieties) from different global geographic regions matching future projected climate, (ii) assessing 

crop wild relatives for naturally evolved adaptations, (iii) defining replacement crops to be cultivated, 

(iv) defining different agroecosystems for existing crops, (v) substantially changing agronomic 

practices such as row spacing, irrigation and planting date, and (vi) abandoning current production 

locations with human population moving to areas amenable to current practices/cultivars (Burke et 

al., 2009; Ramirez-Villegas and Khoury, 2013; Pironon et al., 2019; Sloat et al., 2020; Heider et al., 

2021). Despite research exploring the potential for shifts in existing production zones or towards 

zones forecasted for potato production compatibility (Leemans & Solomon 1993, Hijmans 2003), 

such shifts present tradeoffs through encroachment on natural ecosystems and through limiting 

human livelihoods (Tanentzap et al. 2015, Smith et al. 2014). Therefore, the least disruptive option is 

utilizing agrobiodiversity for adapting crops to the changing environments with conventional 

breeding techniques (Borlaug 1983, Jansky et al. 2013, Dempewolf et al. 2017). Utilizing wild relative 

species, as well as landrace and heirloom varieties, provides a mechanism to alleviate the abiotic 

stresses expected with climatic shifts through evolved traits including tolerance to salinity, drought, 

and temperature extremes (Bailey-Serres et al. 2019, Ramankutty et al. 2018). This has led to large 

redundancy and overlap in personal (e.g., breeding programs) and institutional collections (e.g., 

germplasm banks), resulting in the overcollection of some species and under collection of others 

(Dempewolf et al., 2017).  

Here we focus on assessing crop wild relatives for naturally evolved adaptations, which is 

broadly focusing on agrobiodiversity, which has a recognized role in mitigating the threat to crops 

(Dempewolf et al., 2017). The uncertainty of future climatic conditions creates a situation where 

breeders must efficiently and effectively prioritize the best potential species to create interspecific 

populations from and to ameliorate shift-induced stress on production. Therefore the objectives of 

this study were to (i) model the shift in climatic conditions expected for potato in the future (2050 
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and 2070) at a global scale, (ii) model the current climate niche of 72 PWRs, (iii) assess overlaps 

between the climate niches of PWRs and the novel/future conditions expected for potato, (iv) 

propose a formalized approach to prioritize PWRs for use in breeding based on their potential for 

future climate adaptation in specific climatic zones (Pironon et al. 2020). Conceptually, this is similar 

to envirotyping (Xu, 2016) and enviromics (Resende et al., 2020), but instead of working with 

breeding populations, here crop wild relatives are explored. 
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Materials and Methods 

Data Acquisition 

Potato production occurrences (N = 726,103) were compiled from land use census data at a ~5 arc-

min resolution in 2000 (Monfreda et al. 2008), while occurrences for the 72 PWR (N = 37,250; 

Table 1) were compiled from previous gap analysis that prioritized PWR (Castañeda-Álvarez et al. 

2015). Climate data were retrieved from WorldClim 2.0 

(https://www.worldclim.org/data/cmip6/cmip6climate.html) for the years 1970-2000 (hereafter 

“current climate”, Fick and Hijmans, 2017) at a 5 arc-minutes (~10km) resolution (Eyring et al. 

2016). Future climate projections are based on the sixth assessment report (AR6) of the 

Intergovernmental Panel on Climate Change (IPCC) that uses various shared socioeconomic 

pathways (SSPs) for different global climate models (GCMs). Nineteen variables provided by 

WorldClim were utilized to ensure full capture of mean and variance of temperature and 

precipitation conditions across and between seasonal shifts for potato and each of its PWRs (Table 

2). The same variables were collected for the 2050 and 2070 time periods (averages for 2041-2060 

and 2061-2080, respectively) according to two shared socioeconomic pathways (SSPs) of SSP2-4.5 

(considered a medium effort to curb emissions) and SSP5-8.5 (considered low to no effort to curb 

emissions) and eight GCMs (global climate models). The eight GCMs were BCC-CSM2-MR, 

CNRM-CM6-1, CNRM-ESM2-1, CanESM5, IPSL-CM6A-LR, MIROC-ES2L, MIROC6, and MRI-

ESM2-0.  Current and future climatic information were extracted for each potato and PWR 

occurrence point using the extract function in the raster package of R. Data for the Köppen-Geiger 

climate classes of PWR and life history traits were derived from Fumia et al. (2020). The Köppen-

Geiger divides climate regimes into a discrete three-tiered system (five main, 30 sub and sub-sub 

tiers) based on main climate, seasonal precipitation, and temperature (reviewed in Rubel and Kottek, 

https://www.worldclim.org/data/cmip6/cmip6climate.html
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2010). Further, the regression coefficients for climate niche diversity as well as phylogenetic 

relatedness were sourced for PWR from Fumia et al. (2020).  

Climate comparisons 

We performed principal component analysis (PCA) to identify the climate niches of the cultivated 

potato at current future time points  and compare to the current climate niche of its 72 wild relatives 

using the 19 bioclimatic variables using the R packages ade4, grDevices, and sp. Climate niches were 

built using convex polygons around the occurrence points of each species in the principal 

component climatic space from PC1 (46.4% variance explained) and PC2 (22.2% variance 

explained) in the joint analysis of species. The technique of convex hull was chosen for quantifying 

the niche space over alternatives as it does not rely on point density (important because occurrence 

point sampling is uneven in geographic space) and is conceptually simple and readily interpretable. 

However, this technique is sensitive to outliers; therefore, the analyses were repeated discarding six 

different selections of outliers based on Mahalanobis distances (values ranging from 5 to 10) 

between each occurrence point and the centroid of the species climatic niche, as in Pironon et al. 

(2019). We estimated the current and future climatic conditions of potato and the current climatic 

conditions of the 72 PWRs. To estimate the impact of life history traits, species with the same 

mating system/ploidy combinations were first aggregated, then polygons were drawn around the 

combined data. The climatic change of potato was estimated as the percentage of the total area of 

the polygon representing future climatic conditions that is not intersected by the total area of the 

polygon representing current climatic conditions. We described novel climate as the expected future 

climate space that is not intersected by the current climate space, indicating a climatic zone of high 

insecurity facing future potato production. We then analyzed how current PWR climatic niches 
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overlap with this novel climate space in order to estimate the potential contribution of each PWR to 

potato’s adaptation under climate change. 

PWR Prioritization Score 

We developed a PWR prioritization (PWRP) score inspired by the logic of the breeder’s equation 

(BE) (Lush 1943, Lynch and Walsh 1998, Walsh and Lynch 2018, Bernardo 2020). Specifically, we 

conceptualized the PWR species niche overlap with future and current potato climatic conditions at 

different time points as phenotypes, analogous to the response to selection, which we call climate 

response potential (Figure 1). Considering this, we calculated the PWRP utilizing the format of the 

BE (for full explanation of each terms relationship to the traditional BE see Figure 1):  

Potato Wild Relative Prioritization = applicability * (environmental plasticity + 
evolutionary history) * spread  

PWRP= a * (ep + eh) * σ 

Instead of having a response in progeny there is a predicted response in a species over time, this 

presents a potential capacity for climate adaptability and thus a higher score in a specific 

environment means a higher utility as a donor species, this is represented as PWRP. Instead of 

selection intensity (phenotypic variance selected on) the proportion of a discrete niche (Köppen-

Geiger climate class) is conceptualized as the phenotype which varies showing future potential 

adaptability, represented as applicability (a). The Köppen-Geiger class system (Rubel and Kottek 

2010) provides climate zones that are useful when defining the range of a particular breeding 

program and knowing the discrete class provides a shorthand for localization of valuable breeding 

germplasm. Therefore, applicability (a) serves as a honing value from the current occurrence of a 

given PWR in a specific discrete climate class as a percentage of occurrences in that class over the 

total number of occurrences of that species (Köppen-Geiger Climates, Figure 2). Further, to 
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highlight the ability to localize valuable germplasm this discretizing allows for a correction of the 

PWRP response to represent 0 where a species does not exist and would be unlikely to offer 

phenotypic advancement to cultivated potato in that climate, to greater than 0 where the species 

solely exists in that specific climate.  

Instead of heritability we have a combination of the crossing potential and the plastic 

response in different time periods as the correlation of individual PWR overlap with current and 

overlap with future climate niche of potato. Environmental plasticity (ep) represents the correlation 

between the niche overlap of PWR over the current climate of potato with the niche overlap of 

PWR over the future forecasted climate of potato (adjusted for each SSP and year combination). 

Due to the interspecific nature of potential crosses, we adjust the correlation between timepoints 

with crossability using two aspects: (1) to adjust for the evolutionary role in climatic diversity we use 

the regression coefficient for niche divergence among of PWR with different life history trait 

interaction (see Fumia et al. 2020); and (2) to adjust for the evolutionary role in crossability we use 

the chloroplast genome genetic distance between all PWR and S. tuberosum (Fumia et al. 2020), 

representing the evolutionary history (eh). The evolutionary history (eh) represents the regression output of 

life-history trait influence upon climatic variation as specifically the intercept + or - the slope value 

by a PWRs life-history trait combination (mating system by ploidy) (Fumia et al. 2020). Additionally 

applied in eh is phylogenetic distance, calculated as the Bayesian predicted plastid genomic distance 

from the cultivated potato (S. tuberosum) from Fumia et al. (2020), this metric could be replaced with 

any metric of phylogenetic relatedness. Instead of additive genetic variance, we conceptualize this as 

the variance associated with environmental plasticity (ep) and evolutionary history (eh), representing the 

spread (σ). Spread (σ) accounts for the variation in attributes of ep, as determined by the standard 

deviation among the different GCMs used in climate projections, and eh, as determined by the 

standard deviation of the regression intercept + or - the standard deviation of the slope value.  
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Results 

Under future projected climates there is both a clear overlap between current and future climates of 

potato by mating system/ploidy and novel climate space being inhabited (Figure 3). Following the 

SSP 4.5, we predict a 7.0% change in the climate niche of potato by 2050, increasing to 8.4% in 

2070. Following a scenario of low effort to curb greenhouse gas emissions (SSP 8.5), we find an 

8.7% change in the climate niche of potato by 2050, increasing to 12.5% in 2070. Considering global 

climatic shifts, ~6-12% of the future projected climate space of potato will be novel, depending on 

the climate model and emission scenario considered. The above changes in potato niche are 

primarily shifts along PC1, mostly formed by temperature variables (Table 2). This novel climate 

space is partially occupied by PWR species that possess self-compatible, diploid populations, which 

in general have the largest ranges and exist in novel climates relative to the current extent of potato. 

These self-compatible, diploid PWRs exist in the current climate primarily identified by lower PC1 

(temperature) and PC2 (precipitation) values (Table 2).  

The range in the size of climate space varied from the narrowest PWR (Solanum gracilifrons 

Bitter) found in a single small valley near Colcabamba, Peru, to the broadest climate niche of potato, 

an effect of domestication. PWRs exist in a large number of discrete climate classes (Figure 2), 

ranging from narrow endemic species occurring in single climate classes (e.g., Solanum salasianum 

Ochoa) to those which exist in over half of the major biomes of earth and 15 climate classes (e.g., 

Solanum chacoense Bitter). The current climatic niche of PWRs shows substantial variation between the 

predicted novel climates from the general climate models (GCMs) in the future (2050 and 2070) in 

the different emission scenarios (SSP 4.5 and 8.5) when overlapped with current and future niches 

of potato production. As expected, there is more shift in the climate niche at the later time point 

2070 and under the more severe emission scenario SSP 8.5 (Figure 4). The largest range seen among 



45 
 

the examined species is the domesticated potato. The range expansion of the domestic compared to 

the PWR can be observed in the number of Köppen-Geiger climate classes where potato occurs 

relative to PWR species (Figure 2) as well as the total area covered within the climate spaces (Figures 

3, 5, and 6).  

Under future projected climates there is clear overlap of novel climate space by individual 

PWRs (Figure 3b). In SSP 4.5 in 2050 there was an average overlap of 47.5% by PWRs over the 

future climate niche of potato, decreasing to 47.0% in 2070. In SSP 8.5 in 2050 there was an average 

overlap of 47.1% by PWRs over the future climate niche of potato, decreasing to 45.7% in 2070. 

PWR, specifically the top-8 identified (Figure 7), exhibit the adaptation to a higher degree of lower 

PC1 and PC2. Here the species that show the most change and most potential for future use in 

novel space are the species S. colombianum and S. andreanum, both possessing populations of self-

compatible diploids as well as driving the novel climate space of the secondary genepool (Figure 3c). 

The matrix of prioritization values (PWRP) shows clear variation in PWR regarding utility 

for breeding with potato for adaptation to climate change (Figure 8 and 9; Table 3).  The species 

that showed the best potential for use in adaptation to unique climates were Solanum neocardenasii, 

Solanum incasicum, and Solanum pillahuatense (Table 3). However, when the end goal shifts, the species 

with the highest overall PWRP when compared to all other species shifts to Solanum colombianum 

(Table 4). As expected, these species are associated with the Oceanic climate (Cfb) or Subpolar 

oceanic climate (Cfc), characterized by narrow annual temperature ranges (Rubel and Kottek 2010). 

The next top species are found in extremely different climates. Solanum neorossi and Solanum 

neovavilovii possess high PWRP values associated with climates Subtropical highland climate (Cwb) 

and Polar tundra (ET), respectively (Table 4). Furthermore, when looking at the species with the top 

20 highest PWRP, all species are either diploid or possess diploid populations. Additionally, when 



46 
 

considering the top two species per Köppen-Geiger climate (17 discrete climates), there are 26 

unique species identified for applicability in any given climate (Table 3). Additionally, more than half 

of the 80 highest valued PWRPs correspond with species identified for Temperate oceanic (24) and 

Subtropical highland (21), highlighting the agrobiodiversity available for localized crop improvement 

in these discrete climate niches (Table 4) where only 10% of current potato production occurs, 7.7% 

and 2.4% respectively (Figure 2). Broadly useful species, identified in multiple climates as viable 

options, include S. andreanum, S. brevicaule, S. chacoense, S. colombianum, S. hougasii, and S. longiconicum; 

furthermore, PWR do not occur in every discrete climate of potato, however, the similarity of 

discrete climates along PC1 and PC2 can be identified for approximate matches (Table 5).  
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Discussion 

Climatic shift and adaptation strategies 

The projected shifts in climate envelopes introduce hurdles for the sustainable production of potato. 

There are currently 370 million tonnes and 17 million hectares of potato in production (FAOSTAT 

2017). If we consider the worst-case scenario for 2070 and assume production is evenly distributed 

across the climate polygons, there will be a maximum of roughly 44 million tonnes, or 2.1 million 

hectares, of potato that will need to be produced in a new climate given the expectation of 12% of 

production potato being shifted from current to 2070. This shift is similar to other major crop 

species such as sunflower (Mehrabi et al., 2019) and common bean (Ramirez-Cabral et al., 2016). 

Shifting climate can be addressed through either bringing new land into production or intensifying 

production on the remaining land, creating a change in the production system where adapted 

cultivars will be a key component. The shift is about 10 million tonnes more than the international 

production of dry beans and roughly one-third of the international banana production area 

(FAOSTAT 2017). Potato future climate shifts occur along a lower PC1 (temperature) and higher 

PC2 (precipitation) gradient while PWRs primarily exist in lower PC1 and lower PC2 (Figure 3, 5, 

and 6) gradients. Therefore, PWRs may more likely provide the ability to ameliorate stresses 

associated with lower climatic shifts along PC1 (temperature) and PC2 (precipitation). A limitation 

of our analysis is the assumption that production will remain in the same location and same 

production intensity. This assumption was made based on the specialized equipment and processing 

facilities that accompany large scale potato production. Historically, there have been production 

shifts (e.g., New York to Idaho in the United States; Lucier 1991), but such shifts require large 

capital investment, often being driven by outside infrastructure and are therefore difficult to predict. 

The least disruptive option for growers and processors would be to use PWR for genetic 
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improvement of production cultivars to increase productivity on existing cultivated lands rather than 

expanding production to new areas (Dias et al., 2016).   

Agroecological Niche and Prioritization of Potato Wild Relative Species  

A consideration when prioritizing agrobiodiversity is the identification of traits that are useful to 

agricultural production in specific regions and agroecosystems, these can differ from those that 

provide adaptability to populations in natural ecosystems (Fumia et al. 2020). In this study, the traits 

influencing climate adaptability and plasticity as well as crossability to cultivated species were 

combined in the prioritization, similar conceptually to envirotyping (Xu, 2016) and enviromics 

(Resende et al., 2020). However, rather than finding the best cultivar for an environment here we 

prioritize species with localized climate adaptation for specific climate/production niches found 

throughout the world (Table 3, Figure 8 and 9). Different global regions have different potential 

donor species for abiotic stress adaptation, for example, S. colombianum was identified as a useful 

donor species in Af (Tropical Rainforest) and Csb (Warm-Summer Mediterranean), as it likely 

contains the potential to provide adaptability to increased temperatures thus helping to alleviate 

diminished tuberization and yields that have been documented under high late season temperatures 

(Stol et al. 1991; Haverkort 1990, Hijmans 2003). Further, in coastal regions where increased salinity 

is expected via salt-water inundation, localized adaptability from Solanum neocardenasii in Cfb 

(Temperate Oceanic) could be introduced to ameliorate the abiotic stress. These examples are 

generalizable to any climate where there are data, in each case a donor species can be selected for 

generating locally adapted lines in an effort to curb current and future local niche stresses to 

production. However, selection can be interpolated with associating climate likeness in principal 

component space (Table 5). This score provides the breeder with a starting-point species identified 

to have the highest plasticity, localized adaptability, and crossability based on phylogenetic distance. 
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Moreover, prioritized species can be further filtered to account for known biotic resistances, similar 

to sunflower prioritization (Mehrabi et al. 2019). An example would be selecting the species (S. 

colombianum and S. andreanum) with the highest climate plasticity (e.g., largest climate niche) but 

adjusting the selection to documented Phytophthora infestans resistance found in S. andreanum while 

avoiding the overwhelming susceptibility to the disease in S. colombianum (Khuitti et al., 2015). While 

this study explored potato, the method can be expanded to any crop. 

Use of PWR in Potato Breeding:  Diploid Potato is the future 

Historically, interspecific breeding, while used was limited due to the creation of populations 

without local adaptability and with meiotic instability, leading to cycles of recombination to remove 

linkage drag and increasing the length of time needed to introgress a trait (Jansky and Peloquin 2005, 

MacKay 2005, Bradshaw and MacKay 1994). Moreover, this has led to the development of complex 

crossing schemes requiring additional generations before testing (Peloquin et al., 1999; Hijmans et al. 

2007; Köhler et al. 2010). One potential way to overcome this is to work with species prioritized for 

local adaptation and to work at the diploid rather than tetraploid level. The top prioritized PWR are 

diploid, however, cultivated potato is tetraploid with polysomic inheritance, leading to complex 

segregation patterns during breeding. This means that additional resources must be expended to find 

favorable genotypes (McCord et al. 2012, Little 1945 & 1958). Further, there are additional 

challenges that occur in interploidy hybridization between PWR and potato, often requiring 

additional steps such as ploidy reduction, bridge crosses, and re-polyploidization (Peloquin et al. 

1989, Ortiz and Peloquin 1991, Serquén and Peloquin 1996, Santini et al. 2000, Jansky 2006). This 

extended breeding cycle is exacerbated by the standard intensive breeding process of progeny testing 

(De Jong and Tai 1991). Such challenges suggest that the move toward diploid germplasm (Jansky et 

al., 2016) should be accelerated to keep within resource constraints and improve response time to 
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climatic shifts, using the most promising PWR (diploid). Potato breeding is focused on clonal 

selection, where extreme outliers are important because they can become a cultivar and their outlier 

nature is not lost through sexual recombination. Since outlier selection is important, breeders rely 

upon selecting populations that exhibit the greatest phenotypic variation, with diploid populations 

often expressing larger variation than tetraploid populations (Jansky and Spooner 2018). While there 

is great potential to breed in diploids more rapidly, there are also problems with increased genetic 

load and inbreeding depression (Jansky et al. 2016, Bachem et al. 2019), but these could be 

overcome by creating an inbred-hybrid system (Zhang et al. 2019).  Using these diploid PWR as 

parental species in diploid breeding programs not only increases genetic diversity but introduces 

climate resilience and plasticity. Increases in the extremes of a segregating diploid population 

support the production and identification of broadly or specifically eco-adapted individuals. In doing 

so, interspecific hybrids may possibly be selfed to achieve homozygous climate adaptation traits and 

thus, significantly decrease the resource intensity currently associated with potato breeding 

programs. PWR contain species that satisfy these requirements for many different climate classes, in 

prioritizing by specific class, a short list can be identified that will provide climate adaptability and 

inform specific breeding designs to reach goals under different temporal constraints. An interesting 

question for future work would be to identify if the timeframe for de novo domestication of wild 

potatoes would be faster than introgression due to meiotic incompatibilities, particularly with respect 

to climate adaptation.  

Limitations 

Cultivated potato is produced in irrigated and dryland systems, which are not separated in this study. 

This limitation implies that the large range in climate space of cultivated potato (Figure 1) when 

compared to PWR is due to a combination of changes in genetics and agronomic practices (e.g., 
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irrigation, fertilization, and pest control) which both expand the production niche. Despite this 

potential overestimation of the climate niche of cultivated potato, the PWRP metric is disentangled 

from niche size through the use of the correlation between current overlap and future overlap. The 

interpretation of this is that when species are prioritized using this metric, they are highly likely to 

hold the abiotic stress tolerance within the climate class of interest. Additionally, although this study 

uses 72 wild relative species of potato, it does not incorporate the genetic diversity and potential 

adaptability traits available in landrace varieties, an area ripe for future investigation (Heider et al. 

2021). Lastly, PWRP is a metric to improve selection of germplasm for interspecific breeding in a 

local niche but does not consider how this selection may alter the final potato product from the 

current local market preference. The goal is introgression of adaptability traits while maintaining 

quality traits (e.g., texture, color, nutritional value), however, how the theory meets practice requires 

empirical testing within potato breeding programs. 

 

 

 

 

 

 

 

 

 

 



52 
 

Conclusion 

Potato has become a foundational part of the diet of millions of people across the globe. Future 

cultivation is threatened by an increasingly stochastic climate, in fact here we projected that up to 

12.5% of the current cultivated potato climate will shift into novel climates by 2070. This is a 

tremendous threat to livelihoods and food production; however, we also identified a clear path to 

future climate adaptation using PWR genetic resources.  Actualizing the finding here would be aided 

by moving breeding systems to diploid germplasm as suggested by Janskey et al. (2016). We have 

proposed a way of prioritizing species to use in adapting production potato to local climates and 

specifically finding diploid PWR species, providing support for diploid breeding for streamlined 

improvement of potato towards abiotic stress adaptability. This may help develop more efficient 

breeding schemes that will increase the potential of new cultivars to be pre-adapted to the 

appropriate climate regimes to address the long lag time in agricultural research and development.  
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Figures and Tables 

Figure 1. Conceptualizing the response to climate change as a phenotype and using breeding logic to identify parental 

species for crossing in specific environments to create a PWRP.  This is a value that is inspired by the breeder’s 

equation (Lush 1943, Lynch and Walsh 1998, Walsh and Lynch 2018, Bernardo 2020). Selection intensity is 

mimicked by relevance in that a higher proportion of occurrence in a given climate (example is Cfb Oceanic climate) 

results in a higher relevance to the climate response. To mimic accuracy with environmental plasticity + evolutionary 

history (taking the place of additive effect of phenotypic value and genetic value) with the information that we have 

available for potato wild relatives. Environmental plasticity is the phenotype of interest and mimics the traditional 

phenotypic value by calculating the climate niche overlap with production potato. Evolutionary history plays the part of 

a traditional breeding value in that it is the additive evolutionary value as opposed to the additive genetic value (using 

the genetic information we do have such as ploidy/mating system and phylogenetics always bringing it back to the 

phenotype of interest: climate adaptability). This additive evolutionary value is the additive effect of life history trait on 

climate diversity plus the phylogenetic relatedness. Spread takes into account the variance associated with the 

environmental plasticity and evolutionary history. 
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Figure 2. Climate classes each potato PWR is present in followed by the climate classes of production potato. Those 

climates identified by black color are those that PWR do not occur.  
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Figure 3. Principal component analysis of environmental space of PWR under SSP 8.5 in 2070 grouped as A) 

top-8 overlapping PWR, B) life history traits, and C) genepool.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



57 
 

Figure 4. Differences in Niches by SSP, Year and GCM.  
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Figure 5. Principal component analysis of environmental space of PWR grouped by life-history trait combinations 

under A) SSP 4.5 in 2050, B) SSP 4.5 in 2070, C) SSP 8.5 in 2050, and D) SSP 8.5 in 2070. 

 

 

 

Figure 6. Principal component analysis of environmental space of PWR as top-8 overlapping species under A) SSP 

4.5 in 2050, B) SSP 4.5 in 2070, C) SSP 8.5 in 2050, and D) SSP 8.5 in 2070. 
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Figure 7. Niche overlap for each PWR species using SSP8.5 in 2070.  
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Figure 8. Boxplot of PWRP for each climate class under SSP 8.5 2070. 
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Figure 9. Boxplots of PWRP for each climate class for each PWR species, at a) SSP 4.5 2050, b) SSP 4.5 

2070, c) SSP 8.5 2050, and d) SSP 8.5 2070. 
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Table 1. PWR species and number of occurrences per species. 
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Table 2. PCA Loadings and Correlations with BioClim Variables.  
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Table 3. Top two species’  PWRP values under SSP 4.5 in 2050 for each climate class. Green represents a change 

in the top two or a rank change in alternative SSP and year scenarios. The presence of these species indicate they may 

be the most suitable parents for crossing to potato to improve adaptation to future climates in the noted climate class. 
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Table 4. 80 Highest valued PWRP (SSP 8.5 in 2070). The table shows the highest scoring species by climate 

combinations for the worst-case scenario in 2070. 
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Table 5. Volume overlap matrix in principal component space by discrete climate classes. This table can serve to 

identify discrete niches with similar volume to assist in species selection where the local production niche is not 

represented in Table 1. 
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Additional Work 

HARC-HSPA Sustainable Agriculture Fellowship 

1. Germplasm maintenance of Stevia, Papaya, Sugarcane, Koa, Sandalwood, Coffee, Cacao 

2. Lead of Stevia breeding and improvement 

a. Polycross of Generation 1 (F1) and Parental Lines for creation of Generation 2 

(F2) 

b. Augmented Randomized Complete Block Design and Analysis of Parental 

Family Lines, Generation 1, and Generation 2. 

i. Two environments, about 350 varieties per environment, 10 blocks per 

environment, 35 plots per block 

c. Polycross of Elite Varieties found in Item 2b for creation of Generation 3 (F3) 

i. Beginning stages of Controlled Environment Trials on Phenotypes 

Photoperiod Inducing Flowering and Total Steviol Glycosides Content 

from Generation 3 

3. Heritability Analysis of Steviol Glycosides in Stevia family lines 

4. Propagation assistance 

a. Papaya – Clonal propagation 

b. Koa – Air-layer propagation 

c. Sandalwood – Air-layer propagation 

Additional Publications 

1. Pironon, S., Borrell, J.S., Ondo, I., Douglas, R., Phillips, C., Khoury, C.K., Kantar, M.B., 

Fumia, N., Soto Gomez, M., Viruel, J., Govaerts, R., Forest, F., Antonelli, A. (2020). 

Toward Unifying Global Hotspots of Wild and Domesticated Biodiversity. Plants, 9, 1128. 

2. Del Valle Echevarria, AR, Fumia, N, Gore, MA, Kantar, MB. Domestication and Plant 

Breeding. (in review Plant Breeding Reviews) 

Lectures 

1. TPSS 300 (Spring 2020): Field and Greenhouse Crop Production 
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Presentations 

1. EECB Evoluncheon Feedback Workshop (Spring 2021): Climate Forecasting with Principal 

Component Analysis  

2. TPSS Seminar (Spring 2021): Exploring the resilience and optimizing the uses of potato wild 

relative species (Solanum Section Petota) in a changing climate. 

Additional Training 

1. Tucson Plant Breeding Institute: Module 1 (Introduction to Plant Quantitative Genetics) & 

Module 2 (Advanced Statistical Plant Breeding); Dr. Bruce Walsh, Dr. Mike Gore, Dr. Lucia 

Gutierrez; University of Arizona; January 6-10, 2020 


