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Abstract

In recent times, ultra-wideband (UWB)-based positioning systems have become popular in
sport performance monitoring. UWB positioning system uses time of arrival to calculate
the range data between devices (i.e. anchors, tags), and then use trilateration algorithms
to estimate position coordinates. In practical applications, non-line-of-sight transmissions
and multipath propagations lead to inaccurate range data and lower positioning accuracy.
This paper introduces a range error minimisation algorithm to address this limitation of
error in range data in UWB-based positioning system. The proposed solution analyses
the range error for each anchor and sequentially reduces this error based on the distance
between each anchor and the tag. This ultimately contributes to higher positioning accura-
cies. The authors implemented the proposed algorithm in a hardware test-bed, evaluating
the positioning accuracy for an indoor sport. The proposed algorithm outperforms both
the trilateration algorithm and a commercially used positioning algorithm by up to 50%
and 25%, respectively.

1 INTRODUCTION

In recent years, positioning systems have emerged in numerous
promising industries including outdoor and indoor navigation,
warehouse management, healthcare, and robotics [1]. Position-
ing systems are becoming increasingly popular in sport appli-
cations. In sport, a wearable technology commonly known as
an electronic performance tracking system (EPTS), can provide
critical information about an athlete’s physical activities and per-
formance. In July 2019, the International football body, FIFA,
allowed the use of the EPTSs during matches [2]. The Interna-
tional Tennis Federation (ITF) has also allowed the use of EPTS
devices in tennis [3].

EPTSs rely on on-board positioning systems to provide posi-
tioning data for athlete tracking. EPTSs can use both global and
indoor positioning systems. Global positioning system (GPS),
which relies on navigation satellites, is the most affordable and
popular choice. GPS can provide information about an athlete’s
position and velocity. However, GPS has a low sampling rate
that makes it difficult to detect the kinematic motion in sports
[4]. Satellite signal attenuation, number of satellites available and
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their position also affect the accuracy of the GPS [5]. The accu-
racy of the GPS system is in metres [6, 7] where this low accu-
racy is a major problem for EPTSs in sports [8]. This has led to
new positioning technology in the form of the indoor position-
ing systems.

For indoor positioning, various radio technology-based solu-
tions including, ultra-wideband (UWB) [9, 10], Bluetooth [11],
radio-frequency identification (RFID) [12], and wireless local
area networks (WLAN) [13] can be used. However, there is
a trade-off between the range and accuracy of these systems.
Some have very large coverage area, but their accuracy is in
metres, while others have accuracy in centimetres (cm), but their
range is only a few metres. For athlete tracking, UWB is the most
suitable radio frequency-based solution [14, 15].

In UWB-based positioning systems, range data gathered
from a UWB transceiver is used for positioning. Range data is
acquired from the measurement of the signal propagation time
between the anchor and the tag [16, 17]. Time of arrival (TOA)
is the most widely used technique for measuring range data
[18]. Range data between each anchor and the tag is obtained
using TOA. From this range data, mathematical methods
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FIGURE 1 Possible cases to determine position coordinates. (a) Theoretical trilateration algorithm that determines the position coordinates. Panels (b), (c), and
(d) are the possible cases where inaccuracy in trilateration occurs due to the error in range data R

(trilateration is the most commonly used method) provide the
position coordinates of the tag. Any error in range data results
in an inaccurate calculation of position coordinates.

TOA is a useful technique, but it possesses certain limitations.
Due to multipath [19] and non-line-of-sight (NLOS) [20], arrival
time is often measured inaccurately. Inaccuracy in measuring
TOA, results in an error in range data, which ultimately leads
to low positioning accuracy. This motivated us to investigate the
problem further and propose a mitigation technique.

The trilateration algorithm is the fundamental algorithm used
to find position coordinates. In trilateration, based on range
data, the distance between an anchor and a tag is calculated. This
information about distance is then used to calculate the position
of the tag, as shown in Figure 1(a). However, in practical cases, it
is not an easy task to measure the distance between anchors and
tags. Thus measured range data invariably contains some errors.

Figure 1 shows some possible practical cases that can occur
due to errors in the measured range. Instead of all three circles
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intersecting at a point, they either do not intersect at all or only
two circles intersect at one or two points. In Figure 1(b), all three
circles overlap with each other and there is a region where the
position coordinates can exist anywhere. In Figure 1(c), there is
no point where all three circles intersect, they intersect at differ-
ent points. In Figure 1(d), all three circles do not intersect at all.
It is evident from Figure 1 that the higher the error in calculat-
ing the range, the higher will be the inaccuracy in positioning.
To reduce the overall error that exists in trilateration, the error
associated with the range data must be minimised.

This paper introduces an algorithm that sequentially anal-
yses range data from each anchor and reduces range error.
The proposed algorithm does not use the conventional trilat-
eration algorithm, where it evaluates the error introduced by
adding the distance of each anchor and then adjusts the posi-
tion coordinates accordingly. From real-world experiments, we
have observed that the proposed algorithm performs better
than existing conventional and commercial algorithms.

Following are the major contributions of this paper:

∙ An algorithm is proposed to reduce the effect of range error
on positioning data in UWB-based positioning systems. The
algorithm sequentially evaluates the error in the range data
for each anchor and reduces its impact on the position coor-
dinates.

∙ In our proposed solution, an optimal number of anchors
are determined for maximum accuracy. This is also useful in
decreasing the setup time of the positioning system on the
field and reduces the complexity.

Section 2 presents the literature review. The solution for min-
imising the error in range estimation is presented in Section 3.
Evaluation under static and dynamic conditions is explained in
Section 4. Section 5 is the results and discussion section. In
Section 6, the algorithm is tested for the sport of tennis and
compared against a commercially available market solution. Sec-
tion 7 concludes the paper.

2 LITERATURE REVIEW

EPTS has emerged as a suitable alternative to camera-based
athlete tracking systems [21–23]. Motion capture camera sys-
tems [15, 24–26] can be used for athelete tracking, but their
complexity, setup time and cost are significantly high, and they
require complex algorithms. Vision-based positioning systems
require a powerful computational platform [27, 28]. They also
suffer from light conditions and scalability problems [29]. Con-
sequently, many sports and their industry partners are leaning
towards use of EPTSs [21–23].

EPTSs use UWB for indoor positioning. Authors in [30, 31]
compared different positioning systems and found the UWB-
based positioning system to be the most suitable system for
positioning. UWB possess accuracies in centimetres with a
coverage area large enough to be used for any indoor sport
[14, 32], and indoor positioning [33–35]. Authors in [36–38]

have investigated the performance of the UWB-based position-
ing system in challenging environments and reported positive
outcomes.

Authors in [39] have highlighted the importance of a posi-
tioning system for application in sports and suggest UWB-based
positioning systems to be the most suitable technology in the
market. With the commercial availability of UWB chips from
Decawave, they have gained more popularity as these chips
can provide centimetre level accuracy. Authors in [40], used a
Decwave UWB chip for positioning under dynamic conditions.

The UWB-based positioning system uses range data for
estimating position coordinates. Different techniques can be
used for calculating range data. These techniques include TOA
[17], time difference of arrival (TDOA) [30], proximity detec-
tion, fingerprinting, and angle of arrival (AOA) [41]. The AOA
technique requires measurement of angles and is a complex
technique. TDOA requires clock synchronisation, which again
makes this technique complex. Proximity detection does not
provide range and only detects if an object exists in a speci-
fied range of the system. The fingerprinting technique requires
the development of a database, which is a cumbersome task.
The most robust technique to calculate the distance between
the anchor and tag is the TOA. Round trip time for positioning
in UWB is proposed by authors in [42, 43]. Authors in [44] have
emphasised that positioning should be reliable and robust.

Despite offering significant advantages, the UWB-based
positioning system in a real-world setup is subject to a number
of challenges [45]. NLOS transmissions [46–48] have a negative
impact on the positioning accuracy of a UWB system. NLOS
transmissions result in positively biased range estimates [49,
50]. While using UWB for indoor positioning, multipath effects
[51–53] also reduce positioning accuracy. Multipath and NLOS
reduce a UWB’s range data accuracy, resulting in positioning
inaccuracy. Accordingly, the accuracy of the conventional tri-
lateration algorithm reduces due to the range error. This range
error needs to be mitigated for accurate positioning. In the fol-
lowing section, we introduce a solution that improves the accu-
racy of the UWB-based positioning system.

3 PROPOSED SOLUTION

For calculating positioning coordinates, the UWB positioning
system provides range data. Ideally, the distance between each
anchor and the tag should be equal to the range data. However,
besides distance, range data also includes the propagation
error as discussed earlier. In conventional positioning methods,
the range data of each anchor is provided to the trilateration
algorithm to determine the position coordinates of the tag.
Trilateration is the most commonly used method for acquiring
positioning coordinates of a tag. In this section, first we explain
the trilateration method and then, based on the limitations
of the trilateration algorithm, we propose our algorithm to
mitigate range error.

For the trilateration algorithm, a signal is sent from a tag to
the anchor. The anchor sends back an acknowledgement. From



76 WAQAR ET AL.

ALGORITHM 1 Algorithm for First Set of Coordinates (x′, y′) using
Range Error Minimisation

1: Input: Range of anchors to tag & coordinates of anchors{R1, R2} &
{(x1, y1 ), (x2, y2 )}

2: Output: (x′a, x′
b
, y′a, y′

b
) First set of coordinates of the tag

3: Distance d12 ←
√

(x2 − x1 )2 + (y2 − y1 )2

4: R′
1 ← R1

5: R′
2 ← R2

6: if d12 > (R′
1 + R′

2 ) then

7: temp ← d12 − (R1 + R2 )

8: R′
1 ← R′

1 + temp∕2

9: R′
2 ← R′

2 + temp∕2

10: else if d12 < abs(R1 − R2 ) then

11: temp ← abs(R1 − R2 ) − d12

12: else if R1 < R2 then

13: R′
1 ← R′

1 + temp∕2

14: R′
2 ← R′

2 − temp∕2

15: else R′
1 ← R′

1 − temp∕2R′
2 ← R′

2 + temp∕2

16: end if

17: l ← (R′
1 − R′

2 + R2 )∕2d12

18: h ←
√

(R2
1 − l )2

19: x′a ← l (x2 − x1 )∕d12 + x1 + h(y2 − y1 )∕d12

20: y′a ← l (y2 − y1 )∕d12 + y1 − h(x2 − x1 )∕d12

21: x′
b
← l (x2 − x1 )∕d12 + x1 − h(y2 − y1 )∕d12

22: y′
b
← l (y2 − y1 )∕d12 + y1 + h(x2 − x1 )∕d12

the time of flight, the range is calculated.

RA =
ct

2
. (1)

In Equation (1), A is the anchor’s number, RA is the range from
the anchor to the tag. c is the speed at which the radio waves
propagate, and t is the time of signal propagation. From the
travelled time t , range R from the anchor to the tag can be
measured.

To calculate the range between an anchor and a tag, the fol-
lowing equation is used:

(x − xA )2 + (y − yA )2 = R2. (2)

Here, position coordinates of each anchor are (xA, yA ) and
(x, y) are the coordinates of the tag. R is the range. From three
anchors, three equations can be formed. To solve two unknown
variables, only two equations are enough but solving two equa-
tions results in two sets of (x, y) coordinates. A third equation is
required to select the actual point.

(x − x1)2 + (y − y1)2 = R2
1 , (3)

(x − x2)2 + (y − y2)2 = R2
2 , (4)

ALGORITHM 2 Algorithm using Range Error Minimisation

1: Input: Range of anchors to tag &
coordinates of anchors{R1, R2, R3, R4, R5, R6} &
{(x1, y1 ), (x2, y2 ), (x3, y3 ),(x4, y4 ), (x5, y5 ), (x6, y6 ), (x′a, y′a ), (x′

b
, y′

b
}

2: Output: (x′′′, y′′′) Coordinates of tag

3: Sort range of anchors {R1, R2, R3, R4, R5, R6} &
{(x1, y1 ),(x2, y2 ), (x3, y3 ), (x4, y4 ), (x5, y5 ), (x6, y6 )}

4: Rng1 ←
√

(x′a − x3 )2 + (y′a − y3 )2

5: Rng2 ←
√

(x′
b
− x3 )2 + (y′

b
− y3 )2

6: if Rng1 > Rng2 then

7: x′ ← x′
b

8: y′ ← y′
b

9: else

10: x′ ← x′a

11: y′ ← y′a

12: R′
3 ← Rng1

13: end if

14: di f f ← R3 − R′
3

15: di f f ← di f f ∕2

16: factor ← di f f / R′
3 + 1

17: temp ←
√

(x3 − x′ )2 + (y3 − y′ )2

18: x′′ ← x3 - temp*factor

19: y′′ ← y3 - temp*factor

20: R′
4 ←

√
(x4 − x′′ )2 + (y4 − y′′ )2

21: di f f ← R4 − R′
4

22: di f f ← di f f ∕2

23: factor ← di f f ∕R′
4 + 1

24: temp ←
√

(x4 − x′′ )2 + (y4 − y′′)2

25: x′′′ ← x4 − temp ∗ factor

26: y′′′ ← y4 − temp ∗ factor

(x − x3)2 + (y − y3)2 = R2
3. (5)

In Equations (3), (4), and (5), (x1, y1), (x2, y2), and (x3, y3)
are the coordinates of the anchor 1,2, and 3, respectively. R1,
R2, and R3 are the respective range from the anchors to the
tag. Solving Equations (3), (4), and (5), following equations are
attained:

2(x1 − x2)x + 2(y1 − y2)y =

(R2
2 − R2

1 ) − (x2
2 − x2

1 ) − (y2
2 − y2

1 ),
(6)

2(x1 − x3)x + 2(y1 − y3)y =

(R2
3 − R2

1 ) − (x2
3 − x2

1 ) − (y2
3 − y2

1 ).
(7)

Equations (6) and (7) can be solved for x, y-coordinates of the
tag.

[
x

y

]
= A−1B. (8)
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Here,

A =

[
2(x1 − x2) 2(y1 − y2)
2(x1 − x3) 2(y1 − y3)

]
, (9)

B =

[
(R2

2 − R2
1 ) − (x2

2 − x2
1 ) − (y2

2 − y2
1 )

(R2
3 − R2

1 ) − (x2
3 − x2

1 ) − (y2
3 − y2

1 )

]
. (10)

It is evident from Equation (8) that the range error of differ-
ent anchors accumulates in the trilateration algorithm. Our pro-
posed algorithm sequentially adds the range data, analysing the
range error of each anchor and then updating the position coor-
dinates.

3.1 Proposed range error minimisation
(REM) algorithm

Following are the main steps for the proposed algorithm
(REM).

∙ Sorting the range of all anchors.
∙ Calculating the initial sets of position coordinates ((x′a, y′a ) and

(x′
b
, y′

b
)) from R1 and R2.

∙ Selecting the first, correct set of position coordinates ((x′, y′ ))
from the two sets of position coordinates ((x′a, y′a ) and (x′

b
, y′

b
))

calculated in the previous step.
∙ Adding Anchor 3’s range data (R3), adjusting its range error

(R3), and updating the first set of position coordinates
((x′, y′ )) to ((x′′, y′′ )).

∙ Similarly, adding Anchor 4’s range data (R4), adjusting its
range, and updating the second set of position coordinates
((x′′, y′′ )) to ((x′′′, y′′′ )).

A detailed description of each step of the algorithm is
given below.

3.1.1 Sorting the range of anchors

In the first step, we acquire the range data of all the anchors and
sort the range data in ascending order. From sorting, we can
find the anchors closest to the tag. The anchor closest to the tag
is denoted by R1. The second closest anchor is denoted by R2
and so on.

In Algorithms 1 and 2, the range of the anchors is denoted
by R. R1 is the minimum range from the anchor to the tag. The
coordinates of this anchor are denoted as (x1, y1). The second
anchor closest to the tag is denoted as R2 and its position coor-
dinates are (x2, y2). Next, we find the initial sets of position coor-
dinates.

3.1.2 Calculating the initial sets of position
coordinates ((x′a, y′a ) and (x′

b
, y′

b
)) from R1 and R2

Using the range data of the two anchors closest to the tag (R1
and R2 ), the initial position coordinates are calculated as shown

Anchor 1 Anchor 2

Anchor 3

Distance d3

Distance d1
Distance d2

Distance d3'

Tag

FIGURE 2 Two sets of position coordinates obtained from the range data
of Anchor 1 and 2, R1 and R2, respectively

in Figure 2. There are two possible points where the anchors’
range data intersect. We denote these two sets of position coor-
dinates as (x′a, y′a ) and (x′

b
, y′

b
).

In Figures 1(b) and 1(c), the two circles overlap and a point
in the middle of this overlap region is selected. This contrasts
with Figure 1(d), where circles do not intersect at any point and
as a result d12 (distance between the coordinates of Anchor 1
and Anchor 2) will be greater than the sum of the range of the
two anchors (R1 + R2). In this case, when we apply Algorithm
1, it will be the first ‘if condition’ (line 7 of Algorithm 1) that will
execute. From Algorithm 1, we attain two sets of position coor-
dinates denoted by (x′a, y′a ) and (x′

b
, y′

b
). In the following step, we

will select the actual set of position coordinates.

3.1.3 Selecting the first set of position
coordinates ((x′, y′))

From the two position coordinates ((x′a, y′a ) and (x′
b
, y′

b
)), we

need to find the actual set of position coordinates. We find the
distance between the two position coordinates and Anchor 3’s
coordinate (x3, y3). The distance between (x′a, y′a ) and (x3, y3) can
be denoted as d3a, while the distance between (x′

b
, y′

b
) and (x3, y3)

can be denoted as d3b.
Between the two distances (d3a, d3b), the one with the shorter

distance is selected. Figure 3 shows that the position coordi-
nates (x′a, y′a ) are closer to Anchor 3, hence, they are selected.
The selected set of position coordinates are denoted by (x′, y′ ).

In Algorithm 2, d3a and d3b represents the distance from
Anchor 3 and the two sets of position coordinates calculated
in Algorithm 1, (x′a, y′a ) and (x′

b
, y′

b
), respectively. d3a and d3b are

compared and between (x′a, y′a ), (x′
b
, y′

b
) and the anchor coordi-

nates (x3, y3), the set of coordinates with the shorter distance
are assigned x′ and y′. In this manner, the first set of position
coordinates for the tag are calculated. In the next step, we add
the range of the third anchor R3 and update the position coor-
dinates.
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d3

d2d1

FIGURE 3 Selection of first pair of position coordinates (x′, y′ )

Tag

Anchor 3

Distance d3

Distance d1 Distance d1

Selected 
Point

Range Error due 
to inaccuracy in 
measuring TOA

FIGURE 4 Due to error in range, R3 and coordinates of the tag (x, y) do
not intersect

3.1.4 Adding range data of the Anchor 3 (R3)
and updating position coordinates to (x′′, y′′)

If there is no error in the range measurement, range R3 should
extend to point (x′, y′ ) and be equal to d3a. Unfortunately, this
is not the case. Due to positioning error, there could be two
possible cases, as shown in Figures 4 and 5. In Figure 4, there
is space between the position coordinates (x′, y′ ) and R3. This
difference is due to the range error. An addition to the range R3
is made and the position of the coordinates (x′, y′ ) are slightly
shifted. After this shift, the new set of position coordinates of
the tag are (x′′, y′′ ).

Figure 5 shows a case similar to Figure 4, but, in this case
instead of a space between R3 and d3a, they overlap. Similar to
the previous case, ideally R3 and d3a should be equal but due to
error in the range, they overlap. We apply the same procedure
as we did in the previous case and in this case subtraction is
made in the Anchor 3’s range R3. Following this, a new position
coordinate is calculated, denoted by (x′′, y′′ ).

In our case, as shown in Figure 6, R3 and d3a did not overlap,
similar to Figure 4. In this case, we add a fraction of the dif-

Tag

Anchor 3

Distance d3

Distance d1

Distance d2

Selected 
Point

Range Error due 
to inaccuracy in 
measuring TOA

FIGURE 5 Range error results in the case of overlap of the range R3 and
coordinates of the tag (x, y)

d3

d2d1

d3

FIGURE 6 Selection of second pair of position coordinates (x′′, y′′ ) based
on the range data from three anchors

ference between R3 and d3a and our set of position coordinates
(x′, y′ ) changed to (x′′, y′′ ). In the next step, we add the range
of Anchor 4, R4.

In Algorithm 2, the difference between R3 and R′
3 is assigned

variable name di f f . The variable temp contains the range of the
Anchor coordinates (x3, y3) and the first set of position coordi-
nates (x′, y′ ). The variable ‘factor’ contains the ratio by which
the position coordinates (x′, y′) need to be changed. The prod-
uct of temp and factor is deducted from the position coordinates
of Anchor 3 (x3, y3) providing a new set of coordinates for the
tag, denoted by (x′′, y′′ ). The position coordinates calculated
earlier (x′, y′) are from the range data of Anchor 1 and 2 only
(R1 and R2) and this set of position coordinates ((x′′, y′′ )) also
includes the range of Anchor 3, R3. Now we add the range of
the Anchor 4, R4.

3.1.5 Determining the position coordinates of
the tag (x′′′, y′′′) by adding Anchor 4’s range data R4

We denote the difference between the point (x′′, y′′ ) and (x4, y4)
as d ′4 . Comparing R4 and d ′4 , it is either one of the two cases
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Anchor 1

Tag

Anchor 2

Anchor 3

Distance d3

Distance d1

Distance d2

Anchor 4

Distance d4

Selected 
Point

FIGURE 7 Position coordinates of tag (x, y) after adding Anchor 4 range
R4

explained earlier. As shown in Figure 7, (R4) and d ′4 overlap. As
explained earlier, in this case we reduce the range R4 and the set
of position coordinates shift from (x′′, y′′ ) to (x′′′, y′′′ ).

In Algorithm 2, the range of Anchor 4, R4 is added for com-
putation. The procedure is again similar to the calculation of the
last position coordinates (x′′, y′′ ). Here, the range from (x′′, y′′ )
to (x4, y4) is denoted by R′

4. Similarly, new values are assigned to
the variables di f f , factor , and temp. The new position coordi-
nates are (x′′′, y′′′ ), which is denoted as (x, y), the final position
of the tag.

In the beginning, range data of Anchors 5 and 6 were also
added. However, in a later section of this paper, it is proven
that four anchors are optimal. Adding more anchors intro-
duces error, where positioning accuracy decreases rather than
increases. Algorithm 2 is for the optimal number of anchors.

4 EXPERIMENTAL SETUP FOR
IMPLEMENTING THE POSITIONING
ALGORITHM UNDER DIFFERENT
CONDITIONS

The REM algorithm was initially analysed under static condi-
tions, where the tag was placed on a tripod at a particular point
to record the specific position coordinates. Later experiments
were conducted under dynamic conditions where the tag was
in motion.

4.1 Positioning in static conditions

For the experiments, commercially available UWB Decawave
sensors were used. Both the tag and the anchors consist of UWB
transceivers. Figure 8 shows the layout of the field where experi-
ments were conducted. Six anchors were placed 10 m apart. The

experiment field was 10 m along X-axis and 20 m along Y-axis,
covering a total area of 200 m2.

For implementing positioning over a larger area more
anchors can be added. The above-mentioned algorithm can
work, even in the presence of additional anchors, as only four
anchors based on the shortest distance are selected.

This experiment was designed for static conditions so the tag
was placed on a point and then the range data of all anchors
were recorded. After calculating the set of position coordinates
from the range data, it was compared against the actual position
coordinates measured physically using a laser range finder. The
difference between the measured and actual position coordi-
nates was calculated using the distance formula. More than 8000
readings were recorded at 70 different points. The tag received
positioning data from all six anchors. In ideal conditions, the cir-
cumference of all the circles around each anchor must intersect
with each other at the point where the tag is placed.

In this experiment, conditions were favourable for position-
ing. The total area covered was only 200 m2. The tag was in
static conditions and anchors were only 10 m apart. In the next
section, an experiment was conducted under dynamic condi-
tions.

4.2 Positioning in dynamic conditions

In this experiment, only four anchors were used, instead of six,
and the distance between them increased to 20 m. Four anchors
were placed at the four corners, covering a total area of 400 m2

as shown in Figure 9. The playing field for a player in tennis sin-
gles is 97.85 m2 and for doubles, it is 130 m2. For positioning,
an area equivalent to three times the actual field size is consid-
ered. The reason for selecting these dimensions of the field and
number of anchors is that if anchors were placed closer to the
field or a large number of anchors were placed around the field,
it would have caused hindrance in the game.

For dynamic analysis, an area of 10 m × 10 m is selected, as
shown in Figure 9. The tag’s motion and position coordinates
were recorded at the perimeters of this area.

In Figure 9, it can be noted that the 10 m2 was not in the cen-
tre along the X-axis. The selected area was closer to one perime-
ter (2 m) along X-axis while at a larger distance (8 m) along the
other perimeter of the X-axis. The reason for this placement
is because the position of the tag is also crucial in positioning.
Authors in [54] have found that in UWB-based positioning sys-
tems there is a large error in positioning data along perimeters.

Using laser range finder, distance was calculated and several
markings were placed on the floor. A UWB tag was placed
on a trundle wheel and position coordinates of its movement
were recorded at each instance as it crosses a marking. A cam-
era was also placed on the trundle wheel to record the move-
ment precisely, as shown in Figure 10. Using Kinovea software,
the video was processed and the UWB’s position coordinates at
each instance were extracted from the video.

Trundle wheel records the travelled distance and a stopwatch
was used to keep track of the time. From distance and time,
speed can be calculated. The error in measurement of position
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FIGURE 8 Positioning experiment area. (a) Pozyx, anchors and tags used for positioning. (b) Tag (position coordinates need to be calculated). (c) Anchor
(known position coordinates)

FIGURE 9 Setup for the dynamic experiments of positioning

coordinates results in an error in measuring the distance and it
eventually results in calculating the incorrect speed of the ath-
lete. Higher positioning accuracy is beneficial in measuring the
accurate distance and speed of the athlete. In the next section,
the accuracy of the REM algorithm is compared against two
widely used positioning systems.

5 RESULTS AND DISCUSSION

The REM algorithm is compared against trilateration and multi-
lateration algorithm for static and dynamic positioning. The tri-
lateration algorithm is the most commonly used algorithm for

FIGURE 10 Trundle wheel used with camera and UWB tag for position-
ing
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FIGURE 11 Optimal number of anchors for trilateration

positioning. Besides trilateration, authors in [55] found multi-
lateration algorithm to be more accurate for positioning. The
positioning accuracy of these two algorithms is used to evaluate
the REM algorithm.

5.1 Optimal number of anchors and
complexity of the algorithm

In this experiment, the tag received the range from all six
anchors. From the previous discussion, it can be established that
adding more anchors is beneficial for increasing the position
accuracy. But, up to what extent adding anchors will be bene-
ficial in increasing the accuracy? It is also worth mentioning that
adding the measured range of an anchor with large error will
negatively impact the calculations as the range error accumulates
over time. Additional anchors also add cost and complexity to
the positioning system. It is essential to find how many anchors
will be most beneficial for positioning.

For the experiment, six anchors were used and their range
data was used for determining the optimal number of anchors.
Figure 11 shows the cumulative distribution function (CDF)
plot for the experiment. The random variable was the abso-
lute position error, and consequently, the X-axis of the CDF
figure is the absolute position error and Y-axis is the cumulative
probability. The highest accuracy is observed with four anchors.
With three anchors having slightly less accuracy and other com-
binations are clearly less accurate. Hence, it is proved that it
is not always the case that adding more anchors is beneficial.
Positioning accuracy decreased with five anchors and it further
decreased by six anchors. This is due to the fact that anchors
away from the tag will add error in calculations. The optimal
number of anchors for the REM algorithm is four anchors.

If the distance between the anchors is increased or decreased
or the same algorithm is implemented in a larger area with more
anchors, it will impact the positioning accuracy but, the optimal
number of anchors will remain the same. After determining the
optimal number of anchors, now we will evaluate the position
accuracy in static and dynamic domains.

The computational complexity of the conventional position-
ing algorithm (trilateration) is O(N) which is known as linear
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FIGURE 12 Trilateration with six anchors in static domain

TABLE 1 Positioning with sic anchors, 10 m apart, in 200 m2 area

Algorithm Mean ± SD(m) TE (m) CV(%)

REM Algorithm 0.10 ± 0.06 0.042 0.06

Trilateration 0.155 ± 0.173 0.122 0.111

Multilateration 0.113 ± 0.062 0.044 0.055

Pozyx 0.125 ± 0.066 0.047 0.053

time. However, for the REM algorithm, we need to sort the
range of all anchors in order to determine the anchors closest
to the tag. Sorting is performed at every iteration. As the num-
ber of anchors increase, more sorting needs to be performed
at every iteration and hence complexity increases. In the REM
algorithm, we are using Quick Sort. It is one of the fastest algo-
rithms for sorting and its complexity grows in logarithmic time,
O(n log n). Similarly, for adding the range of the additional
anchors, a for loop needs to be added. The for loop is denoted
by m. Hence, the overall complexity of the algorithm will be
O(m × n log n). But, as we have found that the optimal number
of anchors will be four, we can remove m. As a result, the over-
all complexity of the algorithm is limited to logarithmic time,
O(n log n).

5.2 Results in static conditions

Figure 12 and Table 1 show a comparison between the algo-
rithms. The REM algorithm performed best and shows the
highest accuracy. Trilateration is the least accurate algorithm.
The trilateration algorithm only used three anchors for posi-
tioning. It can be noted from Table 1 that trilateration not only
has the highest mean error but, its standard deviation (SD)
is also very high. Less number of anchors for calculating the
position coordinates and large error in range data resulted in
high inaccuracy in the trilateration algorithm. Multilateration
and Pozyx algorithms performed better than the trilateration
algorithm. However, REM algorithm proved to be the most
accurate algorithm. These results show that adding the range
of additional anchors is beneficial for positioning. In this case,
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FIGURE 13 Dynamic analysis with six anchors
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FIGURE 14 Dynamic analysis with four anchors

the tag was static but, in the next section the position accuracy
while the tag is in motion will be evaluated.

5.3 Results in dynamic conditions

Uniform movements in the dynamic domain are illustrated in
Figures 13 and 14 for six and four anchors, respectively. In Fig-
ure 13, six anchors were used and the REM algorithm’s accu-
racy is almost equivalent to the accuracy of the multilateration
algorithm. This is because of the presence of six anchors, unlike
trilateration, multilateration was able to select the anchors closer
to the tag. In the next case of four anchors (Figure 14), the REM
algorithm performed better than trilateration and more accurate
than multilateration. This time there were only four anchors,
multilateration algorithm is less accurate than the REM algo-
rithm as observed in Figure 13. Figure 15 is a relevant experi-
ment for sports. In sports, athletes’ movement is not uniform
and in various instances, they make rapid changes in direction
and speed. Their movement is also relatively faster than walk-
ing. The importance of sequentially minimising range error is
evident in Figure 15. Unlike Figures 13 and 14, in Figure 15
the difference between the accuracy of the REM algorithm is
higher than the other two algorithms. This behaviour is not
observed in the earlier two cases involving uniform movement.
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FIGURE 15 Dynamic analysis with rapid change of direction

From the above results (Figures 13, 14, and 15), it is evident
that positioning involving fast and abrupt movements is prone
to higher error and hence error minimisation is most crucial for
such cases. After attaining these encouraging results, in the next
section, the REM algorithm is compared against a commercially
available positioning solution that combines UWB position-
ing and inertial sensor’s data (accelerometer, gyroscope, mag-
netometer) for positioning.

6 IMPLEMENTING AND ANALYSING
THE ACCURACY OF THE PROPOSED
ALGORITHM IN TENNIS

Besides trilateration and multilateration, we have used a com-
mercially available algorithm for the comparison. Rather than
limiting the comparison to theoretical algorithms, comparison
against a commercially available algorithm will be more use-
ful. The Pozyx lab provides UWB-based positioning solution.
Their positioning system uses the same technique, TOA to cal-
culate the position coordinates. Comparing with a commercial
algorithm will assist in understanding how well the REM algo-
rithm will perform in a real-world scenario. The only limitation
of this algorithm is that due to Intelectual property (IP) there
is no access to the code or detailed explanation about the spe-
cific technique.

Authors in [56] compared three UWB-based positioning sys-
tems (Ubisense, BeSpoon, and Decawave) and found Decawave
to be the most accurate among them. Pozyx provides com-
mercially available positioning solutions using Decawave’s UWB
sensors. Due to its high accuracy and popularity, the Pozyx posi-
tioning solution was selected as a benchmark against the pro-
posed positioning solution.

As mentioned earlier, the main reason for higher position-
ing errors in sports is the rapid movements and abrupt change
of direction of athletes. To draw the comparison between the
two algorithms, they are analysed under movements involving
uniform motion and rapid change of direction. For the analysis,
Pozyx’s tracking algorithm is used. This algorithm not only uses
UWB positioning data but also adds the IMU data into it.
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FIGURE 16 Dynamic analysis with four and six anchors
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FIGURE 17 Dynamic analysis with rapid change of direction

UWB positioning data and IMU data are added in a technique
known as sensor fusion. The IMU sensors, although they have
a high refresh rate (in this case 100 Hz), the data produced by
them is very noisy. Based on the available positioning data, the
Kalman filter predicts the position for the next instance. It is
a useful technique and used in many applications for increas-
ing the accuracy of positioning. However, implementing them
in sports for positioning has certain limitations. The athlete’s
movement is not uniform and abrupt change of direction occurs
as they move [57].

Figure 16 illustrates the positioning accuracy of the REM
algorithm against the Pozyx algorithm. The Pozyx algorithm is
also using IMU data for positioning. The two cases of four and
six anchors, as analysed earlier, are analysed in this experiment.
The REM algorithm performed more accurate in both cases,
whether four or six anchors are used. However, this movement
is uniform. In the next experiment, the movement will involve
a rapid change of direction.

Figure 17 is the most relevant experiment for applications
related to sports, specifically tennis. Here, the movement and
rapid change of directions are similar to sports. The REM algo-
rithm is more accurate than the commercially used algorithm.
Inertial sensors may be useful in predicting the motion along a
uniform path, but their prediction accuracy decreases and noise
increases as the path is non-uniform and change of direction

occurs too often. In such scenarios, it is more beneficial to focus
on improving the accuracy of the positioning algorithm.

7 CONCLUSION

This paper presented an algorithm to reduce the range error
in indoor positioning. The positioning accuracy of the indoor
positioning system is heavily influenced by the range error. The
proposed algorithm analyses the range error associated with
each anchor and sequentially reduces the error, which results
in higher positioning accuracy without any additional hardware.
The proposed algorithm is tested using a hardware test-bed
under challenging conditions required for athlete tracking and
compared against three different algorithms.
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