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Abstract

There are two primary subscription models for IaaS cloud services: a) pay-as-you and b)

reservation. Reservation-based subscriptions are typically offered for a long-term period

such as 1 to 3 years. Long-term subscriptions are typically cost-efficient than short-term

subscriptions for consumers who need services for a long-term period. Large organizations

such as airline companies, banks, and research institutes tend to utilize IaaS services on a

long-term basis for economic reasons. The performance of IaaS services is a key criterion to

consider when selecting a service for a long-term. Selecting a service that may exhibit poor

performance in the future may cause a significant loss of revenue for a business organization.

Most IaaS providers, however, are reluctant to provide detailed information about their long-

term service performance. This research aims at developing a long-term IaaS cloud service

selection framework where IaaS providers reveal limited performance information about

their services. First, we propose a novel framework to find the closest match of IaaS cloud

service according to a consumer’s long-term QoS requirements. The proposed framework

leverages free short-term trials to discover the unknown QoS performance information. A

temporal skyline-based filtering method is proposed to select candidate services for short-term

trials. A novel cooperative long-term QoS prediction approach is introduced that utilizes

past trial experiences of similar consumers using a workload replay technique. We propose a

new trial workload generation model that estimates a provider’s long-term performance in

the absence of past trial experiences. The confidence of the prediction is measured based

on the trial experience of the consumer. Next, we propose a new long-term IaaS cloud

service selection framework that utilizes a consumer’s trial experience and the performance

fingerprints of IaaS cloud services for the long-term selection. We design a novel equivalence

partitioning-based trial strategy to discover the unknown QoS performance variability of

IaaS cloud services. A trial experience transformation method is proposed to estimate the

long-term performance of an IaaS cloud service. Next, we introduce a signature-based IaaS

vi



cloud service selection framework that leverages a new significance-based trial scheme and a

signature technique to discover a service’s long-term performance. Next, we propose a novel

event-based change detection approach to manage changes in IaaS performance signatures.

A new anomaly-based event detection technique is proposed to detect changes in long-term

IaaS performance behavior over time. We then propose an IaaS performance noise model

to identify noise and actual changes in IaaS performance accurately. A novel categorical

signature-based approach is proposed to detect the long-term performance changes using

the proposed performance noise model. Finally, we introduce a signature change detection

framework that leverages a sliding window-based approach and a Signal-to-Noise ratio-based

approach to detect long-term changes in IaaS performance signatures. We have conducted

a set of experiments based on real-world datasets to evaluate the proposed frameworks.

The proposed long-term selection framework achieved almost 92% ranking accuracy. The

signature-based IaaS cloud service selection framework achieved 96% ranking accuracy. The

proposed changed detection frameworks achieved up to 90% change detection accuracy.
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CHAPTER 1

Introduction

Cloud computing has become a pivotal technology of choice for most organizations to

establish and manage their in-house IT infrastructures [Chaisiri et al., 2012]. There are

two key influential factors behind this paradigm shift. One factor is the rapidly increasing

maintenance costs of in-house IT infrastructures to manage unpredictable service demand.

The cloud provides economic efficiency for the fluctuating service demand. Another factor is

the non-adaptive nature of local IT infrastructures to rapid changes in business requirements.

Cloud consumers can rent service according to their dynamic business requirements. From

a cloud provider’s perspective, low-cost computational resources, data storage, and higher

network bandwidth offer significant economies of scale. Cloud computing provides a uniform

way to access and manage computational resources, platforms, and software.

Cloud computing utilizes the service computing paradigm to deliver cloud services. The

most common forms of cloud services are Infrastructure-as-a-Service (IaaS), Platform-as-a-

Service (PaaS), and Software-as-a-Service (SaaS). Service computing is the preferred mode

of providing cloud computing solutions [Armbrust et al., 2010]. Service computing is a fairly

new paradigm that considers service as the principal component [Bouguettaya et al., 2017]. A

service is an abstraction over data to make it useful. Services can be described, discovered,

reused, and composed using its functional and non-functional properties. Service computing

utilizes the power and the simplicity of services to build large-scale distributed applications.

Infrastructure-as-a-Service (IaaS) is a primary service delivery model in the cloud. IaaS

models typically offer computational resources such as CPU, memory, storage, and network

bandwidth in the form of various cloud services such as Virtual Machines (VMs), Virtual

Storage (VS), and Virtual Private Networks (VPNs). Amazon AWS, Google Compute Engine,

1



2 CHAPTER 1: INTRODUCTION

and Microsoft Azure are examples of popular IaaS cloud services. An IaaS service consists

of two parts: functional and non-functional. Functional attributes are set based on the purpose

of the service such as computing, data storing, and networking. Non-functional attributes are

the Quality of Service (QoS) attributes such as availability, response time, and throughput.

QoS attributes help a consumer to select the best-performing services from a large number of

functionally similar services [Yu and Bouguettaya, 2010].

The IaaS model offers an easier, faster, and more cost-effective alternative to manage an

organization’s in-house IT infrastructure in the cloud. There are two primary subscription

models for IaaS cloud services: a) pay-as-you-go and b) reservation. Reservation-based

subscriptions are typically offered for a long-term period such as 1 to 3 years. Long-term

subscriptions are typically more cost-effective than short-term subscriptions for consumers

who need services for a long-term period. Large organizations such as airline companies,

banks, and research institutes tend to utilize IaaS services on a long-term basis for economic

reasons [Ye et al., 2016]. Leading IaaS cloud providers such as Amazon, Google, and

Microsoft offer significant discounts on long-term subscriptions. For instance, Amazon

advertises up to 72% discount on its long-term subscriptions compared to its on-demand

subscriptions1. Subscribing to an IaaS service for a long period is an important business

decision for most organizations due to economic reasons [Mazzucco and Dumas, 2011]. The

focus of our research is the selection of an IaaS service for a long-term period.

The performance of IaaS services is a key criterion to consider when selecting a service for a

long-term [Iosup et al., 2014]. Selecting a service that may exhibit poor performance in the

future may cause a significant loss of revenue for a business organization. The knowledge

of the IaaS performance is therefore essential during the long-term selection. The IaaS

performance is typically measured in terms of its Quality of Service (QoS) such as response

time, throughput, and availability. A consumer is generally concerned with two key aspects

of the IaaS performance during the long-term subscription. First, how well would a service

perform for their long-term application workload? The performance of IaaS services usually

varies depending on the workloads [Iosup et al., 2011]. For instance, a service may provide

1https://aws.amazon.com/ec2/pricing/reserved-instances/

https://aws.amazon.com/ec2/pricing/reserved-instances/
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better performance for compute-intensive workload than I/O-intensive workload. Second,

how might the performance vary over time? Most providers typically operate in a multi-tenant

environment. Therefore, the performance of their services varies over time.

Most IaaS providers are typically reluctant to reveal much information about the long-term

performance of their services. The key reasons for such behavior are market competition,

business secrecy, and conflicts of interest [Fattah and Bouguettaya, 2020a]. As a result,

selecting an IaaS service that will be the best match for a consumer’s long-term performance

requirements becomes a challenge largely due to the following two key factors:

a) Incomplete IaaS advertisements: IaaS providers reveal limited and short-term QoS

information in their advertisements [Wang et al., 2018]. IaaS advertisements typically contain

a limited number of QoS attributes. For instance, disk read/write throughput, memory

bandwidth, and availability are unavailable in most advertisements [Iosup et al., 2011]. The

advertised performance information may not be representative for a long time. For instance,

a consumer may want to know how the service performs in December, yet the advertised

performance information is for June. Additionally, the advertised information may not be

helpful in understanding service performance due to the lack of detailed information. For

example, EC2 instances have different types of virtual CPUs (vCPUs). According to AWS

advertisements2, each vCPU can be a thread of an Intel Xeon core, an AMD EPYC core, or

AWS Graviton processor. Estimating the vCPU’s actual performance is difficult from such

limited information [Feitelson, 2002]. Providers often advertise an average or maximum

performance of their services. For instance, the network performance of some EC2 instances

has a data transfer rate of up to 10-gigabits. Existing studies show that providers often fail

to offer the promised QoS performance in the long-term period [Ye et al., 2016]. Therefore,

relying only on IaaS advertisements is not sufficient to select a service for a long-term period.

b) Limited performance history: IaaS providers usually do not share detailed service

performance history publicly due to market competition and business secrecy [Fattah et al.,

2019]. There exist third party data collectors such as CloudHarmony, and CloudSpectator that

provide summarized results or insights on the performance of cloud services. These results

2https://aws.amazon.com/ec2/instance-types/

https://aws.amazon.com/ec2/instance-types/
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are usually not fit for further analysis due to the reduced dimensions in QoS attributes and

time [Li et al., 2010]. For instance, CloudHarmony mainly monitors network availability and

does not provide any insight on response time or throughput. Moreover, collectors often use

proprietary benchmarks but reveal limited information about the benchmarking process.

To the best of our knowledge, existing studies focus mainly on short-term IaaS provider

selection approaches [Mistry et al., 2016b]. These approaches are typically inapplicable

for the long-term selection due to incomplete advertisements and long-term performance

variability [Fattah et al., 2020a]. The aim of our research is to propose a novel framework

to select the best IaaS cloud service according to a consumer’s long-term performance

requirements where service providers reveal limited performance information.

1.1 Research Objective and Key Challenges

An effective way to deal with the limited performance information is to leverage free trials

[Wang et al., 2018]. Most IaaS providers offer free short-term trials and encourage potential

consumers to test their application workload in the cloud. For instance, Microsoft Azure

offers a one-month trial period for a limited number of services to its potential consumers.

Amazon AWS offers a one-month free trial on Amazon Lightsail services for 750 hours. IaaS

consumers may get a first-hand experience before subscribing to a service for a long-term

period. Consumers may run their application workload on different IaaS cloud services and

compare their performances. The trial experience of consumers may have a considerable

impact on the IaaS provider selection process [Zhu and Chang, 2014]. To the best of our

knowledge, existing studies do not consider the effective utilization of free trial periods for

long-term IaaS cloud service selection. We aim to utilize free trial periods to uncover

unknown QoS performance information of IaaS cloud services for long-term selection.

However, making a long-term decision based on a short-trial is challenging. A consumer’s

trial experience may depend on several factors such as trial workloads, the time of the trial,

and the provider’s QoS management policy [Scheuner and Leitner, 2018b]. The experience
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from an unplanned short trial may not provide the complete information required for long-

term service selection. We identify the following key challenges in the long-term IaaS cloud

service selection using the short-term trial:

• Number of Candidate IaaS Providers: A large number of IaaS providers may satisfy

a consumer’s long-term requirements. The performance of these providers may vary

considerably depending on their business strategies and infrastructures. Performing trial

with every eligible IaaS is practically infeasible. Therefore, an effective candidate selection

approach is required that will select the best candidates for the trial.

• Temporal Restrictions: A consumer may utilize diverse types of applications and different

amount of workload over a long period. Performing necessary and sufficient amount of

testing in the cloud in a short trial may not always be possible. An unplanned utilization

of such short-term trial periods may not properly reflect the actual performance of the

provider. For example, if the workloads of a consumer have a long-tailed distribution, a

one-month trial with a balanced request distribution may not divulge the true performance

of long-tailed workloads. Some IaaS providers (e.g., Amazon) offer long-term trials for

only a few services. A consumer may not be able to wait for such a long time to make the

selection. An effective utilization of the free trial is essential to make an informed decision.

• Performance Variability: It is challenging to predict long-term performance from a short

trial without any additional information about the long-term performance variability of

the service [Wang et al., 2018]. Most IaaS providers usually operate in multi-tenant

environments [Fattah et al., 2020a]. IaaS performance is highly time-dependent [Iosup et

al., 2014]. The performance discovered in a one month trial period may not reflect the

actual performance of a provider for the rest of the year.

1.2 Thesis Contributions

The primary focus of this work is to help a consumer to make an informed selection for

a long-term period. We initially propose a novel performance-based long-term IaaS cloud

service selection approach. In this approach, we assume that the experience of free trial
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FIGURE 1.1: Key contributions

users is publicly available. We utilize the experience of free trial users to discover an IaaS

service’s long-term performance. We then introduce a fingerprint-based long-term IaaS

selection approach where we assume that a service’s long-term performance is represented as

its performance fingerprint. We utilize the performance fingerprint of a service and the free

trial experience of a consumer for the long-term selection. We then extend the concept of

performance fingerprints to propose a new concept called IaaS performance signature that

represents a service’s long-term performance behavior in a privacy preserving manner. We

propose a signature generation technique that is utilized for the long-term IaaS selection. Once

the signature of a service is generated, it is important to keep the signature updated to reflect

the service’s current performance behavior. An IaaS service’s performance behavior may

change over time due to a number of reasons [Mi et al., 2008]. For instance, a provider may

upgrade its infrastructure or change its multi-tenant management policy resulting in a change
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in service performance [Leitner and Cito, 2016]. It is important to detect changes in IaaS

performance as early as possible to keep the signature updated. Therefore, we propose a set of

signature change detection approaches. Figure 1.1 shows the key contributions in this thesis.

The key contributions are divided into two sections. The first section focuses on the long-term

IaaS selection where we introduced a set of IaaS cloud service selection framework. In the

second section, we have focused on the detection of changes in long-term IaaS performance

as the knowledge of IaaS performance is essential for the long-term selection. We discuss the

key contributions in the following subsections.

1.2.1 Long-term IaaS Cloud Service Selection

1.2.1.1 Performance-based Long-term IaaS Selection

We propose a novel framework to select IaaS cloud services according to a consumer’s

long-term performance requirements. The proposed framework leverages free short-term

trials to discover the unknown QoS performance of IaaS services. We design a temporal

skyline-based filtering method to select candidate IaaS services for the short-term trials. A

novel cooperative long-term QoS prediction approach is developed that utilizes past trial

experiences of similar consumers using a workload replay technique. We propose a new trial

workload generation model that estimates a service’s long-term performance in the absence

of past trial experiences. The confidence of the prediction is measured based on the trial

experience of the consumer.

1.2.1.2 Fingerprint-based Long-term IaaS Selection

We propose a novel approach to select the best IaaS services for a long-term period where

IaaS providers reveal limited performance information. The proposed approach leverages a

consumer’s short-term trial experiences for long-term selection. We design a novel equivalence

partitioning based trial strategy to discover the temporal and unknown QoS performance

variability of an IaaS servce. The consumer’s long-term workloads are partitioned into

multiple Virtual Machines in the short-term trial. We propose a performance fingerprint
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matching approach to ascertain the confidence of the consumer’s trial experience. A trial

experience transformation method is proposed to estimate the actual long-term performance

of the service.

1.2.1.3 Signature-based IaaS Cloud Service Selection

We propose a novel approach to select IaaS cloud services for a long-term period where

the service providers offer limited QoS information. The proposed approach leverages free

short-term trials to obtain the previously undisclosed QoS information. A new significance-

based trial scheme is proposed using frequency distribution analysis to test a consumer’s

long-term workloads in a short trial. We introduce a novel IaaS signature technique to

uniquely identify the variability of a provider’s QoS performance. A Signature-based QoS

Performance Discovery (SPD) algorithm is proposed that leverages the combination of free

trials and IaaS signatures.

1.2.2 IaaS Performance Signature Change Detection

1.2.2.1 Event-based IaaS Signature Change Detection

We propose a novel ECA (Event-Condition-Action) approach to manage changes in IaaS

performance signatures. The proposed approach relies on the detection of anomalous perfor-

mance behavior in the context of IaaS performance signatures. A novel anomaly-based event

detection technique is proposed. It utilizes the experience of free trial users to detect potential

changes in IaaS performance signatures. A signature change detection technique is proposed

using the cumulative sum control chart analysis. Additionally, a self-adjustment method is

introduced to improve the accuracy of the proposed approach.

1.2.2.2 Performance Noise-based Signature Change Detection

We propose a novel framework to detect changes in the performance behavior of an IaaS

service. The proposed framework leverages the concept of the IaaS signature to represent

an IaaS service’s long-term performance behavior. A new type of performance signature
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called categorical IaaS signature is introduced to represent the performance behavior more

accurately. A novel performance noise model is proposed to accurately identify both IaaS

performance noise and changes in the performance behavior of an IaaS service.

1.2.2.3 Signature Change Detection Framework

We propose a novel framework to detect long-term changes in the performance behavior

of an IaaS service. The proposed framework represents long-term performance behavior

using IaaS signatures. The proposed approach leverages time series similarity measures and a

sliding window technique to distinguish between noise and changes in IaaS performance. An

SNR-based (Signal-to-Noise ratio) approach is introduced to improve the efficiency of the

proposed framework.

1.3 Thesis Outline

We present the research contributions in two parts. The first part presents our work on long-

term IaaS cloud service selection and the second part presents our work on IaaS performance

change detection. The thesis is organized as follows:

• Chapter 2 discusses works that are closely related to our research. In this chapter, we

discuss existing IaaS cloud service selection approaches and key differences between the

existing work and the proposed approaches in this work.

• In Chapter 3, we present a novel IaaS cloud service selection that proposes a cooperative

approach for the long-term IaaS performance discovery. First, we introduce a temporal

skyline-based approach to select candidate IaaS cloud services for the free trials. Then, we

introduce a long-term IaaS cloud service selection approach that leverages the experience

of free trial users for the long-term service selection. Finally, we introduce a long-term

service selection approach that assumes there is no historical information of the free trial

users.

• Chapter 4 introduces a new concept called IaaS performance fingerprints. A performance

fingerprint-based long-term selection framework is proposed in this chapter. First, we
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introduce an equivalence partitioning-based approach that effectively utilizes free trials

to understand the service performance for a consumer’s long-term workload. Then, we

discuss how to utilize the free trial experience and IaaS performance fingerprints to make a

long-term selection.

• In Chapter 5, we extend the IaaS performance fingerprint concept and propose the concept

of IaaS performance signatures where we consider the privacy of free trial users during the

signature generation. In this chapter, we discuss how IaaS performance signatures can be

generated efficiently and effectively and can be utilized to help a consumer in making an

informed long-term selection.

• In Chapter 6, we introduce a set of signature change detection approaches. First, we

introduce an ECA-based approach to detect changes in IaaS performance behavior. The

proposed approach leverages a signature-based performance anomaly detection technique

to detect changes in performance. We then introduce a novel IaaS performance model to

detect changes in IaaS signature. A performance-noise based signature change detection

framework is proposed. Finally, we introduce a signature change detection framework that

utilizes sliding-window and SNR-based techniques to detect changes in IaaS signature.

• In Chapter 7, we conclude this thesis and briefly discuss the limitations and future work.



CHAPTER 2

Related Work

2.1 Introduction

IaaS cloud service selection is a topical research challenge in the area of cloud computing

[Li et al., 2010]. Several IaaS cloud service selection approaches are proposed to select the

optimal IaaS service based on the consumer’s required QoS performance. A cloud comparison

approach called CloudCom is proposed to help consumers select a cloud provider that fits

their needs [Li et al., 2010]. CloudCom addresses three key services, i.e., elastic computing,

persistent storage, and networking services, along with their metrics in the IaaS cloud. The

performance of each service is measured based on the most relevant QoS attributes that may

affect consumer applications directly. The IaaS cloud selection problem is modeled as a

multi-criteria decision-making problem in [ur Rehman et al., 2012]. A variation-aware cloud

selection method is proposed based on collaborative filtering techniques. We categorize the

existing IaaS cloud service selection approaches into the following two groups:

(1) IaaS selection for a short-term period: A common approach to discover IaaS per-

formance is to conduct short-term trial using representative application and micro-

benchmarks [Scheuner and Leitner, 2019]. A generator approach is proposed to automate

performance testing in the IaaS cloud [Jayasinghe et al., 2012]. The proposed work

aims at reducing human errors and maximizing efficiency for large scale distributed

experiments. A cloud benchmark outline is proposed [Binnig et al., 2009] that claims that

traditional benchmarks (e.g., TPC benchmarks) for computer systems are not suitable

for cloud performance discovery. Several studies perform experiments to understand the

cloud performance for scientific application [Sadooghi et al., 2015]. These experiments
11
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find that the performance of the IaaS cloud is considerably low for scientific computing.

These studies focus primarily on short-term IaaS performance and do not consider the

long-term consumer requirements.

(2) IaaS selection for a long-term period: The long-term IaaS selection approach is con-

sidered in several studies [Labbaci et al., 2017; Ye et al., 2012; Mistry et al., 2016a].

A QoS-aware IaaS selection approach is proposed using a multi-dimensional time se-

ries. The proposed approach selects IaaS providers based on the consumer’s long-term

economic models. A qualitative approach is proposed using Conditional Preference Net-

works to select long-term IaaS providers [Mistry et al., 2016a]. A QoS-aware approach is

proposed to select and compose long-term cloud services using meta-heuristic approaches

[Liu et al., 2015]. These approaches assume that long-term performance information is

given for the selection.

To the best of our knowledge, most existing IaaS selection approaches address the short-term

selection, and existing long-term IaaS selection approaches are not directly applicable when

available QoS performance information is limited or absent. Therefore, we leveraged existing

short-term performance discovery to develop a long-term performance discovery in this thesis.

Existing short-term performance discovery approaches typically include the following steps:

a) Representative Workload Generation, b) Performance Benchmarking, c) QoS Prediction

and Ranking, and d) Long-term IaaS Cloud Service Selection. In the following sections, we

briefly discuss the state-of-the-art related to each step of the performance discovery.

2.2 Representative Workload Generation

The performance of any system often depends on its workload. Workload generation, therefore,

is a significant step of performance engineering. Cloud is highly dynamic due to its multi-

tenant nature. A single physical machine is shared by multiple users. The performance of the

physical machine may depend on the workloads generated by its users. Hence, a user may

notice performance variability of a VM depending on its workload. For example, a VM may

perform better if its workload is evenly distributed over time. The VM may perform differently
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depending on different types of workload, such as compute-intensive, network-intensive, or

I/O-intensive.

Representative workload generation is an important part of performance evaluation [Scheuner

and Leitner, 2018a], and is necessary to produce reliable results. Representative workload

can be generated by collecting real-world data and creating statistical models that capture

important features of real-world workloads [Feitelson, 2002] [Calzarossa et al., 2016a].

Workload modeling requires a deep understanding of cloud workloads and their features.

Cloud workload characterization is studied extensively in the existing literature [Calzarossa

et al., 2016b].

Most of the workload characterization studies are performed from a provider’s perspective to

enable effective VM allocation and consolidation, live migration, resource scheduling and

so on. A study on “Google Cluster Trace” is conducted to create a statistical profile of jobs,

or clusters of workload patterns [Alam et al., 2016]. A trace analysis on “Google Cluster

Trace” is performed to understand the challenges in developing effective cloud-based resource

schedulers [Reiss et al., 2012]. A multiple time series based workload characterization

approach is proposed to predict future VM workloads [Khan et al., 2012]. The proposed

approach searches repeatable workload patterns using cross-VM workload correlations. The

correlations are generated from the dependencies among applications that are running in

different VMs. Resource planning and management in the cloud require an understanding of

the application workload characteristics. An application workload characterization approach

is proposed to understand the effect of virtualization on the application performances [Wang

et al., 2014]. The proposed work characterizes a three-tier application’s performance on

virtualized and non-virtualized environment. The resource demands at three-tier servers are

compared to understand the effect of virtualization. An IaaS cloud workload characterization

approach is proposed for capacity planning and performance management [Mahambre et

al., 2012]. The relationship between different workload metrics such as CPU and memory

requirements are modeled across a set of workloads. These relationships are analyzed and

characterized to enable VM placement, migration, load balancing and so on. A Markovian

workload characterization model is proposed to predict the performance of physical machines
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TABLE 2.1: Representative workload generation techniques

Methods Used in Strengths Weaknesses
Workload Replay [Kessler et al.,

1994; Kalayappan
et al., 2020]

Real workloads difficult to customize,
often system specific

Piecewise Aggre-
gated Approxima-
tion

[Mackiewicz and
Ratajczak, 1993]

Easy to implement, effi-
cient for dimensionality
reduction

Real workload may not
get tested

Symbolic Aggre-
gated Approxima-
tion

[Huang et al.,
2016]

Significant compression
ratio, good performance

Substantial information
loss

Principal Compo-
nent Analysis

[Mackiewicz and
Ratajczak, 1993]

Finds important compo-
nents of the workload

Non-parametric analy-
sis

Perceptually Im-
portant Points

[Burtini et al.,
2013]

Effective compression
ratio, can be used for
pattern identification

Usually applicable for
simple workload repre-
sentation

Multiple Time Se-
ries Approach

[Khan et al.,
2012]

Considers correlation
between different
workload components

Applicable for only con-
tinuous workload repre-
sentation

deployed on the cloud [Pacheco-Sanchez et al., 2011]. The proposed approach utilizes

Markovian Arrival Process (MAP) and the MAP/MAP/1 queuing model to capture the time-

varying characteristics of common workloads such as heavy-tail distribution.

An IaaS consumer needs to generate representative workloads to evaluate the performance of

a VM. The workload of a consumer depends on the type of its application. Different types of

applications may produce workloads with different types of characteristics. Understanding

these characteristics is important when measuring the effect workload attributes on the per-

formance of VM. It is also important for resource planning and management. Finding real

world traces of such applications is difficult for a consumer. Several studies propose different

approaches to generate representative workloads for different applications. A number of syn-

thetic workload generation tools and benchmarks is developed to model real world workloads.

For example, SPECweb99 [Kant and Won, 2000] and SURGE [Barford and Crovella, 1998]

generate workloads for web servers. A synthetic workload generation method is presented

in [Bahga and Madisetti, 2011]. The proposed method performs automated workload char-

acterization and modeling for different types of applications to extract their features. Two

different methods are described for capturing the cloud application workloads: application
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benchmarking and workload modeling. A synthetic workload generator is introduced, which

utilizes the benchmark and workload model specification to generate representative workload

for a particular application. A cloud workload specification language (GT-CWSL) is proposed

to express the workload specification in a structured manner. A code generator is developed to

generate workload specification for the synthetic workload generator. The proposed synthetic

workload generation methodology is evaluated by modeling RUBis and TPC-W benchmarks.

The results show that the synthetic workload successfully mimics the real-world workloads.

We have summarized existing representative workload generation approaches in Table 2.1.

To the best of our knowledge, existing representative workload generation techniques from a

consumer’s perspective are mostly designed for short-term performance evaluation where a

consumer’s long-term service demand is not considered. We leverage existing representative

workload generation techniques for the long-term performance evaluation.

2.3 Performance Benchmarking

Benchmarking is an approach that is used to evaluate the performance of a computer system

with a fixed workload and configurations [Scheuner and Leitner, 2019]. The main purpose

of benchmarking is to facilitate a consumer’s informed decision-making. A consumer may

compare between different systems based on the result of benchmarking. There exist many

standard benchmarks targeting different systems and hardware; for instance, TPC-C is an

established benchmark for transactional database systems [Avula and Zou, 2020]. SPEC

CPU and Geekbench are examples of CPU benchmarks. StressNg is a network stress testing

benchmark. The first step in designing a benchmark is to define its objectives, on which

the results of a benchmark depend. A systematic way to define the objectives is to analyze

the properties and constraints of the systems that need to be benchmarked [Hwang et al.,

2015]. A set of the priorities that should be optimized during the benchmarking process needs

to be defined. Benchmarking provides a way to define these priorities and constraints in a

structured manner.
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Benchmarking in cloud is different from the traditional benchmarking process. The traditional

benchmarking process does not consider the nature of cloud such as multi-tenancy, elasticity,

hardware heterogeneity, and over-commitment of resources [Scheuner and Leitner, 2018b].

Determining the actual performance of VMs can be challenging due to these factors. Some

initial ideas about how to benchmark cloud services are presented in [Binnig et al., 2009].

The paper argues that traditional benchmarks such as TPC benchmarks are not suitable for

cloud benchmarking, as these benchmarks are typically deployed in a managed environment

with fixed configurations of software and hardware. Primary metrics of these benchmarks

such as average performance or total cost of ownership assume a system that does not change

over time. These benchmarks require the system to describe the ACID properties as they

focus on transactional database systems.

A key advantage of cloud services is the elasticity over the traditional systems. The provider

can automatically allocate new resources or remove unused resources depending on the

workloads in a pay-as-you-go billing model. In the case of network failure, cloud storage

providers often cannot offer strong consistency and high availability together as they use

multiple data centers to support high availability and fault tolerance. Requirements for

new cloud benchmarks are derived by analyzing the most important characteristics of cloud

services [Binnig et al., 2009]. The proposed work analyzes the TPC-W benchmark and shows

why it does not satisfy the requirements of cloud service benchmarking.

Several studies propose different approaches to benchmarking the IaaS cloud. Some studies

analyze the effect of virtualization on the performance of cloud applications. A comparative

study is carried out to understand the impact of virtualization by benchmarking applications in

terms of memory usage, network bandwidth, disk bandwidth and CPU performance [Langer

and French, 2011]. A number of VMs is deployed and tested using some benchmarks and

are then compared with the performance of an application on the physical machine. The

results show that virtualization has a significant impact on the performance of an application.

The performance of read operation from local disk and floating point operation is negatively

impacted. A new custom benchmarking method is proposed to find the actual performance of

different cloud providers considering the service type running on VMs [Scheuner and Leitner,
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2018b]. The proposed method consists of multiple benchmark suite to gain reliable and com-

parable results based on application requirements. A process of developing a custom-tailored

benchmark suit is described that selects benchmarks based on application requirements. The

results show that the performance indicator advertised by IaaS providers is not helpful to find

the actual cost/performance ratio.

A number of studies engage in performance monitoring and analysis to evaluate the perfor-

mance of IaaS cloud services. Some of them analyze the performance of cloud services for

special applications such as many-task scientific computing [Sadooghi et al., 2017; Iosup et

al., 2011; Ostermann et al., 2009]. Several studies analyze the performance variability and

predictability in public cloud computing and production clouds [Iosup et al., 2011; Leitner

and Cito, 2016]. A number of commercial websites and tools are developed to monitor and

compare cloud services such as CloudHarmony, CloudStatus, and Amazon Cloud Watch.

Several studies determine the QoS performance of IaaS providers by deploying VMs in the

cloud. The performance behavior of small instances for service-oriented applications in

Amazon EC2 is studied in [Dejun et al., 2010]. The proposed study benchmarks virtual

instances by generating different types of workload pattern and analyzing the performance in

terms of mean response time. An extensive study on the performance variance of Amazon

EC2 is provided in [Schad et al., 2010]. The study addresses that performance unpredictability

in the cloud is a significant issue for many users and often considered a key obstacle in the

cloud adaption. The study finds that Amazon EC2 shows a high variance in its performance.

The performance of clouds for scientific computing is analyzed using micro-benchmarks and

kernels on Amazon EC2 in [Ostermann et al., 2009; Iosup et al., 2011]. The proposed study

observes that tested clouds are not suitable for scientific computing due to their performance

variance and low reliability. A generator approach called Expertus is proposed to automate

performance testing in IaaS clouds [Jayasinghe et al., 2012].

To the best of our knowledge, existing benchmarking approaches are primarly designed for

short-term performance evaluation of IaaS services. Therefore, most approaches do not

consider the performance variability during the benchmarking process. In this thesis, we
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leverage the concept of micro-benchmarking and the application bechmarking approaches

for the long-term performance evaluation.

2.4 QoS Prediction and Ranking

The experiences of existing users are utilized to predict QoS performance of cloud providers

[Wang et al., 2019; Yang et al., 2018; Tang et al., 2016]. The rank of the providers are

then measured based on the predicted performance. The collaborative filtering is a well-

known approach to predict QoS performance of a service based on the experience of existing

users. A collaborative filtering (CF) approach is proposed to predict QoS values based on

historical QoS information provided by existing users [Wang et al., 2019]. The proposed

approach finds similar users based on a user’s QoS requirements and utilizes similar users’

experiences to predict personalized QoS ranking. A location-aware CF approach is proposed

to predict missing QoS parameters for web service recommendation [Yang et al., 2018].

This study suggests that the location of a user has a remarkable impact on the value of QoS

attributes such as availability, response time, and throughput. The proposed location-aware

CF approach improves the performance of recommendation significantly by incorporating

location information of both users and services in existing similarity measurement approaches

of CF. These approaches mainly focus on short-term prediction and do not consider the

performance variability over a long-term.

Several studies have focused on time-aware QoS prediction approaches [Qi et al., 2019; Hu et

al., 2014]. An approach based on time series forecasting (TSF) is studied to predict the QoS

performance of cloud providers [Zadeh and Seyyedi, 2010]. The proposed approach uses

Neural Networks (NN) for time series forecasting to conduct experiments. The experiments

show promising results for using TFS to predict QoS performance. These approaches are

focused mainly on web service selection and do not take the consumer’s workload into

consideration during the QoS prediction.

A QoS prediction model is proposed using naive Bayesian classifiers in [Al-Faifi et al.,

2018]. The proposed model uses historical information perceived by end-users to predict
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different performance metrics of cloud based on different configurations of VMs. A new

performance prediction method is proposed in [Scheuner and Leitner, 2018b]. The proposed

approach builds classifiers based on application and micro-benchmark results to estimate

cloud application performance on VMs. These approaches do not consider the long-term

performance variability. As a result, these approaches cannot be applied directly for long-term

performance discovery.

To the best of our knowledge, most existing QoS prediction approaches do not consider

the consumer’s workload during the prediction. We propose a cooperative QoS prediction

approach that predicts service performance based on consumer workloads.

2.5 Long-term IaaS Cloud Service Selection

The Long-term IaaS selection and the short-term IaaS cloud service selection are funda-

mentally different in their nature [Ye et al., 2011; Zheng et al., 2011; Wang et al., 2009].

During short-term selection, only current performance of service considered at the time of the

selection [Zeng et al., 2004; Bouguettaya et al., 2010]. For example, which service would

give the best performance in the current situation. Unlike short-term selection, long-term

selection considers the change of the performance of an IaaS service over a long-term period

[Zheng et al., 2013]. Choice of an IaaS service at current stage will affect a consumer in the

future. Most of the existing research approaches the IaaS cloud service selection problem

from a short-term perspective. Few research efforts have been made to study long-term IaaS

selection. Moreover, most long-term selection approaches do not consider the incomplete and

limited performance information. In the following subsection, we have summarized existing

research in long-term IaaS composition.

2.5.1 Long-term Selection from a Consumer’s perspective

A consumer request may not be fulfilled by a single cloud service. In this case, a consumer

needs to select appropriate cloud services and compose them to fulfill their request. This

selection process will be based on the quality of services [Ye et al., 2011]. Cloud services
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are categorized into two categories: application services and utility services [Ye et al., 2011].

Application services are the services provided by SaaS providers where utility services are

offered by IaaS providers. The value of the QoS is determined by the choice of utility

services. This paper proposes QoS aware cloud service composition mechanism using a

genetic algorithm to achieve large-scale composition. Application service and utility service,

both are considered for this composition mechanism from a consumer’s perspective. Cloud

provider and consumers relationships are usually long-term and economic driven [Ye et al.,

2016]. A long-term QoS aware cloud service composition from a consumer’s perspective

approach is proposed [Ye et al., 2016] that represents the long-term consumer’s request in

Time Series Group (TSG) for multiple QoS attributes. A prediction model is proposed based

on the provider’s performance history and short time advertisement to represent the provider’s

long-term performance in TSG. Correlation between multiple time series is considered to

reduce error in the prediction model. The composition problem is then considered as a

similarity search problem.

2.5.2 Long-term Selection from a Provider’s Perspective

Cloud service selection is considered from the IaaS provider’s perspective in several studies

[Mistry et al., 2015]. An IaaS provider is usually unable to satisfy all incoming customers

due to fast-growing cloud consumers (i.e. SaaS providers). As a result, IaaS providers select

a subset of requests of consumers to efficiently utilize a fixed set of resources and maximize

profit. A prediction model is proposed to estimate the dynamic behavior of consumer requests

[Mistry et al., 2015]. The prediction model is used to select an optimal set of consumer

requests to maximize long-term economic benefit. IaaS providers need a long-term economic

model to maximize their profit from an optimal selection of requests [Armbrust et al., 2009].

A long-term consumer request can be efficiently captured with the qualitative economic model

instead of a quantitative economic model.

2.5.2.1 Long-term Selection using Quantitative Approaches

Several existing studies have performed the long-term IaaS selection in a quantitative approach

[Mistry et al., 2016b; Mistry et al., 2015]. In a quantitative approach, an IaaS consumer
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requests a fixed set of resources with associated QoS. For example, an IaaS consumer may

request 100 CPU units, 99% availability and 8 Mbps network bandwidth. A provider’s busi-

ness plans are also modeled in a quantitative manner such as maximization or minimization

strategies. For instance, a provider may target to gain at least 10% profit and 50% resource

utilization. The provider applies these strategies during the selection process of the consumer

requests. These approaches are not applicable if consumers have a variable range of require-

ments with conditional preferences. In the real world, a consumer may have a variable range

of requirements instead of a fixed set of requests. Amazon EC2 allows the consumer to define

a maximum number of VM instances that can be created on demand. For example, consumers

may define 10 – 20 VM instances to be created based on their service demand.

A new optimization approach for cloud service composition is introduced [Mistry et al.,

2016b] that selects services based on the provider’s economic expectations while considering

the resource and QoS demands. The paper proposes a Hybrid Adaptive Genetic Algorithm

(HAGA) to improve the quality of the composition at run-time. The main aspect of the

proposed algorithm is its ability to self-adjustment to improve the prediction accuracy. The

experiment shows the feasibility of the proposed approach. This work can be extended for

privacy-aware cloud service composition from a provider’s perspective.

2.5.2.2 Long-term Selection using Qualitative Approaches

The long-term IaaS selection in qualitative approaches provides an effective and natural

way to represent provider’s and consumer’s qualitative preferences. The qualitative pref-

erence representation allows its users to express their preference more intuitively [Wang

et al., 2017]. A qualitative IaaS selection approach enables IaaS providers to define their

conditional preferences in a qualitative manner. For example, a provider may specify that

if a resource utilization is low, the number of customers is more important than profit. A

qualitative economic model is presented for long-term IaaS requests composition [Mistry et

al., 2016a]. The proposed economic model captures a provider’s long-term economic models

in a qualitative manner.
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A consumer’s preferences can be captured in a qualitative manner. A qualitative approach

is proposed to capture conditional preferences of IaaS consumers [Fattah et al., 2018]. The

proposed approach defines consumer preferences using Conditional Preference Networks

(CP-net) [Boutilier et al., 2004]. A CP-Net is a powerful tool to represent and reason with

conditional preferences under ceteris paribus (“all else being equal”) semantics. The proposed

approach assumes that the preferences of consumers arrive in the form of CP-nets. These

CP-nets are required to be composed to find the most suitable set of consumers according to

the provider’s preferences.

Testing a consumer’s long-term workloads in the cloud may be cumbersome and error-prone.

The performance of the same application in two different clouds may vary significantly.

Most existing studies conduct experiments to measure short-term performance. Existing

performance monitoring and testing approaches are not directly applicable to the long-term

selection. Availability of historical datasets with detailed information is limited in the public

domain due to the privacy issue. Sharing trial experience is of less concern to cloud consumers

[Swan, 2012]; however, there are forums and websites such as Geekbench where consumers

share their trial experiences. We leverage the trial experiences of past consumers to predict

future QoS performance of a service or to create a performance model of the service called

IaaS performance signature that captures a service’s long-term performance variability.

To the best of our knowledge, most existing long-term selection approaches assume that the

performance of IaaS services are known to the consumer during the selection. In this work,

we assume that IaaS providers reveal limited performance information. In this regard, we

develop long-term performance discovery approaches for the selection.

2.6 IaaS Performance Change Detection

The performance variability of IaaS services is addressed in several studies [Iosup et al.,

2014; Leitner and Cito, 2016]. The performance of IaaS cloud services is typically estimated

for different applications based on short-term trials [Wang et al., 2018; Fattah et al., 2019].

However, most of these approaches do not consider changes in long-term IaaS performance
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behavior. Several existing studies suggest that performance of IaaS services often changes

periodically [Iosup et al., 2011]. In this regard, it is possible to estimate a service’s long-

term performance based on historical performance data [Fattah et al., 2020a]. However, an

extensive study on the variability of IaaS performance is carried out which suggests that cloud

performance is a “moving target" and requires re-evaluation periodically [Leitner and Cito,

2016]. Therefore, performance change detection is important for the long-term selection.

Change detection is a topical research topic that identifies abrupt changes in a process

[Veeravalli and Banerjee, 2014]. It has been applied to many domains including climate

change detection, speech recognition, activity recognition, and edge detection in image

processing. Existing approaches for the change detection problem are categorized as either

“offline" or “online" methods [Aminikhanghahi and Cook, 2017]. Offline methods analyze the

entire data set at once and find where the change had occurred. Online methods for change

detection monitor and analyze each data point as it becomes available from a stream or source.

Online methods typically rely on the statistical properties of the process to determine the

change. We identify three criteria to evaluate change point techniques: a) ability to detect

changes, (b) accurately identifying the change points, and (c) the number of tests to detect

changes. We apply these three criteria to evaluate the proposed change detection approaches

in this thesis. A key challenge in detecting changes is to distinguish between noise and true

changes in a process. In other domains, noise is typically well-defined. However, to the best

of our knowledge, there is no well-defined concept of noise in the context of IaaS performance.

In this thesis, we propose an IaaS performance noise model that helps us to accurately identify

performance noise.

Change detection in a process is often performed based on anomaly detection [Ye, 2017].

Performance anomaly detection is a well-studied topic in many domains including cloud

computing, distributed systems, security, and software engineering. Anomaly detection

strategies are classified into four major categories in [Ibidunmoye et al., 2015], which are a)

signature-based detection, b) observational detection, c) knowledge-driven detection, and d)

flow and dependency analysis. We decided to choose the signature-based anomaly detection

as it is a natural fit for our work. Signature-based detection does not require the retention
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of historical information; as a result, we do not need to keep the record of past trial users to

detect changes in signatures.

To the best of our knowledge, existing studies do not consider changes in the long-term IaaS

performance behavior of a service. We introduce a set of long-term IaaS performance change

detection approaches in the context of IaaS signatures where we leveraged existing change

detection techniques from different domains.

2.7 Summary

This chapter discussed the fundamental difference between the short-term selection and

long-term selection of IaaS services and existing short-term selection approaches. Existing

short-term selection approaches typically involve the following steps: a) Representative

workload generation, b) Performance benchmarking, c) QoS prediction and ranking, and d)

Selection. We have discussed existing approaches related to each of the steps related to the

selection. We have also highlighted key long-term IaaS cloud selection approaches and their

limitations. We have leveraged the existing short-term performance discovery, and long-term

selection approaches in this thesis to propose a set of long-term selection approaches where

providers reveal limited performance information. We have also discussed existing studies

about IaaS performance changes. Existing change detection approaches primarily focus on

short-term changes. We have leveraged existing change detection techniques and proposed

new change detection techniques in the context of IaaS performance.
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Performance-based Long-term IaaS Selection

3.1 Introduction

The long-term IaaS cloud service selection is a topical research challenge in cloud computing

[Mistry et al., 2016b]. Selecting the right IaaS cloud service is an important business

decision for cloud consumers [Fattah et al., 2020b]. IaaS cloud services are selected based

on a consumer’s long-term functional and non-functional requirements [Zheng et al., 2009].

Functional requirements are set based on the purpose of the service such as computing,

data storing, and networking. Non-functional requirements are often expressed in terms of

Quality of Service (QoS) attributes such as availability, response time, and throughput. QoS

attributes help a consumer to select the best-performing services from a large number of

functionally similar services. The QoS aware service selection is therefore defined as the

similarity matching between a consumer’s long-term QoS requirements and the expected

long-term performance of IaaS services [Mistry et al., 2016b].

The knowledge of the IaaS services’ performance is essential for long-term selection [Iosup et

al., 2011]. Selecting a service that may perform poorly in the future, may lead to an inevitable

loss of productivity for an organization. However, most IaaS providers are typically reluctant

to divulge the detailed and complete information about their long-term QoS management

policies in the dynamic multi-tenant environment [Dou et al., 2013]. The key reasons for

such behavior are market competition, business secrecy, and conflicts of interest [Fattah and

Bouguettaya, 2020a]. For example, Amazon does not disclose the actual throughput informa-

tion of its vCPUs in its advertisements1. A consumer who has CPU-intensive workloads may

1https://aws.amazon.com/ec2/instance-types/

25



26 CHAPTER 3: PERFORMANCE-BASED LONG-TERM IAAS SELECTION

find it challenging to select Amazon for a long-term period with such limited performance

information [Scheuner and Leitner, 2018b]. The performance of a VM may change over time

given the dynamic nature of the cloud environment [Iosup et al., 2011]. As a result, advertised

performance information may not reflect the actual service performance for a particular provi-

sioning time. For example, a consumer may want to utilize some VMs in December where the

advertised performance is measured in June. In such a case, the advertised information is not

useful to perform the selection in December. Therefore, selecting an appropriate IaaS service

is challenging without the detailed information of a service’s long-term QoS performance.

To the best of our knowledge, existing approaches focus mainly on two aspects for the IaaS

cloud service selection with the incomplete information: a) relying on IaaS advertisements,

and b) gathering information from trial experiences [Wang et al., 2018]. IaaS advertisements

typically contain limited QoS information. For instance, each vCPU may be a thread of

an Intel Xeon core, an AMD EPYC core, or AWS Graviton processor according to EC2

advertisements1. Estimating the performance of the vCPU is difficult from such limited

information [Scheuner and Leitner, 2018b]. Most providers do not differentiate between

long-term and short-term services in terms of service performance. IaaS providers often

advertise an average or maximum performance of their services [Persico et al., 2015]. For

instance, the network performance of some Amazon EC2 instances has a data transfer rate of

up to 10-gigabits. Existing study shows that IaaS providers often fail to offer the promised

QoS performance [Dou et al., 2013]. Therefore, relying only on IaaS advertisements may not

be sufficient for long-term selection.

Most IaaS providers offer free trials, encouraging potential consumers to test their application

workloads in the cloud. For instance, Microsoft Azure offers a one month trial period for a

limited number of services to its potential consumers. Application benchmarks and micro-

benchmarks are usually utilized in the trial periods to discover a provider’s performance in

terms of various QoS attributes such as CPU speed, disk read/write latency, and network

bandwidth [Scheuner and Leitner, 2018b]. Synthetic workloads are generated for the represen-

tative applications to perform stress testing on the providers. The results of the tests are used

to compare different providers. These approaches focus mainly on the short-term selection
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and do not consider the long-term QoS performance variability of the providers. In reality,

the QoS performance of a provider varies over the long-term period due to the multi-tenant

nature of the cloud environment [Iosup et al., 2014]. For example, a provider may show

very good performance in the Christmas period, when the number of active consumers drops

considerably. We aim at leveraging the free short-term trial experience of consumers for the

long-term IaaS cloud service selection in this work. We assume that a consumer considers

only one service from a provider for the long-term selection. Therefore, we use the word

“provider” and “service” interchangeably.

We identify three key challenges to select IaaS providers for a long-term period based on

short-term trial experience. First, a large number of IaaS providers may satisfy a consumer’s

long-term requirements. The performance of these providers may vary considerably depending

on their business strategies and infrastructures. Performing a trial with every eligible IaaS

is practically infeasible. Second, free trials are generally offered for a short-term period. A

consumer cannot test their entire long-term workloads in the short-term trial period. Some

IaaS providers (e.g., Amazon) offer long-term trials for several services. A consumer may not

be able to wait such a long time to make the selection. Third, it is challenging to predict the

long-term performance from a short-term trial without the performance variability information

[Wang et al., 2018]. Most IaaS providers usually operate in multi-tenant environments. IaaS

performance is highly time-dependent [Iosup et al., 2014]. The performance discovered in

a one month trial period may not reflect the actual performance of a provider for the rest

of the year. The trial experience of a consumer may depend on several factors such as trial

workloads, the time of the trial, and the provider’s QoS management policy [Scheuner and

Leitner, 2018b]. The experience from an unplanned short trial may not provide the complete

information required for the long-term selection.

We propose a novel framework that utilizes a consumer’s short-term trial experience to select

the closest-matched IaaS provider according to the consumer’s long-term QoS requirements.

We incorporate the experience of past trial users to predict providers’ long-term performance.

Experiences of past trial users may not be applicable directly to predict IaaS performance for

a new consumer. The reason is that the workloads of the past trial users are most likely to
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be different from the new consumer’s workloads. We propose a cooperative long-term QoS

prediction approach based on the workload similarity of the past trial users. The performance

of the provider may change over the long-term period. The proposed framework measures

the confidence of the prediction based on the trial experience of the new consumer. Our

contributions in this work are summarized as follows:

• A skyline-based filtering method to select candidate IaaS providers to perform free trials.

• A cooperative long-term QoS performance prediction approach using the experience of

past trial users. The confidence of the trial is measured based on the trial experience of the

new consumer.

• A long-term QoS performance prediction approach using a trial workload generation model

when no similar trial users are available.

• A QoS-aware selection method to choose the “closest match" IaaS provider using multidi-

mensional time series similarity measure between the consumer performance requirements

and the predicted performance of providers.

3.2 Motivation Scenario

Let us assume that a university wants to lease some general-purpose VMs for one year. Each

VM requires at least 2 vCPU and 6 GB memory. The university has a minimum expected

QoS performance on availability, response time, and throughput. The QoS requirements

vary based on the university’s seasonal demands. For example, the university may need high

throughput during the examination period, and low throughput in the Christmas period. Figure

3.1(a) depicts the consumer’s expected availability on three different periods (T1, T2, and

T3) in a year. We assume that the university’s workloads are deterministic, i.e., the university

has estimated its future workloads for one year based on history. Figure 3.1(b) shows the

consumer’s CPU workloads for the T1, T2, and T3 periods.

Several providers in the cloud market may advertise the required type of VM to the university.

Let us assume that P1 and P2 are two such providers. Both providers advertise availability

information for the VMs in their IaaS advertisements. The response time and throughput
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information are not available in the advertisements. Figure 3.2(a) shows the consumer’s

expected availability. Figure 3.2(b) shows the advertised availability of two providers. The

consumer will select P2 if they select based on availability. This selection may not be a good

decision as it does not consider the consumer’s expected throughput and response time.

Let us assume that each provider offers a trial to the university. The university performs trials

on the T2 period and observes the throughput and the response time of the IaaS service. Note

that, the university cannot test its entire workloads in the T2 period. Let us assume that the

university performs the free trial using only the workload of the T2 period (Figure 3.1(a)).

If the university makes the selection considering only the observed performance in the trial

period, it may not be the right decision. For example, the university may observe that P1

offers better throughput and response time. Selecting P1 may be a wrong decision as P2
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performs better in the T1 and T2 periods. Let us assume that the consumer has access to the

experiences and workloads of past trial users. Workloads of trial users may be different from

the university’s workloads. We identify the following cases:

• Similar Trial Users: The experience of past trial users is available where the users have

similar workloads to the university. These users could be universities, colleges, banks, or

other large organizations. The university performs a trial using its workloads of the T2

period and observes the throughput and response time of the providers. The university

utilizes the experience of the trial users to predict the performance of each provider for

its workloads in the T1 and T3 periods. The confidence of the prediction needs to be

measured as the prediction is made based on historical information. Each provider’s current

performance may be improved or degraded than the experiences in the past.

• Dissimilar Trial Users: In this scenario, we assume that there are no trial users available

who have similar workloads to the university. If the existing trial users include SaaS

providers and video content providers, they are most likely to have different workloads

than the university. In such a case, the university cannot completely rely on those past

experiences. The university needs to perform the trial efficiently to understand the providers’

performance behavior for its long-term workloads.

The proposed selection framework considers both cases for long-term selection. First, a

filtering method is applied that selects candidate IaaS providers for the trial periods. Next,

the proposed framework predicts the long-term QoS performance of each provider by lever-

aging the trial periods for similar trial users and dissimilar trial users. An IaaS provider is

then selected based on the predicted QoS performance and the consumer’s expected QoS

performance from the candidate providers.

3.3 IaaS Selection Framework

We formulate the long-term IaaS provider selection using the following definitions and

notations in Table 3.1.
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TABLE 3.1: Notations and descriptions

Notation Description

T Required provisioning time
W Workload requirements in time series
QC Set of QoS Requirements of Consumers
l Number of QoS parameters in QC

qci The time series of the QoS parameter qci
tn A timestamp in T where n = 1, 2, 3, ...T
xn The value of q(ci) at the time period tn
N The number of IaaS providers who can

satisfy the functional requirements of the consumer
P A set of IaaS providers
Ai The QoS advertisement of the provider Pi

• Consumer: A consumer is a new IaaS Consumer who requires Virtual Machines (VMs) for

a long-term period.

• Functional Requirements: Functional requirements are defined in terms of different types

of VM configurations (i.e., the number of vCPU and memory units) and the number of

VMs over the long-term period.

• Long-term Workloads: The workload of a consumer is represented as the requested number

of resource units such as CPU and memory over the long-term period.

• QoS Requirements: QoS requirements of a consumer is a set of QoS parameters and their

minimum or average expected values for a long-term period.

• Provider: A provider is an IaaS provider who provisions VMs for a long-term period.

• QoS Advertisement: A QoS advertisement is a set of QoS parameters for a VM and the

values of the QoS parameters over the long-term period.

• Trial Periods: A consumer can use some services with restricted conditions for free.

Let us assume that a consumer requires a set of general-purpose VMs of a particular config-

uration over a long-term period. The consumer has variable workloads over the long-term

period. We assume that the workloads are deterministic, i.e., the consumer has full knowledge

of its workload distribution per VM over the long-term period. The workload of the consumer

can be defined as the required amount of resources (e.g., CPU time, and Memory size) at
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a particular period. We consider the workload as a combined resource requirement at a

particular time and denote it as W .

We represent the consumer’s workloads and QoS requirements for the long-term period using

time series groups (TSGs). We denote the total service usage time as T . The TSG of QoS

requirements is defined as QC = {qc1, qc2, ..., qcl}, where cl is the number of QoS parameters

in QC and qcl = {(xn, tn)|n = 1, 2, 3, ...., T}, where xn is the value of qcl at the time of tn.

We define the time series of workloads per VM as W = {(wn, tn)|n = 1, 2, .., T}, where wn

is the workload per VM at time tn. Here, n denotes a timestamp.

Let us assume that there are N number of IaaS providers who can fulfill the functional

requirements of the consumer. The set of the providers is denoted as P = {P1, P2, ...PN}.

The QoS performance of VMs varies from one provider to another provider over the long-

term period. Each provider advertises long-term QoS properties in TSG for its VMs. The

QoS advertisement of the provider Pi is denoted as Ai = {ai1, ai2, ....aik}, where ik is the

number of QoS parameters in Ai. We assume ik < l, i.e., the number of QoS parameters in

the advertisements is always less than the number of the QoS parameters in the consumer

requirements. The time series of each QoS parameter of provider Pi in the advertisement is

denoted as aik = {(yim, tim)|im = 1, 2, 3, ...., T} where yim is the value of aik at the time of

tim. Here, im is the timestamp of the advertisement of the provider Pi. We assume that each

provider advertises with the same interval, i.e., im is the same for all providers.

The consumer requires to predict long-term QoS performance of the providers to make an

informed selection. The advertisements do not provide enough information (i.e., ik < l). We

denote the predicted QoS performance of the provider Pi as Qi = {qi1, qi2, ..., ql} where l is

the number of QoS parameters in Qi. The consumer requires to select a provider based on

the predicted QoS performance that closely matches its expected QoS performance. Given

the consumer’s QoS expectations QC and a provider’s predicted QoS performance Qi, we

use a predefined TSG distance measuring function distance(QC , Qi) to find the most similar

provider Ps using the following equation:
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FIGURE 3.3: Long-term IaaS provider selection framework

Ps = argminli=1(distance(QC , Qi)) (3.1)

Figure 3.3 shows the proposed long-term IaaS provider selection framework. The framework

requires a consumer’s long-term requirements, i.e., expected QoS performance and workloads

as the input. The other inputs to the framework are the long-term advertisements of a set of

providers who can fulfill the functional requirements of the consumer. The framework has the

following four modules:

• Filtering IaaS Providers: A filtering method is proposed to reduce the search space based

on the similarity between the consumer requirements and the QoS advertisements of the

providers. Finding such providers is a multi-criteria decision-making problem. Each

provider may have advertisements that are the best for a particular QoS parameter at

a particular time period. There may be no clear winner as to who provides the best

advertisements for all QoS parameters over the entire period. We incorporate a temporal

skyline [Wang et al., 2013] to solve the multi-criteria decision-making problem in the

filtering method.

• Cooperative Long-term QoS Prediction (CLQP): A consumer’s long-term workloads may

not be tested in a short trial. Some parts of the workloads may be tested directly in the

trial period while the performance of the other parts can be inferred from past trial users.
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A cooperative QoS prediction approach is applied based on the experience of trial users

using a “workload similarity” measure technique. A confidence measurement technique is

devised for the predicted performance using the trial experience.

• Long-term QoS Prediction without History (LQP-short): When there is no similar past

trial user, the proposed framework generates trial workloads by mapping the consumer’s

long-term workloads into the short-term trial periods to discover the performances. The

trial workloads are generated using time series compression techniques.

• QoS-aware Long-term IaaS Provider Selection (QLIS): The “closest match” provider is

selected, where the predicted performances closely match with the consumer’s require-

ments with the highest trial confidence when similar past trial users are available (CLQP).

Therefore, the proposed framework does not require an exact similarity measure between

the consumer requirements and a provider’s performance. In the absence of similar trial

users, the provider is selected based on the LQP-short.

3.4 Filtering IaaS Providers

We develop a filtering method to reduce the number of candidate IaaS providers for the trial.

The filtering process can be modeled as single-criterion or multiple-criteria decision-making,

depending on the consumer’s requirements.

3.4.1 Filtering IaaS Providers based on Single Criterion

If a consumer’s QoS requirement (Qc) contains only one QoS parameter, i.e., |Qc| = 1, the

filtering method can be modeled based on single-criterion decision-making. For example,

when a consumer only cares about the response time of the VMs, the candidate providers can

be selected based on the response time without considering other QoS attributes. In such a

case, we compare the consumer’s long-term QoS requirement with each provider using time

series similarity matching techniques. A well-known time series similarity matching technique

is the Mean Absolute Error (MAE) distance [Tang et al., 2016]. MAE is a fast, effective,

and easy-to-implement technique where similarity is measured between each corresponding
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timestamp of two time series. Equation 3.2 computes the similarity between the consumer’s

long-term QoS requirement qc and a provider’s advertisement (ap) for a single QoS parameter:

MAE (qc, ap) =
1

n

∑
t=1..n

| qtc − atp | (3.2)

In Equation 3.2, n is the number of timestamps, qtc is the value of QoS parameter qc at time t.

A number of candidate providers should be selected based on the measured distance. The

candidate providers can be selected using the top-K approach [Zheng et al., 2012]. The

top-K approach selects the best K candidates who have the minimum MEA distance from the

consumer’s QoS expectation. If the number of selected candidate providers is too small or too

large, K can be adjusted to reduce or to increase the number of candidate providers for the

trial period.

3.4.2 Filtering IaaS Providers based on Multiple Criteria

When the consumer’s QoS requirements (Qc) contain more than one QoS parameter, i.e.,

|Qc| > 1, we can model the filtering method as a multi-criteria decision-making problem.

Multi-criteria decision-making approaches are applicable when the consumer’s selection

depends on multiple criteria such as price, throughput, and response time. In such a case,

the consumer’s QoS requirements and a provider’s QoS advertisements should be compared

for each QoS parameter. The main issue of filtering based on multi-criteria is having pareto-

optimality or incomparable providers. For instance, a provider may advertise VMs at the

lowest price while another provider may advertise VMs with the highest performance. In

such a case, there is no clear winner as both of them are best on different criteria.

3.4.2.1 Filtering based on Utility Function

There are several approaches to filter candidate providers based on multiple criteria. Some

general approaches are utility function, conditional preference, and skyline [Jiang and Pei,

2009]. The utility function computes a score for each provider based on the consumer’s
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preference for each attribute. A consumer needs to assign weights on each QoS attributes

based on their preference. For example, a consumer may put the highest weight on the price

attribute as the price may be the most important attribute. The consumer may set lower

weights to the less important attributes. The utility function calculates a score for each

provider based on the weights of the attributes and the value of the attributes. The utility

function computes the score using the following equation:

Score(P ) =
∑

qc∈QC ,ap∈Ap

Wq ×MAE(qc, ap) (3.3)

where Wq is the weight of the QoS attribute q assigned by the consumer, Qc is the TSG of the

consumer’s QoS requirements, and Ap is a provider’s QoS advertisements. A multi-criteria

decision-making problem is then transformed into a single-criterion decision-making problem

using the utility function. We can apply the top-K method using the utility scores to filter the

providers for free trial.

3.4.2.2 Filtering IaaS Providers based on IaaS Skyline

The utility function based filtering method has two major drawbacks. First, it requires a

consumer to assign weights on the QoS attributes. Second, if a consumer’s preferences change,

the utility function should be updated. The skyline algorithm is a well-known alternative

to the utility function [Wang et al., 2013]. A skyline does not require a consumer to assign

weights to the QoS attributes. It includes all of the outputs that can be generated by a utility

function [Jiang and Pei, 2009]. The skyline concept is adopted from the real-world skyline

where the most dominating items are displayed in a skyline. For example, a city skyline

consists of the tallest, widest, or closest building to the viewer. Similarly, a skyline filtering

method consists of the provider who advertises the best value for at least one QoS attribute.

Let us assume that there are N IaaS providers who can fulfill the consumer’s functional

requirements. The number of such IaaS providers is not expected to be very large given that

the number of top IaaS providers is no more than 100 2. Therefore, we consider the value

2https://stackify.com/top-iaas-providers/

https://stackify.com/top-iaas-providers/
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of N here is arbitrary. We need to find a set of candidate providers P ′ where P ′ ⊂ P and

|P ′| < |P |, i.e., the number of selected providers is less than the number of existing providers.

Let us assume that |P ′| = M i.e., the number of selected IaaS providers is M. The set of QoS

advertisements for all IaaS providers is denoted as A = {A1, A2, A3, ..., AN} where Ai is the

advertisement of provider Pi. We need to selectM number of IaaS providers from the existing

N IaaS providers based on the advertisements A and the consumer requirements QC . We

need to find a set A′ where A′ ⊂ A and A′ contains the closest match information according

to QC . The advertisement contains more than one QoS parameter to compare for ranking the

providers. Therefore, selecting the candidates is a multi-criteria selection problem.

We utilize a temporal skyline to solve the selection of candidate providers over multiple QoS

criteria. The skyline query is an effective approach to select a set of data points that is better

than any other data points in a large dataset [Jiang and Pei, 2009]. The temporal skyline is a

time-series version of the skyline that selects a set of time series that are better than any other

time series. We propose a temporal skyline approach to select a set of candidate providers

which is better than the other sets of providers over time T .

3.4.2.3 IaaS Skyline

A provider Pi dominates another provider Pj if Pi offers equal or better QoS advertisements

than Pi for all QoS parameters and Pi offers better advertisement than Pj for at least one

QoS parameter. A skyline of providers contains the providers that are pareto-optimal and not

dominated by any other providers for every QoS parameters. Figure 3.4(a) shows an example

of the skyline of providers. Here, each provider offers two QoS parameters, i.e., throughput

and availability. P3 offers higher throughput and availability time than P4 and P6 thus P3

dominates P4 and P6. Similarly, P2 dominates P5, P6, and P4. The skyline of the providers

contains P1, P2, and P3.

We assume that the consumer has a set of QoS parameters that are more important or dominant

than other QoS parameters denoted as QD where QD ⊂ QC . For example, a consumer may

consider that the throughput and availability of a VM are more important than any other QoS

parameters. The weight of each dominant QoS parameter is considered equal. A provider
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FIGURE 3.4: Filtering with skyline (a) IaaS skyline (b) temporal IaaS skyline

who does not provide throughput and availability information will not be considered for the

trial. The size of QD can vary according to consumer preferences.

DEFINITION 1. Dominant Provider. A provider Pi dominates another provider Pj , denoted as

Pi � Pj , if Pi provides as good as or better advertisements for all dominant QoS parameters

in QD i.e., ∀q ∈ QD : Pi � Pj and ∃q′ ∈ QD : Pi � Pj

DEFINITION 2. IaaS Skyline. The IaaS skyline of a set of IaaS providers P , denoted as

SKP , is a subset of providers that is not dominated by any other providers, i.e., SKP = {p ∈

P |¬∃p′ ∈ P : p′ � p}

3.4.2.4 Temporal IaaS Skyline

We represent the long-term QoS advertisements using time series where the value of each

QoS parameter may change over time. We utilize the temporal skyline introduced in [Jiang

and Pei, 2009], where QoS parameters can be represented as time series .

DEFINITION 3. Dominant QoS Time Series. A QoS time series Qi dominates another QoS

time series Qj in time T , denoted as Qi � Qj , if ∀t ∈ T,Qi � Qj and ∃t′ ∈ T,Qi � Qj .

DEFINITION 4. Temporal QoS Skyline. The temporal QoS skyline of a set of QoS time series

Q, denoted as STQ, is a subset of QoS time series that is not dominated by any other QoS

time series for all timestamp t, i.e., STQ = {q ∈ Q|¬∃q′ ∈ Q : q′ � q}
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Figure 3.4(b) shows a set of “throughput" time series of providers P1, P2, P3, P4, and P5.

P3 and P2 dominates all other providers for each timestamps, i.e., t0 to t5. P3 dominates

P2 at t2 and P2 dominates P3 at t3. Therefore, P3 and P2 do not dominate each other

and are included in the temporal QoS skyline for the interval from t2 and t3. The temporal

skyline shown in Figure 3.4 considers only a single QoS parameter. In reality, the number

of dominant QoS parameters QD in the advertisements may be more than one. We need a

multiple time series approach for the skyline. We define a multiple time series (MTS)-based

IaaS skyline and Temporal QoS Skyline as follows:

DEFINITION 5. MTS-based Dominant IaaS Provider. An IaaS provider P that has QD

dominant QoS time series, dominates another IaaS provider P ′, denoted as P �mts P ′ if (1)

∀t ∈ T, P � P ′ and ∃t′ ∈ T, P � P ′ and (2) ∀q ∈ QD, P � P ′ and ∃q′ ∈ QD, P � P ′

DEFINITION 6. MTS-based IaaS Skyline. The IaaS skyline of a set of IaaS Providers P ,

denoted as MTSP , is a subset of providers that is not dominated by any other providers, i.e.,

MTSP = {p ∈ P |¬∃p′ ∈ P : p′ �mts p}

We assume that each provider’s advertisement contains at least one dominant QoS parameter.

Hence, the MTS-based IaaS skyline includes the providers that are not dominated by any

other providers for all timestamp in T and all QoS parameters in QD. The existing literature

show several methods of computing skylines [Wang et al., 2013]. Our focus is on how to

apply skyline to select candidate IaaS providers rather than computing skyline efficiently.

We use a nested loop (NL) algorithm [Jiang and Pei, 2009]. Algorithm 1 illustrates the NL

algorithm to compute IaaS skyline.

Algorithm 1 takes a list of providers and their corresponding QoS advertisements as input in

line 1. The output of the algorithm generates the IaaS skyline of the provider (line 2). Initially,

we consider that each provider is a part of the skyline. Therefore, we create a list S where we

assign each provider (line 3). Next, for each provider (P ) in the list S (line 4-5), we compare

the provider with all other providers (Pi) in S to test whether a provider is dominated by any

other provider using the MTS-based dominance relation. If a provider (P ) is found to be

dominated by any other provider (Pi) in the list (S) (line 6), we remove P from S. Once the
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algorithm finishes comparing each provider in the list, the remaining providers in S are part

of the skyline (line 7). S is assigned into MTSP which represents the final IaaS skyline and

returned (line 8).

Algorithm 1 Computing Skyline using NL algorithm
1: Input: L, A
2: Output: MTSP
3: S ← L;
4: for P ∈ S do
5: for Pi ∈ S do
6: if Pi �mts P then discard P from S;
7: MTSP ← S;
8: return MTSP ;

3.5 Cooperative Long-term QoS Prediction

The experiences of trial users may not be directly applicable to predict a provider’s long-

term performance for a new consumer’s workloads. The main reason is that each user may

perform a trial with different types of workloads according to their QoS requirements and

have different experiences. It is highly unlikely that the new consumer’s long-term workloads

can be matched exactly with the trial workloads of past trial users at each period. However,

the new consumer’s workloads may have similarities with the trial user workloads. We utilize

the experience of the users having similar trial workloads.

Collaborative filtering methods are well-known for QoS prediction from similar user ex-

periences [Zheng et al., 2012]. Traditional collaborative filtering methods for the cloud

QoS prediction measure similarities between the users based on their QoS experience. For

instance, a new consumer’s expected QoS performance will be based on the experience of

other existing consumers. In collaborative filtering, QoS values are predicted based on the

similarity between the existing consumers and the new consumer. The similarity is typically

measured using various attributes such as location, time, and service type. However, they

do not consider user workloads during the service invocation. We leverage a traditional

collaborative filtering method for the long-term QoS prediction where similarities between a

consumer and past trial users are defined based on their workloads.



SECTION 3.5: COOPERATIVE LONG-TERM QOS PREDICTION 41

Let us assume that the total provisioning period has S seasonal periods. The performance of a

provider does not vary significantly within a period, but it may vary considerably between the

seasonal periods. The total service provisioning time T = S×M × Y where S is the number

of seasons, M is the size of each season, and Y is the number of seasonal years. For example,

a consumer may need service for one year. The one year can be divided into three seasons

where the size of each season is four months. Our target is to predict the QoS performance

of a provider for each season for the consumer’s workloads at that period. We assume that

we have a history of past trial users at each season. The effects of day, night, and week are

included within each season.

We develop a cooperative long-term QoS prediction (CLQP) approach to predict the QoS

performance for each season. The proposed approach has two steps: a) finding similar users,

and b) measuring the QoS performance based on similar users’ experiences. We discuss these

two steps in the following subsections.

3.5.1 Finding Similar Trial Users

A similarity measure technique is required to find similar users based on the consumer’s

workloads. Pearson Correlation Coefficient (PCC) is an effective similarity measurement

technique that has been widely used in collaborative filtering for finding similar users [Zheng

et al., 2012]. It can achieve high accuracy and can be implemented easily. In a recommender

system, similarity between two users is typically computed based on users’ preferences,

observed QoS performance, and location. In our case, we need to find similar users based on

the similarity between the workload of two users. For a given interval ∆t, the PCC similarity

is between two sets of workloads w and w′ is defined in Equation 3.4:

Sim(w,w′)∆t =

∑k
t=j(w

′
t − w̄′)(wt − w̄)√∑k

t=j(w
′
t − w̄′)2

√∑k
t=j(wt − w̄)2

(3.4)

In Equation 3.4, w̄ and w̄′ denote the average value of w and w′ in ∆t. The values of workload

w and w′ at the timestamp t are denoted by wt and w′t respectively.
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The PCC may not be always applicable for time series data. Whenever a workload time series

segment has a steady workload (i.e., variance = 0), the PCC fails to compute the similarity.

We utilize the root mean square error distance to measure the similarity of the consumer

workloads using Equation 3.5.

Sim’ (w,w′) =

√
1

n

∑
t=1..n

(wt − w′t)2 (3.5)

We incorporate an extended top-K neighbor selection technique to select similar users [Tang

et al., 2016]. The extended top-K considers that some users may have a limited number of

similar consumers. Traditional top-K algorithms may select consumers that are not similar to

the new consumer. We use Equation 3.6 to select top-K similar consumers:

S(c) = {ck|ck ∈ Top(c);Sim(ck, c) > 0} (3.6)

Top(c) finds the set of similar users ck to the consumer c and S(c) is the set of similar users

who has similarity with the new consumers more than zero.

3.5.2 Measuring QoS Performance

Let us assume that the proposed framework finds k number of users who have trial workloads

similar to the new consumer at a given seasonal period. We denote the number of timestamps

at a particular season as n. For each timestamp t, we use the following equation to predict the

QoS values of an IaaS service:

Et=1..n(Qc) =

∑k
i=1Q

t
ck

k
; t ∈ ∆t (3.7)

where k is the number of the similar users, Qt
ck

is the observed value of a QoS parameter

by a user ck at time t. Et=1..n(Qc) measures the expected QoS in the trial period ∆t based

on average observed performance by similar users. Equation 3.7 considers all users equally
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without considering the degree of similarity of each user. For instance, if we select five users,

a particular user may have the highest similarity. Considering the most similar users will not

provide good prediction accuracy. Hence, we consider the degree of similarity during the

computation of QoS performance for a consumer. The following equation is used to measure

the QoS performance:

E ′t=1..n(Qc) =

∑k
i=1(Sim′(c, ck)

∆t ×Qt
ck

)∑k
i=1 Sim

′(c, ck)
; t ∈ ∆t (3.8)

where Sim′(c, ck)∆t is the similarity between the consumer c and the trial user ck and Qt
ck

is

the observed QoS performance by ck. Equation 3.8 measures the QoS performance using the

weighted average of past trial experiences.

3.5.3 Performing Trial using Workload Replay

The most straight forward approach to testing a provider’s performance is to use the con-

sumer’s long-term workloads directly to perform the trial. This approach is called workload

replay. The advantage of this approach is that it performs the most “real” test of the providers

as the workload contains all the real-world complexities.

A key challenge of testing is the short length of free trials. A consumer typically requires

to test long-term workloads where the trial periods are short. For instance, a consumer may

need a VM for one year and the length of the trial period is only one month. The consumer

is unable to test its one-year workloads in one month. Let us assume that the trial period

is offered in the month of “June”. The result of performing the trial using the workload of

“January” may be different from performing the trial using the workload of “June”. If the

consumer performs the trial with the workload of “June”, then the performance of the provider

may remain unknown for the workload of “January" unless the workloads of both months are

the same. A major concern while performing the trial is the effect of the temporal effect on

the provider’s performance. A provider’s performance may vary when a consumer performs

the trial with the same workload in the “January” and “June”.
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We utilize the consumer’s workload directly to perform the trial. Trial workloads are selected

based on the month of the trial. For example, if the trial is performed in the month of “June’,

we apply the consumer’s workload of “June”. When a consumer requires service for multiple

years, we take the average workload of multiple years for the trial period. The performance of

the workloads for other months is inferred from the experience of past trial users as described

in the previous subsections (3.5.1 and 3.5.2).

3.5.4 Measuring Confidence

The predicted QoS performance for the consumer’s long-term workloads may not provide

an accurate result as it is based on historical information. The current performance of the

providers may change. Providers may upgrade their infrastructure or change their QoS

management policy. Therefore, the consumer needs to measure the confidence of the trial for

the long-term selection.

The intuition behind confidence measuring is that a consumer may have more confidence

for the selection if its trial experience matches the experience of other similar consumers.

However, each consumer performs trials with different workloads. Therefore, when measuring

the confidence, a consumer’s experience needs to be compared with other consumers who have

similar trial workloads. The confidence of the prediction is measured between a consumer’s

observed performance in the trial and the predicted performance for the trial period. The

predicted performance is computed using the experience of similar consumers. The observed

and the predicted performance are both represented as time series. Therefore, we measure the

similarity between observed and predicted performance to compute the confidence of the trial

experience. Here, we measure the similarity based on Euclidean distance between the two

time series. Euclidean distance is more useful when we want to scale the absolute distance.

The confidence of the QoS prediction (C∆t) is computed by measuring the similarity between

the trial experience (E) and the predicted QoS performance (Q) using the following equation:

C∆t =

√∑k
t=j(et − qt)2

∆t
; et ∈ E, qt ∈ Q (3.9)
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where ∆t is the length of the trial period, E is the observed QoS performance, Q is the

predicted QoS performance in the trial period. et and qt are the observed and predicted

performance at timestamp t. Equation 3.9 measures similarity in terms of the Euclidean

distance of the predicted and observed QoS performance. The proposed long-term selection

framework selects a threshold Cthres for the confidence variable to filter providers based on

the confidence. If the prediction of a provider has lower confidence than the threshold, the

provider is discarded.

3.6 Long-term QoS Prediction without Historical

Information (LQP-short)

In this section, we introduce a QoS prediction approach for the long-term selection, where we

assume that there is no similar trial users. The workload replay-based trial is not suitable for

performing a trial in the absence of similar trial users. The consumer needs to measure the

IaaS performance for their entire workloads. We propose a trial workload generation model

by leveraging existing time series compression techniques.

3.6.1 Trial Workload Generation

The performance of a cloud provider often depends on the characteristics of the workloads it

serves [Feitelson, 2002]. For instance, the performance of Amazon AWS shows less perfor-

mance variability for compute-intensive tasks, according to a report made by Cloud-Spectator3.

The performance of Amazon AWS varies considerably for block storage operations. The dis-

tribution of the workloads may have a considerable impact on the performance. A provider’s

performance may show better performance when the workloads are evenly distributed. If

the workloads come in burst or have heavy-tailed distribution, the performance may degrade

[Al-Faifi et al., 2018].

3https://cloudspectator.com/cloud-performance-reports/

https://cloudspectator.com/cloud-performance-reports/
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Let us consider that the long-term workloads of the consumer consist of n data points, i.e.,

t1, t2, t3, ..., tn over T period. The trial period can be divided into k data points over Tr

period where Tr << T . If n ≤ k, then each data point in the workload can be tested in

the trial period. If n > k, then there are more workload data points than can be tested and

compression is required. In such a case, the compression may result in some loss of data

points. The amount of loss depends on the size of k, the shape of the workload time series,

and the compression method.

We define < W,M, Tr, k, QC > as a trial workload generation model where W denotes the

long-term workload time series of a consumer, M is the compression method for the workload

time series, Tr is the trial period offered by a provider, k is the number of points in Tr, and

QC is the list of QoS parameters that needs to be measured in the trial. The goal of this model

is to compress the workloads W using method M into k points to fit in Tr.

There exists a number of techniques for time series compression [Burtini et al., 2013]. We

apply three techniques, namely Piecewise Uniform Selection(PUS), Piecewise Aggregate

Approximation (PAA), and Random Selection (RS).

(1) Piecewise Uniform Selection (PUS): The original workload time series is divided into k

intervals [Burtini et al., 2013]. Starting with the first workload, we select a workload point

after each dn/ke interval. The shape of the original workload time series may remain the

same if the workload does not vary significantly over time.

(2) Piecewise Aggregate Approximation (PAA): The PPA method reduces the number of data

points by taking average values in each interval Ii. If ti represents a timestamp in the

workload time series and n is the total number of points in the time series, then the value

of the time series in Ij is calculated using the following equation:

Ij =
1

x

i∗x∑
i=(j−1)∗x+1

ti for j = 1...dn/xe (3.10)

The size of the original time series can be reduced by any factor by changing the value

of x. For a given n data points in the workloads and k segments in the trial period, we

define the minimum x = dn/ke.
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(3) Random Selection (RS): The trial workloads are generated by selecting k number of

workloads randomly from the original workloads. The random numbers are generated

based on a uniform distribution in the interval (0,1).

3.6.2 Long-term QoS Prediction

The proposed framework monitors the required QoS parameters of the consumer (QC) during

the trial period. The proposed framework expands the short-term QoS performances into the

long-term performance using time series interpolation and extrapolation.

For a given set of workloads W = {w1, ..., wn} and k number of points in the trial period

Tr, the compression method M generates a set workload points W ′ = {w′1, w′2, .., w′k} for

the trial. For each of these workloads, the corresponding QoS value is monitored in the trial.

There are k number of values for each QoS parameter qci ∈ QC . There exists a one-to-one

mapping between each wi to xj ∈ qci. The aim is to generate n number of QoS values from k

number of QoS values of each qci ∈ QC .

The proposed framework leverages the knowledge of compression to expand the QoS values.

The workload time series is divided into dn/ke = x intervals during compression. The aim is

to find n− k points to determine the long-term performance. We apply the interpolation and

extrapolation method to generate n− k points. Interpolation is a well-known technique in

the field of numerical analysis to construct new intermediate points between two points in

a time series [Wiener and of Technology (Cambridge, 1950]. First, n− k workload points

are mapped into the different points of the time series. The mapped workload points are

interpolated and extrapolated to generate intermediate workload points.

There are various algorithms to perform interpolation and extrapolation such as piece-wise

constant, linear, nearest neighbor, and polynomial interpolation [Wiener and of Technol-

ogy (Cambridge, 1950]. We select a commonly used interpolation technique, i.e., linear

interpolation. If two consecutive workload points are denoted by (t1, w1) and (t2, w2), then

an intermediate point is calculated by the following equation:
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w = w1 + (t− t1)
w2 − w1

t2 − t1
(3.11)

3.7 QoS-aware Long-term IaaS Provider Selection (QLIS)

The proposed framework selects the providers based on the confidence of the prediction

when similar trial users are available. First, a subset of candidate providers is selected based

on the confidence threshold (Cthres). This step is not performed when similar trial users

are not available. Next, the proposed framework ranks the providers based on the distances

of the predicted QoS performances and the consumer’s QoS expectations. The predicted

QoS performance and the consumer’s QoS expectations are both represented using TSGs.

Measuring the similarity between two TSGs can be costly when the number of QoS parameters

is large. The cost of the pairwise comparison of the time series can be reduced if we can lower

the dimension of the TSGs.

Principal Component Analysis (PCA) is an efficient approach to reduce the dimension of

a TSG by transforming the original TSG into lower dimensional vector space [Mackiewicz

and Ratajczak, 1993]. The PCA transformation is represented D′ = D × T where D is the

original data, T is the transformation vector, and D′ is the transformed data matrix into the

new vector space. Each data vector of the original space is represented by a column of D.

Each row of T refers to a transformation vector. Each column of D′ represents a principal

component of the original vector space.

Let us consider that the set of discovered QoS is represented as TSG which is a m × n

dimensional vector where m is the number of timestamps and n is the number of QoS

parameters in the TSG. A vector Qt = (qt1, q
t
2, ....q

t
n) is created for each timestamp. Each

dimension of the vector refers to a QoS time series in TSG′. We apply PCA transformation on

the vector to identify the first n′ QoS time series where n′ < n to get a new TSG TSG′. This

n′ contains the principal components of the discovered QoS performances. The transformation

is computed as follows:
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D′t = Dt × T = (Dt × T1, Dt × T2, ..Dt × Tn) (3.12)

where Dt is the original data, D′t is the new data, and Ti is an n dimensional transformation

vector. The values of D′t for each timestamp is the first n′ principal components of Dt. Given

an n′ dimensional transformation matrix T ′ = (T1, T2, .., T
′
n), the transformed TSG is as

follows:

TSG′ = D × T ′ = (D1 × T ′, D2 × T ′, ...., Dm × T ′) (3.13)

wherem represents the number of timestamps in each time series. Given the QoS requirements

of the consumer TSG1, the transformed QoS performances TSG2 of a provider, and the

number of the time series is n, the distance is calculated by Equation 3.14.

distance (TSG1, TSG2) =
n∑
i=1

RMSE(Q1
i , Q

2
i ) (3.14)

The proposed framework ranks the providers based on normalized RMSE distances of their

QoS performances with the consumer requirements.

3.8 Experiments and Results

3.8.1 Experimental Settings and Requirements

We conduct a set of experiments to evaluate the proposed framework. First, we investigate

the dominant QoS attribute-based filtering process and compare it with the MTS-based

temporal skyline [Wang et al., 2013]. We then evaluate the effect of the proposed trial

workload generation approaches on the long-term performance prediction. We then assess

the performance of the proposed CLQP approach and the LQP-short approach. Finally, we

evaluate the ranking accuracy of the proposed framework and compare it with the traditional

trial-based ranking approaches [Li et al., 2010; Wang et al., 2018].
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FIGURE 3.5: Experimental settings

To evaluate the proposed framework, we require an environment where a set of IaaS providers

advertises their long-term performance, and a set of consumers who performs trials on

different providers based on their workloads over different periods. Figure 3.5 depicts such

an environment. Each consumer runs the same workload on different providers to decide

which provider is the best for their workloads. The proposed framework would help a new

consumer to select the closest match provider according to their QoS requirements. First, the

proposed framework filters providers based on their advertisements. Next, it generates trial

workloads based on the consumer’s long-term workload to discover providers’ performance

in the trial period. Next, the framework utilizes the experience of past trial consumers to

discover providers’ performance on different periods outside of the trial period. Finally, it

ranks the provider based on the discovered performance and the consumer’s QoS requirements.

Therefore, we require advertisements for a set of IaaS providers, trial workloads of a set of

consumers, and QoS performance of providers at different periods for the consumers’ trial

workloads. In addition, we require a consumer’s long-term workloads to perform the trials and

the long-term performance of providers for the consumer’s long-term workloads as ground

truth to evaluate the proposed framework.
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3.8.2 Experiment Design and Data Preparation

Finding real-world datasets for a long period that meet our experiment requirements is

challenging. In particular, we require IaaS cloud workload traces and their corresponding

performance datasets for a set of providers for a long-term period. To the best of our knowl-

edge, there is no existing publicly available long-term workload-performance datasets of IaaS

cloud providers. Therefore, we leverage existing short-term available datasets to synthesize

datasets for our experiments. In particular, we use Eucalyptus IaaS Cloud workloads [Wolski

and Brevik, 2017], and SPEC 2016 performance benchmark results [Baset et al., 2017] to

create experimental datasets. In the following subsections, we provide a brief description

of the datasets that we used for the experiments and the data generation process to conduct

the experiments. We have made our dataset and source code publicly available to make this

experiment reproducible4.

3.8.2.1 IaaS Advertisements Generation

IaaS advertisements in the real-world mostly contain short-term price and availability infor-

mation. Therefore, we randomly create 60 IaaS advertisements that contain price, availability,

throughput, and response time to understand the effect of a different number of dominant

QoS parameters in the filtering process.

3.8.2.2 Workload Datasets Preparation

We utilize the Eucalyptus IaaS workload traces [Wolski and Brevik, 2017] to represent

past consumers’ trial workloads and a new consumer’s long-term workloads. To the best

of our knowledge, Eucalyptus private cloud usage traces are the closest match to validate

the proposed approach with real-world datasets. The Eucalyptus traces have been utilized

in several recent studies to represent a real-world cloud environment [Wolski and Brevik,

2017; Pucher, 2016]. Eucalyptus published workload traces of private cloud services, which

are leveraged by several large companies [Pucher et al., 2015]. The published datasets are

anonymized multi-month traces scraped from the log files of six different production systems
4https://github.com/sm-fattah/IaaS_cloud_experiment

https://github.com/sm-fattah/IaaS_cloud_experiment
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TABLE 3.2: Workload trace description

Parameter Value
Number of cloud nodes 31
Number of CPU cores at each node 32
Number of timestamps 6486
Resource allocation unit number of CPU cores
Trace attributes VM start, stop timestamps,

VM resource requests,
VM id, node id

running Eucalyptus IaaS clouds. The trace contains information about both the IaaS service

level (i.e., VM instance requests, request timestamps, instance lifetime, and service usage time

periods) and physical level (i.e., number of cloud nodes, number of CPU cores at each node,

and occupancy of physical hosts). We select a trace called “D6trace” which contains VM

usage history of a large company with 50,000 to 100,000 employees [Pucher et al., 2015]. It

contains approximately 34 days of workloads for 31 cloud nodes where each node contains 32

cores. We selected 30 cloud nodes to represent the trial workload of past consumers and one

cloud node to represent a new consumer’s long-term workloads. The workload contains 6486

timestamps. To simplify the experiment, we utilized the piece-wise aggregate approximation

to create 360 timestamps. We assume that each workload at a timestamp represents average

CPU requests of a consumer on that timestamp. The description of the workload dataset is

given by Table 3.2.

3.8.2.3 Workload-Performance Dataset Generation

Finding performance datasets of a long-term workload trace is very challenging. Therefore,

we decide to synthesize the performance dataset for our selected workload traces. We develop

a performance data generation framework that generates the QoS performance of a set of

providers for a given workload for a given period of time. We consider performance data for

three QoS attributes based on the available dataset, i.e., CPU throughput (operations/seconds),

disk read and insert time (milliseconds). Figure 3.6 shows the performance data generation

framework. The framework takes a consumer’s workload W for a given period T , and a

provider’s id P as inputs. It generates corresponding QoS performance using two modules
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FIGURE 3.6: Data generation framework

a) Baseline performance, and b) QoS profiles of a set of IaaS providers. The baseline

performance module maps each unique workload request of the Eucalyptus trace to a particular

performance value. Therefore, the baseline performance represents the initial performance of

a provider for a given workload. The QoS profiles module determines the final performance

value of the workload at a given time for the providers based on their QoS profiles. We

performed the following steps to generate the baseline performance and QoS profiles:

1) Baseline Performance: The baseline performance is generated from the benchmark

results published by SPEC Cloud IaaS 2016 [Baset et al., 2017]. SPEC Cloud IaaS 2016

benchmark results contain the CPU throughput (op/sec), disk insert and read response time

(ms) measurements of private cloud providers. We have collected approximately 1500

performance data observations from the benchmark results. To create a workload-QoS map,

we map each unique workload request to a unique performance value based on the resource

consumption of the requests. A workload with the highest resource consumption is mapped

with the lowest QoS performance value. The lowest resource consumption workload is

mapped with the highest QoS performance value. The baseline QoS performance is utilized

to generate long-term performance of IaaS providers with the help of QoS profiles of each

provider.

2) QoS Profiles: We decide to create QoS profiles of five IaaS providers to simulate a real-

world environment. A QoS profile determines what a provider’s performance for a given

workload would be at a certain point of time compared to the baseline performance. For

example, if a workload with a low resource consumption is given in January to a provider, it

offers 20% additional throughput compared to the baseline performance. Each QoS profile

consists of two maps a) workload map, and b) seasonal map. The workload map determines
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what the expected performance for a given workload would be compared to the baseline

performance. Similarly, the seasonal map determines what the performance for a given time

compared to the baseline performance should be. We have created the workload map and

the seasonal map randomly. The rules of QoS profiles also add randomness to simulate a

real-world provider who may give different performances for the same workload at the same

time. The consumer and trial users are unaware of the QoS profile. They may observe the

performance variability of the providers. Finally, these QoS profiles of providers are applied

to the baseline performance of a given workload to generate the performance dataset of each

provider.

We input the trial workloads of past consumers and a new consumer’s long-term workloads

from the Eucalyptus trace into the data generation framework. The framework generates

performance data for each provider based on their QoS profiles and the baseline performance.

The performance of the long-term workloads is utilized as the ground truth for the evaluation.

3.8.3 Experiment Result Analysis

3.8.3.1 Effect of Dominant QoS Parameters on IaaS Skyline

We apply the filtering on 60 IaaS providers for four QoS parameters. We select the price

and availability as dominant QoS parameters. Figure 3.7 compares the performance of the

temporal IaaS skyline without the dominant QoS parameters and with the dominant QoS

parameters. The size of the temporal skyline without Dominant QoS parameters increases

considerably with the number of providers. If there are too many IaaS providers in the cloud

market, the temporal skyline without the dominant QoS parameter may not be very useful. It

only discards 24 providers when the number of providers is 60. The temporal IaaS skyline

with the dominant QoS parameters has a considerable impact on the total number of skyline

IaaS providers. It always filters more IaaS providers than the temporal IaaS skyline. The main

reason is that the size of the IaaS skyline may grow exponentially with the number of QoS

parameters. The dominant QoS parameters keep the size of the skyline considerably low. The

proposed method successfully reduces the number of IaaS candidates for the trial.
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FIGURE 3.7: Temporal IaaS skyline

3.8.3.2 Evaluation of LQP-short approach

Figure 3.8(a) shows a consumer’s workload for 360 timestamps. The average requested

number of CPU cores per timestamp is shown in the figure. Three types of trial workloads

are generated using three compression techniques (PUS, PAA, and RS). The trial QoS

performances are generated for each provider based on their QoS profiles using the data

generation framework. The LQP-short mainly utilizes the trial QoS performances to predict

each provider’s long-term QoS performance.

Figure 3.8(b) shows the actual throughput and the predicted throughput of a provider based

on the LQP-short and three trial workload generation approaches. The provider exhibits

variable performance for the same workload according to the actual performance graph.

There are substantial performance fluctuations over different timestamps. The predicted QoS

performance exhibits random behavior. The effect of different trial workload generation

technique is not very noticeable. The RS based prediction shows more fluctuations than are

shown by the other two approaches. The QoS predictions seem more accurate when the

consumer’s workloads are steady (200 to 300 days) as the trial is performed in that period.

Apart from the trial period, the LQP-short approach seems to perform poorly. None of the trial

workload generation approaches help to capture the temporal shift in the performance. The
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FIGURE 3.8: Performance discovery using LQP-short (a) consumer’s long-
term workloads (b) actual and predicted throughput of an IaaS provider

main reason for such low accuracy is because the prediction is performed without utilizing

past history. The LQP-short can be considered a best-effort approach when there are no

similar users available.

The prediction accuracy of the LQP-short approach is presented in Figure 3.9. The throughput

prediction accuracy of each provider is shown in Figure 3.9(a) for each trial approach. The

accuracy of the RS method is unpredictable across the providers as the workloads are selected

randomly. The RS method has the highest NRMSE distance compared to the other two

approaches for each provider. This confirms that an unplanned short-term trial may lead to

poor decision making. The performance of the PUS approach is consistent for each provider.
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FIGURE 3.9: Prediction accuracy (NRMSE distance) (a) throughput predic-
tion (b) mean prediction accuracy

The PUS method performs better as it retains the shape of the original workloads better

than the other two approaches. Hence, choosing the types of workload has a considerable

impact on trial prediction accuracy. Figure 3.9(b) shows the mean prediction accuracy across

five providers for the QoS parameters throughput, insert response time, and read response

time. The trial workloads generated by the RS method has the maximum NRMSE distance

for throughput and read response time. The PUS has the minimum NRMSE distance as it

performs well for each QoS parameter.

3.8.3.3 Evaluation of CLQP approach

We divide the total provisioning time into smaller segments to find similar trial users. The

provisioning time is divided into 12 temporal segments to perform the cooperative prediction,

where each segment is 30 days. We run CLQP using past trial user experiences and the

consumer’s long-term workloads for each month. Figure 3.10(a) illustrates the results of the

cooperative long-term QoS prediction for an IaaS provider. The accuracy of the prediction

improves considerably over the prediction without the history in Figure 3.8(b). The NRMSE

distance between the CLQP approach and the actual performance is about 0.1343. The

NRMSE distance between the sort-term approach and the actual performance is about 0.2955.
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FIGURE 3.10: Performance discovery using CLQP (a) actual and predicted
throughput of a provider (b) prediction accuracy of the CQLP approach (C)
CQLP accuracy for variable temporal segments

Therefore, the accuracy is improved about 50%. The prediction effectively captures the

temporal and workload performance variability of the provider. The randomness of the

performance, i.e., different performance for the same workload at the same time is also

captured effectively in the prediction. The accuracy of the predictions is shown in Figure

3.10(b) in terms of NRMSE distance. The throughput of each provider has a lower prediction

accuracy as the NRMSE distance is high. The read response time for each provider has

the highest prediction accuracy for each provider. It implies the effect of the performance

variability may depend on the type of QoS attribute.
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Our intuition is that the number of temporal segments may have a considerable impact on

accuracy. When each temporal segment has a smaller length, the probability of finding a

similar trial user increases. We conduct the experiment by changing the size of the temporal

segments for the cooperative prediction. Figure 3.10(c) illustrates the results of cooperative

QoS prediction for different sizes of temporal segments. It shows that the NRMSE distance

decreases considerably with the number of the temporal segments. When the number of

segments is one, i.e., the similarity is computed based on the one-year workloads of the

consumer, the prediction accuracy is very low. However, if the similarity is computed based

on smaller segments, the prediction accuracy increases.

3.8.3.4 Evaluation of QLIS approach

We rank the providers based on the consumer’s long-term QoS requirements and the predicted

QoS performance of each provider. First, we rank the provider based on the actual QoS

performance and expected QoS performance of the consumer. Next, we compare this rank

with the proposed approaches, i.e., ranking based on cooperative prediction and long-term

prediction without historical information. We consider two traditional ranking approaches

based on 1) trial performance and 2) advertised performance [Wang et al., 2018]. Each rank

is computed based on the NRMSE distances of the expected QoS performance and predicted

QoS performance. Table 3.3 shows the ranks of the provider based on different methods.

Each provider is identified numerically from 1 to 5. The actual ranking order is 5, 2, 3, 1, and

4. The cooperative ranking successfully predicts the rank of 3 providers (5, 2, and 3). The

long-term prediction without history and the trial-based ranking approaches correctly rank

two providers (5 and 3). The ranking of the providers based on the advertisements provides

the most inaccurate ranking of the providers. The results of the rankings may change if we

choose different months for the trial.

The confidence of the cooperative ranking is shown in Table 3.3 for each provider. The

highest-ranked provider has the highest confidence as it has the least distance between the trial

experience and the predicted performance. The first four providers in the cooperative rankings

have high prediction confidence. The prediction for Provider 1 has the least confidence
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TABLE 3.3: Ranking of IaaS providers

Actual Cooperative Long-term Trial Advertisements
Ranks Ranks Ranks Ranks Ranks

5 5 (0.46) 5 5 1
2 2 (0.53) 4 4 3
3 3 (0.58) 3 3 5
1 4 (1.44) 2 2 4
4 1 (2.03) 1 1 2

value. The reason is that the performance of the last provider varies to a large extent in the

trial period. When the confidence threshold is set to below 1, the last two providers will be

discarded from the cooperative rankings.

3.8.4 Discussion

Experimental results show that relying only on IaaS advertisements or the trial experience is

inadequate for long-term service selection as it often leads to the incorrect selection. Moreover,

the results show that selecting appropriate trial workloads has a substantial impact on long-

term performance discovery and selection. The results of the CLQP approach show that

long-term performance discovery could be improved considerably with the help of past trial

users’ experience. Based on these findings, we suggest that consumers should perform trials

based on the long-term characteristics of their workloads instead of relying only on stress

testing where consumer performs short-term trial to evaluate the providers. The proposed

framework could be utilized to generate trial workloads based on a consumer’s workload for

long-term performance discovery. The performance discovery will be improved considerably

when many consumers decide to share their trial experience.

3.9 Summary

We propose a long-term IaaS provider selection framework to select the closest-matched IaaS

provider according to a consumer’s long-term requirements. The short-term trial periods
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offered by the IaaS providers are leveraged to discover the providers’ unknown QoS perfor-

mance. We devise a temporal skyline-based filtering method to limit the number of candidate

IaaS providers for the trial periods. Experimental results show that the filtering method

effectively reduces the number of candidate providers for the trial period. The proposed

CLQP approach utilizes the experience of trial users to predict the performance of a provider

for the consumer’s long-term workloads with a confidence measure. Experimental results

show that the CLQP approach can effectively measure QoS performance. The proposed

LQP-short approach discovers QoS performance without history using the proposed trial

workload generation approach. Experimental results show that the LQP-short can effectively

predict QoS performance with acceptable precision. Finally, a QoS-aware selection method is

proposed to select the closest-matched provider where the provider’s predicted performance

closely matches the consumer’s long-term requirements. Experimental results show that it

ranks the providers successfully. The proposed framework may help many consumers choose

the right provider with limited performance information. Consumers do not need to wait

long to accumulate enough information to make an informed decision. The experiments are

conducted using synthetic data, as finding real-world datasets that meeting the experiment

requirement is challenging. However, the synthetic datasets are created by augmenting real-

world datasets. Therefore, we believe the result would be similar if the experiments were

conducted directly using real datasets. In the future, we will extend this work for the dynamic

workloads of consumers where an online prediction approach is required.



CHAPTER 4

Fingerprint-based Long-term IaaS Selection

4.1 Introduction

In this chapter, we propose a new long-term IaaS cloud service selection approach that lever-

ages the concept of performance fingerprints for the long-term selection. The performance

fingerprint of an IaaS service represents an aggregated view of its temporal performance

behavior. We assume that the performance fingerprints of IaaS services are known in this

work and can be generated by collecting the experience of free trial users. We also assume

that a consumer considers only one service from a provider for their long-term selection.

Therefore, we use the word “provider” and “service” interchangeably.

We address two key challenges of using trial periods for long-term selections. First, IaaS

providers typically offer free trial periods for short-term periods with limited flexibility. The

consumer cannot test their long-term workloads in such short trial periods. An unplanned

utilization of such short-term trial periods may not properly reflect the actual performance of

the provider. For example, if the workloads of a consumer have a long-tailed distribution, a

one-month trial with a balanced request distribution may not divulge the true performance of

long-tailed workloads. Second, the performance information found in the trial periods is only

applicable to a short-term period. The performance of IaaS providers varies over time due to

the dynamic and chaotic nature of the cloud environment [Leitner and Cito, 2016].

The performance observed in trial periods primarily depends on the consumer’s workloads

and the provider’s performance at that time. A provider may exhibit variable performance

behavior depending on the user’s application workload. For instance, a provider may show a
62
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very good performance for a CPU-intensive workload while performing poorly for a network-

intensive workload. Similarly, the provider may show a very good performance during the

trial month and perform poorly in the following months. Therefore, the effect of both factors

should be identified during the trial. In this regard, we propose a novel trial strategy based on

an equivalence partitioning method to capture the effect of the consumer’s workloads on the

provider’s performance while considering the provider’s temporal performance behavior.

Selecting a provider based only on trial experience is challenging due to the performance

variability of cloud services. We utilize the concept of performance fingerprints to address

the issue of performance variability in the long-term selection. The performance fingerprint

has two applications in the long-term selection. First, the fingerprint of a service is used to

measure the confidence of the free trial experience of a consumer to evaluate whether the

observed performance in the trial is the “representative” behavior of the provider. Second, the

performance fingerprint and the trial experience can be utilized together to predict a provider’s

long-term performance behavior.

We propose a fingerprint-matching technique to ascertain the confidence of the consumer’s

trial experience for long-term selection. If the trial experience of a consumer is consistent

with a provider’s performance fingerprint, we utilize the fingerprint to predict the provider’s

long-term performance for the consumer’s long-term workloads. The trial experience may

not entirely match the performance fingerprint as it represents an aggregated view of the

provider’s performance regardless of the consumer’s workloads. The provider may provide an

isolated trial environment where a consumer may not be able to observe its actual performance.

We propose a trial experience transformation technique using the provider’s performance

fingerprint to estimate the actual performance of the provider for the consumer’s workloads.

Our contributions in this work are as follows:

• An equivalence partitioning-based trial strategy using a time series compression technique

that maps the consumer’s long-term workloads into multiple VMs in a short-term trial

period to discover an IaaS provider’s unknown QoS performance.

• A performance fingerprint-matching technique to ascertain the confidence of the consumer’s

trial experience using the providers’ performance fingerprints.
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• A long-term performance discovery approach to select the best IaaS provider for a consumer

using time series analysis.

4.2 Motivation Scenario

Let us assume that a university requires some general purpose VMs for one year where each

VM has at least 2 vCPU and 4 GB memory. The required number of VMs and resource

requirements for each VM are considered as the functional requirements of the university. We

assume the university has deterministic workloads, i.e., workloads are known for one year.

The university represents the workloads in terms of the number of requested resources per day.

The workloads may change over time depending on the number of students, holiday periods,

and so on. The university defines minimum QoS requirements on throughput, response time,

and availability of the VMs. The QoS requirements may also vary over time depending on

seasonal demands.

Let us assume that there are three IaaS providers - Google, Amazon, and Microsoft - who fulfil

the university’s functional requirements. No providers advertise their long-term performance

on throughput, response time, or availability. We assume each provider offers a one-month

free trial period to the university and allows the university to use three VMs. The university

may run some representative benchmarks on three VMs for each day of the one-month trial

period and monitor the performance of each provider to make the selection. It may lead to

poor decision-making as it does not consider the university’s long-term workloads and the

providers’ temporal performance behaviors. The performance of a provider may fluctuate in

the trial period. The university requires an effective trial strategy to understand the effect of

different types of workloads on the provider’s performance while considering the provider’s

temporal performance behavior.

We assume that the performance fingerprint of each provider is known to the university.

The performance fingerprint provides the university with an aggregated view of a provider’s

temporal performance behavior regardless of any specific type of workload distribution.

Hence, the university needs to evaluate the performance of the providers using its workloads.
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If the provider’s performance fingerprint and the trial experience exhibit similar temporal

performance behavior, the university may use the trial experience to evaluate the provider

with high confidence. The university requires a fingerprint-matching technique to evaluate

its trial experience. We propose a set of tools in this chapter that enables the university to

leverage trial periods effectively to make an informed decision for the long-term period.

4.3 The Proposed Framework

We identify the following key challenges for the long-term selection using free trial periods:

(1) Restriction on Trial Periods: IaaS providers assign different types of restricted conditions

on free trial periods:

• Free trial periods are typically offered for a short-term period. Discovering long-term

performances directly from short-term trials may not be possible. Amazon offers a

one-year trial period for some services. A consumer may not be able to wait for such a

long time to discover performances for the IaaS selection.

• Most providers offer trial periods for only a limited number of services. For example,

Amazon allows a user to trial only t2 instances from EC2 VMs. The types of VM a

consumer requires may not be available for trial. In such a case, the consumer might be

provided with similar yet different types of VMs for the trial. IaaS providers also restrict

the number of available VMs for trial.

(2) Temporal Performance Variability: The performance discovered in the short-term trial

periods may not always reflect the actual performance of the provider. Almost all public

IaaS providers typically use multi-tenant environments to provide services to their con-

sumers. The effect of multi-tenancy on the performance may depend on several factors such

as location, workloads on the provider, and QoS management strategies that vary with time.

Multi-tenancy management policies are not revealed publicly due to the business privacy

of the providers. The measured performance in the trial in one month may be different in

another month.



66 CHAPTER 4: FINGERPRINT-BASED LONG-TERM IAAS SELECTION

Long-term
Workloads

Long-term IaaS
Consumer

Long-term
Performance
Requirements

Equivalence
Partitioning for

Trial

Performance
Fingerprint
Matching

Long-term
Performance
Prediction

Long-term
Selection

Restricted Trial
Periods

IaaS Providers

Performance
Fingerprints

FIGURE 4.1: Long-term IaaS provider selection framework

(3) Isolated Trial Environment: IaaS providers may use an isolated environment for the trial

users. In such a case, the trial consumers do not receive the experience of a real cloud

environment. The consumers require a way to find whether they are treated differently than

the existing consumers.

Figure 4.1 shows an IaaS provider selection framework that takes a consumer’s long-term

workload and the performance fingerprints of the providers to perform the selection. First, the

proposed framework generates trial workloads using an equivalence partitioning method. Next,

A performance fingerprint matching technique is applied to the trial experience to ascertain

its confidence. The trial experience is then used for long-term performance prediction using

the providers’ fingerprints. Finally, the framework selects providers based on the consumer’s

long-term performance requirements. We discuss each of these steps in the following sections.
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4.4 An Equivalence Partitioning-based Trial Strategy

We define an equivalent partitioning-based trial strategy where the consumer’s workloads are

tested in the trial period to discover a provider’s performance while considering the provider’s

temporal performance fluctuation. For simplicity, we assume that the providers offer a fixed

number of required VMs trial periods using a continuous time-based model. We consider the

long-term workloads as time series data. We utilize time series compression techniques to

capture the essential characteristics of the university’s long-term workloads and map these

workloads into the multiple VMs during the trial period.

4.4.1 Trial Workload Generation for Multiple VMs

Let us assume that the university’s long-term workloads have n number of workload data

points, i.e., t1, t2, t3, ..., tn over T period. For instance, the university defines the workload

as the average number of requested resources per day for one year. Each provider offers

v number of VMs for Tr trial period. We assume that the performance fluctuation within

d period is negligible. Hence, workloads for a particular VM should remain the same for

every d period over Tr period to understand the effect of temporal performance behavior of

a provider. Each VM may run different types of workloads to understand the effect of the

provider’s performance for different types of workloads. This method of partitioning the

workloads is called equivalent partitioning.

The university’s long-term workloads of n size need to be mapped with v number of VMs on

Tr period. First, we partition the workloads into n/v equal parts. Let us assume that each part

w contains m workload data points. Once we allocate the workloads for each VM, we need

to compress the workload as w may be still very large to run in d period. The size of w may

be still too large to run in d period. For example, if the university has one-year workloads and

the number of VMs are 12, each part of the workload contains one month of workloads. Each

VM should run one month of workloads on every day (d = 1) of the trial period Tr.
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We need to compress each w into d period for each VM. Let us assume that d can be divided

into k data points. If m ≤ k then each workload of w can be tested in d period. If m > k,

then workload compression is required. The compression may incur some loss of workload

information. The loss depends on the size of k, the shape of the workload time series, and the

compression method [Burtini et al., 2013].

We use a compression technique M to extract the most important workloads from w and fit

into d periods. L() is the loss function that calculates the loss incurred during the compression

using M and th is the maximum acceptable loss. During compression L(M) ≤ th condition

must be held. th is defined by the consumer. Let us assume d can be divided into k − 1

intervals. Method M compresses w to fit into k − 1 intervals. Our target is to find an optimal

value for k where L(M) ≤ th. We use Algorithm 2 to generate workload for d period.

The algorithm takes each w from the university’s long-term workload, the length of d, a

compression technique M , a loss function L(), and minimum acceptable loss th (line 1).

The algorithm produces trial workload tw as output (line 2). First, it determines the initial

value of k by using a workload summarization method (line 5). The workload summarization

technique generates all different workloads for given workloads. The algorithm sets the

sampling rate rate based on the size of the workload m and the initial value of k (line 6).

The algorithm then applies the compression method M using rate and calculates the amount

of loss using L() (line 12). If it is less than an acceptable threshold, this process continues

until the amount of loss error is less than the maximum acceptable loss of th (line 9). Once

error ≥ th, the algorithm stops and returns the trial workload tw (line 15).

4.4.2 Workload Compression Technique

The university’s long-term workloads are represented using time series. Several approaches

exist to compress time series data to generate a representative time series. We decide to use a

commonly used time series compression technique called Piecewise Aggregate Approximation

(PAA). The PAA method reduces the number of data points in a time series by taking average

values in each interval (Ii). If ti represents a timestamp in the workload time series and m is
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Algorithm 2 Generating trial workloads

1: Input: w, d, M , L(), th
2: Output: tw
3: m← size(w);
4: workloadSummary ← summary(w);
5: k ← size(workloadSummary);
6: rate← ceil(m/k);
7: errorThresh← th;
8: error ← 0;
9: while error < errorThresh do

10: if rate == size(w) then
11: break;
12: tw ←M(w, rate)
13: error ← L(w)
14: rate = rate+ 1
15: return tw;

the total number of points in the time series, then the value of the time series in Ij is calculated

using the following equation:

Ij =
1

x

i∗x∑
i=(j−1)∗x+1

ti for j = 1...dm/xe (4.1)

The size of the original time series can be reduced by any factor by changing the value of x.

For given m data points in the workloads and k segments in the trial period, we define the

minimum x = dm/ke. The PAA method introduces some loss of information. For two given

time series w and z, the loss is defined by the following equation:

L =
1

m

n∑
i=1

|zi − wi| (4.2)

The original workload time series and the compressed workload time series have a different

number of workload points. We decompress the compressed workload time series to compare

with the original workload time series. We find k workload points using Equation 4.1 during

the compression. We apply a decompression mechanism on the compressed workload of

k points to generate n points. The decompression is performed by mapping each value
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of the compressed time series with dm/ke interval into m space. The rest m − k points

are generated by the linear extrapolation method. After decompression both original and

compressed workload time series have the same number of points. Hence, we can apply

Equation 4.2 to compute the mean absolute error.

4.5 Performance Fingerprints

The performance information found in the trial periods is applicable for a short-term period.

Many organizations such as CloudSpectator, CloudHarmony, and CloudStatus are devoted to

monitoring and analyzing the performance of public IaaS cloud providers due to its growing

importance. These organizations publish reports on the performance of IaaS providers using

standard benchmarks. Each provider shows unique performance characteristics and exhibits

different temporal performance behavior over the long-term periods. Each provider has their

own unique temporal performance behavior that may depend on their provisioning policy, the

number of consumers, and location.

We leverage the idea of fingerprinting to represent the temporal performance behavior of

a provider. Fingerprinting techniques are well-known to identify and track a user on the

Internet based on the impression left by the user [Takeda, 2012]. Fingerprinting techniques are

typically used to partially or fully identify a user on the Internet by tracking their activity and

preferences without any active identification. We use the concept of performance fingerprint

of an IaaS provider to represent an aggregated view of the provider’s long-term performance

behavior.

DEFINITION 7. Performance Fingerprint. A performance fingerprint of an IaaS provider

is the average performance of a set of QoS parameters over a fixed period that captures the

provider’s temporal performance behavior.

We denote the performance fingerprint as F = {Q1, Q2, ..QN} where N is the number of

QoS parameters and Qi = (Pn, tn)|n = 1, 2, 3, ..k. Here, tn denotes a timestamp of T period

where the average performance of Qi is Pi. The performance fingerprint of a provider may
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be known partially or completely. The partial fingerprint refers to a fingerprint that does not

have information for all timestamps of a certain period.

4.5.1 Performance Fingerprint Matching

We utilize the performance fingerprint of each provider to ascertain the confidence of the trial

experience. If the trial experience is consistent with a provider’s performance fingerprint, then

the consumer may make the selection with confidence based on the trial experience.

We assume that the complete performance fingerprint of the providers is known for T period.

The trial is performed in the interval (tj, tk) ∈ T , i.e., Tr = (tj, tk) where j < k and j, k ∈ T

for a set of VM v = {v1, v2, ...vp}. The trial performance observed by the consumer for

each VM is Qvi = {q1, q2, ..qc} where c is the number of QoS parameters in the consumer

requirements and qi = {(pn, tn)|n = tj, ...tk} where pn is the performance of qi at the

timestamp tn. The first step of fingerprint matching is to aggregate the performance of each

VM vi for each QoS parameter qi ∈ Qvi. The aggregated performance for each QoS parameter

is computed by the following equation:

q′i = sum(v1(qi), v2(qi), ..., vp(qi)) (4.3)

where sum() represents the aggregate function, vj(qi) represents the performance time series

of QoS parameter qi in the VM vj in the trial period. The aggregated QoS performance of qi

for all VM is q′i.

We denote the performance of the trial period for the consumer’s aggregated workloads as

QVM = {q′1, q′2, ..q′c}. Now, we need to perform fingerprint matching betweenQVM and F for

the trial interval (tj, tk). We use the Pearson correlation coefficient to compute the similarity

between the trial experience and the performance fingerprint for each QoS parameters using

the following equation:
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rq′i,qi =

∑k
t=j(p

′
t − p̄′)(pt − p̄)√∑k

t=j(p
′
t − p̄′)2

√∑k
t=j(pt − p̄)2

(4.4)

where p′t the value of observed performance and pt is the value of the performance fingerprint

at the time t of the trial period for a QoS parameter. The mean correlation coefficient for all

QoS parameters is computed as follows:

RQV M ,F =
1

c

c∑
i=1

rq′i,qi (4.5)

The correlation coefficient measures the similarity of two time series in terms of their trends,

i.e., how much the trial experience is affected by the performance fingerprint. It does not

consider the actual distance from the fingerprint. We define the confidence of the trial by

considering both trend and distance of the trial experience with the fingerprint using the

following equation:

Confidence = (RQV M ,F ,MNRMSE(QVM , F )) (4.6)

where MNRMSE is the mean normalized root mean squared error between the trial experience

and the performance fingerprint. First, we compute the NRMSE for each QoS parameter in

the trial period. The MNRMSE is computed by taking average NMRSE of all QoS parameter.

The consumer defines a minimum threshold Rt and Et for RQV M ,F and MNRMSE(QVM , F )

respectively. If the confidence of the trial experience is below the thresholds, we consider it to

be a partial fingerprint matching.

4.5.2 Trial Experience Transformation for Partial Matching

We transform the trial experience for partial fingerprint matching to estimate an approximate

performance behavior of the provider for the consumer’s workloads. The trial experience may

have less correlation or higher distance with the performance fingerprint of a provider. We
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need to transform the trial experience in such a way that it reduces the distance or increases

the correlation between the trial experience and the performance fingerprint. In both cases,

the confidence of the trial may increase.

The partial fingerprint matching indicates that the actual performance of the provider may

be different from the trial experience for the consumer’s workloads. We use the following

equation to transform the trial experience to estimate the actual performance:

QT
VM = QVM +

1

2
(F −QVM) (4.7)

where QT
VM is the transformed trial experience, F is the performance fingerprint in the

trial interval, and QVM is the trial experience. Equation 4.7 transforms the trial experience

for each aggregated QoS parameters by reducing the distance from the fingerprint by half.

The intuitive idea behind this transformation is two-fold. First, if the provider offers an

isolated trial environment, the real experience may be closer to the fingerprint rather than the

trial experience. Second, the performance fingerprint does not contain information for the

consumer’s workload distribution. The transformation increases the confidence of the trial

experience.

4.6 Long-term IaaS Provider Selection

In this section, we discuss the long-term selection process using the trial experience and the

provider’s performance fingerprint. First, we estimate providers’ long-term performance for

the consumer’s workloads using the trial experience and the performance fingerprints. Next,

we rank the providers based on their performance and the consumer’s long-term performance

requirements.

4.6.1 Long-term Performance Discovery

The university’s important workloads are tested in the trial periods and the required QoS

parameters are monitored. Let us assume that the trial workloads TW = {tw1, tw2, ...., twk}
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are tested in v number of VMs. Each type of workload is monitored in the trial period Tr for

each d intervals where the performance fluctuation in d is negligible. The QoS performance

for each workload is denoted by Qtwi
= {q1, q2, .., qc} where qi = {(pn, tn)|n = 1, d, ..., T r}

and pn is the performance observed at the timestamp tn. The consumer’s long-term workloads

are denoted by LW = {W1,W2, ....,WT}. We need to find the performance for each Wi

which is denoted by QWi
. The trial performance Qtwi

and the performance fingerprint F are

used to generate QWi
. We use the following steps to compute QWi

:

(1) For each Wi ∈ LW , find the closest wi ∈ TW .

(2) For each q′i ∈ QWi
, find qi ∈ Qtwi

.

(3) Let t′i be the timestamp of Wi. twi has Tr/d number of observations. We select a

timestamp ti for twi where (ti − t1) = (t′i mod (T/Tr)) where T is the total time and

Tr is the trial period. For example, if Tr = 30, T = 360, and t′i = 35 then ti = 5.

(4) We compute the relative weight rw of the fingerprint at ti for q′i using the following

equation:

rw =
Pt′i
Pti

(4.8)

where Pt′i and Pti are the performance of the fingerprint at timestamp t′i and ti respectively.

(5) The performance of q′i at t′i is computed as follows:

p′t′i = rw ∗ pti (4.9)

where p′t′i and pti are the performance q′i at timestamp t′i and ti respectively.

We compute the relative weight of the performance fingerprint between the timestamps of the

real workload and the trial workload. The relative weight is applied to the trial performance

of the particular QoS value to compute the performance of the real workload. We perform the

above steps for each qi ∈ QWi
to generate the long-term performance for each provider.
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4.6.2 IaaS Provider Selection

We compute the distance between the estimated performance of a provider and the consumer’s

long-term performance requirements. The rank of each provider is computed based on their

distance from the consumer’s long-term requirements. We use normalized root mean squared

distance to compute the distance for each QoS parameter using the following equation:

d(qc, qp) =

√
1

n

∑
q∈qc,q′∈qp,t=1..n

(qt − q′t)2 (4.10)

where qc and qp are the time series of the consumer’s long-term requirements and the provider’s

estimated long-term performance for a particular QoS parameter, respectively. The total

distance for all QoS parameter is computed by the following:

D(Qc, Qp) =
c∑
i=1

di(qci, qpi) (4.11)

where Qc and Qp are the consumer’s requirements and the provider’s estimated performance,

respectively.

4.7 Experiments and Results

A set of experiments is conducted to evaluate the proposed approach. First, we show that the

proposed trial strategy can predict a provider’s long-term performance using their performance

fingerprints. Next, we evaluate the effectiveness of the trial experience transformation

technique considering partial fingerprint matching. Finally, we rank IaaS providers based on

long-term performance prediction.
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FIGURE 4.2: Long-term performance prediction (a) throughput (b) throughput
with partial fingerprint (c) normalize RMSE prediction accuracy (d) normalize
RMSE prediction accuracy with partial fingerprint
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4.7.1 Experiment Setup

Finding real-world cloud traces for a long-term period is challenging. We generate the

CPU workloads for the consumers from publicly available Eucalyptus cloud traces. The

traces contain data of 6 clusters which cover continuous multi-month time frames [Nurmi

et al., 2009]. We select one trace to generate CPU workloads for ten consumers. The QoS

performance data is collected from SPEC Cloud IaaS 2016 results [Baset et al., 2017]. We

generate QoS performances of each provider for each consumer’s workloads by random

replication method. Data of one month are mapped into 12-month data points where each data

point is considered as an average of a single day measurement. The performance fingerprint

of each provider is generated by taking the average of the observed performances of all

consumers. First, we select a consumer among ten consumers as new consumer. The trial data

of the selected consumer is generated using the proposed approach for 12 virtual machines

and 30 days. We then find the closest matched workload from the other nine consumers

to generate the performance data for the trial for each workload. The performance of the

corresponding workload is considered as the trial performance of a new consumer. This

approach ensures that the trial experience is affected by a provider’s performance behavior.

4.7.2 Accuracy of the Performance Prediction

Figure 4.2 shows the results of a long-term performance prediction for a provider using

their performance fingerprint. The performance fingerprints represent an aggregated view

regardless of a consumer’s workload. Hence, we can not predict the actual performance using

only the provider’s performance fingerprint. Figure 4.2(a) shows that the performance predic-

tion without considering the trial experience transformation for the throughput of a provider.

The performance prediction considering the partial fingerprint matching is shown in Figure

4.2(b). We use the confidence threshold (0.5, 1) for the similarity and distance respectively.

Once we apply the transformation, the confidence of the trial increases significantly. The

prediction accuracy also improves when partial fingerprint matching is considered. Figure 4.2

depicts the long-term performance prediction for ten IaaS providers. Figure 4.2(c) shows the

performance prediction without considering the partial fingerprint matching. Figure 4.2(d)
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FIGURE 4.3: Normalize RMSE distance between provider and consumer (a)
predicted distance (b) actual distance

shows the performance prediction considering the partial fingerprint matching. The prediction

accuracy is higher, i.e., lower Normalized RMSE distance in Figure 4.2(c) than Figure 4.2(d)

which proves that the performance prediction accuracy increases with the trial experience

transformation technique.

4.7.3 Accuracy of the Long-term Selection

We use the Normalize RMSE distance between a provider’s performance and a consumer’s

requirements to rank each provider. The distance between the consumer’s requirements

and each provider’s predicted performance is shown in Figure 4.3(a). The figure shows

that Provider 1’s results are closest to the consumer requirements for throughput, insert

and read response time. Figure 4.3(a) shows the distance between the providers’ actual

performance and the consumer’s requirement. As we generated the consumer’s requirement

from Provider 1’s actual performance, Provider 1 has zero distance from the consumer’s

requirement. Therefore, the proposed approach successfully selects the optimal provider for

the long-term period.

4.8 Summary

We propose a novel approach to select IaaS providers using their performance fingerprints. The

proposed approach utilizes free trial periods to evaluate a provider’s long-term performance.

A consumer may choose a provider based on their trial experience. A novel trial strategy
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using equivalence partitioning method is proposed to estimate a provider’s performance for

different types of workloads while considering the provider’s performance variability. The

trial experience is incorporated with the provider’s performance fingerprint to predict long-

term performance. A performance fingerprint matching technique is proposed to ascertain

the confidence of the consumer’s trial experience. A trial experience transformation method

is proposed to improve the confidence of the consumer’s trial experience. The results of

experiments show that our proposed approach helps a consumer to make an informed decision

when selecting an IaaS provider for the long-term period. A key limitation is that we consider

only a limited number of real-world IaaS providers. The experiments are conducted using

synthetic data, as finding real-world datasets that meeting the experiment requirement is

challenging. However, the synthetic datasets are created by augmenting real-world datasets to

capture the characteristics of real cloud environment. Therefore, we believe the result would

be similar if the experiments were conducted directly using real datasets.



CHAPTER 5

Signature-based Long-term IaaS Selection

5.1 Introduction

In the previous chapter, we introduced the concept of an IaaS performance fingerprint for the

long-term selection, where we assume that the fingerprint of a service is known at the time

of the selection. However, generating such a fingerprint requires all consumers to publicly

share their free trial experience. However, many users may not want to share their experience

publicly due to privacy. Therefore, we extend the concept of performance fingerprint to

propose a new concept called IaaS performance signature. The signature of a service provides

an aggregated overview of a provider’s relative performance behavior over time. The signature

is generated in a privacy-preserving manner where free trial users do not want to share their

experience publicly. The application of the IaaS signature and fingerprint remains the same in

this work. In this chapter, we introduce two new concepts: a) IaaS signature which captures

the long-term IaaS performance variability, and b) workload significance which addresses a

consumer’s future workload characteristics. We define the IaaS signature as an aggregated

view of a provider’s temporal performance change based on the collected meta-information

(e.g., seasonality and trend) from past trial users. The key contributions are summarized as

follows:

• An IaaS signature model that represents a provider’s relative performance change over a

long-term period.

• A significance-based trial scheme to discover the unknown QoS performance for the

consumer’s long-term workloads.
80
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• A trial experience transformation technique to improve the confidence of the trial experi-

ence.

• A signature-based IaaS selection approach that utilizes the trial experience and IaaS signa-

tures to discover the long-term IaaS performance.

5.2 IaaS Signatures

We adopt the concept of signature to represent a provider’s long-term performance behavior

for a service over a fixed period. The term “signature” is typically utilized to indicate the

characteristics of an entity, work, or a piece of information that represent their identity or

uniqueness. The concept of signature is used for different purposes in several domains such

as computing, cryptography, and security. For instance, application performance signatures

are used for resource capacity planning and performance anomaly detection [Mi et al., 2008].

Signature-based malware detection is performed by antivirus software. A checksum is also a

form of signature that is utilized to verify data integrity.

An IaaS signature is a relative representation of providers’ performance over a fixed period for

a particular service. The signature indicates a provider’s performance trends and seasonality,

i.e., how much a provider’s performance may increase or decrease in one time compared to

another time. For instance, the signature of an IaaS provider may inform that the provider’s

performance increase by 10% on weekend nights than regular weekdays. IaaS signature does

not provide the consumer with the actual performance of a provider. A consumer would find

it challenging to use the signature without performing the trial using its workloads.

IaaS Signature: An IaaS signature is a temporal representation of a provider’s relative

performance change over time for a service. The signature is defined by a set of QoS

parameters that are relevant to the service.

We utilize signatures to measure the confidence of trial experience and to discover a provider’s

long-term performance. First, the trial confidence is determined by a similarity distance

between the trial experience and IaaS signatures. The trial experience may be utilized to
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discover the long-term service performance when the experience has high confidence. If the

trial experience has low confidence, we discard the provider based on a predefined threshold.

Next, we utilize the signature to estimate the provider’s long-term service performance for

the consumer’s long-term workloads. The optimal provider is selected based on a time series

similarity distance between the consumer’s expected service performance and providers’

predicted service performance.

5.2.1 IaaS Signature Representation

The relevant QoS attributes are the key QoS attributes to measure the performance of the

service [Li et al., 2010]. For example, data read/write throughput, and disk latency are the

most important QoS attributes for virtual storage services. We denote the IaaS signature of

a provider as S = {S1, S2, ...Sn}, where n is the number of QoS attributes in the signature.

Each Sn corresponds to a QoS attribute Qn. Sn denotes a time series for t period where

Sn = {sn1, sn2, ......snt}. Here, snt is the relative performance of the provider at the time t

for a particular QoS attribute. We use the following representation of IaaS signature:

S =



s11 s12 .. s1t

s21 s22 .. s2t

s31 s13 .. s3t

.. .. ...

sn1 sn2 .. snt


(5.1)

where each row corresponds to the QoS signature of Qi and each column represents a

timestamp t.

5.2.2 IaaS Signature Generation

We aim to represent a provider’s long-term service performance changes using its signature.

A provider’s service performance may vary based on several factors such as the degree
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of resource overbooking, the number of co-tenants and poor network conditions due to

the external factors [Wang et al., 2018]. It is difficult to determine what are the factors

behind the performance variability over time from the consumer side. However, the changes

in performance often exhibit weekly, monthly, or yearly seasonality [Iosup et al., 2011].

Therefore, it may be possible to capture the seasonal performance changes from the experience

of past trial users over different times [Wang et al., 2018]. Note that past trial users may not

share their experience publicly due to privacy, security, and the conflict of interests with the

provider [Ba-Hutair and Kamel, 2016].

It is reasonable to assume that past trial users may share their experience with a trusted

non-profit organization (TNPO) for a limited period to help new consumers as they make a

selection. Examples of such TNPOs are available in the public sector where privacy sensitive

information about individuals needs to be shared to deliver better services [van den Braak et

al., 2012]. For instance, health research institutes often collect data about individual patients

to improve health services [Polemi, 1998]. TNPOs are responsible for data integration

and distribution of collective knowledge without revealing individuals’ privacy- sensitive

information. In the context of cloud environment, there are few third party organizations who

collect and report cloud performance based on the experience of free trial users. Geekbench1

is a prime example of such third party organizations where trial users share their experience.

In Geekbench platform, users run Geekbench provided benchmark to perform free trials on

different cloud services. The experience of free trial can be accessed through Geekbench

website.

We assume that past trial users share their experience with a TNPO. The TNPO generates IaaS

signatures based on the aggregated experience of past trial users. The individual’s experience

is deleted after the generation of the IaaS signatures.

IaaS signatures can be generated in different ways based on the purpose of the signatures,

which is two-fold. First, we want to ascertain the confidence of the trial experience using the

signature. Second, we want to utilize the signature to predict a provider’s future performance

behavior using the trial experience. We represent the signature in a way that requires less

1https://browser.geekbench.com/
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FIGURE 5.1: IaaS signature generation

detailed performance information about the provider and the past trial users. We apply a

normalized averaging method to generate the signature based on the experience of past trial

users.

Let us assume that three IaaS providers (A, B, and C) offer three VMs (VMa, VMb, and

VMc) with similar configurations (e.g., capacity, location) for free short-term trials. There

exist past users who utilized the trials to find the performance of each VM at different times.

Past trial users do not want to share their trial experience publicly. However, each trial

user shares their experience with a Trusted Non-Profit Organization (TNPO) for a short

period (Figure 5.1). The TNPO generates IaaS signatures to identify providers’ long-term

performance variability for each VM. The TNPO deletes users’ experience once the signatures

are computed. A signature provides an aggregated view of a provider’s long-term performance

variability. It is not possible to derive individual trial experience from the signature, and so

the TNPO does not violate the privacy of past trial users. The IaaS signatures do not contain

the provider’s actual performance information.

Let us assume that k number of past trial users share their observed trial performance Pk

over the period T for a service. We denote Pk as a set of QoS time series where Pk =

{Q1k, Q2k, ..., Qnk}. Here, Qik refers to the performance observed by the kth consumer for
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the QoS attribute Qi over the period T . We denote Qik as Qik = {q1ik, q2ik, .., qtik}. We

perform the following steps to generate the IaaS signature:

(1) For each QoS attribute Qi, the performance observed by the trial users is collected over T

period.

(2) At each timestamp t ∈ T , the average performance observed by k number of consumers

is measured for each QoS attribute Qi. The average performance over T period is denoted

by Qik

(3) Each Qik is normalized based on its standard deviation σ(Qik). The normalized QoS time

series groups form the IaaS signature S over T period.

The value of snt at any t represents the relative QoS performance compared to any other time

t′ in Equation 5.1. This simple representation of the signature offers two benefits. First, the

use of signature becomes easier once a consumer utilizes free trials based on their workloads.

The performance for any other time can be found by comparing the ratio between the trial

month and other time. Second, signatures can be stored and updated easily over time as

storing detailed information is not necessary.

We assume that the signature provided by the TNPO is accurate and complete for period T .

We assume that a provider’s signatures does not drastically change over this T period. The

signature mainly reflects substantial changes in the provider’s service performance. The effect

of the signature should be visible to most consumers in the trial period unless the provider

utilizes an isolated environment.

5.3 Significance-based Trial Scheme

We devise a significance-based trial scheme to generate trial workloads based on the con-

sumer’s expected long-term workloads. The performance of a provider may depend on their

workloads, e.g., service requests or tasks being processed [Calzarossa et al., 2000]. Therefore,

a consumer needs to evaluate the service performance of a provider based on their long-term

workloads. We assume that the long-term workloads are deterministic, i.e., the expected
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workloads are known at the time of the selection. Long-term workloads may be estimated

based on the real-world workload traces. Such traces can be found in previous activity logs

of the consumer. For example, large organizations often keep logs of their users’ activities

[Feitelson, 2002]. However, it may not be possible to run the consumer’s entire long-term

workloads in a short trial due to temporal restrictions. In such a case, representative trial

workloads need to be generated based on the characteristics of the long-term workloads [Iosup

et al., 2014].

The first step to generate representative workloads is to determine the workload components

(e.g., users, sessions, and applications) and workload parameters. The workload parameters

are typically defined by the characteristics of the service requests such as requests arrival

times, type of requests, or resource demands of different types of applications [Feitelson,

2002].

We select resource demands per second as the workload parameter without the loss of

generality. We denote a consumer’s expected workload time series as w = {w1, w2, ..., wT}

over period of time T . Here, wT represents the resource demand at time T . Note that it is

possible to model other workload parameters as w depends on the service requirements. If

multiple workload parameters need to be modeled, we may consider that w has multiple

dimensions, where each dimension represents a specific workload parameter.

The next step is to characterize workloads based on the workload parameters. Workload char-

acterization is usually performed based on statistical analysis such as clustering, specifying

dispersion, PCA, and frequency distribution analysis. We use the frequency distribution anal-

ysis to characterize the consumer’s long-term workloads. Finally, a subset of the long-term

workloads is selected as the representative workloads for the trial. The selection criteria are

defined based on the characteristics of the long-term workloads.

A consumer needs to define the selection criteria for the trial workloads carefully. Otherwise,

the trial experience give useful information for the selection process. The trial needs to be

performed with the workloads that have the most significance to the consumer. We define two
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types of workload significance based on two workload parameters: a) occurrences, and b)

resource consumption. The definitions of the two types of workload significance are:

• Frequency-based Significance: The type of workload that is expected to appear more

frequently in the future than any other type of workload considered significant to the

consumer.

• Resource Consumption-based Significance: The type of workload that is expected to

demand more resources in the future than any other type of workload considered significant

to the consumer.

Workload significance can be defined in terms of other criteria based on various workload

parameters. For instance, a consumer may define short-term and long-term requests based on

the expected execution time of the requests. We only focus on frequency-based and resource

consumption-based trial workload generation. Let us assume that the trial period t has k

number of timestamps and the consumer’s long-term workload has n number of timestamps.

We assume that k << n, i.e., the value of k is significantly less than the value of n. We need

to generate k workloads from n workloads to perform the trial. Algorithm 3 illustrates the

proposed scheme for the trial workload generation.

Algorithm 3 Significance-based trial scheme
1: Input: W , t, S
2: Output: Wt

3: n← size(W );
4: k ← length(t);
5: Uw ← unique(W );
6: Winfo = createArray(size(w))
7: for each workload w in Uw do
8: Winfo(w).frequency = count(w)
9: Winfo(w).level = level(w))

10: Wt = select(Winfo, k, S)
11: return Wt

Algorithm 3 takes the long-term workloads W , the trial period t, and the significance S as

input (line 1). The output of the algorithm is Wt, which is a subset of W (line 2). First, the

algorithm computes the size of W and the length of t (line 3-4). Next, it finds the unique

workloads Uw in W (line 5). An array is then created called Winfo that stores the level of
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each workload and its frequency (line 6). The level of a workload is defined by its resource

consumption. For example, if a workload requires 90% of the CPU units, the level is set to

high for the workload. The level function is predefined based on the resource capacity. The

frequency of each workload is stored based on its number of occurrences in W using the

count function (line 8). Once the map is created for each workload, a workload selection

function is used to select k workloads from n workloads using S (line 10). The value of S

determines the significance of the workloads. We use the following three criteria for S to

generate the trial workload:

(1) Frequency-based Generation (FG): We select k trial workloads that occur most frequently

in W .

(2) Resource Consumption-based Generation (RG): We select k trial workloads from W that

have maximum resource consumption. Winfo reaches equal to k.

(3) Mixed Generation (MG): We select k/2 workloads based on FG method and k/2 work-

loads using RG method.

The selection function can be implemented in different ways based on the workload parameters

and the significance. We leave it for the future work to define workload significance using

other techniques.

5.4 Signature-based IaaS Selection

5.4.1 Trial Confidence Measure

The trial confidence is determined using the similarity distance between the IaaS signature

and the trial experience. The QoS performance observed in the trial should be normalized

before measuring the similarity distance. We measure the similarity distance based on the

shape of the signature and the trial experience for each QoS attribute. We decided to use the

Pearson Correlation Coefficient (PCC) to measure the trial confidence (Tconf ). The PCC is

applied to measure the trial confidence (TQi

conf ) for each QoS attribute Qi as follows:
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FIGURE 5.2: Trial experience matching (CPU throughput)

TQi

conf =

∑n
t=1(q′t − q̄′)(qt − q̄)√∑n

t=1(q′t − q̄′)2
√∑n

t=1(qt − q̄)2
(5.2)

where n is the trial length, q′t is the normalized value of the trial performance of Qi at time

t. The normalized value of the signature is qt at time t for the QoS attribute Qi. The mean

value of Qi is indicated by q̄′. The total confidence is calculated by taking the average of all

confidence for each QoS attribute by the following equation:

Tconf =
1

k

k∑
i=1

TQi

conf (5.3)

where k is the total number of QoS attributes. Figure 5.2 depicts a plot of normalized trial

performance and signature for CPU throughput. The figure shows that the shape of the trial

experience is similar to the signature. If the confidence is lower than a predefined threshold

(e.g., less than 70%), the provider is discarded.
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5.4.2 Signature-based Performance Discovery (SPD)

We utilize the IaaS signature to measure the provider’s service performance beyond the trial

period. The first step is to estimate the service performance for the consumer’s long-term

workloads based on the trial experience. We then need to apply the signature to adjust the

performance of each type of workload based on the time of its appearance. For example, if a

certain type of workload appears in January, then the performance of that type of workload

needs to be changed using the signature. We apply Algorithm 4 to discover a provider’s

service performance beyond the trial period for the consumer’s long-term workloads.

Algorithm 4 Signature-based performance discovery
1: Input: W , Wtrial, Ptrial, S
2: Output: P
3: TotalT ime = length(W )
4: trialLength = length(Wtrial)
5: Strial = S(1 : trialLength)
6: for each t in TotalT ime do
7: t′ = NearestNeighbor(W (t),Wtrial)
8: TransForm = S(t)/Strial(t

′)
9: P (t) = TransForm ∗ Ptrial(t′)

10: return P

Algorithm 4 takes as input the trial workloadWtrial, trial performance P , long-term workloads

W , and IaaS signature S (line 1). The algorithm returns the long-term performance P (line 2).

First, the algorithm measures the length of W to estimate the total required service time (line

3). Then, the trial length is measured based on Wtrial (line 4). The part of signature that is

applicable for the trial period is taken from S based on the trial length trialLength (line 5).

Next, for each timestamp in the total time, the algorithm needs to measure the performance

of the corresponding workload (line 6). For each workload at time t, the NearestNeighbor

function finds the closest workload that can be found in the trial workloads based on resource

demand (line 7). We use the Euclidean distance to measure the similarity between workloads.

The function NearestNeighbor returns the timestamp t′ that is the timestamp of the closest

workload. Next, the transformation factor TransForm is measured by taking the ratio

between the signature of the current timestamp t and t′ (line 8). The performance at the

current timestamp P (t) is found by multiplying the Ptrial(t′) with the transformation factor
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TransForm (line 9). Here, Ptrial(t′) is the performance of the trial workload that is closest

to the current workload W (t).

The performances Ptrial and P are shown as a one-dimensional time series in the algorithm.

However, the algorithm is still applicable if the performance is considered multi-dimensional,

i.e., multiple QoS attributes.

5.4.3 Long-term IaaS Selection

The long-term selection is performed based on the consumer’s requested performance and

the predicted service performance [Ye et al., 2016]. First, we normalize the value of QoS

attributes based on Min-Max Feature Scaling to have the same scale for each QoS attribute

using the following equation:

Q′it =
Qi(t)−min(Qi)

max(Qi)−min(Qi)
(5.4)

where Qi(t) is the value of Qi at time t. Q′it is the normalized value of Qi(t). Equation

5.4 is applied to each QoS time series of the requested and predicted performance. Next,

we measure the Root Mean Squared Error (RMSE) distance from the consumer’s requested

performance and the discovered IaaS performance for each QoS attribute using the following

equation:

RMSE(Qr
i , Q

p
i ) =

√√√√ 1

T

T∑
t=1

(Qr
i (t)−Qp

i (t))
2 (5.5)

where Qr
i and Qp

i are the requested and predicted QoS performance of Qi over time T . Qr
i (t)

andQp
i (t) denote the requested QoS performance and predicted QoS performance respectively

at time t. Finally, the rank of each provider is measured by the following equation:

Rank(P ) =

k∑
i=1

RMSE(Qr
i , Q

p
i ) (5.6)
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where Rank(P ) is the predicted rank of the provider P and k is the total number of QoS

attributes.

5.5 Experiments and Results

5.5.1 Experiment Setup

We conducted a set of experiments based on real-world datasets. The proposed SPD approach

was compared against the baseline approach, i.e., LPD approach and EQ approach [Fattah et

al., 2019]. The SPD-based long-term selection was evaluated based on the expected ranking,

short-term ranking [Ye et al., 2016], and LPD-based ranking approaches.

5.5.1.1 Dataset from Public IaaS Providers

We collected data from Microsoft Azure and Google Compute Engine (GCP) every 15 minutes

for about one month. We selected Standard A1 v2 and n1-standard-1 types of instances from

Azure and GCP, respectively. Three instances for each type of VM were installed with similar

configurations. Each instance ran a web server that generated a CPU-intensive load (Fibonacci

number generator) for each request. Requests were generated using httperf load generator.

Each request had a very small payload and the clients were installed in the same cloud. Hence,

we assumed that the network performance fluctuation had little or no effect on the observed

performance of each provider. The one-month data was divided into 12 partitions. Each

partition was considered a one-month data. The signature of each provider was generated

using the proposed approach in Section 5.2 based on the data collected from three instances of

each provider as shown in figure 5.3. The trial workload was produced based on the workloads

generated by httperf using the proposed approaches in Section 5.3. The trial performance of

each type of workload was created based on the average performance observed in the trial

period for the corresponding type of workload.
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FIGURE 5.3: Signature calculated from public cloud providers (a) Azure
instance (b) GCP instance

5.5.1.2 Dataset from Private IaaS Providers

We utilized the publicly available Eucalyptus IaaS workload2, which contains about 34 days

of workload data, to generate long-term consumer workloads. We generated 360 days of

workload data for each consumer-based average workload per day. The long-term performance

of five private IaaS providers was generated from benchmark results published by SPEC Cloud

2https://sites.cs.ucsb.edu/~rich/workload/

https://sites.cs.ucsb.edu/~rich/workload/
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TABLE 5.1: Experimental settings

Attribute Value
Total Time 360 days
Number of Providers 7
Trial Period Length 30 days
Number of Trial Methods 4
Trial Month June

IaaS 20163. First, we mapped each unique workload of the cluster to a unique performance

value of the benchmark results. We considered the map to be the baseline performance for

the workload. Next, we built long-term performance profiles for the providers where each

provider showed different performance behavior based on the workloads and time. We ran

the workloads from each consumer on five providers (candidates for the long-term period

selection) using a short-term trial period to discover the corresponding performances of each

provider. The experimental settings are shown in Table 5.1.

5.5.1.3 Baseline Approach

We defined a Long-term Performance Discovery (LPD) approach as the baseline approach to

evaluate the proposed SPD approach. The trial experience contained a subset of long-term

workloads and corresponding performance. We generated the performance of the long-term

workloads for each provider based on the consumer trial experience. For each workload wl

in the long-term workloads, we found a workload wt in the trial workload, where wl and wt

have similar resource consumption. We considered the performance of wl is equivalent to wt.

5.5.1.4 Equivalence Partitioning-based Approach

An equivalence partitioning-based (EQ) approach is proposed in Chapter 3 where the con-

sumer’s long-term workload is partitioned based on the number of available VMs in the free

trial period. Then, workloads of each partition are compressed within one day, assuming that

the performance of the provider does not change considerably within a day. Each VM runs

the same workload for the trial period to find the performance variability.

3https://www.spec.org/

https://www.spec.org/
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FIGURE 5.4: Long-term throughput prediction (a) FG workloads (b) RG
workloads (c) MG workloads (d) EQ workloads (e) LPD approach error (f)
SPD approach error

5.5.2 Evaluation of Long-term Performance Discovery

Figure 5.4 shows the results of the long-term IaaS performance discovery. Figure 5.4(a),

(b), (c), and (d) show the predicted CPU throughput of a provider using the FG, RG, MG,

and EQ trial schemes defined in section 5.3. Each figure shows the LPD throughput, SPD

throughput, and actual throughput. The predicted performance using the LPD approach

exhibits similar behavior in each figure. The LPD predicted performance cannot capture the

temporal performance shifts. It is noticeable that the predicted performance remains on the

same performance level of the trial month (151-180 days). The LPD approach can be useful to

predict the performance of the providers that provide services with good performance isolation.

The SPD approach predicts the throughput more accurately compared to the LPD approach as

shown in each figure (Figures 5.4(a), (b), (c), and (d) ). The SPD approach utilizes the shape

of the signature to estimate long-term IaaS performance. Hence, the predicted performance

has a similar shape to the signature. Figure 5.4(e) and (f) show the accuracy of the predicted
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performance using normalized RMSE (NRMSE) distances for seven providers. Providers 6

and 7 are public IaaS provider and the rest are private IaaS providers. The accuracy of the

SPD approach (Figure 5.4(f)) is considerably higher than the LPD approach (Figure 5.4(e)).

5.5.3 Effect of Trial Schemes in Performance Discovery

The effects of different trial schemes are noticeable in Figures 5.4(e) and (f). The LPD

approach exhibits less performance variability for different trial schemes as it does not

consider the provider’s long-term performance variability. The prediction accuracy of the SPD

approach varies considerably based on the selected trial scheme. The RG scheme-based SPD

approach (Figure 5.4(f)) shows the lowest accuracy compared to the other approaches (Figure

5.4(f)). This result is due to the characteristics of the consumer’s long-term workloads. The

RG scheme selects mainly resource-intensive (i.e., requires high resource usage) workloads

similar to the traditional load and stress testing based approaches. Hence, traditional load and

stress testing techniques may not provide good accuracy for long-term performance discovery.

The FG scheme-based SPD approach shows the maximum estimation accuracy compared

to the other trial schemes (Figure 5.4 (f)). The reason for this is that this approach utilizes

most frequently occurring workloads in the consumer’s long-term workloads. The maximum

number of workloads is tested in this scheme. The estimation errors for the MG and EQ

scheme remain in between the FG and RG schemes. The MG scheme is built using the FG

and RG scheme. As a result, the NRMSE for the MG scheme is in between FG and RG

schemes. The EQ scheme shows poor performance for public providers as the EQ scheme

depends on the number of available VMs to run the experiments.

5.5.4 Evaluation of IaaS Ranking

The ranking of the providers based on different approaches is shown in Table 5.2. We

measure the expected ranking of the providers to evaluate the proposed selection approach.

The expected ranking is computed based on the NRMSE distance between the consumer’s

throughput requirement and a provider’s actual throughput. We rank the providers based on
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TABLE 5.2: Ranking of IaaS providers

Rankings Orders
Expected p1 < p4 < p2 < p3 < p5 < p6 < p7
Short-term p1 < p6 < p7 < p3 < p4 < p2 < p5
LPD p2 < p4 < p5 < p3 < p1 < p6 < p7
SPD p1 < p4 < p3 < p2 < p5 < p6 < p7

three approaches using the FG scheme. First, we rank the providers based on the short-term

trial experience. The short-term ranking cannot rank the providers correctly compared to

the expected ranking. Therefore, the short-term selection approach is not applicable for the

long-term period. Next, we rank the providers based on the predicted performance using the

LPD approach, which does not rank most providers correctly. Hence, the selection based

on the trial experience without considering the long-term performance may lead to incorrect

provider selection. Finally, we rank the providers based on the predicted performance using

the SPD approach that ranks most providers correctly. We use the following utility function

to measure the weighted ranking error (E) of each ranking approach:

E =
1

W

n∑
i=1

Wp × (Rp −Ra)
2 (5.7)

where n is the number of providers, Rp is the predicted rank, and Ra is the actual rank. The

lower value of E means higher ranking accuracy, and higher value indicates lower ranking

accuracy. Wp denotes the weight of each provider. The weight is assigned using the provider’s

expected ranking. If the expected ranking is high, then the weight is considered high. Table

5.2 shows the accuracy of the rankings on the error column. The SPD-based estimation shows

the lowest ranking error, which indicates the highest level of accuracy.

5.6 Summary

We introduce a novel approach to select the optimal IaaS service according to a consumer’s

long-term QoS requirements. The proposed approach leverages free trials and IaaS signatures

to discover long-term service performance of IaaS providers. The experiment results using
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FIGURE 5.5: Weighted ranking error

the real-world datasets show that the proposed SPD approach effectively discovers long-term

service performance using different trial schemes. We conclude that the selection of an

appropriate trial scheme plays an important role in the long-term performance discovery. The

results also confirm that the proposed approach ranks the IaaS services effectively using the

IaaS signatures and the consumer’s trial experience. In this chapter, we focus on deterministic

workloads; however, in the future, we will explore long-term IaaS selection for stochastic

workloads as well.



CHAPTER 6

IaaS Signature Change Detection

6.1 Introduction

An understanding of the IaaS services’ performance is paramount in determining which

services are the best fit for the consumers’ required QoS [Iosup et al., 2011]. Despite that,

IaaS providers typically reveal very limited performance information in their advertisements

due to market competition and business secrecy [Wenmin et al., 2011]. Effective utilization

of free trials offered by IaaS providers is a unique way to deal with the limited performance

information for the long-term selection [Wang et al., 2018]. However, free trial experiences

do not provide enough information to make the best service selection for a long-term period.

The key reason is that the performance of IaaS services changes periodically due to the

multi-tenant nature of the cloud [Iosup et al., 2011]. The observed performance in a trial in

one month may change if the trial is performed in a different month. Therefore, making a

long-term commitment based only on short trials does not always lead to the best service

selection [Zhu and Chang, 2014].

IaaS performance signatures offer an effective alternative to deal with the unknown service

performance variability for the long-term selection [Mi et al., 2008; Fattah et al., 2020b]. An

IaaS performance signature represents the expected performance behavior of an IaaS service

over a long period of time. For instance, the signature of a VM may indicate that its response

time is expected to increase by 10% in January over the response time for December. A

consumer’s trial experience of a service and its corresponding signature can be utilized to

make a better selection for the long-term period. A signature-based IaaS selection approach

is proposed in the previous chapter. The proposed approach generates signatures using the
99
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experience of past trial users. However, the proposed approach does not consider the dynamic

nature of performance signatures.

IaaS performance signatures are dynamic in nature and may need to be re-evaluated over

a long period of time for a number of reasons [Mi et al., 2008]. For instance, a provider

may upgrade their infrastructure or change their QoS management policy, resulting in a

change in service performance [Leitner and Cito, 2016]. In such a case, the IaaS performance

signature may need to be updated to be representative of the new performance profile of

the service. It is therefore important to detect the change in IaaS performance as early as

possible to make sure its signature reflects the current performance behavior of the service.

We focus on the detection of long-term changes in IaaS performance behavior. We assume

that the long-term performance behavior of an IaaS service is represented by its performance

signature. Therefore, the IaaS performance change detection problem is transformed as the

IaaS signature change detection problem in this work.

We identify two key challenges in IaaS performance change detection in the context of IaaS

signatures. The first challenge is in determining the time at which the signature needs to be

re-evaluated for the change detection. A change in the service performance behavior may

occur at any point of time. The challenge is to accurately identify change points in time where

there is a high likelihood of performance change occurrences. This is also known as the

Change Point Detection problem [Aminikhanghahi and Cook, 2017]. The second challenge

is the ability to differentiate between noise and actual changes in IaaS performance. Noise

refers to the irregular or anomalous performance behavior that may not necessarily indicate

long-term performance changes [Moens and Zénon, 2019]. For instance, a major failure of

computing infrastructure may negatively impact the performance of an IaaS service at a point

of time without necessarily indicating a long term change in performance behavior. Given

the multi-tenant and dynamic nature of the cloud, noise in IaaS performance is very common

[Doelitzscher et al., 2013]. Therefore, the challenge is to accurately identify performance

noise to detect actual performance changes.

To the best of our knowledge, existing research has not given enough attention to the long-

term IaaS performance change detection problem [Fattah et al., 2019]. We focus on the
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signature change detection in this chapter. First, we assume that there is no noise in the

IaaS performance. In this case, we propose a novel ECA-based approach to detect changes

in IaaS performance.We then introduce a new performance noise-based change detection

approach that considers the performance noise during the change detection. Finally, we

introduce a change detection framework that leverages change detection techniques from

signal processing domain to detect changes in IaaS signatures.

6.2 ECA-based Signature Change Detection

We propose a novel Event-Condition-Action (ECA) approach to manage changes in IaaS

performance signatures. The ECA model is a simple yet powerful tool that has been exten-

sively used in databases, cognitive computing, and semantic web. In the ECA model, when

an event is detected, a condition is checked, and a resulting action is executed [Liu and Özsu,

2009]. Although the ECA model is quite standard, the way we have used it and the context

in which it has been used is novel. The ECA model is typically used in databases to trigger

an action when a condition is met. We have leveraged the ECA model to detect change

points in IaaS performance behavior. The proposed ECA approach relies on the detection of

anomalous performance behavior to detect changes in IaaS performance. In particular, the

proposed approach consists of two main parts: a) an anomaly-based event detection technique

that determines when to trigger the re-evaluation of a signature, and b) a signature change

detection method that leverages time series change detection techniques to re-evaluate existing

IaaS performance signatures. In addition, we introduce a self-adjustment method to improve

the performance of the proposed ECA approach using a feedback loop from the outcome of

the signature change detection. In summary, we propose a novel framework for the detection

of accurate changes in IaaS performance signatures. Accuracy is achieved over time through

continuous testing of the re-evaluated signatures, which may lead to either (1) confirming

the previous signature changes, or (2) invalidating the previous signature changes. The key

contributions of this section is as follows:
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• An anomaly-based event detection to determine when to trigger the testing of an IaaS

performance signature.

• A signature change detection that leverages time series change detection techniques to

re-evaluate the existing IaaS performance signatures.

• A self-adjustment method to improve the accuracy of the proposed ECA approach over

time using a feedback loop.

6.2.1 Proposed ECA Approach

We utilize the signature representation and the generation from the last chapter. Therefore,

we skip the details about the IaaS signatures in this chapter. We apply an ECA approach to

manage changes in IaaS signatures. The ECA model is especially useful when an action needs

to be performed based on a condition that needs to be satisfied. According to the ECA model,

an event determines when to trigger an action, the condition defines how to evaluate the event,

and the action sets the execution plan in response to the event. An event is typically a special

indicator that informs a system that an action may need to be performed. An example of

events in security software could be defined as the deletion of a large number of files at once.

The security software may start the evaluation of the event, i.e., the deletion of a large number

of files to find out whether it is a result of a security attack or a user action.

Anomalous performance behavior is a potential indicator of IaaS performance change [Mi

et al., 2008]. An anomalous performance behavior is the deviation from the expected

performance of an IaaS service. The expected performance is represented by its performance

signature. Performance anomalies are typically common in cloud environment [Ibidunmoye

et al., 2015]. Anomalies may occur due to unexpected events faced by the IaaS provider

such as a sudden increase in the workload of the physical system, a power failure, or natural

disasters. As a result, experiencing performance anomalies in the free trial period may be

normal in the cloud. However, the frequent occurrences of performance anomalies in the free

trial period may indicate changes in IaaS performance, thus requiring a re-evaluation of the

existing signature [Mi et al., 2008]. Therefore, we define the event for the IaaS performance

change detection based on the frequent occurrences of performance anomalies.
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DEFINITION 8. Event. An event is the frequent occurrences of performance anomalies that

are experienced by the free trial users within a fixed period of time.

The frequency is initially defined as an arbitrary number or threshold f which can be adjusted

in the self-adjustment step. Once an event is detected, it needs to be evaluated to detect

whether the signature has been changed. If the event satisfies the condition, the signature

needs to be updated. The condition and action are defined as follows:

DEFINITION 9. Condition. The condition is the process of testing an event to ascertain

changes in IaaS performance.

DEFINITION 10. Action. The action is the process of updating the present IaaS performance

signature to reflect the changes in the IaaS performance.

We utilize the above three definitions as the basis for the proposed ECA approach. In the

following sections, we describe the three parts of the proposed approach: a) an anomaly-based

event detection, b) a signature change detection and signature update (condition and action

respectively), and c) a self-adjustment method to improve the accuracy of the proposed

approach.

6.2.2 Anomaly-based Event Detection

We utilize the free trial experience and the existing IaaS performance signatures to detect

performance anomalies. The events are detected based on the performance anomalies. First,

we measure the similarity between the trial experience of a consumer and the signatures to

detect performance anomalies [Ibidunmoye et al., 2015]. When a user’s trial experience is

similar to the current signature, the signature is considered to be representative of the expected

service performance. When the trial experience does not exhibit a similar performance

behavior as represented by its signature, we consider it to be an anomalous performance

behavior. The signature represents the relative performance behavior as a time series. As a

result, the shape of the time series needs to be considered in order to measure the similarity

rather than the value of each data point in the signature time series. There are numerous
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approaches in the existing literature to measure time series similarity based on the shape such

as Pearson Correlation Coefficients (PCC), Euclidean Distance (ED), Spearman Correlation

(SC), Cosine Similarity (CS), Symbolic Aggregate Approximation (SAX), and Dynamic

Time Warping (DTW). Some of these methods may be applied to measure the similarities

between the trial experience and the signatures. We briefly discuss how to apply the PCC,

CS, and ED for the similarity measure to detect performance anomalies in the context of IaaS

performance signatures as they are most widely used techniques and easier to implement than

other techniques.

Let us denote the trial experience of a user by EQ where EQ denotes the performance of

an IaaS service in the free trial period Tf . Here, Tf << T , i.e., the free trial period is

significantly less than the required provisioning period T . We represent EQ as a time series

EQ = {q1, q2, ...qn} where n is the number of timestamps in t. EQ needs to be normalized

before measuring the similarity with an IaaS performance signature. LetE ′Q be the normalized

trial performance where the normalization is performed based on its standard deviation. We

denote E ′Q as E ′Q = {q′1, q′2, ...q′n}. Let the signature of an IaaS service for the trial period

Tf be SQ for the QoS attribute Q where SQ = {s1, s2, s3, ...sn}. The similarity between the

normalized trial experience (E ′Q) and the signature of a service during the trial period (SQ)

using the Euclidean distance (S(E ′Q, SQ)ED) is computed by the following equation:

S(E ′Q, SQ)ED =

√√√√ n∑
t=1

(st − q′t) (6.1)

Similarly, the similarity measure using the Pearson Correlation Coefficients is computed using

the following equation:

S(EN
Q , SQ)PCC =

∑n
t=1(st − s̄)(q′t − q̄′)√
(st − s̄)2

√
(q′t − q̄)2

(6.2)

where q̄′ and s̄ are the mean values of q′ and s within the trial period Tf . The cosine similarity

of the trial experience is measured by the following equation:
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S(EN
Q , SQ)CS = cos θ =

∑n
t=1 stq

′
t√∑n

t=1(si)2
√∑n

t=1(q′)2
i

(6.3)

Each of the above equations provides us with a similarity value between the trial experience

and the corresponding IaaS performance signature. In the case of the Euclidean distance, the

lower the distance, the higher the similarity.

A similarity threshold needs to be defined to determine how much deviation of the performance

from the signature should be considered as the performance anomaly. We define a similarity

threshold Sthresh for each technique. The threshold is used to distinguish between the normal

performance behavior and performance anomalies. The initial threshold is defined during the

signature generation process based on the experience of the past trial users’ experience. Let

us assume that there are N number of past trial users. The experience of the past trial users is

denoted by EP = {E1, E2, ...EN}. The initial similarity threshold TS for anomaly detection

is defined as follows:

TS =
N

min
i=1

S(Ei, SQ)M (6.4)

where M denotes the similarity measure method, i.e., PCC, ED, or CS. The threshold for

different similarity measure technique can be different. When a new user performs a trial

their observed performance has a similarity lower than the TS , we consider it an anomalous

performance behavior of the service. The value of the similarity threshold Sthresh is adjusted

based on the experiments.

The event for signature change detection is defined as the frequent occurrences of performance

anomalies within a fixed period of time as mentioned earlier. Therefore, we define an anomaly

threshold for the event detection and denote as Fthresh which represents the minimum number

of occurrences of the performance anomalies within a period of time Tf . The value of Tf is

the length of the free trial period. We assume that each provider offers the same length of

free trial without the loss of generality. The value of Fthresh can be initially defined as the

number of past trial users within each Tf period who have the minimum similarity between
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their experience and the corresponding signature. For example, if there are five past trial users

who have the minimum similarity TS with the present signature, then Fthresh is initialized

as five. In such a case, the number of past trial users who have the minimum similarity

during the signature generation process is considered as the usual number of performance

anomalies within the Tf period. When the number of performance anomalies exceeds Fthresh,

we consider it an event that needs to be evaluated for signature change detection. We update

the value of Fthresh over time to detect the signature change effectively in the self-adjustment

step based on the experiments.

6.2.3 Signature Change Detection

An event indicates that a signature may need to be re-evaluated. When an event is detected,

the present signature needs to be tested to evaluate the event. This testing is the condition

part of the proposed ECA approach. The main concern in the signature change detection is to

differentiate between the performance anomalies and performance changes. This is similar

to the signature processing domain, where the noise is a major concern for signal change

detection. For instance, a voice recognition program has to differentiate between the noises

in the environment and the voice of a new speaker. There exists a number of approaches

for change detection in a signal or time series based on supervised, semi-supervised, or

unsupervised methods [Aminikhanghahi and Cook, 2017]. We chose an unsupervised method

called CUSUM which is a sequential analysis technique for small change detection in a

time series. The CUSUM control chart is a simple and effective technique that is used in

several areas such as signal processing, image processing, and intrusion detection in computer

networks and security systems [Veeravalli and Banerjee, 2014].

A CUSUM control chart monitors the deviation of the individual or a group of samples from a

target mean. Let us assume that the observation of a process P has the sequence x1, x2, ...xn

with an estimated average of mx and standard deviation sx. The upper limit and the lower

limit of the cumulative sum are defined by the following equations:
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ULi =

max (0, ULi−1 + xi −mx − 1
2
nsx), i ≥ 1

0, i = 1
(6.5)

LLi =

min (0, LLi−1 + xi −mx + 1
2
nsx), i ≥ 1

0, i = 1
(6.6)

where ULi is the upper limit, LLi is the lower limit, n is the minimum detectable shift from

the target mean. The process P is considered in violation of CUSUM criteria at the sample

xi if it obeys ULi > csx or LLi < −csx where c represents the control limit. The value

c is adjustable and represents the number of standard deviations that the upper and lower

cumulative sums are allowed to drift from the target mean.

Once an event is detected within a period of time Tf , we recompute a new signature (SN)

based on the trial experience of all the users within that period of time using the signature

generation technique described in the previous chapter. The CUSUM control chart is applied

to the new signature based on Equations 6.5 and 6.6. The target mean mx and the standard

deviation sx are set based on the existing signature S within Tf period. The values of c and n

are set based on the standard practice of CUSUM, which are sx and 5sx respectively. Once we

detect the change in the IaaS performance signature within a time window of Tf , the existing

part of the signature is replaced by the new signature.

6.2.4 Self-adjustment of the ECA Approach

When an event is detected and evaluated based on the proposed signature change detection

technique, the outcome will be either a true positive or a false positive. A true positive implies

that the signature needs to be updated. A false positive indicates that the signature does not

need to be updated. The number of false positives can be reduced by adjusting the similarity

threshold Sthresh for the anomaly detection and the anomaly threshold Fthresh for the event

detection. For example, let us assume that the anomaly threshold for the event detection is

set to five performance anomalies for a one-month trial period. If the TNPO detects five
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FIGURE 6.1: Self-adjustment of the ECA approach

anomalies in every month and the outcome is a true positive, then the anomaly threshold

should have been reduced earlier to detect the change in IaaS performance. Similarly, if the

outcome is a false positive every time, we need to increase the anomaly threshold for event

detection. We apply a self-adjustment method using a feedback loop from the outcome of the

signature change detection to the event detection so as to change the anomaly threshold.

Figure 6.1 shows the proposed self-adjustment method using a feedback loop. The outcome

of the condition checking is fed to the anomaly-based event detection module. When the

number of true positives or false positives within a predefined period of time T ′ exceeds a

predefined threshold Z, the event detection module updates the frequency threshold Fthresh.

The values of Z and T ′ are set by the TNPO. The frequency threshold is updated linearly

based on the change detection outcome. When the outcome of signature change detection

exceeds the true positive threshold then Fthresh is incremented by one. If the outcome exceeds

the false positive threshold, then Fthresh is decremented by one.

6.2.5 Experiments and Results

A series of experiments were conducted to evaluate the proposed ECA approach. We identified

two key attributes: a) the number of false positives, and b) the change detection delay to

evaluate the proposed approach.
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TABLE 6.1: Experimental settings

Variable Name Values
Total number of simulation 100
Total provisioning period 360 days
Trial length of each consumer 30 days
Total number of IaaS performance signatures 5
Total number of Consumers 18
Similarity thresholds 0.1 to 0.9
Anomaly Thresholds 10% to 100%

6.2.5.1 Experiment Setup

Finding real-world workload traces and performance datasets for a long-term period was

very challenging. Thus, we utilized the publicly available workload traces and performance

data to mimic the long-term cloud environment. We used the Eucalyptus IaaS workload,

which contains six workload traces of a production cloud environment, to generate the trial

workloads of different consumers1. We selected a trace that contained 34 days of workloads

of a large company with 50,000 to 100,000 employees. We partitioned the data into 360

parts and considered each partition as an average workload of one day to create a one-year

workload dataset. The long-term performance of five IaaS providers was generated from the

benchmark results published in SPEC Cloud IaaS 2016 [Fattah et al., 2019]. We augmented

the workload traces with the performance data to generate a long-term workload-performance

dataset of five IaaS providers. We created the signature of each provider using the approach

in the previous chapter. The experimental settings are shown in Table 6.1. We have created

approximately 100 new signatures to simulate the change in IaaS signatures from the signature

of five IaaS providers. To create a new signature, first we selected a random index in one

of the IaaS signatures. This index is called change index. We then computed the moving

average for each 10 data points in the signature starting from the change index to the rest of

the signature. The original signature is then altered by replacing with the moving average

values from the change index to the end of the signature.

1https://www.cs.ucsb.edu/~rich/workload/

https://www.cs.ucsb.edu/~rich/workload/
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FIGURE 6.2: Effects of different similarity thresholds in change detection in
(a) number of false positives (b) average delay

6.2.5.2 Evaluation and Discussion

The proposed approach aims at reducing the number of false positives and the change detection

delay varying the similarity threshold and the anomaly threshold for the anomaly and event

detection, respectively. We discuss only the results of similarity measure using PCC as it

provides the best results. Figure 6.2(a) shows the number of false positives that are generated

before the actual change detection for the different values of the similarity thresholds. The

anomaly thresholds are set from 22.22% to 44.44% of the total number of consumers within

a given trial month. The number of false positives increases with the increase of similarity

thresholds according to Figure 6.2(a). The reason for this is that when the similarity threshold

is increased, the number of detected anomalies increases. As a result, the number of detected

events also increases resulting in a high number of false positives. The number of false

positives directly affects the delay in signature change detection. The average delay in change

detection is illustrated in Figure 6.2(b). The average delay is reduced with the increase

of similarity threshold for anomaly detection. This implies that when the number of false

positives increases, the average detection delay is reduced due to the increasing number of

testing.

The anomaly threshold for the event detection impacts the result in the opposite way of

changing the similarity thresholds. Figures 6.3(a) and (b) illustrate the effect of changing
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FIGURE 6.3: Effects of different anomaly thresholds in change detection in
(a) number of false positives (b) average delay

the anomaly detection threshold on the number of false positives and the detection delay,

respectively. The number of false positives decreases exponentially with the increase of

the anomaly threshold. For instance, when the anomaly threshold is at 100% of the total

consumer, the number of false positives becomes almost zero. The reason for such a result

is that when the anomaly threshold is increased, the proposed framework accepts a higher

number of performance anomalies as the normal behavior of the service. As a result, when the

anomaly threshold is 100% of the total trial users at a point of time, an event is detected only

if every trial user observes anomalous performance behavior. Similarly, Figure 6.3(b) depicts

that the increase in the anomaly threshold increases the average detection delay. The reason is

that when the anomaly threshold is increased, the number of detected events becomes lower.

When the number of events is decreased, the number of testing of signature is also decreased.

This result could be inferred from the impact of anomaly thresholds on the number of false

positives. Intuitively, if the number of false positives decreases, the average detection delay

should increase because of the lower number of performed tests.

Figure 6.2(b) shows that the average change detection delay varies between 30 to 55 days,

which is reasonable given the one-month trial period window. Figure 6.3(b) shows that the

average detection delay varies between 15 to 180 days. The high value in the result could

indicate that the proposed approach is unable to detect changes in some signatures. Figure

6.4 shows that the actual delay for most of the cases is much lower. Figures 6.4(a) and (b)
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FIGURE 6.5: Accuracy of the change detection for (a) different similarity
thresholds (b) different anomaly thresholds

show the minimum change detection delay for different similarity thresholds and anomaly

thresholds, respectively. The value of minimum change detection varies from 15 days to 60

days in most cases. The high value of the average change detection delay indicates that the

proposed approach is unable to detect some of the changes at all. As a result, the average

delay in change detection increases.

If we wait for a long time, the proposed approach may be able to detect changes in all

signatures. However, waiting for an uncertain period to detect the change is unrealistic. We

therefore set a time window Tw. We evaluate the proposed approach in terms of its ability to
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detect changes in each signature within Tw. We set the value of Tw to 60 days based on the

average change detection delay as shown in Figure 6.2(b). If a change in a signature is not

detected within the first 60 days of the actual change, we consider that the proposed approach

is unable to detect the change for that particular signature. Figure 6.5(a) shows that the

detection accuracy increases from 40% to 95% with the increase of the similarity threshold.

This indicates that the proposed approach is able to detect the change for up to 90% of the

signatures within the first 60 days when the similarity threshold is very high. It is important

to note that high accuracy leads to a higher cost in terms of the number of performed tests.

Figure 6.5(b) shows that the change detection accuracy decreases from 95% to below 10%

with the increase of anomaly threshold for the event detection. This result is also consistent

with the previous results. The high anomaly threshold leads to a lower number of testing

which results in lower accuracy in the change detection. The accuracy results indicate that the

similarity threshold and anomaly threshold need to be adjusted separately for each signature

to improve the performance, which can be accomplished using the proposed self-adjustment

method.

6.3 Performance Noise-based Signature Change Detection

A key challenge in long-term IaaS performance change detection is to accurately identify

IaaS performance noise and true changes in the performance behavior of a service. Noise

in signal processing typically refers to unwanted disturbances in electrical signals, which

is usually generated during the capture, storage, transmission, processing, or conversion

of the signal [Whalen, 2013]. In the context of IaaS performance, noise can stem from

noisy neighbor effects (co-tenancy), periodic updates, or unwanted disruptions in service

provisioning [Varadarajan et al., 2012]. The IaaS performance change detection problem

has two phases: a) change point detection, and b) change detection. IaaS performance noise

should be considered in both phases as it may affect the performance of the change detection

process. The proposed signature-based change detection approach in the previous chapter

considers the performance noise only in the change detection phase during the re-evaluation

of the existing performance signatures.
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In this section, we introduce a new change detection approach where performance noise is

considered during the change point detection. The performance observed by each trial user

may be affected by the performance noise. In such a case, the performance of a change point

detection process may degrade in terms of the number of false positives if the effect of noise

is not considered. For instance, the performance observed by a large number of consumers

may not be exactly similar to the corresponding performance signature due to the noise. In

such a case, a change point detection algorithm will trigger a false alert.

We propose a novel change detection framework that aims at identifying performance changes

more effectively. The proposed framework introduces a new type of IaaS performance signa-

ture called categorical IaaS signature. The categorical IaaS signature models performance

behavior more accurately than the general IaaS signature introduced in [Fattah et al., 2020b]

as the general IaaS signature does not consider the effect of different categories of workloads,

i.e., CPU-intensive, I/O-intensive, and memory-intensive, on IaaS performance. The proposed

framework utilizes a heuristic-based approach to determine noise in IaaS performance. In

this approach, the categorical signature and the general signature are utilized to define per-

formance noise bandwidth. The performance noise bandwidth is updated over time to detect

performance changes more accurately. The key contributions are summarized as follows:

• A new type of IaaS performance signature named Categorical IaaS Signature that models an

IaaS service’s long-term performance behavior based on different categories of workload.

• A novel performance noise model that defines the noise bandwidth based on the categorical

and general IaaS signatures.

• A performance change detection model that leverages the proposed performance noise

model to detect changes in IaaS performance.

6.3.1 General IaaS Performance Signatures

The general IaaS performance signature is first introduced in Chapter 5. The general signature

of an IaaS service is represented based on its relative performance changes over time, i.e.,

how much a service’s performance may increase or decrease in one time period compared
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to another time period. For example, the general signature of a VM may inform that its

response time is expected to increase by 5% on weekend nights over the response time on

regular weekdays. The general signature focuses mainly on the effect of seasonality on

IaaS performance. It assumes that the effect of different types of workload on the observed

performance is not substantial compared to the effect of seasonal performance variability.

Therefore, this signature is called general signature as it considers all types of workload

equally. Note that the signature does not provide the exact performance of a service. Therefore,

a consumer is unable to select a service based only on its signature. Instead, the consumer

needs to perform the trial with their application workloads and utilizes the trial experience

and the IaaS signature to estimate the long-term service performance [Fattah et al., 2020b].

DEFINITION 11. General IaaS Performance Signature. An IaaS performance signature is a

temporal representation of relative performance changes of an IaaS service over a long period.

6.3.2 Categorical IaaS Performance Signatures

In this subsection, we introduce a new type of signature called categorical IaaS performance

signature. For simplicity, we refer to the categorical IaaS performance signature as the

categorical signature and the general IaaS performance signature as the general signature.

The motivation behind creating the categorical signature is to produce a more accurate

signature that captures the effect of different types of workload on IaaS performance behavior.

The performance of an IaaS service may depend on the workload it runs [Feitelson, 2002].

Therefore, IaaS providers often advertise CPU-intensive, memory-intensive, or network-

intensive VMs. For instance, Amazon EC2 offers a wide range of compute-optimized,

storage-optimized, and memory-optimized instances2.

IaaS workloads can be categorized based on several workload parameters such as resource

requirements, request arrival rates, and workload distribution. Without loss of generality, we

only consider resource requirements as workload parameters for categorization in this work.

Therefore, workload categories will be CPU-intensive, memory-intensive, and I/O intensive.

The proposed workload categorization is applicable for any other workload parameters. Let
2https://aws.amazon.com/ec2/instance-types/
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us assume there are Nc types of workload based on resource requirements of consumer

requests. Therefore, we create Nc number of categorical signatures. A categorical signature

is represented as:

Sc =



sc11 sc12 .. sc1t

sc21 sc22 .. sc2t

sc31 sc13 .. sc3t

.. .. ...

scn1 scn2 .. scnt


(6.7)

where Sc represents the signature for c categories of workloads. Here, c is one of the categories

in Nc. The rest of the attributes of Equation 6.7 are the same as the general signature.

6.3.3 Categorical IaaS Performance Signature Generation

The key difference between the categorical signature generation and the general signature

generation is the consideration of different workload categories. First, we define a set of

categories (C) based on the resource requirements where C = {1, 2, 3, ...Nc}. For each

category, we define the criteria that determine the category of each request (workload). Let us

assume that a consumer’s request has R number of attributes, where each attribute denotes

a resource in the VM such as vCPU, storage, or memory. For each attribute (a), we define

a minimum resource requirement Ma. If a request has more than Ma amount of resource

requirement for the attribute a, we consider that request as an a-intensive request. For example,

if a request has 80% of CPU usage requests, then we consider that request as a CPU-intensive

request. According to this approach, a request can exist in multiple categories of workloads.

The minimum resource requirement for each attribute is defined experimentally, i.e., the

different threshold is considered as the minimum resource requirement for each category to

find the most effective threshold. Once we define the category for each workload, we create

the categorical signature as follows:
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FIGURE 6.6: IaaS Signature change detection framework

(1) For a QoS attribute Q, the performance observed by the trial users is collected over time

T .

(2) For each category a at each trial length δT , we identify k number of a-intensive requests.

The average performance (Qk) is measured for each QoS attribute.

6.3.4 Proposed Change Detection Framework

In this subsection, we discuss the proposed change detection framework as shown in Figure

6.6. The proposed framework consists of two key components: a) IaaS performance noise

and b) IaaS performance change detection. The performance noise is initially defined by

the general signature and the categorical signature. The performance noise is then updated

dynamically based on the observed performance of the free trial users. The change detection

framework utilizes the knowledge of IaaS performance noise and the categorical IaaS signature

to detect changes in the categorical signature based on the observed performance by the free

trial users. The change detection framework updates the knowledge about the performance

noise based on the observed performance over time.

6.3.5 IaaS Performance Noise

A key step in identifying changes in IaaS performance is to accurately determine the noise in

IaaS performance. We define the noise in IaaS performance as the deviation from the expected
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performance behavior as represented by the signature of an IaaS service. The key challenge in

defining the performance noise is to determine the amount of performance fluctuation from the

expected performance behavior. A boundary must be defined, which will determine whether

the observed performance fluctuations can be considered as the noise or a permanent change

in the performance behavior. In signal processing, image processing, and other domains,

there are many approaches to define and detect different types of noises such as White noise,

Gaussian noise, and Salt and pepper noise. To the best of our knowledge, there is no definitive

way of defining noise in the case of IaaS performance behavior. Therefore, we propose a

heuristic-based approach using the general signature and the categorical signature to define

the initial performance noise boundary of an IaaS service. We call it IaaS performance noise

bandwidth. The noise bandwidth is updated over time based on the observed performance

behavior of an IaaS service. The performance noise bandwidth is defined as follows:

DEFINITION 12. IaaS Performance Noise Bandwidth. The surrounding area created by

the acceptable fluctuation from the expected performance of an IaaS service is the IaaS

performance noise bandwidth of that service.

The amount of acceptable fluctuation is initially defined by the general signature and the

categorical signature as shown in Figure 6.11. The distance between the general signature

and the categorical signature D is computed for each timestamp. D is then considered as



SECTION 6.3: PERFORMANCE NOISE-BASED SIGNATURE CHANGE DETECTION 119

the acceptable deviation from the expected performance as represented by the categorical

signature. Any observed performance that has the maximum deviation D from the categorical

signature is considered be noisy performance. The noise bandwidth is later updated based on

the observed performance by the free trial users in the change detection step.

6.3.6 IaaS Performance Change Detection

Detecting changes in IaaS performance requires monitoring the current performance behavior

of an IaaS service. We assume that the TNPO continues to monitor the experience of free trial

users after creating the signatures. When most of the users’ trial experience does not match

with the corresponding categorical signature, the existing signature needs to be re-computed.

We represent the signatures and the trial experience as time series. Therefore, the matching of

trial experience and signature has two parts: a) distance, and b) shape. When the observed

performance of a user has a distance from the categorical signature within the performance

noise bandwidth, and the shape of the observed performance is similar to the categorical

signature, we assume that there is no change in performance. We identify the following cases

during the matching based on the shape and the distance:

(1) Case 1: Most of the users’ observed performance is within the noise bandwidth, and the

shape of the performance is similar to the corresponding categorical signatures. In this

case, no action is taken.

(2) Case 2: Most of the users’ observed performance is outside the noise bandwidth, and the

shape of the performance is not similar to the corresponding categorical signatures. In

this case, signatures are required to be re-computed.

(3) Case 3: Most of the users’ observed performance is within the noise bandwidth, and the

shape of the performance is not similar to the corresponding signatures. In this case, we

reduce the size of the performance noise bandwidth.

(4) Case 4: Most of the users’ observed performance is outside but adjacent to the noise band-

width, and the performance shape is similar to the corresponding categorical signatures.

In this case, we increase the size of the performance noise bandwidth.
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Let us assume that the noise bandwidth at timestamp t is defined by d+ and d− where d+

is the distance from the categorical signature to the noise boundary on the upper side of

Y-axis, and d− is the distance from the categorical signature to the noise boundary on the

downside of Y-axis. Therefore, we need to measure whether the observed performance d

is in between d+ and d− at each timestamp. The first two cases are straightforward. We

define a threshold Th. When Th percentage of the users’ observed performance matches

with case 1 or case 2, we either take no action or update the signature. The value of Th is

set experimentally. In case 3, if Th percentage of users’ performance is within the noise

bandwidth and their shape does not match, we reduce the performance noise bandwidth. We

experimentally define a similarity threshold Ts, which determines the minimum acceptable

similarity between observed performance and the categorical signature. After reducing the

bandwidth, we apply the change detection process again for each user’s observed performance.

In case 4, we increase the size of the noise bandwidth based on the observed performance and

apply the change detection process again. We define a threshold δd, which determines how

much noise bandwidth needs to be increased or decreased in cases 3 and 4. The value of δd is

set based on experiments.

6.3.7 Experiments and Results

6.3.7.1 Experiment Setup and Datasets

A series of experiments were conducted to evaluate the proposed change detection approach.

We identified two key attributes: a) average delay and b) ability to detect changes or detection

accuracy to evaluate the proposed approach. The proposed approach is compared with the

existing IaaS performance changed detection approach proposed in Section 6.2.

The experiment setup is same as section 6.2.5.1. In addition, we identified the following two

key variables in this experiment that drives the performance of the proposed approach:

• Similarity Threshold: The similarity threshold indicates the minimum similarity between

the shape of the observed performance in the trial of a consumer and the corresponding

signature. The similarity threshold is utilized to determine shape-based similarity.
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TABLE 6.2: Experimental settings

Variable Name Values
Total provisioning period 360 days
Trial length of each consumer 30 days
Total number of IaaS performance signatures 5
Total number of Consumers 18
Similarity thresholds .6 to 0.9
Anomaly Thresholds 60% to 90%

• Anomaly Threshold: The proposed change detection framework relies on the trial experi-

ence of the majority of the users. Based on the observations of the majority of the users,

we either confirm change or update performance noise. The anomaly threshold defines the

minimum number of users that is considered as the majority of the users.

6.3.7.2 Evaluation and Discussion

We evaluate the proposed approach in terms of the average delay to detect signature changes

and its ability to detect true changes in signature. The expectation is to reduce the average

delay to detect the change in performance and increase the accuracy of detecting changes.

Here, accuracy refers to the true positives, i.e., how many changes the proposed approach

is able to detect. Figure 6.8 depicts the results of experiments. Figures 6.8(a) and (b) show

the average delay in detecting changes. Figure 6.8(a) shows the average delay for different

similarity thresholds. There is no trend visible that indicates that there is a linear relationship

between the similarity threshold and average change detection delay. The figure shows that

the average delay is the minimum when the similarity threshold is about 90%. However, the

average also depends on the anomaly threshold. When the anomaly threshold is about 70%,

the average delay is minimum in most cases in Figure 6.8(a). Similarly, Figure 6.8(b) shows

the average delay for different anomaly thresholds. It also shows no common trend in the

average detection delay based on the anomaly threshold. The average delay is the minimum

when the anomaly threshold is about 70%, and the similarity threshold is about 80%.

The average delay is not the only attribute to measure the performance. We consider the

accuracy of the proposed approach in terms of its ability to identify true changes correctly.

Figures 6.8(c) and (d) show the accuracy of the proposed approach. In Figure 6.8(c), the
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FIGURE 6.8: Experiment results (a) average delay for variable similarity
thresholds (b) average delay for variable anomaly thresholds (c) accuracy for
variable similarity thresholds (d) accuracy for variable anomaly thresholds

accuracy is illustrated with respect to the different similarity thresholds. The accuracy of

the proposed approach is about 80% when the similarity threshold is 90%. The effect of

different anomaly thresholds is not very substantial on the accuracy according to the figure.

Figure 6.8(d) illustrates the accuracy with respect to the anomaly threshold. When the

anomaly threshold is about 90%, that means 90% of the users’ experience do not match

the corresponding signature, and the similarity threshold is about 90%, while the accuracy

of the proposed approach is about 80%. The proposed approach finds the changes in IaaS

performance based on an iterative approach that conditionally updates the performance noise.



SECTION 6.3: PERFORMANCE NOISE-BASED SIGNATURE CHANGE DETECTION 123

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Similarity thresholds

25

35

45

55

A
v
e
ra

g
e
 d

e
la

y
 (

d
a
y
s
)

anomaly threshold=22.22%

anomaly threshold=33.34

anomaly threshold=44.44%

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Similarity thresholds

50

60

70

80

90

100

D
e
te

c
ti
o
n
 a

c
c
u
ra

c
y

anomaly threshold=22.22%

anomaly threshold=33.34

anomaly threshold=44.44%

(b)

FIGURE 6.9: Performance of the ECA approach (a) average delay (b) accuracy

Therefore, the change detection process stops when the suitable performance noise bandwidth

is measured, confirming whether there is a change in the signature.

We have implemented the proposed ECA approach in [Fattah and Bouguettaya, 2020b] and

applied it to our dataset. The result of the ECA approach is illustrated in Figure 6.9. Figure

6.9(a) shows the average delay for different similarity thresholds and anomaly thresholds in

the ECA approach. The average delay in this approach can be 35 days to 55 days, depending

on the similarity and anomaly thresholds. The average delay in our approach can be from

2 days to 110 days, depending on the similarity and the anomaly thresholds. Choosing the

right similarity and anomaly threshold provides a better result than the ECA approach in

terms of average change detection delay. The detection accuracy in Figure 6.9 shows that

the ECA approach provides accuracy from 60% to 90%, depending on the similarity and

anomaly thresholds. The proposed approach in this work has an accuracy of about 60% to

80%. However, it does not produce any false positives, while the proposed ECA approach in

[Fattah and Bouguettaya, 2020b] produces a significant number of false positives.
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6.4 Signature Change Detection Framework

We propose a new signature change detection framework in this section. The proposed

framework leverages change detection techniques from signal processing domain to detect

changes. The focus of this framework is to distinguish the true changes in IaaS performance

from the changes that are caused by performance noise during the change detection. Noise in

signal processing typically refers to the unwanted disturbance in electrical signals [Whalen,

2013]. There are numerous types of noises in the signal processing domain. In the context of

IaaS performance, we define three types of IaaS performance noises: spikes, attenuation, and

distortion. We propose a novel change detection framework that identifies noises and true

changes in long-term IaaS performance behavior. The proposed framework leverages time

series similarity measure techniques and a sliding window approach to identify noise in IaaS

performance. In addition, we introduce a Signal-to-Noise Ratio or SNR-based approach to

improve the performance of the proposed framework. We conducted a set of experiments

based on real-world datasets to evaluate the proposed framework.

• A novel IaaS performance change detection framework that utilizes experience of free

trial users and existing IaaS signatures to detect long-term changes in IaaS performance

behavior.

• An IaaS performance noise model that represents different types of noise in IaaS perfor-

mance signatures.

• A sliding window-based change detection technique to detect changes in IaaS performance

signatures when there is no prior knowledge about the performance noise.

• A Signal-to-Noise Ratio based approach to detect changes in IaaS performance signature

when prior knowledge about performance noise is available.

6.4.1 Proposed Framework

IaaS performance change detection typically consists of two parts: a) change point detection

(CPD), and b) change detection. The CPD process identifies the points in time at which a

change in performance may occur. Once a change point is identified, the change detection
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FIGURE 6.10: IaaS signature change detection framework

process recomputes the signature and evaluates whether the signature needs to be updated.

The signature is then updated based on the evaluation of the change detection process. As

our main focus is on the change detection process, we assume that the CPD process will be

performed using the proposed approach in [Fattah and Bouguettaya, 2020b]. The reason for

including the CPD process is to provide a holistic view of the change detection process. Figure

6.10 shows the proposed change detection framework. The framework takes as input the free

trial experiences of potential consumers and existing IaaS signatures. The change points are

detected by comparing the free trial experiences and existing IaaS signatures. Once a change

point is identified, the change detection module applies two change detection approaches. The

first approach assumes there is no prior knowledge about IaaS performance. This approach

relies on time series similarity measure techniques and a sliding window approach. The

second approach assumes that we have prior knowledge about the performance noise. The

performance change is detected using prior knowledge about performance noise. In this

approach, we utilize signal-to-noise ratio to differentiate between noise and change in IaaS

performance. In the following subsections, we provide a brief overview of the change point

detection and the change detection approaches.

6.4.2 Change Point Detection

Change point detection is formally known as the problem of finding abrupt changes in data

when a property of a system or an entity changes. Change point detection is a pre-requisite of

change detection, i.e., identifying the points in time when the likelihood of change occurrences

is high. We utilize the proposed ECA approach in Section 6.2 in this framework.
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6.4.3 IaaS Signature Change Detection

6.4.3.1 IaaS Performance Noise

A change point indicates that a change may have occurred in IaaS performance behavior.

After a change point has been detected, the existing signature needs to be tested to ascertain

whether a revaluation of the signature is required. The main challenge in this ascertainment

is to differentiate between the noise and change in performance. We define the noise as

the irregular or abnormal performance behavior in the performance of an IaaS service with

respect to the corresponding IaaS signature. We identify the following three types of noise

that may appear in IaaS performance as shown in Figure 6.11.

(1) Spikes: Spikes in IaaS performance typically originate from various uncertain and sudden

changes in performance (Figure 6.11(a)). For instance, an IaaS provider may face a major

power failure of its infrastructure. These types of noise typically exist for a short period.

The performance becomes normal once the provider resolves the issue.

(2) Attenuation: The second type of noise is caused by attenuation. Attenuation in a signal

usually refers to the loss of power in signal strength; in the case of an IaaS signature, it has

a similar effect (Figure 6.11(b)). The performance of an IaaS service may not increase or

decrease as expected according to the signature. However, the performance has a similar

shape to its signature. Attenuation may occur due to the effect of multi-tenancy in the

cloud.
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(3) Distortion: Distortion refers to random noise in performance (Figure 6.11(c)). These

types of noise are very irregular and do not follow any particular pattern. Distortion

may be originated from multi-tenancy, scheduled maintenance, security attacks, sudden

hazards, and so on. Differentiating these types of noises from performance change is very

challenging.

First, we develop a change detection approach that applies a sliding window-based detection

technique that identifies the noises in IaaS performance. In this case, we assume that we do

not have any historical knowledge about performance noise. Next, we develop an SNR-based

approach to improve the performance of the change detection process. In this step, we assume

that we have prior knowledge about the nature of noise. In the following subsections, we

describe these two approaches.

6.4.3.2 Sliding Window Change Detection

Once a change point has been detected, the signature is recomputed based on the experience

of current trial users using the method described in Chapter 5. The existing signature and

the recomputed signature need to be compared to detect changes in performance. Both

signatures are represented as time series. Therefore, we may utilize existing time series

similarity measure techniques to compute the similarity between the two signatures. There are

numerous approaches in the existing literature to measure time series similarity based on the

shape and distance such as Pearson Correlation Coefficients (PCC), Euclidean Distance (ED),

Spearman Correlation (SC), Cosine Similarity (CS), Symbolic Aggregate Approximation

(SAX), and Dynamic Time Warping (DTW). However, most of these techniques do not

consider noise in time series during the similarity measure. Therefore, we develop a sliding

window-based noise detection technique to differentiate between noise and changes in IaaS

performance. The sliding window-based approach leverages existing time series similarity

measure techniques. In particular, we will use PCC and RMSE (Root Mean Squared Error) to

measure similarities between two signatures based on shape and distance. We utilize these two

similarity measure techniques as they are effective, easy to implement, and most commonly

used techniques.
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We start with the assumption that there is no noise in the IaaS performance. Therefore, we

measure the similarity based on PCC and RMSE distance between the existing signature and

the recomputed signature. The PCC is used to compare the shape between two time series

using the following equation:

Similarity(S, S ′)PCC =

∑n
t=1(st − s̄)(s′t − s̄′)√
(st − s̄)2

√
(s′t − s̄)2

(6.8)

where s̄′ and s̄ are the mean values of s′ and s within the period Tn. S and S ′ are the existing

and recomputed signature respectively. The next step is to measure the distance between the

two signatures using RMSE, as follows:

RMSE(S, S ′) =

√√√√ 1

T

T∑
t=1

(S(t)− S ′(t))2 (6.9)

where S and S ′ are the existing and recomputed signature over time T . S(t) and S ′(t) denote

the value of S and S ′, respectively at time t.

When the existing signature and the recomputed signature have high similarity and a low

RMSE distance, we assume that the existing signature does not require re-evaluation. There-

fore, the detected change point would be considered a false positive. The thresholds SP and

SR for the PCC and RMSE, respectively, need to be predefined. We defined these thresholds
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experimentally. If the PCC or RMSE are lower than these thresholds, we need to decide

whether the existing signature should be updated. If we can identify the noise in the recom-

puted signature, and if by removing the noise the similarity increases considerably, we do not

change the existing signature.

If the shapes of the signatures are very similar and the RMSE distance is within an acceptable

threshold TD, we consider it to be the effect of attenuation. Therefore, we do not change

the existing signature in this case. If the PCC value is low and the RMSE distance is also

low, they indicate the shape has been altered. It could have resulted from either performance

change or noise. If it is because of noise, then the noise is either spike or distortion. We

can detect spikes in IaaS performance using a sliding window-based approach as shown in

Figure 6.12. In this approach, we start with an assumption that the lower value of the PCC is

originated from spikes. Therefore, if we can identify and remove spikes from the recomputed

signature, the similarity score will increase. Hence, we define a window W . The length of W

should be greater than the size of the spike to identify the noise. Therefore, the length of W

should be defined based on the size of the spike.

We scan the signature from beginning to end using theW length, and each time we remove the

W portion of the signature and recompute the value of PCC. If the similarity score increases

and reaches up to the threshold SP , then we consider it to be noise. Therefore, we do not

update the existing signature. We are unable to distinguish between the change and noise

in this approach if the noise is originated from distortion. In this case, we need to rely on

experience about the noise.

6.4.3.3 SNR-based Change Detection

We discuss the change detection approach with prior knowledge about performance noise. In

this approach, we rely on historical information rather than time series similarity measures.

As a result, we do not need to identify different types of noise separately. We leverage a noise

detection technique from the signal processing domain to identify noise in IaaS performance.
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We assume that once a signature has been generated, the TNPO monitors the performance of

free trial users for a period T (e.g., one year). In this period, we assume that the IaaS signature

of a service does not change considerably. Therefore, the TNPO monitors performance

without any intervention to the existing signature to understand performance noise. The

TNPO monitors the noise and measures the Signal-to-Noise Ratio (SNR). SNR is used to

measure the level of the desired signal and the level of background noise. SNR is typically

expressed as the ratio of signal power to noise power, often expressed in decibels. A ratio

higher than 1:1 (greater than 0 dB) indicates more signal than noise. In the context of

change detection, we consider the existing IaaS signature as the desired signal and the IaaS

performance noise as background noise. The SNR value is computed as follows:

SNR =
E(S2)

E(N2)
(6.10)

where S is the signal and N is the noise. E refers to the expected value, i.e., in this case,

mean square of S and N . When the noise has an expected value of zero, then the denominator

is its variance rather than the mean. We assume that the TNPO divides the T period into

d number of segments. The value of d can be adjusted based on the noise in the different

seasonal periods, i.e., daily, weekly, monthly. The TNPO requires recomputing the signature

in these d periods to compute the noise. The noise (N ) can be computed by measuring the

difference between the existing signature and the recomputed signature using the following

equation:

N = S − Sr (6.11)

where S is the existing signature and Sr is the recomputed signature in the noise learning

period. For each d period, we measure the SNR value. Once the monitoring period is finished,

we start the change detection process. Once we detect a change point, we recompute the

signature based on the experience of current users. We then compute the SNR value of the

current signature compared to the recomputed signature. If the current SNR value is close to

any existing SNR values, we consider the change point as a false positive and do not change



SECTION 6.4: SIGNATURE CHANGE DETECTION FRAMEWORK 131

the existing signature. We define a threshold T SNR experimentally to determine the minimum

SNR distance between the current SNR and past SNR values. The change detection process

can be improved by adjusting this threshold.

6.4.4 Experiments and Results

A series of experiments are conducted to evaluate the proposed sliding window and SNR-

based approaches. The proposed approaches are compared with the existing IaaS performance

change detection approach, i.e., cumulative sum control chart (CUSUM) proposed in Section

6.2.

6.4.4.1 Experiment Setup

Finding real-world workload traces and performance datasets for a long-term period was

very challenging. Thus, we utilized the publicly available workload traces and performance

data to mimic the long-term cloud environment. We used the Eucalyptus IaaS workload,

which contains six workload traces of a production cloud environment, to generate the trial

workloads of different consumers3. We selected a trace that contained 34 days of workloads

of a large company with 50,000 to 100,000 employees. We partitioned the data into 360

parts and considered each partition as an average workload of one day to create a one-year

workload dataset. The long-term performance of five IaaS providers was generated from the

benchmark results published in SPEC Cloud IaaS 2016 [Fattah et al., 2019]. We augmented

the workload traces with the performance data to generate a long-term workload-performance

dataset of five IaaS providers. We created the signature of each provider using the approach

in the previous chapter. We have created approximately 100 new signatures to simulate the

change in IaaS signatures from the signature of five IaaS providers. To create a new signature,

first we selected a random index in one of the IaaS signatures. This index is called change

index. We then computed the moving average for each 10 data points in the signature starting

from the change index to the rest of the signature. There are various types of noise known

in signal processing domain such as white noise, black noise, Gaussian noise, Cauchy noise.

3https://www.cs.ucsb.edu/~rich/workload/

https://www.cs.ucsb.edu/~rich/workload/
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TABLE 6.3: Experimental Settings

Variable Name Values
Total provisioning period 360 days
Trial length of each consumer 30 days
Total number of IaaS performance signatures 5
Total number of Consumers 18
Similarity thresholds .6 to 0.9
Anomaly Thresholds 60% to 90%

We chose to utilize additive white Gaussian noise as it a commonly used noise model used in

information theory to mimic the effect of many random processes that occur in nature. We

have created new signatures to simulate the change in IaaS signatures from the signature of

five IaaS providers. To create a new signature, first we selected a random index in one of the

IaaS signatures. This index is called change index. We then computed the moving average for

each 10 data points in the signature starting from the change index to the rest of the signature.

The original signature is then altered by replacing with the moving average values from the

change index to the end of the signature. The experimental settings are shown in Table 6.3.”

6.4.4.2 Evaluation and Discussion

The aim of the experiments is to evaluate the proposed approaches in terms of their ability

to differentiate between noise and true performance changes. Therefore, we consider four

attributes: 1) True Positives (TP) (indicating correct change detection), 2) False Positives

(FP) (indicating incorrect change detection), 3) True Negatives (TN) (indicating correct noise

detection), and 4) False Negatives (FN) (indicating incorrect noise detection). First, we look

at the false positive rate and the true positive rate of the proposed approaches. The false

positive rate (also known as false alarm ratio) indicates the expectancy of the false positive

ratio and is calculated as follows:

False Positive Rate (FP rate) =
FP

FP + TN
(6.12)
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FIGURE 6.13: Experiment results (a) false positive rate (b) true positive rate

The lower value of false positive rate indicates better performance. Similarly, true positive

rate (also known as recall or sensitivity) refers to the ability to identify correct changes and is

calculated as follows:

True Positive Rate (TP rate) =
TP

TP + FN
(6.13)

Figure 6.13(a) shows the FP rate of the three different change detection approaches. The

experiment is run with five different sample sizes of IaaS signatures. The X axis indicates

the sample size of each iteration. The Y axis indicates the false positive rates. Figure 6.13(a)

shows that the sliding window approach has the lowest average FP rate compared to the

other two approaches (around 0.3 in most cases). The SNR-based approach has a higher FP

rate than the sliding window approach and a lower FP rate than the CUSUM approach. The

CUSUM approach has the highest false positive rate. Similarly, Figure 6.13(b) shows the TP

rate for the three approaches. The sliding window has the lowest TP rate and the CUSUM

has the highest TP rate. The SNR-based approach provides a TP rate higher than the sliding

window and lower than the CUSUM. These results indicate that the CUSUM is unable to

distinguish between noise and actual change in IaaS performance. Therefore, it considers all

types of noise and change as true change. As a result, it has the highest FP rate and TP rate.

The sliding window-based approach offers the lowest FP rate. However, its ability to detect
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FIGURE 6.14: Experiment results (a) accuracy (b) F1 score

true changes is also the lowest compare to the other approaches. The SNR-based approach

exhibits balanced FP and TP rate compared to the other two approaches. As a result, the

SNR-based approach can be considered to have a better ability to distinguish between the

noise and changes in IaaS performance. Now, we measure the accuracy and the F1 score

of these approaches to further evaluate the results. Accuracy and F1 score are computed as

follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(6.14)

F1 score =
TP

TP + 1
2
(FP + FN)

(6.15)

Accuracy refers to the ability to correctly detect changes compared to the total number of

observations. Figure 6.14(a) shows the accuracy of the three approaches. It shows that

the sliding window has the highest accuracy most of the time and CUSUM has the lowest

accuracy. The SNR-based approach has an accuracy higher than the CUSUM and lower than

the sliding window approach. From the accuracy results, the sliding window approach appears

to be the best-performing approach. However, the accuracy metric for change detection is

not always suitable, because a large number of true negatives in the data can cause bias. In
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such a case, the F1 score is a better indicator of performance measure. F1 score takes both

false positives and false negatives into account and is, therefore, a better indicator for uneven

class distribution of data. Figure 6.14(b) shows the F1 score of the three approaches. The

CUSUM has the lowest F1 score and the SNR-based approach has the highest F1 score. The

sliding window has a lower F1 score compared to the SNR-based approach. This indicates

that the SNR-based approach has a better ability to distinguish between the noise and changes

in IaaS performance compared to the other two approaches. This conclusion is the same as

the conclusion derived from the FP rate and the TP rate from Figure 6.13.

6.5 Summary

Detecting changes in long-term IaaS performance is important as it will help new consumers

select the best services according to their long-term QoS requirements. In this chapter,

we propose a set of approaches to detect changes in IaaS performance as represented by

its signature. In this case, the IaaS performance signature may need to be updated to be

representative of the new performance profile of the service. First, we introduce a novel

ECA approach to detect changes in IaaS performance, which would warrant changes in

the corresponding IaaS signature. The proposed approach relies on detecting anomalous

performance behavior from the experience of free trial users to detect changes in IaaS

performance. A novel anomaly-based event detection technique is proposed to determine

when to trigger the re-evaluation of IaaS signatures. We then introduce a categorical signature-

based approach to detect performance noise. Next, a novel IaaS performance model is

introduced to identify changes in IaaS performance. Finally, we propose a novel signature

change detection framework that utilizes sliding window-based and SNR-based techniques to

identity noise and changes in IaaS performance.
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Conclusion and Future Work

IaaS cloud is one of the most popular forms of cloud computing as it provides cloud consumers

with a range of benefits such as fast migration, low maintenance cost for IT infrastructure,

and high scalability. Most business organizations prefer to migrate and manage their in-

house infrastructure in the IaaS cloud. There are two types of subscriptions in the cloud: a)

pay- as-you-go, and b) reservation. Large organizations tend to utilize IaaS cloud services

on a reservation basis for a long-term period, e.g., one to three years. Subscribing to an

IaaS service for a long-term period is an important business decision for IaaS consumers.

Selecting a service that may perform poorly in the future may incur a substantial loss for an

organization. IaaS consumers are provided with a free short-term trial to facilitate a long-term

decision. However, selecting a service for a long-term period based on only a short-term trial

is challenging. In this regard, this thesis addresses the key challenges in selecting an IaaS

service for a long-term period based on short-term trials considering a consumer’s long-term

performance requirements. The key contributions of this research are presented in two parts.

In the first part, we propose a set of long-term selection frameworks to help a new consumer

in long-term selection. In the selection, we address three key challenges of the long-term

selection: a) candidate service provider selection for the free trials, b) effective utilization

of free trials, and c) long-term performance variability. In the second part, we focus on the

long-term performance change detection as this element may affect the selection considerably.

In this context, we address the key challenges in long-term performance change detection: a)

change point detection, b) change detection, and c) performance noise identification.

Chapter 3 proposes a long-term IaaS provider selection framework to select the closest-

matched IaaS provider according to a consumer’s long-term requirements. The short-term

136
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trial periods offered by the IaaS providers are leveraged to discover the providers’ unknown

QoS performance. We proposed a temporal skyline-based filtering method to limit the number

of candidate IaaS providers for the trial periods. Then, we considered two possible cases: a)

experience of free trial users is available, and b) experience of free trial users is unavailable.

In the first case, we proposed a co-operative long-term QoS prediction (CLQP) approach to

discover a service’s long-term performance. The proposed CLQP approach utilizes trial users’

experiences to predict a provider’s performance for the consumer’s long-term workloads with

a confidence measure. Experimental results show that the CLQP approach can effectively

measure QoS performance. In the second case, a long-term QoS prediction approach without

history is proposed that utilizes a set of trial workload generation approaches. Experimental

results show that the LQP-short can effectively predict QoS performance with acceptable

precision. Finally, a QoS-aware selection method is proposed to select the closest match

provider where the provider’s expected performance closely matches the consumer’s long-

term requirements.

In Chapter 4, we approached the long-term selection from a different perspective, where we

leveraged the concept of performance fingerprints. The performance fingerprint of an IaaS

service represents a service’s expected performance behavior over a long-term period. Here,

we assume that the performance fingerprint of a service is known during the selection. The

performance fingerprint of a service is incorporated with a consumer’s trial experience for

the long-term selection. A novel trial strategy using the equivalence partitioning method is

proposed to estimate a service’s performance for different types of workloads while consid-

ering the service’s performance variability. A performance fingerprint-matching technique

is proposed to ascertain the confidence of the consumer’s trial experience. A trial experi-

ence transformation method is proposed to improve the confidence of the consumer’s trial

experience.

In Chapter 5, we extended the concept of performance fingerprints into performance signatures.

Here, we assumed that free trial users may not share their experiences publicly to protect their

privacy. Therefore, free trial users share their experience to a trusted non-profit organization

that generates and provides the performance signature of a service to potential consumers. A
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Signature-based QoS Performance Discovery (SPD) algorithm is proposed, which leverages

the combination of free trials and IaaS signatures. A new significance-based trial scheme is

proposed using frequency distribution analysis to test a consumer’s long-term workloads in a

short-term trial.

In Chapter 6, we introduced a novel ECA approach to detect changes in IaaS performance,

which would warrant changes in the corresponding IaaS signature. The proposed approach

relies on the detection of anomalous performance behavior from the experience of free

trial users to detect changes in IaaS performance. A novel anomaly-based event detection

technique is proposed to determine when to trigger the re-evaluation of IaaS signatures. The

experiment results show that the proposed approach is able to accurately detect changes

in IaaS performance that warrant re-evaluation of the corresponding IaaS signature. We

then introduced a more advanced performance change detection approach. In this approach,

we introduced the concept of categorical and general IaaS performance signature to define

performance noise more accurately. We introduced a new IaaS performance noise model to

identify performance change accurately. Finally, we introduced a signature change detection

framework approach that considers performance noise during the change detection. The key

challenge in performance change detection is to differentiate between noise and changes in

IaaS performance. We defined three types of noise in IaaS performance behavior, i.e., spikes,

attenuation, and distortion. We utilized time series similarity measuring techniques and a

sliding window technique to identify noise in IaaS performance. We proposed an SNR-based

approach to improve the performance of change detection. In this approach, we utilized the

Signal-to-Noise Ratio to measure noise levels in IaaS performance to detect changes.

7.1 Discussion

This research focuses on the long-term selection of IaaS cloud services given a consumer’s

long-term QoS requirements using performance discovery. A set of trial strategies is proposed

to effectively utilize free trial periods based on the consumer’s long-term workloads. The

concept of an IaaS performance signature is proposed to deal with long-term performance



SECTION 7.2: LIMITATIONS 139

variability for the long-term selection. The long-term performance behavior of a service may

change over time. In this case, the performance signature may need to be updated over time to

reflect the current performance behavior of an IaaS service. We proposed a set of approaches

to detect changes in the IaaS performance behavior of an IaaS service. Our research shows

that relying only on IaaS advertisements or the trial experience is inadequate for the long-term

selection as it often leads to making an incorrect choice. Experimental results show that

selecting appropriate trial workloads has a substantial impact on the long-term selection. The

result also shows that the long-term selection can be improved significantly by utilizing the

proposed signature-based selection approach. Although this research helps a consumer in

making an informed long-term selection, there are several limitations that may open up new

research directions. We briefly discuss the key limitations and future work below.

7.2 Limitations

We assumed that a consumer’s long-term workloads are deterministic during the long-term

selection, i,e., a consumer knows how they will utilize the service over long-term period.

However, a consumer’s service usage pattern may change over period of time. In such case,

deterministic workload model may not lead to the optimal selection. We also assumed that the

required service for a consumer will be available for free trials. Although this assumption is

realistic as provider typically would allow free trial for most services, however, if the service

is not available for free trial, the proposed selection frameworks would not be able to perform

the selection.

We proposed an equivalence strategy-based trial strategy where multiple VMs are utilized to

evaluate service performance. The accuracy of the performance discovery may depend on

the number of available VMs. When only one VM is available for the free trial, discovering

service performance could be more challenging in this context.

We introduced a signature-based IaaS cloud service selection framework where the accuracy

of the signature depends on the number of consumers that share their trial experience to
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a trusted third party. Therefore, if most users are reluctant to share their experience, the

accuracy of the signature will degrade significantly.

A key limitation of this work is the use of synthetic datasets in the experiment. We have used

publicly available short-term datasets to conduct the experiments due to the unavailability of

suitable long-term workload-performance datasets. However, the synthetic datasets are created

by augmenting real-world datasets to capture the characteristics of real cloud environment.

Therefore, we believe the result would be similar if the experiments were conducted directly

using real datasets.

7.3 Future Work

The limitations of this work could lead to several new research directions. To overcome the

limitation of deterministic workloads, we investigate how to develop a dynamic workload

prediction model that would help a consumer to perform long-term selection. This model

could be build up by utilizing the past service usage pattern of a consumer over a long period.

When a particular service is unavailable for the free trial, we may investigate the use of

available services to predict the performance of the required service. In this case, we may

utilize collaborative QoS recommendation techniques to predict service performance.

The proposed equivalence trial strategy in chapter 4 would mainly work if there are multiple

VMs are available for the free trial. However, a possible research direction could be developing

more advance trial strategy that would work even if only one VM is available. In this case, we

may need to consider partitioning the available time in a way that would allow us to simulate

multiple VM environment.

We may investigate how to develop an incentive model that would encourage free trial users

to share their experience publicly. It will lead to improve the accuracy of the signature. In

chapter 6, we proposed an event-based IaaS signature change detection framework. The

proposed framework aims at detecting long-term changes in IaaS performance of an IaaS

service and updating its performance signature accordingly. The proposed framework assumes



that the signature of a service is generated accurately prior to the change detection. However,

if the accuracy of the signature is lower, the performance of the proposed change detection

may degrade. In this context, a new change detection model could be developed that considers

the accuracy of the signature during the change detection.

We then introduced a new type of IaaS performance signature called categorical IaaS signature.

The categories are defined based on the resource requests of the consumer’s workload such as

CPU-intensive, I/O-intensive, and network-intensive. However, it is possible to categorize

the consumer workloads based on workload distributions such as uniform, heavy- tailed, and

self-similar. In this context, the proposed categorical signature generation technique may be

extended to capture the effect of the workload distribution of the performance. Finally, we

introduced an IaaS signature detection framework where performance noise is considered

during the change detection. The proposed framework primarily focuses on three types of

noise during the change detection. A possible extension could comprise development of a

new framework that can identify other performance noises.

A possible extension of this research is to extend the application of IaaS performance signa-

tures. For example, the performance signature of an IaaS service could be utilized to detect

long-term performance anomalies. Another possible extension of this research is to consider

the long-term IaaS cloud service composition, where a consumer may need to select multiple

IaaS cloud services for the long-term selection.
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APPENDIX A

TABLE A.1: Notations and descriptions

Notation Description

T Required provisioning time
W Consumer workloads in time series
QC Set of QoS requirements of consumers
l Number of QoS parameters in QC

qci The time series of the QoS attribute qci
tn A timestamp in T where n = 1, 2, 3, ...T
xn The value of q(ci) at the time period tn
N The number of IaaS providers who can

satisfy the functional requirements of the consumer
P A set of IaaS providers
Ps Selected IaaS provider
Ai The QoS advertisement of the provider Pi
STQ Temporal QoS skyline
MTSp MTS-based IaaS skyline
δt Time interval
Sc Set of similar trial users
Cδt Confidence of the QoS prediction
L Amount of loss of information
TQi

conf Trial confidence for Qi

S IaaS Performance Signature
Q′it Normalized value of Qi(t)
RMSE(Qr

i , Q
p
i ) Root Mean Squared Error between required QoS (Qr

i ) and predicted QoS (Qp
i )

R(P ) Rank function
S(EQ, SQ)ED Euclidean distance between normalized trial experience and signature
S(EQ, SQ)PCC Pearson Correlation Coefficients normalized trial experience and signature
S(EQ, SQ)CS Cosine distance normalized trial experience and signature
Ts Similarity threshold
ULi Upper limit of cumulative sum
LLi Similarity threshold
N Performance Noise
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TABLE A.2: Abbreviations and descriptions

Abbreviations Description

IaaS Infrastructure as a Service
VM Virtual Machine
vCPU Virtual CPU
CLQP Cooperative Long-term QoS Prediction
LQP-short Long-term QoS Prediction without History
QLIS QoS-aware Long-term IaaS Provider Selection
MAE Mean Absolute Error
MTS Multiple Time Series
ECA Event-Condition-Action
SNR Signal-to-Noise Ratio
RMSE Root Mean Squared Error
NRMSE Normalized Root Mean Squared Error
PCA Principle Component Analysis
FG Frequency-based Generation
RG Resource Consuption-based Generation
MG Mixed Generation
SPD Signature-based Performance Discovery
LPD Long-term Performance Discovery
EQ Equivalence Partitioning-based Approach
CUSUM Cumulative Sum Control Chart
DTW Dynamic Time Warping
SAX Symbolic Aggregate Approximation
SC Spearman Correlation (SC)
CS Cosine Similarity
PCC Pearson Correlation Coefficient
TP True Positives
FP False Positives
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