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Turbulent negatively buoyant jets occur when the buoyancy of a jet directly opposes its
momentum, and will decelerate until its mean momentum is reduced to zero. Here the flow
reverses direction and, for an axisymmetric flow originating from a round inlet, returns
annularly towards the source, mixing with the opposing fluid and forming a fountain. This
investigation focuses on the initial stage of the flow, before the return flow is established.
Data is obtained experimentally using two-dimensional particle image velocimetry (PIV)
and planar laser induced fluorescence (PLIF) for saline/freshwater negatively buoyant
jets with source Froude number Fro = 30 and Reynolds numbers 5500 . Reo . 5900 at
axial locations 18 . z/D . 30, and compared to a neutral jet. The development of the
mean and turbulence profiles with local Fr are investigated, and it is found that, unlike
neutral jets and plumes, the turbulence intensity in negatively buoyant jets does not
scale with the mean flow. Additionally, the ratio of widths of the buoyancy and velocity
profiles, λ, increases along the jet. The entrainment coefficient, α, was estimated for a
negatively buoyant jet, and was found to decrease with local Fr, eventually becoming
negative, indicating fluid is being ejected from the jet. These observations differ to neutral
or buoyant jets and plumes, which approach a constant λ and α in the far field. This
different behaviour in negatively buoyant jets is a natural consequence of the strongly
decelerating mean flow as a result of opposing buoyancy, which is demonstrated in the
context of the integral model framework developed by Morton et al. (1956).

1. Introduction

A turbulent jet is negatively buoyant when its buoyancy directly opposes its
momentum. It will continually decelerate until its mean momentum is reduced to
zero and the fluid reverses direction, returning towards the source while mixing with the
opposing fluid. These occur in various industrial applications, such as building ventilation
and brine discharge in desalination plants (Baines et al. 1990; Pincince & List 1973),
as well as natural phenomena, including explosive volcanic jets and cumulonimbus
convection in the atmosphere (Carazzo et al. 2008; Berson & Baird 1975). Some time
after the initial rise of a negatively buoyant jet, the flow reaches a quasi-steady state
where it oscillates around a height, zss, which is lower than the maximum height reached
during the jets initial rise, zi. This quasi-steady state stage of the flow is referred to as
the ‘fully developed fountain’ stage, with a structure consisting of an inner flow (IF)
surrounded by an opposing annular outer flow (OF) (Turner 1966; McDougall 1981;
Mizushina et al. 1982). Prior to the fully developed fountain forming, during the initial
rise to zi, there is no OF and the flow structure resembles a turbulent jet or plume. This
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will be referred to as the ‘negatively buoyant jet’ stage of the flow, and is the primary
focus of the present investigation.

For a round inlet, zi and zss are governed by the source Froude or Richardson numbers,

Fro =
wo

(−robo)
1/2

=
1

(−Rio)1/2
(1.1)

where wo and ro are the initial average axial velocity and source radius, and
bo = g(ρo − ρe)/ρe is the source buoyancy. Here ρ is the fluid density and g the
gravitational acceleration, with subscripts o and e denoting the source and environment.
This is applicable to ‘light’ jets ejected downwards into a denser ambient (ρe > ρo),
which are considered ‘negatively buoyant’ since their buoyancy opposes their momentum.
This definition of Fro and Rio means that for a negatively buoyant jet Fro > 0 and
Rio < 0, as convention, since bo < 0. It may also be noted that this definition of Rio can
also be used for positively buoyant jets/plumes (Rio > 0), but the Fro in this context
is reserved for negatively buoyant jets only (bo < 0). For a negatively buoyant jet with
high source Reynolds and Froude numbers (Fro & 5.5), zss and zi have been shown to
follow zss/ro = 2.46Fro, with zi/zss = 1.45 (Turner 1966; Burridge & Hunt 2012). Here
the source Reynolds number is defined as Reo = woD/νo with νo denoting the kinematic
viscosity of the source fluid and D = 2ro is the source diameter. For weak fountains,
1.0 . Fro . 1.7, the initial rise height is actually lower than the steady state height,
zi . zss (Burridge & Hunt 2012), and a different Fro relation is followed. However,
these are not considered in the present investigation, which is primarily focused on the
high Fro regime.

Turner (1966) used dimensional arguments to derive the linear Fro scaling for the
initial rise height of a negatively buoyant jet. More recent experimental efforts, relying
on bulk measurements of the initial and steady state rise heights, have classified different
negatively buoyant jet/fountain regimes based on Fro, with lower Fro flows having
a nonlinear relationship between zi and Fro (Kaye & Hunt 2006; Burridge & Hunt
2012). In addition to rise height, it is also useful to be able to measure and predict
overall entrainment and dilution in fountains, which is of significant importance to the
application of brine discharge in desalination plants, where dilution levels are crucial to
mitigating ecosystem damage (Pincince & List 1973). Burridge & Hunt (2016) took bulk
measurements of the total entrained volume flux of fountains with different Fro, finding
different scaling relations across the various Fro classifications. Kaminski et al. (2005)
also used bulk measurements to investigate entrainment, but specific for the initial
rise stage, where they found evidence that entrainment may be significantly reduced in
negatively buoyant jets compared to neutral jets.

Studies relying on bulk measurements, however, are unable to provide detailed
information about the internal structure of negatively buoyant jets/fountains. Mizushina
et al. (1982) used constant temperature and current anemometry to obtain velocity and
temperature measurements inside of high Fro fountains, finding temperature profiles
similar to a neutral jet, and that the inner velocity profile was similar but wider.
Mizushina et al. (1982) also found that the mean velocity and temperature profiles,
and the turbulence intensities, were not self-similar. Cresswell & Szczepura (1993)
investigated fully developed fountains with Fro ∼= 3.2 using laser Doppler anemometry
(LDA) and thermocouples to obtain velocity and temperature measurements. They
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reported high shear stresses at the IF/OF boundary and in the cap region, and found
that velocity-temperature correlations in the OF were similar to those in pure plumes.
They also found that the flow in general could not be described by self-similar profiles.
More recently, Williamson et al. (2011) undertook direct numerical simulations (DNS)
for Fro = 4 and 7 fountains, also finding that the profiles were not generally self-similar.
Additionally, Williamson et al. (2011) found that other than during a short region near
the source, fluid is primarily ejected from the inner to the outer flow, indicating ‘negative
entrainment’ with respect to the inner flow, for Fro = 7 fountains. This observation of
radial outflow from the IF to OF was also made by Cresswell & Szczepura (1993) after
an axial distance of 1.3ro for a Fro ∼= 3.2 fountain.

Another approach to investigating negatively buoyant jets and fountains is to use the
existing integral models originally developed by Morton et al. (1956) and Priestley &
Ball (1955) to describe neutral/positively buoyant jets and plumes. The Morton et al.
(1956) model is based on the conservation of volume and momentum, while the Priestley
& Ball (1955) model is based on the conservation of mean kinetic energy and momentum.
Both approaches can make use of the ‘entrainment assumption’, which relates the radial
velocity of fluid entrained into the jet/plume, to a characteristic vertical velocity at that
height by the entrainment coefficient, α (Morton et al. 1956; Fox 1970). Papanicolaou
et al. (2008) applied this model to negatively buoyant jets and compared the prediction
of initial rise height to bulk measurements of zi obtained experimentally. They found
that a reduced entrainment coefficient (compared to neutral jets) is required for the
model to match their experimental observations.

Other integral models aimed at describing the fully developed fountain case have
also been developed, such as by McDougall (1981) and Bloomfield & Kerr (2000), who
modelled a fountain as an upwards flowing negatively buoyant jet, surrounded by a
descending annular line plume. This approach requires estimating entrainment between
the inner/outer flow and outer flow/ambient fluid, as well as characterising the top (or
‘cap’) of the fountain. Bloomfield & Kerr (2000) produced four variations of their model,
but found that all of the models under-predicted the steady state rise height of the
fountains compared to experimental data.

The application of integral model approaches to negatively buoyant jets, both for the
initial rise and the fully developed fountain (e.g. McDougall (1981); Bloomfield & Kerr
(2000); Carazzo et al. (2010)), has been hampered by a lack of data of the inner flow
structure. If these integral models are to be more successful, a better understanding of
the effect of negative buoyancy on turbulent jets (without a return flow) is a necessary
and important step, although is likely still insufficient in fully modelling a fountain. A
key aim of this investigation is therefore to contribute to an improved understanding
of how negative buoyancy affects entrainment and the development of turbulent jets
more generally. The present research focuses on the initial transient jet, obtaining data
experimentally using combined two dimensional particle image velocimetry (PIV) and
planar laser induced fluorescence (PLIF). Additional background regarding the integral
models is provided in §2, followed by an outline of the experimental method in §3. Mean
statistics are presented in §4−5, including discussion regarding the scaling of the mean
and turbulence profiles with axial distance. Entrainment along the negatively buoyant
jet is investigated in §6, and the spreading rate of the velocity and buoyancy profiles is
discussed in §7. Both entrainment and the spreading rates are found to differ significantly
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from neutral jets and plumes, but nevertheless can be explained by the same governing
conservation equations.

2. Integral models

The early integral models developed by Morton, Taylor and Turner (MTT) (1956) and
Priestley and Ball (PB) (1955), may be expressed in terms of the volume, momentum
and buoyancy flux, Q, M and F , and the integral buoyancy, B,

Q = 2

∫ ∞
0

wrdr, M = 2

∫ ∞
0

w2rdr, F = 2

∫ ∞
0

wbrdr, B = 2

∫ ∞
0

brdr,

(2.1a − d)
where the vertical coordinate is denoted by z, and corresponds to the axial velocity,
w = w(z, r), which can be decomposed into its mean (ensemble averaged) and fluctuating
components w = w + w′. The radial coordinate is r and similarly corresponds to the
radial velocity, u, and b = g(ρ− ρe)/ρe is the buoyancy. Note that to obtain the physical
fluxes in the flow, (2.1a-d) must be scaled by a factor of π. These integral quantities can
be used to define the following characteristic velocity, width and buoyancy for the jet,

wm =
M

Q
, rm =

Q

M1/2
, bm =

BM

Q2
=

F

θmQ
, (2.2a − c)

where θm is defined in (2.8). These allow local Froude and Richardson numbers to be
defined, Fr and Ri, which depend on the local scales at any given z, and so may change
along the length of the jet,

Fr =
wm

(−rmbm)
1/2

=
1

(−Ri)1/2
. (2.3)

Due to the definition of b, the above expression for Fr is only valid for ‘light’ jets injected
downwards into a more dense environment (ρe > ρ).

For an axisymmetric turbulent jet with arbitrary buoyancy, the following equations
based on the conservation of volume, streamwise specific momentum, buoyancy and mean
kinetic energy may be derived for flow into a uniform unstratified environment. These
invoke the Boussinesq approximation, assume high Reynolds number flow, neglect the
pressure contributions in the momentum and mean energy equations (van Reeuwijk &
Craske 2015),

dQ

dz
= 2αM1/2, (2.4)

d

dz
(βgM) =

FQ

θmM
= B, (2.5)

d

dz

(
θg
θm

F

)
= 0, (2.6)

d

dz

(
γg
M2

Q

)
= δg

M5/2

Q2
+ 2F. (2.7)

Here β, γ, δ and θ are the ‘profiles coefficients’ defined in (2.8), where subscripts m and
f correspond to the mean and turbulent components respectively, and g indicates the
sum of them both,
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βm =
M

w2
mr

2
m

= 1, βf =
2

w2
mr

2
m

∫ ∞
0

w′2rdr,

γm =
2

w3
mr

2
m

∫ ∞
0

w3rdr, γf =
4

w3
mr

2
m

∫ ∞
0

ww′2rdr,

δm =
4

w3
mrm

∫ ∞
0

w′u′
∂w

∂r
rdr, δf =

4

w3
mrm

∫ ∞
0

w′2
∂w

∂z
rdr

θm =
F

wmbmr2m
, θf =

2

wmbmr2m

∫ ∞
0

w′b′rdr.

βg = βm + βf , γg = γm + γf , δg = δm + δf , θg = θm + θf .



(2.8)

By observing the definitions of these profile coefficients, and their role in (2.5)-(2.7), we
see that β, γ, δ and θ are the dimensionless momentum flux, mean energy flux, turbulence
production and buoyancy flux (van Reeuwijk & Craske 2015). Note that for Gaussian
velocity and buoyancy profiles, θm = 2/(λ2 + 1), with,

λ =
rb
rw
, (2.9)

where rw and rb are the 1/e widths of the velocity and buoyancy profiles (Papanicolaou
& List 1988). For self-similar profiles, λ is constant and is also equal to the ratio of
half-widths, or any other similarly defined width.

The entrainment assumption, which relates the radial velocity of entrained fluid to a
characteristic vertical velocity at that height by the entrainment coefficient, α, is defined
here as (Morton et al. 1956; van Reeuwijk & Craske 2015),

(ru) |r=∞ = −αrmwm. (2.10)

Although there is considerable scatter in the literature, α has been shown to be constant
for pure plumes and jets in the far field, where the velocity and buoyancy profiles are
self-similar, and that entrainment is higher in plumes (0.10 . αp . 0.16) than jets
(0.065 . αj . 0.080) (Carazzo et al. 2006; Fischer et al. 1979). For jets with both
momentum and buoyancy, α has been shown to depend on the local Richardson number
(Priestley & Ball 1955; Fox 1970; Kaminski et al. 2005; van Reeuwijk & Craske 2015).
The simplest form of this relationship, originally derived by Fox (1970) and based on the
PB model, may be written as,

α = αj + (αp − αj)
Ri

Rip
(2.11)

where Rip = 8αpβg/5 is the plume Richardson number (Priestley & Ball 1955; Fox
1970; van Reeuwijk & Craske 2015). In this relation, α in positively buoyant jets takes
values between that of pure jets (α = αj when Ri = 0) and pure plumes (α = αp when
Ri = Rip).

Papanicolaou et al. (2008) applied (2.11) to negatively buoyant jets in their integral
model, and compared the models prediction of rise height, zi, to bulk measurements
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of zi from experiments. They found that a significantly reduced constant value of
the entrainment coefficient, αj = 0.057, must be used in order to accurately predict
zi. Conversely, Bloomfield & Kerr (2000) assumed a constant entrainment coefficient
and found that a larger value of α = 0.085 gave good predictions of zi compared to
experiments in both homogeneous and stratified environments. Kaminski et al. (2005)
took a different approach by calculating the ‘bulk entrainment’ of collapsing ethanol and
ethylene glycol (EEG) jets, and found a reduced value of α = 0.057. Although this is the
same value found as Papanicolaou et al. (2008), in the context of Kaminski et al. (2005)
it corresponds to a ‘bulk’ value, while in Papanicolaou et al. (2008) it corresponds to an
upper limit for α when Ri → 0, and decreases for more negative Ri (further along the
jet). These studies have all used bulk measurements of the flow, typically rise height,
to compare with predictions of the integral models. There have been few attempts to
obtain local measurements of the internal velocity and buoyancy fields of negatively
buoyant jets, which would provide an alternative approach to assessing the validity of
using these models.

2.1. Morton’s (1959) analytical solution

Morton (1959) further assumed self-similar Gaussian velocity and buoyancy profiles, a
constant entrainment coefficient, and considered only the mean components of the profile
coefficients (subscript m), to obtain (2.12a− c),

dQ

dz
= 2αM1/2,

dM

dz
=

FQ

θmM
,

dF

dz
= 0. (2.12a − c)

In this case all of the profile coefficients in (2.8) are constants, and an analytical solution
was derived for a positively or negatively buoyant jet originating from a point source. The
solution to this system of equations is plotted here in figure 1 for the case of a negatively
buoyant jet (F < 0). The following new variables are used to interpret the solution,

q = α−1/2θ−1/2m |Fo|1/2 |Mo|−5/4Q, (2.13)

m =
M

|Mo|
, (2.14)

ζ = 2α1/2θ−1/2m |Fo|1/2 |Mo|−3/4 z, (2.15)

where the constant Mo is the initial momentum flux at the point source and Fo = F is
the buoyancy flux. Integral velocity, width and buoyancy scales can be defined based on
the above variables (Morton 1959),

ŵm =
m

q
, r̂m =

q

m1/2
, b̂m =

1

q
. (2.16a − c)

These variables allow new ‘scaled’ local Froude and Richardson numbers to be defined,

F̂ r =
ŵm(

r̂mb̂m

)1/2 =
1

R̂i
1/2

. (2.17)

The solution to (2.12) for a negatively buoyant jet originating from a point source is
plotted against ζ in figures 1(a) and (b) in terms of the integral scales defined in (2.16)
(Morton 1959). An additional term, Ĥ2 = −r̂m/(2ŵm)(dŵm/dζ), is plotted in figure
1(c) and is discussed in more detail in §7. The velocity scale, ŵm, decreases with ζ
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Figure 1. The solution to the system of ordinary differential equations in (2.12) for the case
when F < 0 (i.e. a negatively buoyant jet, NBJ). The solution assumes fully self-similar velocity
and buoyancy profiles and a constant entrainment coefficient, α, and is presented in terms of

the integral buoyancy, velocity and width scales defined in (2.16). Plots of b̂m, r̂m, ŵm, F̂ r

and Ĥ2 = −r̂m/(2ŵm)(dŵm/dζ) against ζ are shown in (a). The quantities 1/b̂m and 1/ŵm

are additionally plotted in (b), which, for relatively small ζ, are approximately proportional to

ζ. The quantities b̂m, 1/r̂m, ŵm and Ĥ2 are plotted against F̂ r in (c). For a neutral jet (J),

Ĥ2 = 0.5 everywhere, which is also plotted in (c) as a horizontal line.

until it reaches its maximum height at ζi = 1.454 where ŵm = 0 and F̂ r = 0. Here
the width scale, r̂m, approaches infinity and the buoyancy scale decreases to a finite
value, b̂m = 0.791. Figure 1(b) reveals that 1/ŵm, 1/b̂m and r̂m increase approximately
linearly with ζ for ζ . 0.5 (F̂ r & 2), implying that the velocity and buoyancy scales
are nearly proportional to ζ−1 ∼ z−1, and radial scale to ζ ∼ z, in the lower portion of
the jet. Although ŵm, b̂m and r̂m all change continuously along the negatively buoyant
jet, the flow may still be characterised as consisting of two separate regimes. A ‘forced
regime’ where the scales may be approximated as linear with ζ (for ζ . 0.5, F̂ r & 2),
and a ‘buoyancy dominated’ regime where this approximation is no longer suitable. The
F̂ r . 2 regime is characterised by the strong deceleration of the flow, which is captured
by the non-dimensional term Ĥ2. This is plotted in figure 1(c) against F̂ r for both a
negatively buoyant jet (NBJ) and neutral jet (J). For F̂ r & 2 in the NBJ, Ĥ2 is small
and similar to the neutral jet value of Ĥ2 = 0.5, corresponding to the ‘forced’ regime.
After this, for F̂ r . 2, Ĥ2 rapidly increases with decreasing F̂ r as the flow is strongly
decelerated, corresponding to the ‘buoyancy dominated’ regime.

In the analytical solution for high Reo self-similar neutral jets, which have Fr = ∞,
wm scales with z−1 exactly (Fischer et al. 1979), and so it may be expected that the
velocity in self-similar, constant α, negatively buoyant jets scales in approximately
the same way for sufficiently high local Fr (i.e. in the forced regime). Similarly, the
scalar concentration and width scales in a neutral jet are also proportional to z−1

and z respectively, just as is approximately true for b̂m and r̂m in the forced regime.
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Figure 1(c) also shows how these scales change with F̂ r, with b̂m, 1/r̂m, ŵm all scaling
approximately linearly for high F̂ r.

The present experimental results show that, even in the forced regime (ζ . 0.5, F̂ r &
2), there are significant differences between the behaviour of negatively buoyant jets and
what is captured in this simplified model. These include turbulence intensities and shear
stress that scale differently to the mean flow, discussed in §4.3 and §5, a non-constant
entrainment coefficient discussed in §6, and the spreading of the velocity and buoyancy
profiles discussed in §7. Although these effects can be distinguished from each other, as
are shown in the following sections they are also linked. For example, the turbulence
intensities and shear stress have an effect on both entrainment and the spreading rate,
as is discussed in §6-7.

3. Experiments

The flow was investigated experimentally using combined two-dimensional particle
image velocimetry (PIV) and planar laser induced fluorescence (PLIF), with a 532 nm
Nd:YAG laser and four pco.2000 cameras. Two cameras were used for PIV and PLIF
each, and then the images ‘stitched’ together, allowing for a larger region of interest
(approximately 120×60 mm2). The stitching was performed using world-coordinate data
obtained from a ‘target sheet’ image taken prior to the experiment. The target sheet
consists of a checker-board pattern of squares with known dimensions and a reference
circle. Processing this image allowed world coordinates to be obtained for each pixel in
the image, which could be used to align and stitch the images. The PIV images were
processed using the MATLAB package PIVSuite by Jiri Vejrazka, with a multi-pass
interrogation and a final window size of 24 × 24 pixels2 (0.78 × 0.78 mm2) with a 75%
overlap. The PLIF images were processed using an algorithm developed by the present
authors, which included a laser correction procedure that accounted for variations in the
laser power profile between pulses. Rhodamine dye was chosen as the scalar tracer for
the PLIF measurements since it has a high absorption rate near the laser wavelength
(Zehentbauer et al. 2014), and has a high Schmidt number of Sc ∼= 2500 (Vanderwel &
Tavoularis 2014; Gendron et al. 2008). Further details of the experimental and image
processing procedures are discussed in Milton-McGurk et al. (2020).

The flow was obtained using a 1 m3 tank containing salt-water, and injecting a source
solution of freshwater, ethanol and Rhodamine 6G dye vertically from above through a
round pipe (D = 5 mm and 10 mm) with entry lengths > 75D. Since the source mixture
was lighter than the ambient salt-water, its buoyancy forces oppose the downward motion
of the jet and a negatively buoyant jet is produced. The source fluid would descend
into the tank during the initial flow stage, then reverse direction and move towards the
free surface forming a return flow. The negatively buoyant jet stage was defined as the
initial stage where there is no return flow present, and the flow structure resembles that
of a neutral jet or plume. During a single run, images were taken primarily during this
initial stage, after which the flow was stopped. Typically between 6 and 20 runs were
conducted at each axial location so that a sufficient number of images of this initial stage
could be captured in order to obtain statistical convergence. A graphical illustration of
the experimental set-up is given in figure 2.

A schematic of the negatively buoyant jet, and an example of a processed image, is
shown in figure 3. All negatively buoyant jet runs had a source Froude and Reynolds
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Figure 2. Graphical illustration of the experimental set up.

Figure 3. Schematic of the negatively buoyant jet with the laser sheet and region of interest
indicated, and an example of a processed experimental image with the velocity vectors and
scalar field shown. The region of interest is captured by two pairs of PIV and PLIF cameras,
with the images stitched together to form a single image like shown.

numbers of Fro = 30 and 5500 . Reo . 5900, with measurements taken for
18 . z/D . 39 using a D = 10 mm pipe. Neutral jet measurements with the
same pipe and Reo were obtained for 18 . z/D . 30, as well as using a smaller D = 5
mm pipe so that a higher Reo ∼= 104 and 72 . z/D . 78 could be achieved.

Since the region of interest of the cameras was relatively small compared to the height of
the jet/fountain (zi ∼= 535 mm), the different stages of flow development were determined
using velocity measurements of the inner structure. This involved observing how the
volume flux in the inner flow (QIF ) and outer flow (QOF ) regions of the NBJ changed
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Figure 4. The ratio −QOF /QIF , defined using (3.1), is plotted against time, t (s). The
ratio is a measure of the instantaneous volume flux in the inner and outer flow regions of a
negatively buoyant jet/fountain, and is used to define the initial negatively buoyant jet stage
where QOF � QIF and is approximately constant.

Figure 5. Three images showing the instantaneous velocity vectors and scalar concentration
field of a negatively buoyant jet as it developing into a fountain. With respect to figure 4, image
(a) was taken at approximately 5s, (b) at 32s and (c) at 106s. These images correspond to the
axial location range 17 . z/D . 20 where zi ∼= 54D, and are orientated such that that the jet
core is flowing downwards (the positive z direction).

in time. These are defined as,

QIF = 2

∫ ri

0

w̃rdr, QOF = 2

∫ ∞
ri

w̃rdr, (3.1a − b)



Entrainment and structure of negatively buoyant jets 11

where ri is the ‘boundary’ between the inner and outer flow and w̃ is the instantaneous
axial velocity profile. Although the instantaneous boundary is likely to change in time,
for the purposes of calculating QIF and QOF , ri is taken as constant and defined as
the first radial location where the mean velocity (calculated using all the instantaneous
velocity profiles) is equal to zero. This notion of an IF/OF boundary may not be well
defined at the top of the jet where the velocity goes to zero, but for the purposes of the
present investigation it is sufficient to compute QIF and QOF prior to this region.

The ratio −QOF /QIF is plotted with time in figure 4 for a Fro = 30 negatively
buoyant jet at z/D ∼= 19. There are three distinct regions in figure 4, the first where
−QOF /QIF

∼= 0 and is approximately constant (since QOF � QIF ), then a second, when
the ratio rapidly increases then decreases, and a third region where it oscillates around a
value −QOF /QIF

∼= 2. Images showing the velocity vectors and scalar concentration
fields from these stages are given in figures 5(a)-(c). The first stage, shown in (a),
corresponds to the initial rise of the jet before the return flow has developed, and thus
the velocity vectors are primarily orientated downwards (the positive z direction) inside
the jet, and have vertical components of approximately zero outside of it. The second
stage, shown in (b), corresponds to the intermediate transient period after the NBJ has
reached its maximum height as it begins collapsing back onto itself, but before it reaches
the quasi-steady state of a fully developed fountain. Here the axial velocity of the IF
reduces and a significant return flow begins to form, evident from the velocity vectors
pointing towards the source (upwards in this figure) in the OF, where it was previously
a nearly quiescent environment in (a). The fully developed fountain stage, shown in (c),
does not look categorically different from the transient stage in the instantaneous images
observed, with both images showing downward and upward flowing regions. However,
as is shown in the −QOF /QIF plot in figure 4, the volume flux in the inner and outer
flow regions is much more steady in time during the fully developed stage. The shape of
this plot, and the location of the three regions, are insensitive to the value of ri used in
(3.1). For example, a similar plot is obtained if the velocity profile half-width, defined
as the radial location where w/wc = 0.5, is used. In the first region, where −QOF /QIF

is approximately constant, time-averaged profiles were computed and were found not to
vary systematically in time. The flow could therefore be considered quasi-steady in this
range, and so this was used to define the negatively buoyant jet stage for each experiment.
All NBJ statistics discussed in the following sections correspond to this initial stage.
Additional details of this procedure are given in Milton-McGurk et al. (2020).

4. Statistical description of the flow

4.1. Centreline decay

For a self-similar neutral jet with constant α, the decay of the centreline velocity along
the jet axis follows the relation,

wo

wc
= K

( z
D
− zo
D

)
(4.1)

where wo is the velocity at the source, wc is the velocity at the jet centreline, zo is a
virtual origin and K is a constant (Fischer et al. 1979; Hussein et al. 1994; Papanicolaou
& List 1988). For a neutral jet, the centreline velocity therefore scales with z−1. There
is some variation in the literature for the value of the constant K, such as K = 0.17 by
Hussein et al. (1994) or K = 0.149 by Papanicolaou & List (1988), but a robust finding
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Figure 6. The quantity wo/wc plotted against axial distance z/D, showing the decay of the
centreline velocity for a neutral and negatively buoyant jet. Each cluster of points was obtained
from a separate experiment with the same source Froude number (Fro = 30 for the NBJ) and
similar Reynolds numbers (5500 . Reo . 5900). The prediction of Morton’s (1959) model for
a constant α = 0.0714 and λ = 1.2 is shown, as well as ‘model 2’, a linear model for α with
Ri using coefficients found by Kaminski et al. (2005). Additionally, ‘model 1’, which assumes a
linear relationship for δm with Ri, is also shown. These models are discussed further in §6.

is the linear wo/wc relation with z. Figure 6 shows wo/wc plotted against z/D for
neutral and negatively buoyant jets. A linear fit of our neutral jet data gives K = 0.142,
in good agreement with Papanicolaou & List (1988). The virtual origin for the present
experiments is found to be close to the actual source at zo/D = 0.707.

For the negatively buoyant jet, the decay is not linear over the z/D range shown, and
can be seen diverging from the neutral jet results for z/D & 18. As z/D increases the
local Fr decreases towards zero (and Ri asymptotes to negative infinity), which may be
interpreted as negative buoyancy playing an increasingly important role in decelerating
the flow. However, for the points closest to the source, e.g. for z/D . 26 (Fr & 3.0,
Ri & −0.11), wo/wc could be approximated as linear with z, although with a different
slope to a neutral jet. This may be considered the ‘forced’ regime where the flow is more
similar to a neutral jet, and is consistent with the arguments made in §2 regarding the
solution to Morton’s (1959) simplified model. Although this is a local regime based on
local Fr, it may be compared to the classification of fountains by source Froude number,
Fro, such as those suggested by Burridge & Hunt (2012). They classified 2.8 . Fro . 5.5
and Fro & 5.5 as ‘forced’ and ‘highly forced’ fountains, which is consistent with the
presently suggested local ‘forced’ regime of Fr & 3.0.

4.2. Velocity and buoyancy profiles

Time averaged profiles for axial velocity and buoyancy, where buoyancy is presented
in terms of scalar concentration c, are given in figures 7(a) and (b), normalised by their
centreline values and respective half-widths. Dimensionless concentration (0 6 c 6 1)
and buoyancy (mm s−2) are related by a constant such that b = c(ρo − ρe)g/ρe. All
negatively buoyant jets profiles are close to Gaussian for the full range of local Fr
investigated, 1.85 . Fr . 5.91, and are similar to the profiles for neutral jets. This
is despite the considerable deceleration of the mean flow in the negatively buoyant jet
compared to the neutral jet, as demonstrated in figure 6, showing that the profiles
maintain a Gaussian shape even outside of the forced regime (Fr . 3.0).
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Figure 7. Time averaged axial velocity and scalar concentration (buoyancy) profiles, in (a)
and (b) respectively, of a negatively buoyant jet (NBJ) with different local Froude numbers.
Neutral jet (J) data from the present experimental set-up is also shown (Reo = 5900), as well
as by Webster et al. (2001), Wang & Law (2002) and Darisse et al. (2015). The NBJ profiles
were obtained using data from multiple experiments using the same pipe, D = 10 mm, at the
same source Froude number, Fro = 30, and similar Reynolds number 5500 . Reo . 5900,
while varying the location of the region of interest relative to the source. All velocity and scalar
concentration points have been normalised by their respective centreline values, wc and cc, and
half-widths, r1/2,w and r1/2,c.
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Figure 8. The 1/e width ratio between the buoyancy (or scalar) and velocity profiles, λ = rb/rw,
for a negatively buoyant jet (NBJ) and neutral jet (J). The data is plotted against axial distance
normalised by source diameter, z/D, in (a), and against the local Ri in (b). At the source,
Fro = 30 (Rio = −0.0011), which decreases towards Fr = 0 (Ri→ −∞) at the top of the NBJ.
In (b), the values for a neutral jet, which have Ri = 0 everywhere, are shown as horizontal lines
for clarity.

The ratio of widths between the buoyancy/scalar and velocity profiles is given by
λ and defined in (2.9). For neutral jets, rb corresponds to the 1/e width of the scalar
profile, with values estimated in the literature ranging 1.15 . λ . 1.30 (Fischer et al.
1979; Wang & Law 2002; Ezzamel et al. 2015), and is assumed to be constant in the far
field where the flow is self-similar. As pointed out by Ezzamel et al. (2015), discrepancies
in the literature may be attributed to the distance from the source where the profiles
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Figure 9. Mean turbulent axial velocity fluctuations, (a), and Reynolds stress, (b), for the
neutral jet (J) at three different axial locations, normalised by the local mean centreline velocity,
w2

c . The z/D = 18, 23 and 27 profiles correspond to an experiment with D = 10 mm and
Reo = 5900. The z/D = 73 profiles were obtained used D = 5 mm and Reo = 10700. The best
fit curve from Wang & Law (2002) (40 < z/D < 80) and the data from Darisse et al. (2015)
(z/D = 30) for a neutral jet is also shown.

were measured (e.g. if the jet has not fully developed), and that it is likely that source
conditions play a role.

Figures 8(a) and (b) show λ plotted with axial distance and local Ri for both the
neutral and negatively buoyant jets from the present experiments. The values for the
neutral jet are reasonably constant, and have an average value of λ = 1.181, in good
agreement with λj = 1.189 from Fischer et al. (1979). The slight decreasing trend
may be attributed to the jet still developing at this axial distance. For the negatively
buoyant jet, λ is higher than the neutral jet and increases with axial distance over the
range shown. From figure 8(b), λ can been seen increasing almost immediately from
Ri ∼= −0.04 (Fr ∼= 5.0) with more negative Ri, which is within the previously suggested
‘forced’ regime of Ri & −0.11 (Fr & 3.0). So even for relatively high local Fr, the
velocity and buoyancy/scalar profile widths grow at different rates compared with a
neutral jet.

A varying λ can be interpreted as a type of ‘similarity drift’ of the velocity and
buoyancy profiles, which has also been reported in jets and plumes that have not yet
reached a state of full self-similarity (Carazzo et al. 2006; Kaminski et al. 2005; Ezzamel
et al. 2015). The mechanism causing the increasing λ with z for negatively buoyant jets
is discussed in §7.

4.3. Turbulence statistics

Figures 9 and 10 show the profiles of the axial turbulence intensity, w′2/w2
c , and the

normalised Reynolds stress, w′u′/w2
c . The profiles at z/D = 73 for the neutral jet in

figures 9(a) and (b) are in good agreement with both the best fit curve from Wang
& Law (2002) and data from Darisse et al. (2015). This experiment used a smaller,
D = 5 mm, pipe so that measurements could be taken at a larger downstream distance
relative to the source diameter, and a high Reo = 10700 could be achieved. The flow in
this experiment could therefore be expected to be fully developed and self-similar and
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so could be compared to similar experiments in the literature, such as Wang & Law
(2002) who had Reo = 12700 and 40 < z/D < 80. The remaining J profiles in figure 9
correspond to experiments using a D = 10 mm pipe and have Reo = 5900 in order to
closely match the source conditions of the negatively buoyant jet experiments. These
18 < z/D < 27 profiles are generally a little lower than the z/D = 73 case since they
may not be completely developed at this distance, but are nevertheless reasonably close
and can be compared to a negatively buoyant jet at the same axial location.

Figure 10(a) and (b) shows the normalised w′2 and w′u′ profiles of a negatively
buoyant jet at some of the same axial distances as the neutral jet in figure 9, as well as
two additional further downstream locations. Despite some scatter in the data, there is a
clear upwards trend for both the axial turbulence intensity and Reynolds stress relative
to the centreline velocity with increasing axial distance, or equivalently, decreasing local
Fr. This is most evident for the Fr . 3.38 profiles as the flow exits the ‘forced’ regime,
and is particularly strong in the w′2/w2

c plot shown in (a). This does not imply that
the magnitude of w′2 or w′u′ is increasing with distance, but is instead revealing that
w′2 and w′u′ do not decrease at the same rate as the mean flow. This is consistent
with the qualitative description of a negatively buoyant jet, where the mean velocity is
reduced to zero at the top of the jet, zi, but where we can still expect non-zero turbulence.

Cresswell & Szczepura (1993) also obtained w′2 and w′u′ profiles, but for a fully
developed fountain with Fro ∼= 3.2. When their data (originally presented normalised
by source conditions) is normalised by the centreline velocity, the peak values also
increase with axial distance from the source as the mean flow decelerates. Near to
the source, 0.03 . z/D . 1.7, their peak values for the inner flow cover the range
0.05 . w′2/w2

c . 0.2 and 0.01 . w′u′/w2
c . 0.03, which are broadly similar to the

present values. However, the flow of Cresswell & Szczepura (1993) was at a much lower
Fro ∼= 3.2 and also included a return flow, and so is notably different to the present case
of Fro = 30 negatively buoyant jets. The phenomenon of increasing turbulence intensities
in a decelerating mean flow is not exclusive to negatively buoyant jets/fountains. In
a flow through a conical diffuser, for example, increasing turbulence fluctuations and
shear stresses, relative to the local centreline velocity, can be seen with increasing axial
distance as the flow expands and decelerates (Okwuobi & Azad 1973; Singh & Azad
1995). Although such a flow is significantly different to the present case, since the
evolution of turbulence with axial distance is affected by the velocity shear near the wall
(even at the centreline (Singh & Azad 1995)), a decelerating mean flow will still work to
increase the turbulence intensity if it is normalised in this way.

Figures 11 and 12 show the turbulent scalar fluctuation and axial and radial fluxes,√
c′2, w′c′ and u′c′, normalised by the centreline values and scalar half widths for the

neutral and negatively buoyant jet at different axial distances. The neutral jet profiles
in figure 11 generally all agree with Wang & Law (2002) and Webster et al. (2001).

The
√
c′2/cc data for z/D > 23 is in very close agreement with Webster et al. (2001),

although the shortest axial location z/D = 18 is slightly higher near the centreline.

The
√
c′2/cc centreline value of the best fit by Wang & Law (2002) (Reo = 12700,

40 < z/D < 80) is slightly lower than the present jet data (Reo ∼= 5700, 18 < z/D < 27).
However this difference is small (. 0.5%) when compared to the furthest jet experiment
(Reo = 10700, z/D = 73), and so the difference may be attributed to the larger z/D
and Reo in the Wang & Law (2002) experiments. The present axial flux data, w′c′/wccc,
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Figure 10. Mean turbulent axial velocity fluctuations, (a), and Reynolds stress, (b), for a
negatively buoyant jet (NBJ) at several axial locations, normalised by the local mean centreline
velocity, w2

c . The source conditions were Fro = 30 and 5500 . Reo . 5900 using D = 10 mm,
with data gathered across multiple experiments.

is close to both Wang & Law (2002) and Webster et al. (2001) for 18 6 z/D 6 27 in the
neutral jet, but here the z/D = 73 profile is a little higher. The radial flux, u′c′/wccc, is in
reasonable agreement with both studies at all locations. The negatively buoyant profiles,
given in figure 12, are of similar shape and order to the neutral jet data in figure 11,
with no discernible trend with axial location evident. Although one might expect to see
an increasing trend in w′c′/wccc or u′c′/wccc with axial distance, due to the decelerating
mean flow, wc, this effect is not noticeable within the experimental scatter. This is
likely due to the fact that, unlike with the velocity fluctuation, there is no clear relative
increase of the scalar fluctuations compared to cc (which does not go to zero at the top
of the jet), and so the effect of a decreasing wc is less significant. Cresswell & Szczepura
(1993) also obtained these quantities for their Fro = 3.2 fountain using temperature
measurements. When normalised by centreline quantities, and treating temperature as
a passive scalar, their peak values in the inner flow for 0.3 . z/D . 2.3 covered the

range 0.12 .
√
c′2/cc . 0.3, 0.01 . w′c′/wccc . 0.02, and 0.004 . u′c′/wccc . 0.02. As

with the turbulent velocity fluctuations, these are broadly similar to the present range
of negatively buoyant jet values, despite the differences in the flow.

5. Integral description of the flow

Figures 7(b) and 12(a)-(c) showed the development of the mean scalar concentration,

c, and the turbulent quantities,
√
c′2, w′c′ and u′c′, all scaling well with the centreline, cc,

for a negatively buoyant jet. Since b and c are related by a constant such that b = c(ρo−
ρe)g/ρe, this also shows that b,

√
b′2, w′b′ and u′b′ scale with bc. However, this does not

necessarily imply that they scale with bm, the integral buoyancy scale. If the mean velocity
and buoyancy profiles are assumed to be Gaussian, as is reasonably demonstrated by
figure 7, then at any given axial location they may be expressed as w = wc exp (−r2/r2w)
and b = bc exp (−r2/r2b ). By evaluating (2.2a−c), the integral scales become wm = wc/2,
rm =

√
2rw and bm = bcλ

2/2. We see that w scales with wm, but b only scales with bm
if λ is constant (i.e. the flow is self-similar). From figure 8 we see that λ is not constant
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Figure 11. The turbulent scalar fluctuations and axial/radial flux profiles,
√
c′2, w′c′ and u′c′

are given in (a), (b) and (c), respectively, normalised by the centreline values, wc and cc, and
scalar half width, r1/2,c for a neutral jet at various axial locations. The data was obtained from
the same experiments as figure 9. The best fit curve from Wang & Law (2002) (30 < z/D < 80)
and data from Webster et al. (2001) (50 < z/D < 90) is also shown.
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Figure 12. The normalised turbulent scalar fluctuations and axial/radial flux profiles,
√
c′2,

w′c′ and u′c′ are given in in (a), (b) and (c), respectively, for a negatively buoyant jet at different
axial locations. The data was obtained from the same experiments as figure 10.
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Figure 13. Mean buoyancy profiles of a negatively buoyant jet at different local Fr, with the
vertical axis normalised by the integral quantities, bm, (a), and gm, (b), and the horizontal
axis by the buoyancy half-width, rb,1/2. The same data is plotted here as in figure 7(b), but
normalised differently.

in negatively buoyant jets, and instead increases with distance from the source. In light
of this, new integral quantities may be defined that scale with b independent of the
behaviour of λ,

G = 2

∫ ∞
0

b
2
rdr, gm =

G

B
, rmb = sgn(Bo)

B

G1/2
. (5.1a − c)

where G is the integral of the mean buoyancy squared and is analogous to M , and gm
and rmb are buoyancy and buoyancy-width scales. The sign function, sgn(·), is used in
the definition of rmb so that sgn(Bo) = 1 or −1 for positively and negatively buoyant
jets, respectively, ensuring that rmb > 0 and the length scale is physically realistic. For
neutral jets, B and G may be defined in terms of the scalar concentration, c, instead of
b. With these definitions we have, for Gaussian w and b profiles,

gm =
bc
2
, rmb =

√
2rb, λ =

rmb

rm
. (5.2a − c)

That is, we have an integral quantity, gm, that scales with b without assuming a constant
λ. The b profiles normalised by bm, gm and the buoyancy profile half-width, rb,1/2, for
the negatively buoyant jet are shown in figure 13(a) and (b), respectively. Figure 13(a)
shows b/bm decreasing with increasing distance from the source, while the b/gm profiles
in (b) collapse reasonably well with no systematic trend with Fr. This is a consequence
of the increasing λ, which causes bm to grow faster than bc, since bm ∼ bcλ2 in Gaussian
profiles. The b/gm profiles, however, collapse reasonably well since gm ∼ bc independent
of λ.

We have also observed that the turbulence quantities w′2 and w′u′ increase relative
to axial centreline velocity, and thus wm, in negatively buoyant jets from figure 10. It is
therefore useful to define a new ‘turbulence velocity scale’, wf , that will scale with these
quantities since wm is no longer appropriate. This is defined in terms of the ‘turbulent
momentum flux’, Mf ,
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Figure 14. Mean turbulent axial velocity fluctuations, (a), and Reynolds stress, (b), for a
negatively buoyant jet (NBJ), normalised by the ‘turbulence velocity scale’, w2

f , defined in
(5.3). The same data is plotted here as in figure 10, but normalised differently.

Mf = 2

∫ ∞
0

w′2rdr = r2mw
2
f (5.3)

which is analogous to the ‘mean’ momentum flux, M = r2mw
2
m. It also follows from this

definition that βf = Mf/M , relating it to the profile coefficient defined in (2.8). Figure

14 shows the w′2 and w′u′ profiles normalised by w2
f at several axial distances, which

can be compared to figure 10 where the same profiles are normalised by w2
c = (2wm)2

(for Gaussian w profiles). While figure 10 shows a clear increasing trend for both w′2 and
w′u′ relative to w2

m, in figure 14 the profiles collapse within some experimental scatter,
showing no systematic trend. The horizontal axis in figure 14 is r1/2,w ∼ rm, showing that
although the new turbulence velocity scale is required for the magnitude of turbulence
profiles, the same length scale as the mean profiles may be used. The analysis in the
following sections will assume that Mf is small compared to M , or equivalently, that the
profile coefficient βf is small. This is reasonable in the high Fr region of the negatively
buoyant jet where M is sufficiently large, although may no longer be valid near the top
where M → 0. Future work may seek to take into account Mf in this region, and a

conservation equation for Mf , derived from the w′2 budget, may be required in addition
to (2.4)-(2.7).

6. Entrainment

6.1. Estimating the entrainment coefficient

For jets and plumes with arbitrary buoyancy, using the conservation of volume,
momentum and mean kinetic energy, and making no assumptions about the self-similarity
of the profiles, the entrainment coefficient can be expressed as,

α = − δg
2γg

+

(
1

βg
− θm
γg

)
Ri+

Q

2M1/2

d

dz

(
log

γg
β2
g

)
, (6.1)

where log(·) is the natural logarithm (van Reeuwijk & Craske 2015). In a simplified form,
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neglecting the turbulence components of the profile coefficients (subscript f in (2.8)), this
can be written as (van Reeuwijk & Craske 2015; Kaminski et al. 2005),

αM = − δm
2γm

+

(
1− θm

γm

)
Ri+

Q

2M1/2

d

dz
(log γm). (6.2)

The first term, −δg/2γg, is the ratio of turbulence production to mean energy flux, and
is the only non-zero term in a self-similar neutral jet and is constant. The second term
shows the effect of buoyancy on entrainment through the local Richardson number, and
provides a mechanism for buoyancy-driven entrainment associated with the mean flow,
rather than by directly affecting turbulence (van Reeuwijk & Craske 2015). The third
term reflects how the profile coefficients γg and βg change along the jet, and is zero if
the flow is fully self-similar.

By assuming self-similar profiles, (6.2) becomes,

αMS = − δm
2γm

+

(
1− θm

γm

)
Ri, (6.3)

which can be further simplified by assuming Gaussian profiles and a constant δm to obtain
the entrainment relation given in (2.11) (Priestley & Ball 1955; Fox 1970; van Reeuwijk
& Craske 2015). Alternatively, if α is assumed constant then the MTT model is obtained
(Morton et al. 1956; van Reeuwijk & Craske 2015). For the case of negatively buoyant
jets, although we have shown an assumption of Gaussian profiles is realistic over the Fr
range observed, the non-constant λ indicates that the full self-similarity assumption is
not. It is therefore useful to invoke the assumption of Gaussian velocity and buoyancy
profiles, yet allowing for a variable λ, to (6.2). The resulting expression is,

αMG = −3

8
δm︸ ︷︷ ︸

A1

+

(
1− 3

2(1 + λ2)

)
Ri︸ ︷︷ ︸

A2

, (6.4)

where θm = 2/(λ2 + 1), and the third term from (6.2) vanishes since γm = 4/3 is
constant, for Gaussian profiles.

To calculate δm from (2.8), the derivative ∂w/∂r must be estimated from the
experimental data. To avoid scatter in the derivative due to the spatially discrete
velocity data, a two-dimensional Gaussian filter of width 100 pixels (approximately 4
times the width of a PIV interrogation window) was first applied to w, and then the
derivative estimated using a second order accurate finite difference stencil. A similar
procedure was used to calculate the other derivatives present in the profile coefficient
definitions. In calculating δm, as well as other quantities such as Q, it is also necessary
to approximate an integral defined from r = 0 to infinity using data from a finite
region. In obtaining Q for the NBJ, for example, the integral was first calculated using
the trapezoidal rule over the full r range captured in the region of interest. This was
compared to the values obtained if the integral was calculated only up to the point
where the mean axial velocity first equals zero. The latter gives Q typically around 3%
lower than using the full range, since there are small w . 0 values in the outer region.
This difference is considered negligible, and given these negative velocities are much
lower than inside the jet (. 0.01wc), this region is regarded as part of an approximately
quiescent ambient. Integrating from r = 0 to the edge of the region of interest was
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Figure 15. The entrainment coefficient in the neutral and negatively buoyant jets from the
present experiments, as calculated from (6.4), which assumes Gaussian velocity and buoyancy
profiles, and for the NBJ case, allows for non-constant λ. For the neutral jet, which has Ri = 0
everywhere, α is shown as a horizontal line for clarity. The prediction of α from (6.4), using the
constant values δm = −0.216 and λ = 1.05 obtained from Kaminski et al. (2005), is also shown,
as well as linear fits of the terms A1, A2, and A1 +A2.

therefore used in computing all integral quantities.

Figure 15 shows the average value of αMG = A1 = 0.0714 as a horizontal line
calculated from the present neutral jet data, assuming self-similar Gaussian profiles.
This is in reasonable agreement with the ‘mean self-similar’ value calculated in van
Reeuwijk & Craske (2015) of α = 0.073, and their direct estimate (from the conservation
of volume (2.4)) of α = 0.069.

For the negatively buoyant jet, neither term in (6.4) is necessarily constant, and both
are plotted against local Ri in figure 15. We see that the first term, A1, which corresponds
to the ratio −δm/2γm, increases with more negative Ri. This is a consequence of the
profile coefficient δm, which increases in magnitude with axial distance primarily due to
w′u′ remaining high relative to wm, as discussed in §4.3 and §5. However, the overall
value of αMG decreases for more negative Ri due to the second term, A2, which reflects
the effect of negative buoyancy on entrainment through the factor of Ri. This can also
be seen by considering linear fits with Ri of the terms A1, A2, and their summation to
give α,

A1 = 0.075− 0.227Ri
A2 = 0.520Ri
α = 0.075 + 0.292Ri.

 (6.5)

This empirical α relation can be expressed as,

α = − δj
2γm

+

(
1− θm

γm
− ∆m

2γm

)
Ri, (6.6)

which is equivalent to (6.3) with δm = δj + ∆mRi. The coefficients of the empirical
fits of A1 and A2 in (6.5) imply δj ∼= −0.200, ∆m

∼= 0.604 and a constant θm ∼= 0.640
(λ ∼= 1.46 for Gaussian profiles). The value for δj can be interpreted as the ‘neutral jet
value’ implied by the model, which agrees with the jet values reported in van Reeuwijk



22 Milton-McGurk et al.

& Craske (2015) of 0.19 . −δm . 0.21 (Panchapakesan & Lumley 1993; Wang &
Law 2002; Ezzamel et al. 2015). The entrainment relation in (6.4) is derived from the
conservation equations (2.4), (2.5) and (2.7). In (6.6), we make the ad hoc addition of
the ∆m term motivated by the approximately linear δm trend observed from the data
in figure 15. The inclusion of ∆m is ad hoc since there has not yet been an analysis of
the governing equations to show the necessity of this term. Nevertheless, its inclusion is
supported by the data in figure 15, which raises the open question for potential future
research to explain the apparent need for it. The linear α relation in (6.6) is then a
semi-empirical description of the flow based on fits of the present experimental data,
rather than a direct derivation from the conservation equations, and will be henceforth
referred to as ‘model 1’.

The α relation given in (6.5) has a similar form to the linear relationship for
positively buoyant jets/plumes, which have Ri > 0 (Priestley & Ball 1955; Fox 1970).
However, (6.5) is only proposed valid for Ri < 0, where we have observed the linear
relationship between δm and Ri. It is not intended as a universal relation for both
positively and negatively buoyant jets. In the far field, buoyant jets approach a state
of self-similarity where they become indistinguishable from pure plumes, approaching
a constant Ri = Rip > 0 (Fischer et al. 1979; Papanicolaou & List 1988). For these
self-preserving flows, δm is constant and hence the linear α relation with Ri in the form
of (6.4), where A1 is constant, is obtained. It has been reported that δm is approximately
the same pure jets (Ri = 0) and plumes (Ri = Rip) (van Reeuwijk & Craske 2015; Wang
& Law 2002; Ezzamel et al. 2015; van Reeuwijk et al. 2016), and an approximately
constant δm has been reported in buoyant jets for 0.25 . Ri/Rip . 0.75 (van Reeuwijk
et al. 2016). However, this buoyant jet value was slightly lower than the jet and plume
values, and also varied near the source before the flow had developed (van Reeuwijk
et al. 2016).

Kaminski et al. (2005) derived an equation for α equivalent to (6.2), but in terms of the
coefficients Ã and C̃ (denoted A and C in their equation (3.33)). These can be related to
the profile coefficients in (6.2) by (Kaminski et al. 2005; van Reeuwijk & Craske 2015),

C̃ = −δm/(
√

2θmγm), Ã = γm/θm. (6.7a − b)

In this formulation, C̃ is related to the ratio of turbulent production to the mean energy
flux, but is also influenced by the shape of w and b through θm. The parameter Ã is
related to the mean energy flux and is also influenced by the shape of the mean profiles.
Using (6.7), (6.2) may then be written in terms of these parameters,

αMS =
γmC̃

√
2

2Ã
+

(
1− 1

Ã

)
Ri. (6.8)

Kaminski et al. (2005) calculated these parameters based on literature for positively
buoyant jets/plumes (see their table 3), with average values of C̃ = 0.12 and Ã = 1.4.
Although limited data was available, Carazzo et al. (2008) later found similar values in
negatively buoyant jets. Using (6.7), these correspond to δm ∼= −0.216 and λ ∼= 1.05
(θm ∼= 0.952) for Gaussian velocity/buoyancy profiles. When substituted into (6.4), these
give the linear relationship,

α = 0.081 + 0.286Ri. (6.9)

This relationship will be referred to as ‘model 2’, and is a reformulation of the entrainment
relation given in (2.11) based on the work by Fox (1970) and Priestley & Ball (1955),
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and uses constants based on values reported in Kaminski et al. (2005). This is very
similar to model 1 given in (6.5) and based on empirical fits for an NBJ, which can been
seen in figure 15 where both models are shown.

Model 2 gives good predictions of α in negatively buoyant jets, but assumes a constant
δm ∼= −0.216 and λ ∼= 1.05 that are not consistent with the increasing A1 and λ observed
in figures 15 and 8, respectively. Model 2 can also be described by (6.6), but where
δj = δm ∼= −0.216 and ∆m = 0. It can then be seen that the similarity between the
models is partly due to the δj ∼= −0.200 assumed by model 1 being similar to δj ∼= −0.216
in model 2 (i.e. the ‘neutral jet value’), which results in the first term of the linear α
relations in (6.5) and (6.9) being similar. The second term (the Ri coefficient) of the
relations are also similar, but for different reasons. In model 2, the value is determined
by λ ∼= 1.01 (θm ∼= 0.952) only, since ∆m = 0 (and γm = 4/3) with respect to (6.6).
For model 1, we have ∆m

∼= 0.604 and λ ∼= 1.46 (θm ∼= 0.640), which give a similar Ri
coefficient when inserted into (6.6). Model 1 appears to provide a representation of α in
an NBJs that is more consistent with the observed δm and λ in the present data.

For Ri & −0.11 (Fr & 3.0), in the forced regime, αMG in the NBJ is positive but
generally lower than it is for the neutral jet. For Ri . −0.25 (Fr . 2.0), αMG becomes
negative, implying there is a mean radial outflow of fluid from the jet to the ambient. This
phenomenon has also been reported in the literature on fully developed fountains, where
a mean outflow is observed from the IF to OF (Cresswell & Szczepura 1993; Williamson
et al. 2011). In a general sense, entrainment may be considered the process where fluid is
transported from a non-turbulent to turbulent region across some interface (e.g. Mistry
et al. (2016)). The α given by (6.1), however, is simply a consistency requirement for the
conservation of mass, momentum, buoyancy and mean kinetic energy equations. This
expression, and subsequent simplifications such as (6.4), are therefore not necessarily
describing entrainment in this general sense, but instead reflecting what the radial mean
flow must be in order to satisfy the conservation equations. An NBJ with a mean radial
outflow could still be subject to instantaneous ‘entrainment’ (flow from a non-turbulent
to turbulent region) at some times, while ejecting fluid into the ambient at others. The
α < 0 observed in the present NBJ indicates this net radial outflow, and means that
on average there is more fluid ejected outwards than flowing into the jet in this region.
This can be observed directly by examining the mean radial velocity profiles across the
jet, where the net outflow of fluid corresponds to u > 0 outside of the jet. This can be
seen on the left axis of figure 16, which shows u/wc plotted for the negatively buoyant
jet at Fr = 3.00 (Ri = −0.11) and Fr = 1.86 (Ri = −0.29), within the α > 0 and α < 0
regions respectively. The right axis shows the axial velocity profiles, w/wc, at the same
locations as a reference. The Fr = 3.00 curve has u/wc < 0 for r/rw,1/2 & 1.2, indicating
net entrainment of fluid into the edge of the jet where w/wc → 0. The Fr = 1.86 curve,
however, has u/wc > 0 in this region, indicating there is a net radial outflow of fluid into
the ambient.

Although this mean radial outflow does not typically occur in neutral or positively
buoyant jets and plumes, which have α > 0 everywhere, in negatively buoyant jets, a
negative α towards the top of the jet is a natural consequence of (6.4), rather than
any fundamentally different physics. This comes from the negative buoyancy and a
decelerating mean flow resulting in Ri → −∞ at the top of the jet. This causes the
second term, A2, to become increasingly negative, dominating (6.4) until α < 0 and
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Figure 16. The left axis and solid lines show the normalised radial velocity profiles, u/wc of a
negatively buoyant jet at two different axial locations. The right axis and dashed lines show the
corresponding axial velocity profiles, w/wc. The right and left arrows are shown to indicate the
axis each profile corresponds to.

there is a net radial outflow of fluid from the jet.

Future work may seek to incorporate the traditional notion of entrainment (an inflow
across a turbulent/non-turbulent interface), into the description of an NBJ with a net
outflow. This could be achieved by splitting up the mean radial velocity into ‘entrainment’
and ‘outflow’ components, e.g. u = ue + uout, where only the inflowing fluid is assumed
to be proportional to the mean flow by an entrainment coefficient. This description could
provide a clearer notion of ‘entrainment’ that is conceptually similar to that used in
the traditional integral models (Morton et al. 1956; Morton 1959), and that can occur
simultaneously with a mean outflow.

6.2. Predictions of the simplified integral model

The system of equations defined in (2.12) is now solved numerically using models 1
and 2 discussed in §6.1. Model 1 corresponds to using the α relation defined in (6.5),
which assumes a linear δm relationship with Ri and constant λ ∼= 1.46. Although we
observed from figure 8 that λ is not constant in NBJs, λ ∼= 1.46 lies within the range of
observed values and so, when solving (2.12), we take it to be constant to simplify the
model. When solving model 2, the α relation in (6.9) is used, which assumes a constant
δm ∼= −0.216 and λ ∼= 1.05 (Kaminski et al. 2005; Carazzo et al. 2008). By assuming a
constant δm, model 2 is simply a reformulation of the PB model (Priestley & Ball 1955;
Fox 1970), and although these δm and λ values are not consistent with those observed
from our NBJ data, this model provides a useful reference case for comparison. The
system of equations is also solved using the Morton (1959) model (constant α = 0.0714
and λ = 1.2) as an additional comparison.

The predictions for wo/wc obtained by solving (2.12) with these models have been
presented in figure 6 alongside the experimental data. The Morton (1959) model gives
similar predictions to both model 1 and 2 for z/D . 27, where there is also reasonably
good agreement with our NBJ data. Models 1 and 2 continue to agree with each other
and the NBJ data until z/D ∼= 30. For 30 . z/D . 38, model 2 actually gives better
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predictions than model 1 based on the empirical data, despite assuming values for δm
and λ that are not consistent with the present NBJ results. Part of the reason that two
similar α models can give significantly different predictions for wc is due to λ. Firstly,
this is due to the fact that in addition to the α relation, λ appears in the momentum
equation (2.12b) through θm. Additionally, λ appears in the definition of Ri through θm,
which further complicates its influence on the flow.

Neither model 1 or 2 accurately predict the flow over the full Ri range observed while
simultaneously maintaining consistency with the present δm and λ observations. This
suggests that neither model is complete. The λ ∼= 1.46 used in model 1 is closer to the
observed experimental data in figure 8 than model 2, although has poorer agreement for
z/D & 27. Although the wo/wc agreement of model 2 is very good, it is not consistent
with the observed λ and δm in the present data, and we leave this apparent discrepancy
as an open question.

Mizushina et al. (1982) found in their experimental study of fully developed fountains
(3 . Fro . 258), that the radius of the fountain was approximately constant and given
by rf/D ∼= 0.26Fro. If the cap region of the fountain was hemispherical, then this would
also be equal to the radius and vertical thickness of the cap. The cap region would then
extend from z = zss − rf to the top of the fountain, z = zss. If the top of a negatively
buoyant jet resembles the cap of a fully developed fountain, then this region would not
be well described by the present integral model, which was derived for jet-like flows. The
present Fro = 30 negatively buoyant jet, which has zi/D ∼= 53.5, would have rf/D ∼= 7.8.
The end of the ‘jet-like’ region where the models are applicable would then occur at
z/D ∼= 45.7. This is somewhat further than z/D ∼= 30 where model 1 departs from the
data, possibly due to the limitations of the model discussed above, but is nevertheless
broadly consistent.

7. Velocity and buoyancy spreading rates

To investigate the mechanism behind the increasing λ observed in figure 8, we consider
an expression for drm/dz, the spreading rate of the velocity width, based on the con-
servation of volume, momentum, and kinetic energy equations (van Reeuwijk & Craske
2015),

drm
dz

= − δg
γg

+
3

2

(
1

βg
− 4

3

θm
γg

)
Ri+ rm

d

dz

(
log

γg

β
3/2
g

)
, (7.1)

and neglecting the turbulence transport by omitting the turbulence components of the
profile coefficients,

drm
dz

= − δm
γm

+
3

2

(
1− 4

3

θm
γm

)
Ri+ rm

d

dz
(log γm) . (7.2)

The first term, −δm/γm, corresponds to the ratio of dimensionless turbulent production
to dimensionless energy flux, and the second term reflects the effect of buoyancy on the
spreading rate through Ri (van Reeuwijk & Craske 2015). We now consider the case
where w and b take Gaussian profiles, but allowing for a variable λ. If only the mean
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components of the profile coefficients are considered, the resulting expression is,

drm
dz

= −3

4
δm︸ ︷︷ ︸

T1

+
3

2

(
1− 2

1 + λ2

)
Ri︸ ︷︷ ︸

T2

, (7.3)

where, similarly to (6.4), the third term from (7.2) vanishes since γm = 4/3 is constant
for Gaussian profiles. For a self-similar neutral jet, Ri = 0 and δm is constant, and so
drm/dz is constant. For a negatively buoyant jet with variable λ and Ri < 0, drm/dz
need not be constant.

To examine the behaviour of the ratio λ, it is useful to also consider the spreading rate
of the buoyancy width, rmb defined in (5.1), since we have λ = rmb/rm for Gaussian
profiles. In this case we consider the conservation of buoyancy and an equation for
‘squared mean buoyancy’ (Craske et al. 2017),

1

r

∂(rub)

∂r
+
∂(wb)

∂z
+

1

r

∂(ru′b′)

∂r
= 0, (7.4)

1

r

∂(rub
2
)

∂r
+
∂(wb

2
)

∂z
+

2

r

∂(ru′b′ b)

∂r
= 2u′b′

∂b

∂r
. (7.5)

These equations may then be integrated with respect to r, and by defining additional
non-dimensional profile coefficients, can be expressed as a pair of ODEs,

d

dz

(
θ̂b
MB

Q

)
= 0, (7.6)

d

dz

(
γ̂b
MG

Q

)
= sgn(Bo)

MG3/2

QB
δ̂b, (7.7)

where (7.6) and (7.7) correspond to the conservation of buoyancy and mean squared
buoyancy, respectively. The profile coefficients are defined as,

θ̂b =
2

wmgmr2mb

∫ ∞
0

wbrdr,

γ̂b =
2

wmg2mr
2
mb

∫ ∞
0

wb
2
rdr,

δ̂b =
4

wmg2mrmb

∫ ∞
0

u′b′
∂b

∂r
rdr,


(7.8)

where γ̂b is the dimensionless flux of mean squared buoyancy, δ̂b is the dimensionless
production of buoyancy variance, and θ̂b is an alternative expression of the dimensionless
buoyancy flux, θm. These are similar to the ODEs and profile coefficients used by Craske
et al. (2017), who defined them in terms of rm and bm, however, in the present case they
are defined in terms of rmb and gm. By applying the product rule to (7.6) and (7.7), and
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using the definition of rmb from (5.1), the following may be derived,

dB

dz
= −BQ

M

d

dz

(
M

Q

)
−B d

dz

(
log θ̂b

)
(7.9)

dG

dz
= sgn(Bo)

δ̂b
γ̂b

G3/2

B
− GQ

M

d

dz

(
M

Q

)
−G d

dz
(log γ̂b) , (7.10)

drmb

dz
= sgn(Bo)

1

G1/2

dB

dz
− sgn(Bo)

B

2G3/2

dG

dz

= − δ̂b
2γ̂b
− rmb

2wm

dwm

dz
+ rmb

d

dz

(
log

γ̂
1/2
b

θ̂b

)
,

(7.11)

which provides an analytical expression for the spreading rate of the buoyancy width,
rmb, consistent with the conservation of volume, buoyancy, and squared mean buoyancy
equations. The first term of (7.11), −δ̂b/(2γ̂b), is the ratio of dimensionless production of
buoyancy variance to the dimensionless flux of squared mean buoyancy, and is a scalar
analogue of the first term of (7.2). The second term relates the behaviour of the velocity
scale, wm, and buoyancy width, rmb, to the spreading rate. The third is related to any
similarity drift, and is zero if they are fully self-similar. Invoking the assumption of
Gaussian mean velocity and buoyancy profiles, but allowing for a non-constant λ, the
expression can be written as,

drmb

dz
= − δ̂b

8
(2 + λ2)︸ ︷︷ ︸
H1

− rmb

2wm

dwm

dz︸ ︷︷ ︸
H2

+ rmb
d

dz

(
log

(
λ2 + 1√
λ2 + 2

))
︸ ︷︷ ︸

H3

, (7.12)

since we have, for Gaussian profiles, θ̂b = θm = 2/(λ2 + 1) and γ̂b = 4/(λ2 + 2). Here we
clearly see that the third term, related to similarity drift, is zero if λ is constant.

For self-similar neutral jets wm ∼ z−1 and, since λ is constant, rmb ∼ rm ∼ z (Fischer
et al. 1979). If assumed to originate from a point source, then these scales may be
expressed as power laws of the form rmb = abz and wm = kz−1, where ab and k are
constants. From this, the second term of (7.12) becomes H2 = ab/2 and is constant.
Since H1 is also constant for self-similar jets, and H3 = 0, we obtain the expected result
that drmb/dz is constant.

Figure 17(a) and (b) show the terms of the velocity and scalar spreading rate equations
from (7.3) and (7.12), respectively. The two terms of drmb/dz are similar with mean
values of H1

∼= 0.081 and H2
∼= 0.084, giving a combined total of drmb/dz ∼= 0.165, for

the neutral jet assuming self-similar Gaussian profiles. The velocity spreading rate has
only one non-zero term in this case, and is drm/dz = T1 ∼= 0.151. If the rm and rmb

power laws from above are assumed to hold, then it follows that,

λ =
rmb

rm
=

(drmb/dz)

(drm/dz)
, (7.13)

for a neutral jet, which gives λ ∼= 1.10 using these values for drmb/dz and drm/dz. This
is in reasonable agreement with the mean value of λ from figure 8 of λ ∼= 1.18, obtained
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Figure 17. The individual terms (and the sum of them) of the velocity, (a), and
buoyancy/scalar, (b), spreading rate equations as defined in (7.3) and (7.12) respectively. These
assume Gaussian profiles and include only the mean components of the profile coefficients, and
are plotted against Ri for the negatively buoyant jet. For the neutral jet, which has Ri = 0 and
approximately constant terms, the mean values are shown as horizontal lines for clarity.

by directly measuring the 1/e width of the buoyancy and scalar profiles.

For negatively buoyant jets with Gaussian velocity/buoyancy profiles and variable
λ, all the terms of (7.3) and (7.12) may be non-zero and vary with distance from the
source (or more negative Ri). Figure 17(a) shows the first term of drm/dz, T1, slightly
increasing with decreasing Ri. That is, an increasing −δm/γm, the ratio of dimensionless
turbulence production to the dimensionless mean energy flux. The second term, T2,
however, strongly increases in magnitude (with the opposite sign) as Ri becomes more
negative, reducing the overall magnitude of drm/dz. The effect of negative buoyancy,
captured by Ri < 0, thus reduces the overall spreading rate of the velocity width.

Conversely, figure 17(b) shows that the overall spreading rate of the buoyancy width
increases with decreasing Ri, which is driven primarily by the growth of the second
term of drmb/dz, H2. This term captures the effect of the decelerating mean flow on
the spreading rate, and may be explained by considering the solution by Morton (1959),
plotted in figure 1, for the simplified case of a self-similar negatively buoyant jet with
constant α. Here we see that the gradient of the velocity scale, dwm/dz, approaches
negative infinity at the top of the jet (where Ri → −∞), the width scale approaches
positive infinity, and the velocity scale approaches zero. This can also be seen in the plots
of Ĥ2 in figures 1(a) and (c), where the term is relatively small and increases slowly with
decreasing F̂ r for F̂ r & 2 (R̂i & −0.25), but grows rapidly towards infinity as F̂ r reduces
to zero. This may be interpreted as the ‘forced’ and ‘buoyancy dominated’ regimes,
respectively. It is clear from this that the term H2 = −(rmb/2wm)dwm/dz increases
as Ri → −∞ in this simplified model, as is observed in the present flow. However, the
model predicts two distinct regimes where H2 increases slowly and then rapidly further
from the source, which is not as clear from figure 17(b). The first term of drmb/dz,
H1, increases slightly at the start of the jet, but after this remains reasonably constant
and similar to the value of the neutral jet. The third term, H3, which is non-zero due
to the varying λ, is nevertheless relatively small and constant with an average value of
H3
∼= 0.035. The net effect of all the terms in both equations is therefore to increase
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drmb/dz and decrease drm/dz with decreasing Ri (or increasing z).

In the case of negatively buoyant jets, the right most side of (7.13) does not hold, since
rm and rmb evolve differently and do not scale linearly with z. However, if rm and rmb

could be approximated as power laws of the form rm ∼= awz
m and rmb

∼= abz
n, with

constants aw, ab, n and m, then it follows that,

λ =
rmb

rm
∼=
m

n

(drmb/dz)

(drm/dz)
(7.14)

From this, it can be seen how the increasing drmb/dz and decreasing drm/dz, shown in
figure 17, can contribute to the increasing λ observed in figure 8.

Neutral and positively buoyant jets and plumes all tend towards a state of full self-
similarity in the far field (Fischer et al. 1979; Papanicolaou & List 1988). For negatively
buoyant jets, however, the mean velocity and buoyancy profiles continue to grow at
different rates with increasing axial distance or decreasing Ri. This occurs over the entire
range of Ri observed, including the ‘forced’ regime (Ri & −0.11). This behaviour can be
explained by (7.3) and (7.12), which describe the velocity and buoyancy spreading rates
as derived from the conservation equations, rather than any fundamental differences in
the physics governing the flow. The lack of self-similarity in negatively buoyant jets,
which may be characterised by the increasing λ, is largely driven by the second term
in both spreading rate equations, T2 and H2. This is a natural consequence of the jets
negative buoyancy reducing the mean momentum to zero at the top of the jet, resulting
in Ri→ −∞ and a flow regime dominated by negative buoyancy rather than momentum.

When using integral models to describe a negatively buoyant jet, such as (2.4)-(2.6),
it is reasonable to assume Gaussian velocity and buoyancy profiles and consider only the
mean components of the profile coefficients. From figure 6 we have seen that assuming
a linear α relation with Ri, given by (6.5) based on a constant λ ∼= 1.46 and linear
δm relation, gives good predictions of wc up to z/D ∼= 30. However, it is not accurate
over the full z/D range, nor does it take into account the variable λ observed in figure
8. For a more complete model, the variation of λ should be taken into account. One
approach would be to integrate (7.1) to obtain rmb, and then calculate λ from (2.9). This
would require approximating the terms H1 and H2, which themselves both contain λ.
However, these are not the dominant terms in (7.1), and as was seen in figure 17(b), H2

is reasonably small and constant with the mean value H3
∼= 0.035. The term H1 increases

slightly over the range 0.03 . −Ri . 0.06, but remains reasonably constant after this.
As a first approximation, this term may be assumed constant, taking the mean value
from the present data of H1

∼= 0.077. With a value for λ, (6.4) can then be used to model
α, and the integral model may be solved.

8. Conclusion

Negatively buoyant jets have been investigated experimentally using combined PIV
and PLIF measurements. This has allowed for mean velocity and buoyancy profiles,
as well as turbulence profiles, to be obtained for a range of local Fr. Although there
are differences between a neutral and negatively buoyant jet across the whole range of
Fr investigated, a ‘forced’ regime for Fr & 3.0 (Ri & −0.11) was identified, where the
flows are more similar. It has been shown that the velocity and buoyancy profiles take
Gaussian shapes over a wide range of Fr, and scale with the local centreline values, wc
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and bc, just as in a neutral jet, even outside of the forced regime. However, the velocity
fluctuations, w′2 and w′u′, increase relative to w2

c , due to the strongly decelerating mean
flow, which is more significant for lower Fr. An integral ‘turbulence velocity scale’, w2

f ,
is therefore required to collapse the turbulence fluctuation profiles onto a single curve,
where as in a neutral jet w2

c or w2
m is sufficient.

The mean velocity and buoyancy profiles have been shown to develop with different
length scales across the full Fr range observed, and so the ratio of widths, λ, varies
with axial distance. New integral quantities, gm and rmb, were therefore introduced
that scale with bc and rb independent of λ. We have shown via a derived expression for
drmb/dz, given in (7.12) and plotted in figure 17, some of the factors contributing to
why the velocity and buoyancy profiles spread at different rates. The dominant term of
the drmb/dz expression is the second term, H2 = −(rmb/2wm)dwm/dz, which captures
the decelerating mean flow of the jet. This term grows for more negative Ri, causing
drmb/dz to increase. This is consistent with the broad behaviour of the simplified model
of a negatively buoyant jet described by Morton (1959). Conversely, drm/dz decreases
along the jet as Ri becomes more negative, due to the factor of Ri present in the second
term, T2, of (7.3). The increasing drmb/dz and decreasing drm/dz contributes to the
increasing λ observed.

Entrainment in negatively buoyant jets was also investigated by building on the
expressions derived by van Reeuwijk & Craske (2015), and applying them to flows with
Gaussian profiles, but without assuming a constant λ. It was found that entrainment is
generally lower in the negatively buoyant jet than the neutral jet in the forced regime
near the source (Fr & 3.0, Ri & −0.11), with α in the NBJ decreasing with more negative
Ri. The finding that entrainment is lower in negatively buoyant jets than neutral jets
is consistent with several previous studies (Papanicolaou et al. 2008; Kaminski et al.
2005; Milton-McGurk et al. 2020). Further from the source, for Fr . 2.0 (Ri . −0.25),
α < 0 and there is a net radial outflow fluid from the jet to the ambient. This can be
explained by (6.4), the expression for αMG, which becomes negative for sufficiently large
and negative Ri. This phenomenon has also been observed by Williamson et al. (2011)
and Cresswell & Szczepura (1993) for the inner flow of a fully developed fountain, where
fluid was found to move from the inner to the outer flow after some distance from the
source.

The present investigation has provided evidence of several differences between neutral
and negatively buoyant jets, including the scaling of the turbulent velocity profiles, the
buoyancy and velocity spreading rates, a lower entrainment coefficient and the eventual
net ejection of fluid near the top of the NBJ. It is possible for an integral model approach
to be applied to negatively buoyant jets, and we have seen that reasonable wc agreement
can be achieved for z/D . 30 by assuming a linear α relationship with Ri, based on
empirical fits of the present data. However, the model is not accurate over the full z/D
range observed and thus is likely incomplete. The expression for drmb/dz derived in (7.12)
may be of use in further improving predictions by modelling a non-constant λ, although
further research is required. Future research may also seek to understand the origins
behind the increasing −δm observed in NBJs, which motivated the inclusion of the ∆m

term in (6.6), the empirical α relation. A detailed analysis of the governing equations,
specifically applied to negatively buoyant jets, may provide insight here.
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