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1 Introduction

When the joint distribution of stock returns deviates from multivariate normal and investors possess

a plausible utility function, the CAPM (Sharpe, 1964; Lintner, 1965; Black, 1972) does not hold

and risk factors outside the linear market model may explain the cross section of stock returns.

Candidate systematic risk factors to supplement the linear market model have included measures of

stock return deviations from multivariate normality: conditional and unconditional skewness and

kurtosis (Kraus and Litzenberger, 1976; Harvey and Siddique, 2000; Dittmar, 2002; Albuquerque,

2012; Conrad, Dittmar, and Ghysels, 2013), downside and upside risk(Bawa and Lindenberg, 1977;

Ang, Chen, and Xing, 2006), and asymmetric tail risk (Longin and Solnik, 2001; Ang and Chen,

2002; Hong, Tu, and Zhou, 2006; Alcock and Hatherley, 2016). Unlike many fundamental variables,

such as the book-to-market ratio or profitability (see e.g., Hou, Xue, and Zhang, 2015, and references

therein), that have been found to explain the cross-section of stock returns, conditional systematic

risk factors provide direct measures of risk, which gives them greater theoretical appeal.

A shortcoming of systematic risk factors is that they are not directly observable. As a result,

tests of economic significance of these factors face econometric difficulties. One of the most famous

examples is the economic significance of CAPM beta. Even though classic studies, such as Gibbons

(1982), found statistically significant premia associated with CAPM beta using tests where CAPM

betas and average returns are estimated contemporaneously, tests where lagged CAPM betas are

used predictively (e.g. Fama and French, 1992) show no statistically significant premium associated

with CAPM beta. Downside risk, coskewness, and asymmetric tail risk have faced similar chal-

lenges: their economic significance has been established using contemporaneous regressions (Harvey

and Siddique, 2000; Ang, Chen, and Xing, 2006; Alcock and Hatherley, 2016; Jiang, Wu, and Zhou,

2018) – where the factor sensitivities and average returns were determined using data from the

same time period; in predictive regressions, the estimated risk premia suffer a dramatic decline and

their statistical significance disappears.

Prior literature has relied on contemporaneous regressions to assess the economic significance

of systematic factors because predictive regressions can suffer from “false negatives” – instances

where underlying risk premia can be masked by factor time-variation and errors in estimation of
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factor loadings.1 This problem is particularly pronounced for conditional systematic factors: On the

one hand, a long interval of historical return time series is required to estimate each factor loading

at a single point in time, in order to capture deviations from multivariate normality with sufficient

accuracy. On the other hand, a long estimation interval means that relevant factor innovations

are averaged out, if exposure to the factor is time-varying – as Fama and French (1997), Ghysels

(1998), and Lewellen and Nagel (2006), among others, have demonstrated to be the case for CAPM

beta. When predictive regressions are not able to capture underlying risk premia, contemporaneous

methods can help. For example, Ghysels (1998) argues, in-sample regression can be an informative

test of a model, especially if factors have structural breaks. Motivated by this argument, Harvey

and Siddique (2000) establish economic significance of conditional coskewness using the full infor-

mation maximum likelihood method, which uses all available data simultaneously to estimate factor

loadings and average returns. Ang, Chen, and Xing (2006) report returns of portfolios formed on

contemporaneous CAPM betas, downside betas and upside betas. Alcock and Hatherley (2016)

use contemporaneous Fama-MacBeth regressions to study the economic significance of asymmetric

correlations of stock returns. Jiang, Wu, and Zhou (2018) study asymmetry in stock co-movements

using contemporaneous portfolio sorts.

But contemporaneous regressions can be subject to “false positives,” because they, in effect, use

the same data on both sides of the regression: To estimate return premia, realized average returns

are regressed on estimated factor sensitivities that are, in turn, estimated using the same data

series (as represented schematically in Figure 1, panel (a)). As a consequence, contemporaneous

regressions can yield biased results from confounding effects, simultaneity, endogeneity, and reverse

causality. When the results of contemporaneous and predictive regressions are in conflict – as is

the case for all conditional systematic risk factors – it is not clear a priori whether it is because of

the “false negatives” of predictive regressions or “false positives” of contemporaneous regressions.

In this paper, we focus on one of the most common methods used to test the economic signifance

of conditional systematic risk factors, the Fama-MacBeth regression – a two-pass regression method

1Methodologies to reduce the impact of the errors-in-variables bias, such the correction proposed by Litzenberger
and Ramaswamy (1979) and extended by Shanken (1992), and more recent works such as Gagliardini et al. (2016);
Chordia et al. (2017); Kim and Skoulakis (2018), affirm risk premia associated by CAPM beta, but may not eliminate
the problem for other conditional factors particularly in the presence of a time-varying factor.
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first introduced by Black, Jensen, and Scholes (1972) and refined by Fama and MacBeth (1973). We

focus on the modern incarnation of the Fama-MacBeth method, motivated by results by Lewellen

and Nagel (2005), Ang and Chen (2005), and Ang, Chen, Xing (2006), where factor loadings

are estimated using shorter estimation periods (4 to 12 months of daily data) and applied cross-

sectionally to individual stocks rather than portfolios; this choice improves sensitivity of the method

in the presence of time-varying factors despite the increased downward bias from errors in variables.

We propose a modification to the Fama-MacBeth regression technique to address the challenges

of predictive and contemporaneous Fama-MacBeth regressions. We apply it to characterize the most

popular conditional systematic risk factors and make inferences about their economic significance.

Our contribution is three-fold:

Our first contribution is to introduce staggered regressions – a simple extension of the Fama-

MacBeth regression. In the staggered method, factors loadings and average returns are estimated

using alternating months (as demonstrated schematically in Figures 1 and 2), thus reducing the

potential for “false positives” found in contemporaneous regressions. By bringing the factors and

returns closer together in time, the method also results in fewer “false negatives” than do predictive

regressions.2 The method addresses many of the challenges researchers have faced with factor

premium estimation: aging of factors in long-window estimates, errors-in-variables of short-window

estimates, low power of portfolio sorts, and confounding factors in contemporaneous regressions.

We demonstrate the statistical properties (bias and standard error) of staggered regressions using

a parsimonious theoretical model with a time-varying factor. As a straightforward modification

of the traditional Fama-MacBeth regression, the method provides estimation benefits at nearly

no increase in estimation difficulty.3 Inspiration for staggered-month estimation at the core of

the method come from the instrumental-variables technique recently reported by Jegadeesh, Noh,

Pukthuanthong, Roll, and Wang (2019), in which the authors use factors estimated on staggered

2A shortcoming of the staggered Fama-MacBeth regression method is that it is not predictive – it is not designed
to forecast future returns based on lagged factor loadings. In effect, the staggered regression method is an improved
version of the contemporaneous regression method, to be used when predictive regressions fail. The staggered
regression, just like contemporaneous regression, provides information about whether a factor is priced, but it reduces
the risk of “false positive” results. Once a factor has been demonstrated to have a risk premium, forecasting methods
can be used to predict future returns based on the factor.

3Being so closely related to Fama-MacBeth regressions, the method is not a fully optimized econometric technique,
as critiqued, for example, by Lewellen, Nagel, and Shanken (2010) or Kan, Robotti, and Shanken (2013).
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months as instruments. (Staggered estimation has established predecessors, such as Ball, Brown,

and Officer, 1976; Scholes and Williams, 1977; or Mankiw and Shapiro, 1986.)

Our second contribution is to characterize the most popular conditional systematic factors

using the proposed staggered regression method and, in the process, extend prior studies by 15-18

years of more recent data. We demonstrate that downside risk remains a robust factor in explaining

the cross-section of stock returns. In past studies, exposure to downside risk, β−, has been associ-

ated with a material and statistically significant risk premium only in contemporaneous regressions;

the risk premium was immaterial in predictive regressions. Staggered regressions confirm that the

premium is not due to direct confounding factors and it is likely that investors exposed to downside

risk have been rewarded by the market. Similarly, we find that coskewness also represents a priced

factor and negative coskewness is associated with a statistically significant premium. We also find

that, based on our analysis, it is not likely that investors have been rewarded for exposure to

asymmetric tail dependence as measured by exceedance correlations. Metrics based on exceedance

correlations lose their explanatory power outside of contemporaneous regressions.

As our third contribution, we demonstrate a mechanism by which exceedance correlations

are strongly associated with an apparent risk premium in contemporaneous regressions. Using a

market model with idiosyncratic jumps, we derive the sensitivity of exceedance correlations to the

presence of jumps and crashes (i.e. negative jumps) in time series of stock returns. We confirm

our analytical results in Monte-Carlo simulations. Exceedance correlations were applied initially to

study tail dependence (e.g. Longin and Solnik, 2001) between stock market indices and were later

used to measure asymmetric dependence of individual stock returns on market returns (e.g. Ang and

Chen, 2002). Two studies, Cizeau, Potters, and Bouchaud (2001) and Campbell, Forbes, Koedijk,

and Kofman (2008), have pointed out that caution is needed in applying exceedance correlations

to studies of extreme tail dependence. We add to the understanding of exceedance correlations

by considering their behavior during market moves of arbitrary magnitude. Because exceedance

correlations are highly sensitive to deviations of stock returns from (multivariate) normality, we

propose ways they can be re-purposed.

This paper is organized as follows: Section 2 introduces staggered regressions. Section 3
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reports the results of our analysis of conditional systematic factors using staggered regressions.

Section 4 compares econometric properties of staggered regressions with those of contemporaneous

and predictive regressions. Section 5 concludes. Appendix C details how false positives can occur

in contemporaneous regressions using exceedance correlations as an example.

2 Staggered Regressions

In this section, we introduce the staggered cross-sectional regression. Even though it is a simple

modification of the traditional Fama-MacBeth method – as represented graphically in Figure 1 – the

staggered regression addresses many of the challenges outlined in the introduction. The construction

helps to find a better balance between the trade-offs inherent in Fama-MacBeth regression and

achieve a number of desirable outcomes simultaneously: (1) retain the power and information

contained in the time series of individual stock returns; (2) have sufficient data for estimation of

factor loadings to reduce errors-in-variables, particularly for metrics conditional on market returns;

(3) reduce the wash-out effect from the time lag between the factor estimate and the return estimate;

(4) reduce the impact of confounding factors, direct endogeneity, and reverse causality. We provide a

comparison of the econometric properties of staggered, contemporaneous, and predictive regressions

in Section 4.

The idea is simple: During the first step of the Fama-MacBeth method, we split the estimation

window into months of daily data and then stagger the months on which we estimate realize returns

and the months on which we estimate the factors.4 To promote the flow of causality from factors

to returns and to reduce the potential impact of short-term reversals, we refine this staggered

construction in three ways: First, we ensure that the last month used for estimation of factor

loadings precedes the last month used for the calculation of average returns. Second, we introduce

a skipped month, which follows each month used for return estimation. Effectively, we split the

4When the factors are time-varying and the errors of factor exposure and average return estimation are uncorre-
lated, the shortest possible staggered estimation subperiod provides the best results (as we show in Section 4) – it
minimizes bias in factor premium estimation. We choose a month-long estimation subperiod, because it is sufficiently
short to capture the underlying return-factor correlations and also sufficiently long to reduce correlations between
errors in estimation of factor loadings and average returns. We explore how the factor premium estimates depend on
the length of the staggered estimation subperiod empirically in Section 3.4.
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estimation period into equal periods, each equal to a quarter of a year, and, in each quarter,

the most recent month is used for return estimation, the middle month – for estimation of factor

loadings, and the remaining month is skipped, as shown in Figure 2. The skipped month allows

us to reduce the impact of reverse causality (particularly for shorter-lived factors). Third, we also

skip the last two days of each month used for estimation of factor loadings, to reduce the impact

of returns reversals, documented, for example, by Jegadeesh and Titman (1995) or Huang, Liu,

Rhee, and Zhang (2009). Statistical significance in the model is assessed in the usual way, by

estimating standard error of risk premia estimated in cross-sectional regressions, with adjustments

for overlapping data with automatic lag selection, as proposed by Newey and West (1987).5

In this paper, we report the results of staggered regressions based on 18-month long estimation

windows (T̃1 = 18). Within each estimation window, six months of data are used to run factor

exposure estimation and a different – but nearly contemporaneous – six months of data are used to

estimate average returns. We compare the results of 18-month staggered regressions to the results

of contemporaneous and predictive regressions, where factors and returns are estimated using 6-

month long windows of continuous data. Our choice of 18-month-long staggered estimation and

6-month long contiguous estimation periods was informed by related empirical studies: Ang, Chen,

and Xing (2006) use 12 contiguous months of daily data to study downside risk; Lewellen and

Nagel (2006) use three months of daily data or weekly data to study conditional CAPM; Fama

and MacBeth (1973) use five years of monthly data to test the CAPM. As a robustness check, we

perform our analyses with shorter and longer estimation periods.

The method does not overcome all the shortcomings of the Fama-MacBeth method – or regres-

sion methods in general (e.g. data snooping per Lo and MacKinlay, 1990), but it achieves a better

balance of benefits and shortcomings compared with contemporaneous and predictive regressions,

as demonstrated using a theoretical model in Section 4. It provides an additional lens for regres-

sion analysis. As we show in Section 3.3, staggered regressions can resolve conflicting evidence from

contemporaneous and predictive regressions and shed additional light on underlying structure and

5As a robustness check, we run standard error estimates with Newey and West (1987) corrections using specified
lags, with the lag equal to T1 for contemporaneous regressions, 2 × T1 for staggered regressions, and T1 + T2 for
predictive regressions. The resulting standard error estimates are sightly lower (but are within 7%) of standard errors
estimated using automatic lag selection.
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behavior of the analyzed factors.

3 Economic Significance of Conditional Systematic Risk Factors

In this section, we present our empirical analysis of economic significance of conditional systematic

risk factors. We start with an overview of the factors, briefly outline the data set used in the study,

and then discuss regression results. We conclude with a simulation analysis of downside risk and

upside risk factors, β− and β+.

3.1 Conditional systematic factors

We focus on the most popular conditional systematic factors: downside risk (β−), upside risk

(β+), coskewness, asymmetric tail risk (exceedance correlations ρexc, and a related measure of

asymmetric dependence of stock returns on market returns Jadj). Figure 3 provides a “taxonomy”

for conditional systematic risk factors.

To estimate factor loadings, we use excess stock and market returns – returns above the risk-

free rate. In the remainder of this text, we use stock (market) returns as a shorthand for excess

stock (market) return and drop the word “excess.”

We start with the popular measure of downside risk, β−, first proposed by Bawa and Lindenberg

(1977). It is defined as the β of stock returns on market returns conditioned on negative market

moves. The companion metric, upside beta, β+, is conditioned on positive market moves:

β−i =
cov(ri, rm|rm < µm)

var(rm|rm < µm)
(1)

β+
i =

cov(ri, rm|rm > µm)

var(rm|rm > µm)
(2)

where ri is the security i’s (excess) return, rm is the (excess) market return and µm is the average

excess market return.

We also measure the economic significance of the difference between β−i and β+
i , β−i −β

+
i . The
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corresponding factor serves as a non-linear correction to the market model, and, in regressions, we

run β−i − β
+
i alongside CAPM β. According to Ang, Chen, and Xing (2006), such kinked non-

linearity may arise if investors are disappointment-averse with Gul (1991) utility. Disappointment-

averse investors would not only require remuneration for greater exposure to shares with greater

relative downside risk but would also construct their portfolios to take these exposures into account

(Dahlquist, Farago, and Tédongap, 2016).

Another non-linear correction to the market model we consider is conditional coskewness. Such

a correction may arise if the the pricing kernel is non-linear, but this non-linearity is smooth (Har-

vey and Siddique, 2000; Dittmar, 2002). Following Harvey and Siddique (2000), we use conditional

coskewness, estimated based on idiosyncratic stock returns εi = ri− α̂i− β̂irm. Conditional coskew-

ness separates the non-linear dependence of stock returns from the linear dependence reflected in

CAPM β:

Coskewi =
E[εi(rm − µm)2)]√

var(εi)var(rm)
. (3)

Whereas coskewness arises from a quadratic correction to the linear pricing kernel, cokurtosis

arises from the third-order correction (Dittmar, 2002). We do not report our results for cokurtosis

in this paper for the sake of brevity, but they are available upon request. We define conditional

cokurtosis in a manner analogous to conditional coskewness:

Cokurti =
E[εi(rm − µm)3)]√

var(εi)var(rm)3
. (4)

In addition to corrections of the market model for non-linear dependence of stock returns on

market returns, researchers have found empirical evidence that asymmetric tail risk, measured using

conditional correlations, may also explain the cross-section of stock returns and be economically

significant. The study by Longin and Solnik (2001) found that returns of different countries’ market

indices have higher correlations during extreme market moves than would be expected if the joint

distribution of these returns was multivariate normal. Econometric tests by Ang and Chen (2002)

and Hong, Tu, and Zhou (2006) implied that individual equities have a higher correlation with
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the market during downward moves than during upward moves. Studies by Alcock and Hatherley

(2016) and Jiang, Wu, and Zhou (2018) found strong evidence to support economic significance of

asymmetric correlations and their role in explaining the cross-section of stock returns.

We consider two popular metrics of asymmetric correlations. The first is the exceedance

correlation, ρexc , introduced by Longin and Solnik (1995), a measure of the difference in correlations

between stock and market returns when both stock and market returns rise above a threshold c and

when they both fall below a threshold −c. The second metric is a compound metric of exceedance

correlations for a set of thresholds C = {cn}, Jadj , introduced by Hong, Tu, and Zhou (2006) and

further refined by Alcock and Hatherley (2016). As prescribed by Alcock and Hatherley (2016), we

remove β-dependence of individual stocks through a transformation: r̄i = ri − β̂irm + rm, which

results in every stock having effectively β = 1. We then standardize both stock returns and market

returns so that r̃i and r̃m have a mean 0 and variance 1.

Exceedance correlations ρexcc for a cutoff c then equal:

ρexcc = ρ(r̃i, r̃m|r̃i > c, r̃m > c)− ρ(r̃i, r̃m|r̃i < −c, r̃m < −c), (5)

where ρ is the Pearson correlation function. For future use in Appendix C, where we discuss the

properties of exceedance correlations, we also define ρ+ and ρ− as

ρ+ = ρ(r̃i, r̃m|r̃i > 0, r̃m > 0) (6)

ρ− = ρ(r̃i, r̃m|r̃i < 0, r̃m < 0). (7)

The Jadj metric combines exceedance correlations for a set of cutoffs. Following Alcock and

Hatherley (2016), we use C = [0, 0.2, 0.4, 0.6, 0.8, 1]. We then define a vector, ρexcC = {ρexcc }c∈C ,

and construct Jadj as:

Jadj = T1sign(
∑
C

ρexcC )(ρexcC )′Ω−1
C ρexcC , (8)

where ΩC is the variance-covariance matrix of ρexcC constructed as in Hong, Tu, and Zhou (2006)
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using the Andrews (1991) method with a Bartlett kernel to ensure that the matrix is almost surely

invertable.

Lastly, in our discussion of exceedance correlations and in robustness checks, we also consider

skewness and kurtosis. Even though these metrics do not represent systematic risk factors, they

provide information about deviations of the distributions of stock returns from normal.

3.2 Data

We use data provided by the Center for Research in Securities Prices (CRSP) and Compustat for

the period from 1 January 1963 to 31 December 2018, updating previously published results by

approximately 15 years (30-40% increase in sample size). We use daily adjusted stock returns and

the value weighted index provided by CRSP. To compute excess stock returns, we use monthly risk-

free rate data provided by the Fama-French database within CRSP. We select stocks that traded

on NYSE/NASDAQ/AMEX during the period, with share codes 10 and 11. We eliminate shares

without trading on over 30 percent of trading days. We also omit shares with missing book values

in the Compustat database or book value records interrupted for over four years. There are 3133

individual stocks in our sample.

To estimate factor loadings, we use the value-weighted index provided by CRSP as a proxy for

the market. For robustness checks, we also run our analyses using the equally weighted index pro-

vided by CRSP. We also run checks with with equally weighted and (approximately) value weighted

indices we construct from our sample of stocks. We run additional robustness checks, reported in

Appendix A and the Online Appendix, with size, the book-to-market ratio, and momentum factors

(short- and medium-term) as controls in regressions. For these checks, we use book values provided

by Compustat. Following Fama and French (1992), we assume book values become available to

market participants with a six month lag. We do not winsorize factor loadings; winsorizing at [1,

99] level makes very little discernible difference.
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3.3 Regression results: contemporaneous, staggered, and predictive

We apply staggered regressions to analyze whether conditional systematic factors are priced cross-

sectionally. We confirm that exposure to downside risk β−, the difference between downside and

upside risk betas β− − β+, and coskewness may be rewarded by the market. We also show that it

is less likely that investors have been rewarded for exposure to tail risk as measured by exceedance

correlations, ρexc and Jadj , despite the highly statistically significant premia for these factors found

in contemporaneous regressions.

We use a six-month rolling window (T1 = 6) of contiguous return data for contemporaneous

and predictive regressions, and an 18-month rolling window with six one-month long estimation

subperiods (T̃1 = 18, T1 = 6, TS = 1) for staggered regressions, as schematically represented in

Fig. 2. Because of the construction of staggered regressions, the number of daily returns used

for estimation of factor loadings and average returns over the 18 months period is equivalent to 6

months. We chose a contiguous 6 rolling months window and an 18 months staggered window to

bracket the 12-months window used in previous empirical studies of conditional systematic factors

(as cited in the previous Section). We conducted robustness checks with a T1 = 4, T̃1 = 12 window

and a T1 = 12, T̃1 = 36 window and found qualitatively similar results.

Table 2 summarizes the regression results.

Particularly striking is the decline in statistical significance of estimated premia associated

with exceedance correlation, ρexc and its related metric Jadj , in panels (7) and (8), when there is no

overlap between data used for factor and realized return estimation. In staggered regressions and

predictive regressions with a 1-month return estimation period (T2 = 1), statistical significance of

these factors disappears. For the predictive regressions with a 6-month return estimation period

(T2 = 6), measured risk premia associated with both ρexc and Jadj are small, but statistically

significant in regressions controlled only for CAPM beta. However, this significance falls when size

and book-to-market factors are added as controls (Table OA3) and disappears when momentum

factors are added (Table A1).

This result points to a confounding factor responsible for the high statistical significance seen in
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contemporaneous regressions. In Appendix C, we show analytically and in Monte-Carlo simulations

how such linkage arises in the presence of stock price jumps and, for predictive regressions, persistent

skewness of individual stock returns.

Staggered regressions also capture statistically significant links between individual stock re-

turns and CAPM β, in panel (1); downside risk β−, in panel (2); β− − β+, in panel (5); and

coskewness, in panel (6), in a way that predictive regressions fail to capture. Even though the

economic significance of these factors declines dramatically in predictive regressions, it is strong in

staggered regressions. This behavior would be consistent with relatively short-term responses – on

the scale of weeks – to innovations in these factors.

We have structured the regressions as single factor, as in panels (1)-(4), and “market-model-

plus-factor” two-factor regressions, as in panels (5)-(8), because of the significant potential for bias

from errors-in-variables in multiple regressions (Jagannathan and Wang, 1998; Jegadeesh, Noh,

Pukthuanthong, Roll, and Wang, 2019). Relatively high intercept values in Table 2 indicate that

errors-in-variables is a valid concern. We run single factor regressions on factor exposures estimated

using individual stock returns rather than idiosyncratic returns – β, β− and β+. We use “market-

model-plus-factor” regressions on factors that are meant to complement the market model and/or

are estimated using idiosyncratic returns. These factors are non-linear corrections to the market

model, represented by β− − β+, coskewness, cokurtosis, exceedance correlations ρexc, and Jadj .

In the presence of errors-in-variables, single factor regressions also provide biased estimates, but

this bias is of known direction – downward in absolute value and significance. Panels of multiple

regressions with size, book-to-market and momentum factors are reported in Appendix A and the

Online Appendix.

All regressions in this Section are equal-weighted for ease of comparison with prior literature.

Value-weighted regressions result in similar outcomes.

A few notes on the statistical summary of factor estimates provided in Table 1: The first

observation is that mean factor loading estimates and their standard deviations in staggered and

contiguous estimation are within a few percentage points of each other. Mean β, β−, and β+ values

are less than 1 due to equally weighed averaging (the average values are close to those reported by,
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e.g. Ang, Chen, and Xing, 2006 or Alcock and Hatherley, 2016). Value-weighted averages of these

quantities are equal to 1, within standard error.

3.4 Staggered regressions with different estimation subperiods

In this section, we provide results of staggered regressions with a range of estimation subperiods,

TS (Table 3). We use subperiods of TS = 1 month, 2 months, 3 months, and 6 months, within a

18-month estimation period T̃1 = 18 (TS and T̃1 are defined, e.g. in Fig. 2). Staggered regressions

reported in the previous section used an estimation subperiod TS = 1, as shown in Fig. 2. For

these regressions, the 18-month estimation period was effectively split into 6 equal periods, each

equal to a quarter of a year, and, in each quarter, one month was used to estimate factor loadings

and one month was used for to estimate average returns. In this section, we use three additional

alternative staggered configurations: First, TS = 2, where the the 18 month estimation is split into

3 six-month periods; in each six-month period a 2-month period is used to estimate factor loadings

and a 2 month period is used to estimate average returns. Second, TS = 3, where the the 18 month

estimation is split into 2 nine-month periods; in each nine-month period a 3-month period is used to

estimate factor loadings and a 3 month period is used to estimate average returns. Third, TS = 6,

which is equivalent to the predictive regression with 6-month realized return estimation.

A longer estimation subperiod implies a greater elapsed time between factor loading and return

estimation. In predictive regressions with a six month return estimation period, the corresponding

returns are, on average, six months “older” than estimated factor loadings. Note that, because

of the two-day skip at the beginning and end of each estimation period, the TS = 1 staggered

regression uses 10% fewer days of data than the TS = 2 staggered regression, which affects the

regression results slightly.

By comparing results of the TS = 3 and predictive regressions with the results of the TS = 1

and TS = 2 staggered regressions, we observe that the economic and statistical significance of

market risk, measured by CAPM β, panel (1), and downside risk, measured by β−, panel (2),

decline gradually with lengthening estimation period (when one takes into account the fact that

the step from a three-month to a six-month estimation period is greater than that from two-month
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to three-month estimation period).

However, the economic and statistical significance of measures of non-linearity, β+−β−, panel

(5), and coskewness, panel (6), take a step down as the estimation subperiod moves from two-months

to three months. This behavior again points to short-term drivers of non-linear dependence between

individual stock returns and market returns, that take place on the time scale of a few weeks.6

Statistical significance of risk premia associated with measures of asymmetric dependence,

ρexc and Jadj , is highly non-linear, rising dramatically for the TS = 6 regressions. This effect arises

because, as we will discuss in detail in Appendix C, these factors are highly sensitive to jumps

– positive (negative) jumps are associated with negative (positive) ρexc and Jadj . Additionally,

as discussed in Section 3.3, the economic significance of these factors remains small relatively to

their significance in contemporaneous regressions and declines further, together with their statistical

significance, when size, book-to-market and momentum factors are added to regressions as controls.

3.5 Staggered regressions with factor loading estimation periods following re-

turn estimation periods and vice versa.

In order to shed further light on the impact of shorter term innovations in factor loadings on returns,

we compare the results of staggered regressions with factor loading estimation periods preceding

return estimation periods (Table 4, column Staggered - A) and vice versa – with factor loading

estimation periods following return estimation periods (Table 4, column Staggered - B).

Counterintuitively, the statistical link between average returns and factor loading estimates

appears stronger for all factors, except CAPM β and downside risk β−, when factor loading esti-

mation follows return estimation. Both the measured risk premium and its statistical significance

are higher when factor loading estimation follows return estimation, particularly for β+ − β− and

for coskewness - measures of non-linear dependence of individual stock returns on market returns.

This is not a statistically significant, but qualitatively interesting finding pointing to an effect

not addressed in the literature to date: that asymmetry between β− and β+ is a result of an

6As we note in the next Section, we explore this phenomenon further in Foster et al. (2020).
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asymmetric response to a systematic shock. We explore this insight further in Foster et al. (2020),

where we establish a strong link between price delay and beta asymmetry.

3.6 Simulations to explore differences in β− and β+

In this section we explore the difference in the risk premia of downside risk beta, β−, and upside risk,

β+, and their statistical significance. In our regressions on these factors, summarized in Table 2,

panels (2) and (3), exposure to downside risk, β−, earns a statistically significant risk premium,

but exposure to β+ does not. Empirical tests in Ang, Chen, and Xing (2006) and Alcock and

Hatherley (2016) find a discount associated with β+. We reproduce this discount when we run

multiple regressions that include both β− and β+, as shown in panel (5).

A natural question to ask is whether the difference between β− and β+ is a result of errors

in variables, due to higher estimation error for β+ than for β−, but our evidence is not consistent

with this hypothesis. First, the standard error for β+ is only around 10% higher than that for β−

and the difference is too small to create a gap in statistical significance of observed magnitude.

Second, we have constructed simulations in attempt to replicate the empirical result. We tested

a number of hypotheses that may have caused a difference in β− and β+ and the difference in

estimated risk premia: errors-in-variables from differences in idiosyncratic risk (variance, skewness,

kurtosis) observed during positive and negative market moves; effects of fat-tailed idiosyncratic risk;

effects of indexing and compounding; effects of next-day reversals; effects of a greater concentration

of idiosyncratic jumps during moderate market moves. Of the tested hypotheses, only the last

produced results somewhat similar to those found empirically, but with much lower magnitude

and statistical significance; moreover, this hypothesis is not consistent with results of staggered

regressions.

We report the results of a subset of these simulations in the Online Appendix.
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4 Staggered, Contemporaneous, and Predictive Regressions: A

Comparison

In this section, we compare the bias and standard error of factor premium estimation across the

three types of Fama-MacBeth regressions used in this paper: contemporaneous, predictive, and

staggered.

4.1 Sources of Bias in Premium Estimation

We start by considering how the choice of contemporaneous, predictive, or staggered regression

affects the premium estimator bias. We use a parsimonious single-factor model, with a time-varying

factor f , which earns a premium γ, to capture the salient features of the premium-estimation

problem: factor variation across time, errors in estimation of factor loadings, correlated errors in

estimation of factor loadings and average returns, and correlations in factor and its premium across

time. We start with a general formulation of factor time-variation and then, in Section 4.3, assume

it takes the form of a mean-reverting AR(1) process to obtain a closed-form solution for factor

premium estimation bias in contemporaneous, predictive, and staggered regression.

We consider the individual excess stock returns rit of N stocks, i = 1..N , such that:

rit = γtfit + εit, (9)

where fit is the factor loading of stock i at time t, γt is the corresponding risk premium at time t,

and εit is the disturbance (aka noise). We aim to estimate the factor premium γt and, using the

Fama-MacBeth two-pass method, proceed in two steps, as described in Section 2.7

As the first pass, we select a set of estimation points t and estimate factor loadings and average

returns for each of these points. The three types of Fama-MacBeth regressions compared in this

paper – contemporaneous, predictive, and staggered – differ in what data intervals (sections of time

7Although the risk premium in our model can vary over time, the focus of the model is the time variation of factor
loading. For the impact of time variation of risk premium, see, e.g. Gagliardini et al. (2016) and references therein.
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series of stock returns) are used to estimate returns and factor loadings at each t, as schematically

represented in Figure 1. We call the interval used for factor loading estimation I1t and the interval

used for return estimation I2t. In contemporaneous regressions, I1t = I2t = (t − T1, t], where

T1 > 0. In predictive regressions, I1t = (t−T1, t] and I2t = (t, t+T2], with T1, T2 > 0. In staggered

regressions, I1t and I2t is are split into staggered subperiods as described in Section 2 and illustrated

in Figure 2. The number of data points in I1t and I2t are T1 and T2 respectively. We follow notation

prevalent in the literature, where t is expressed in months when daily data are used for estimation.

The units of t, T1, and T2 are months; the units of T1 and T2 (and also τ , s, and u, introduced

below) are days. With this notation, we write factor loadings and returns estimated at each t as

f̂it,I1 and r̂it,I2 respectively.

As the second pass, for each estimation point t, we regress the estimated average returns r̂it,I2

against the estimated factor loadings f̂it,I1 cross-sectionally to obtain the estimated factor risk

premium, γ̂t:

γ̂t =

∑N
i=1(r̂it,I2 − 1

N

∑N
j=1 r̂jt,I2)(f̂it,I1 − 1

N

∑N
j=1 f̂jt,I1)∑N

i=1(f̂it,I1 − 1
N

∑N
j=1 f̂jt,I1)2

. (10)

In Fama-MacBeth regressions, the longitudinal average across all estimation periods is then used

as the average premium estimate γ̂, and the distribution of γ̂t is used to run statistical tests.

Because the estimates f̂it,I1 and r̂it,I2 are generally not equal to fit and rit, the premium

estimate can be biased, i.e. E[γ̂t] 6= γt. To evaluate the magnitude of the bias in Fama-MacBeth

regressions, we start by evaluating f̂it,I1 and r̂it,I2 and then use Eq. (10) to estimate E[γ̂t], under a

number of (realistic) simplifying assumptions described below.

We start with the factor loading estimate f̂it,I1 . We can define f̄it,I1 ≡ E[f̂it,I1 |fiτ , τ ∈ I1] –

expected value of the factor loading estimator conditional upon a realization of fiτ – so that

f̂it,I1 = f̄it,I1 + wit,I1 , (11)

where wit,I1 is a random variable measuring variation in estimated factor loading, such that

E[wit,I1 ] = 0 and σ2
wi,I1

≡ Var(wit,I1).
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The precise form of E[f̂it,I1 |fiτ , τ ∈ I1] is unknown; however, a plausible simplifying assumption

is that it is equal to the mean of fiτ over the interval I1t, so that we have for f̄it,I1 (which we defined

above to represent E[f̂it,I1 |fiτ , τ ∈ I1]):

f̄it,I1 =
1

T1

∑
τ∈I1

fiτ . (12)

Under this assumption, f̂it,I1 is an unbiased estimator of the factor loading mean across interval

I1t, with estimation error equal to wit,I1 .

In a similar fashion, we can express the return estimator as:

r̂it,I2 = γ̄t,I2 f̄it,I2 + CovI2(γt, fit) + eit,I2 , (13)

where γ̄t,I2 = 1
T2
∑

τ∈I2 γiτ ; CovI2 is a longitudinal covariance that reflects co-variation of the factor

loading and the factor premium over the interval I2t; and eit,I2 is a random variable measuring

variation in return estimation, such that E[eit,I2 ] = 0 and Var(eit,I2) is the square error of r̂it,I2

estimation.

The covariance between the factor loading and the factor premium can affect factor premium

estimation. Even though its impact is the same for contemporaneous, predictive, and staggered

regressions, we can include a simple form of factor-premium co-variation into our analysis. We can

assume that, to lowest two orders in fit, CovI2(γt, fit) = at + btf̄it,I2 .8 Under this assumption we

can write:

r̂it,I2 = at + (γ̄t,I2 + bt)f̄it,I2 + eit,I2 , (14)

Now we can use the expressions for factor loading and return estimates in Eqs. (11) and (14)

to expand the premium estimate in Eq. (10). Under the assumptions described above and an

additional assumption that the error terms wit,Im and eit,Im are independent of the underlying

8Strictly speaking, the assumption is E[CovI2(γt, fit)|fiτ , τ ∈ I2] = at + btf̄it,I2 .
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factor structure, we have:

E[γ̂t] =
CovC(r̂it,I2 , f̂it,I1)

VarC(f̂it,I1)
=

(γ̄t,I2 + bt)CovC(f̄it,I2 , f̄it,I1) + CovC(eit,I2 , wit,I1)

VarC(f̄it,I1) + σ2
wi,I1

, (15)

where the subscript C on CovC and VarC indicates that the covariance and variance are cross-

sectional; σ2
wi,I1

is the variance of the factor loading estimation error over period I1t (as defined

after Eq. 11).

We can use Eq. (15) as a framework to analyze sources of bias in estimation of γt. In addition

to the fact that we estimate averaged γ̄t,I2 rather than instantaneous γt, there are four other sources

of bias.

Importantly, two of the sources of bias in γ̂t can bias the estimate upward, that is to say create

an appearance of a larger factor premium, or worse, a statistically significant estimated premium

in the absence of an underlying factor premium. First, an apparent estimated premium can result

from cross-sectionally correlated estimation residuals, CovC(eit,I2 , wit,I1) 6= 0. This can happen

in the presence of confounding factors, correlated with both factors and returns. Second, factor

loadings correlated with factor premia can result in upward-biased premium estimation, as reflected

by bt, defined in Eq. (14).

The two other sources of bias present in our model can push the premium estimate downward.

The first source of bias is time variation of the factor. When the factor is time-varying, we have

CovC(f̄it,I2 , f̄it,I1) < VarC(f̄it,I1), particularly if the estimation periods used to estimate returns and

factor loadings are different, I1t 6= I2t. The second source of downward bias is the errors-in-variables

bias, arising from the error in estimating f̄it,I1 . This error is reflected in Eq. (15) as σ2
wi,I1

> 0 in

the denominator.

4.2 Premium Estimation Error

In this Section, we estimate the standard error of Fama-MacBeth regressions, used in testing

the statistical significance of non-zero factor premium estimates. In Fama-MacBeth regressions,
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standard error is estimated as square root of the variance of γ̂t estimates across the entire sample,

t = 1..TT :

ŝ2 =
1

TT

TT∑
t=1

(γ̂t −
1

TT

TT∑
t′=1

γ̂t′)
2. (16)

The variance ŝ2 depends on underlying variation of the risk premium across time and the error of

risk premium estimation at each estimation point t. If these two drivers of ŝ2 are uncorrelated, the

expectation of the error E[ŝ2] comprises two components:

E[ŝ2] = σ2
γ + E[ŝ2

γ ] (17)

σ2
γ ≡ E[

1

TT

TT∑
t=1

(γt −
1

TT

TT∑
t′=1

γt′)
2] (18)

ŝ2
γ ≡

1

TT

TT∑
t=1

(γ̂t − γt −
1

TT

TT∑
t′=1

(γ̂t′ − γt′))2, (19)

where σ2
γ reflects underlying variation of the risk premium across time and ŝ2

γ is the average squared

premium estimation error.

In Equation (17), the ŝ2
γ term is the only term that depends on regression architecture (σ2

γ is

driven by the underlying process). We can make the regression-dependence explicit and write:

ŝ2
γI1,I2 ≈

1

TT (N − 2)

[σ2
r,I2

σ2
f,I1

− E[γ2
t ]
]
, (20)

where N is the number of stocks in the sample; σ2
r,I2

is the cross-sectional variance of stock returns

estimated over I2t interval; σ2
f,I1

is the cross-sectional variance of factor loadings estimated over I1t

interval; we ignored effects of errors in estimation of factor loadings and average returns, assuming

that they are not correlated across stocks and, therefore, their impact is smaller than that of σ2
r,I2

and σ2
f,I1

by O(1/N).9

9Asymptotic and small sample properties (out of the scope of this paper) can be established by extension of these
properties for contemporaneous and predictive Fama-MacBeth regressions, as in Shanken (1992), Jagannathan and
Wang (1998), and Shanken and Zhou (2007).
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4.3 Premium Estimation in Contemporaneous, Predictive, and Staggered Re-

gressions

Having set up general expressions for the estimated risk premium (Eq. 15) and its standard error

(Eqs. 16 to 20), we can now illustrate the differences in premium estimation between contempora-

neous, predictive, and staggered regressions.

For the purposes of this comparison, we ignore sources of bias common across the three esti-

mation methods – errors-in-variables and co-variation between factor and its premium – and focus

on the sources of bias that stem from the geometry of estimation intervals. We treat confounding

factors separately, as a source of bias most likely to affect contemporaneous regressions, in which

returns and factor loadings are estimated using the same data. Under these assumptions, which can

be written as bt = 0, σ2
w,I1

= 0, and CovC(eit,I2 , wit,I1) = 0, in this section we focus on a simplified

version of Eq. (15):

γ̂/γ ≡ E[γ̂t]

γ̄t,I2
=

CovC(f̄it,I2 , f̄it,I1)

VarC(f̄it,I1)
. (21)

To demonstrate how differences in γ̂/γ arise across contemporaneous, predictive, and staggered

Fama-MacBeth regressions, we model factor time-variation using a simple mean-reverting AR(1)

process:

fiτ = fiτ−1 + (1− φ)(fi − fiτ−1) + εiτ , (22)

where 0 < φ < 1. The disturbance term εiτ has a defined variance, which we assume to be

time-invariant and equal to σ2
i (additionally, we assume that σ2

i = σ2 to simplify the algebra).

For this process, γ̂/γ can be written as (as shown in Appendix B):

γ̂/γ =
T1

T2

∑
s∈I2

∑
u∈I1 e

−|s−u|/TB + η2∑
s,u∈I1 e

−|s−u|/TB + η2
, (23)
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with the time constant TB defined as

TB ≡ −1/ log φ > 0, (24)

and the constant η2 ≡ σ2
f0

σ2 (1− e−2/TB ), where σ2
f0 = VarC(fi).

Evaluating the sums over I1t and I2t using a continuous approximation, valid when the sampling

period is much shorter than TB, we get for γ̂/γ in contemporaneous, staggered, and predictive

regressions (γ̂/γctp, γ̂/γstg, and γ̂/γprd, respectively):

γ̂/γctp =1, γ̂/γprd =

T 2
1 TB
T1T2

(1− e−T1/TB )(1− e−T2/TB ) + η2

2TBT1

[
1− TB

T1
(1− e−T1/TB )

]
+ η2

γ̂/γstg =

T 2
B

T 2
1

[
T1
TS

+ (1 + e2TS/TB )
∑T1/TS−1

k=1 ( T1TS − k)e−3kTS/TB
](

1− e−TS/TB
)2

+ η2

2
T 2
B

T 2
1

[(
T1
TB

[1− TB
TS

(1− e−TS/TB )] + eTS/TB (1− e−TS/TB )2
∑T1/TS−1

k=1 ( T1TS − k)e−3kTS/TB

]
+ η2

.

(25)

Note, η2 contains information – the ratio of cross-sectional volatility of the long term factor mean

to the short-term volatility σ2
f0/σ

2 – that is difficult to measure. When η2 is large, driven either

by a strong and persistent cross-sectional variation in long-term factor mean or a persistence in

innovations (TB � 1), factor premium estimates in all the three types of Fama-MacBeth regressions

are (nearly) unbiased. However, for all the factors we consider in this paper, empirical results show

(such as those in Table 2) a strong possibility that premium estimates are biased downward in

predictive regressions. It is therefore likely that, for the factors considered in this paper, η2 is small.

For market beta, this conclusion is consistent with results of Ghysels (1998), which demonstrate

that beta estimates have structural breaks, and, therefore, the ratio σ2
f0/σ

2 is low. The AR(1)

model is likely only a crude approximation to the underlying factor dynamics, but it captures the

critical feature of time variation – factor autocorrelations declining with time.

Figure 4 provides a visual representation of the results in Eq. (25). The left column presents

the ratio of estimated premium to the true premium, γ̂/γ. The right column presents the t statistic,

which we calculate as the ratio of premium estimate to the standard error of regression: γ̂/ŝγ . For

all regressions in Figure 4, the effective estimation period is T1 = 6 months (which, for staggered
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regressions, is stretched over T̃1 = 18 months).

The first column, panels (a) and (b), presents the modeled estimated premium and t statistic

as a function of the time constant of factor f , TB. The dashed line represents the results for

contemporaneous regressions; the solid line – staggered regressions with subperiod TS = 1; and

the dashed-dotted and dotted lines represents predictive regressions with T2 = 1 and T2 = 6

respectively. In the simplified model considered in this section, the factor premium estimated

in contemporaneous regressions is unbiased: γ̂/γctp = 1. Premium estimates in staggered and

predictive regressions are biased downward – γ̂/γstg < 1 and γ̂/γprd < 1 – particularly when the

underlying factor varies rapidly, i.e. TB is small. But staggered regressions result in significantly less

biased premium estimates than predictive regressions. Staggered regressions also result in lower

estimation error than predictive regressions (because they use a longer time series to estimate

returns). In the presence of an underlying factor premium, staggered regressions provide a more

sensitive tool for estimating factor loadings.

Figure 4, panels (a) and (b), show that, in the absence of confounding factors – i.e. when

CovC(eit,I2 , wit,I1) = 0 in Eq. (15) – contemporaneous regressions provide the best results. However,

because of confounding factors – CovC(eit,I2 , wit,I1) 6= 0 – arising as a result of using the same

time series of returns on both sides of the regressions, contemporaneous regressions are prone to

“false positives.” When confounding factors may be present, staggered regressions provide the best

balance between estimation bias and error.

Panels (c) and (d) compare the results of staggered regressions with different staggered sub-

periods TS . In these panels, the time constant TB = 2. All other things being equal, smaller

estimation subperiods work better in staggered regressions than larger subperiods. However, stag-

gered regressions with subperiods that are too small may be affected by short-term reversals and

other confounding factors. A month-long staggered estimation subperiod TS = 1 provides a good

balance.

Panels (e) and (f) compare the results of predictive regressions with different return estimation

periods, T2. In these panels, as in panels (c) and (d), TB = 2. As the estimation period T2

increases, premium estimation bias grows and γ̂/γprd falls. For small T2 standard error falls faster
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than premium estimate, resulting in increasing statistical significance of the estimate, which peaks

around T2 ≈ TB. For T2 > TB, estimation bias increases and statistical significance of estimated

premium falls.

5 Conclusions

We have characterized conditional systematic factors of stock returns using a new econometric

technique – the staggered regression. The economic significance of these factors had been charac-

terized primarily using contemporaneous regressions (using individual stocks and portfolios). And

even though these factors are associated with highly statistically significant risk premia in con-

temporaneous regressions, statistical significance is lost in predictive regressions. This disconnect

invites the question: are the results of contemporaneous regressions “false positives” or the results

of predictive regressions “false negatives”?

The staggered regression method helps to resolve this dilemma by combining the benefits of

contemporaneous and predictive regressions, while avoiding some of the weaknesses. The power of

contemporaneous regressions is in their ability to capture return responses to shorter-term innova-

tions in the factors because both sides of the regression – the average returns and the estimated

factors – are created from the same data set. But the data overlap results in a key shortcoming:

contemporaneous regressions are vulnerable to spurious significance, driven by reverse-causality and

confounding factors, such as outliers. Predictive regressions avoid this problem by separating the

data set used to estimate average returns and the set used to estimate factors. But estimation of

factor loadings typically requires many months of daily data (or years of weekly or monthly data),

which means that average lag between the factor loading estimate and the corresponding average

returns can be months or years. Like predictive regressions, staggered regressions separate the

data sets used for factor and return estimation, but the staggered construction allows to capture

the effect of shorter-term innovations in the factors on returns (and the skipped month reduces

“reverse-causality”).

Staggered regression analysis of β, β−, β+, β− − β+, and coskewness demonstrates that the
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economic significance of these factors found by other researchers through contemporaneous regres-

sions is robust. We conclude that it is not due to direct simultaneity or other confounding factors

stemming from overlapping data.

The economic significance of exceedance correlations ρexc and the related metric Jadj is not

robust to staggered regressions. When the data used to estimate the factors and the returns are

separated, the statistical significance of risk premia associated with these metrics is lost.

We create a simple model to demonstrate how jumps in return series drive the linkage between

exceedance correlations and contemporaneous returns. We confirm the results in simulations. Fur-

ther, we demonstrate that exceedance correlations may result in apparent statistically significant

asymmetries as a result of non-normal idiosyncratic returns, without any underlying asymmetric

dependence.

Because exceedance correlations are a sensitive measure of deviations of stock returns from

multivariate normality that include not only asymmetric dependence, but also skewness and kurtosis

of idiosyncratic returns without underlying asymmetry, we propose that these correlations can be

used in other applications where a one-stop metric of the impact of jumps on stock returns is

required.
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Figure 1: Contemporaneous, predictive, and staggered Fama-MacBeth regressions.
This figure provides a visual comparison of estimation periods used in (a) contemporaneous, (b) predictive,

and (c) staggered regressions. Horizontal lines represent estimation periods used for estimation of factor
loadings and average returns (solid and dashed lines, respectively), spaced out vertically to avoid visually

overlapping lines. Throughout the text, we denote factor loading estimation periods I1t and average return
estimation periods I2t, often omitting the subscript t to streamline notation when this omission would not

cause confusion. The horizontal axis represents time, and the vertical dashed lines represent estimation
points (such as t− 1, t, or t+ 1). In contemporaneous regressions, schematically represented in panel (a),

factor loadings and average returns for each estimation point are calculated using the same estimation
period, I1t = I2t = (t− T1, t]. In predictive regressions, panel (b), the return estimation period

I2t = (t, t+ T2] for each estimation point t follows the factor loading estimation period I1t = (t− T1, t] for
that estimation point. In staggered regressions, panel (c), the estimation periods used for factor loadings

and returns are staggered, so that
I1t = (t− T̃1 + TS , t− TS ]Stag ≡ (t− T̃1 + TS , t− T̃1 + 2TS ] ∪ . . . ∪ (t− 5TS , t− 4TS ] ∪ (t− 2TS , t− TS ] and

I2t = (t− T̃1 + 2TS , t]Stag ≡ (t− T̃1 + 2TS , t− T̃1 + 3TS ] ∪ . . . ∪ (t− 4TS , t− 3TS ] ∪ (t− TS , t], where T̃1 is
the total length of the staggered estimation period and TS is the staggered estimation subperiod, as

described in Section 2 and presented in more detail in Figure 2.
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Figure 2: Staggered estimation for Fama-MacBeth regressions.
This figure presents a schematic of staggered estimation used in this paper. For each month t, an

estimation period of 18 months was split into six quarters. The latest months of each quarter – months t,
t− 3, t− 6, t− 9, t− 12, t− 15, and t− 18 – were used for realized return estimation. The middle months

of each quarter – months t− 1, t− 4, t− 7, t− 10, t− 13, and t− 16 – were used for factor loading
estimation. The last months of each quarter were skipped to promote the flow of causality from risk factors
to returns. Additionally (not represented on this figure), two days were skipped at the beginning and end
of each month to reduce impact of short-term reversals and non-synchronous trading on regression results.
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Figure 3: Types of conditional systematic risk factors.
This figure presents a schematic representation of conditional systematic risk factors considered in this

paper, using simulated individual stock return and market return time series for a given estimation period.
Panel (a) represents the CAPM, and the linear dependence of individual stock returns on market returns
implied by the multivariate normal joint distribution of stock returns. Conditional systematic risk factors
measure deviations of joint distribution of stock returns from multivariate normal. Measure of downside

risk, β−, is represented in panel (b); measures of nonlinear dependence of stock returns on market returns,
β+ − β− and coskewness, are presented in panel (c); measures of asymmetric dependence ρexc and Jadj are

presented in panel (d). In panel (d), the dashed lines represent heteroskedasticity of idiosyncratic risk
conditional on market returns – lower idiosyncratic risk when the market return is negative and higher

idiosyncratic risk when it is positive.
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Figure 4: Bias and error in contemporaneous, staggered, and predictive regressions: a theoretical model.
This figure compares the relative estimated premium (the ratio of estimated premium to true premium, γ̂/γ) and t-statistic (which we use as a
relative measure of standard error) for the three types of Fama-MacBeth regressions across a range of parameters: TB the time constant of the

factor, TS the staggered estimation subperiod, and T2 the return estimation period. The factor loading estimation period is set to T1 = 6 months.
Solid lines represent staggered regressions, dashed lines – contemporaneous regressions, dashed-dotted, dotted, and dash-dot-dotted lines - predictive
regressions with return estimation period T2 = 1 months, T2 = 6 months, and – in panels (e) and (f) – T2 varied, respectively. In panels (c)-(f), the

time constant TB = 2. In panels, (a), (b), (e), and (f), the estimation subperiod for the staggered regression is TS = 1 – the same as used in
empirical investigations in Section 3.
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Figure 5: Dependence of Pearson correlation on kurtosis of underlying data.
We estimate the Pearson correlation function for model data with normally distributed noise N(0, σ0) and

outliers of density q, mean B̄, and variance B. As B →∞, K → 3/q.
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Figure 6: Impact of a positive idiosyncratic jump on exceedance correlations: a schematic representation.
If a positive stock “jump” happens on a day when the market return was positive (filled circle), it

suppresses ρ+. A positive “jump” never affects ρ−, even if it happens on a day when the market return was
negative (open circle), because of the geometry of exceedance correlations. On average, positive

idiosyncratic jumps lead to negative exceedance correlations, ρexc = ρ+ − ρ−.
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Table 1: Descriptive factor statistics. This table presents statistics of estimated factor loadings. Factor loadings are estimated in two ways. For Contempora-
neous & Predictive regressions, factor loadings are estimated using contiguous periods (t− T1, t] of daily return data preceding the estimation month t, where
T1 = 6 months. For Staggered regressions, factor loadings are estimated using staggered months t− 16, t− 13, t− 10, t− 7, t− 4, and t− 1, as described in
Section 2 (and Figure 2). The table provides the mean (Mean), standard deviation (Std), and quantile breakpoints at 25%, 50%, and 75%. The study used
daily return time series of stocks traded on NYSE/Amex/Nasdaq during the period between 1963 and 2018, with sharecodes 10 and 11.

Factors

Regression Types

Contemporaneous & Predictive Staggered

Mean Std 25% 50% 75% Mean Std 25% 50% 75%

β 0.917 0.59 0.503 0.860 1.255 0.902 0.57 0.499 0.847 1.237

β− 0.975 0.78 0.481 0.904 1.381 0.962 0.78 0.470 0.894 1.371

β+ 0.857 0.86 0.328 0.801 1.318 0.847 0.86 0.315 0.790 1.308

β+ − β− -0.118 0.92 -0.553 -0.074 0.349 -0.115 0.94 -0.564 -0.072 0.365

Cosk -0.019 0.20 -0.130 -0.019 0.090 -0.020 0.21 -0.141 -0.020 0.099

Ckrt 0.016 0.72 -0.203 0.000 0.218 0.029 0.73 -0.216 0.007 0.250

ρexc -0.125 0.28 -0.317 -0.125 0.061 -0.104 0.29 -0.302 -0.101 0.091

Jadj -2.632 7.72 -7.536 -3.985 3.418 -2.210 8.01 -7.392 -3.598 4.024

Skew 0.306 1.11 -0.098 0.282 0.725 0.296 1.02 -0.101 0.270 0.697

Kurt 7.144 7.16 3.831 4.930 7.332 6.612 6.13 3.777 4.796 6.882
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Table 2: Contemporaneous, staggered, and predictive cross-sectional regressions of average returns on estimated risk factor loadings. This table compares the
results of three types of Fama-MacBeth regressions: Contemporaneous, in which returns and factor loadings for each month t are estimated using the same
data periods (t − T, t], where T = 6 months; Staggered regressions, in which returns and factor loadings are estimated on staggered months as described in
Section 2 (where, in each estimation period (t− T̃1, t] for each month t, where T̃1 is 18 months, months t− 15, t− 12, t− 9, t− 6, t− 3, and t are used for
realized return estimation and months t− 16, t− 13, t− 10, t− 7, t− 4, and t− 1 are used for factor loading estimation); and Predictive regressions, where,
for each month t, factor loadings are estimated using return time series (t − T1, t] and average returns are estimated either for a single month t + 1 or for
the period (t, t+ T1], where T1 is six months. Each panel reports results of a separate single- or multiple regression model. Reported t-statistics are adjusted
for overlapping periods using the Newey-West method. Average AdjR2 of cross-sectional regressions are reported for each estimation model. The study used
daily return time series of stocks traded on NYSE/Amex/Nasdaq during the period between 1963 and 2018, with sharecodes 10 and 11.

Models

Regression Types

Contemporaneous Staggered Predictive – 1mo Predictive – 6mo

Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic

Panel (1)

Int 0.067 4.06 0.048 3.24 0.096 4.20 0.106 4.32
β 0.053 2.90 0.032 2.23 0.011 0.72 0.007 0.45

Adj R2 4.9 % 3.8 % 2.9 % 2.6 %

Panel (2)

Int 0.064 3.63 0.044 2.94 0.094 4.06 0.101 4.23
β− 0.048 3.81 0.031 3.19 0.013 1.17 0.012 1.22

Adj R2 3.8 % 2.7 % 2.0 % 2.0 %

Panel (3)

Int 0.106 5.33 0.073 4.16 0.102 4.05 0.111 4.32
β+ 0.008 0.86 0.007 0.93 0.009 1.14 0.004 0.64

Adj R2 2.4 % 2.1 % 1.6 % 1.3 %

Panel (4)

Int 0.068 4.05 0.047 3.20 0.096 4.22 0.103 4.36
β− 0.053 4.72 0.033 3.96 0.010 1.05 0.014 1.53
β+ -0.010 -1.52 -0.005 -0.94 0.001 0.13 -0.006 -1.15

Adj R2 4.9 % 3.6 % 2.7 % 2.4 %

Panel (5)

Int 0.060 3.72 0.044 3.00 0.097 4.28 0.105 4.34
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Table 2: (Continued.)

Models

Regression Types

Contemporaneous Staggered Predictive – 1mo Predictive – 6mo

Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic

β 0.056 3.11 0.034 2.40 0.010 0.60 0.006 0.38
β+ − β− -0.026 -4.95 -0.016 -4.31 -0.003 -0.74 -0.008 -1.82

Adj R2 5.8 % 4.3 % 3.4 % 3.0 %

Panel (6)

Int 0.061 3.74 0.043 2.98 0.096 4.21 0.105 4.31
β 0.056 3.10 0.035 2.40 0.011 0.68 0.006 0.43
Cosk -0.126 -6.42 -0.069 -4.48 -0.017 -0.90 -0.034 -2.20

Adj R2 5.5 % 4.2 % 3.2 % 2.9 %

Panel (7)

Int 0.026 1.73 0.049 3.27 0.094 4.13 0.104 4.29
β 0.050 2.85 0.032 2.24 0.011 0.69 0.006 0.41
ρexc -0.348 -9.83 0.005 0.58 -0.022 -1.88 -0.047 -3.81

Adj R2 8.0 % 4.0 % 3.1 % 2.8 %

Panel (8)

Int 0.046 2.98 0.047 3.20 0.095 4.15 0.105 4.30
β 0.052 2.89 0.032 2.25 0.011 0.69 0.006 0.42
Jadj -0.008 -9.65 0.000 0.29 -0.001 -1.82 -0.001 -3.50

Adj R2 6.5 % 4.0 % 3.0 % 2.7 %
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Table 3: Comparison of staggered regressions with 1-month, 2-month, 3-month, and 6-month estimation subperiods. This table presents results of staggered
Fama-MacBeth regressions: In column Staggered - 1mo, factor loadings and average returns are estimated as in Table 2. In column Staggered - 2mo, for
each month t, factor loadings are estimated using months t− 15, t− 14, t− 9, t− 8, t− 3, and t− 2 – i.e. three 2-month-long continuous periods. Average
returns are estimated using months t− 13, t− 12, t− 7, t− 6, t− 1, and t - using 2-month continuous periods that follow the 2-month periods used for factor
loading estimation. In column Staggered - 3mo, for each month t factor loadings and average returns are estimated using 3-month continuous periods: t− 14,
t− 13, t− 12, t− 5, t− 4, t− 3 and t− 11, t− 10, t− 9, t− 2, t− 1, t respectively. Column Predictive - 6mo reports results of predictive regressions, as in
Table 2 (last column). Each panel reports results of a separate single- or multiple regression model. Reported t-statistics are adjusted for overlapping periods
using the Newey-West method. Average AdjR2 of cross-sectional regressions are reported for each estimation model. The study used daily return time series
of stocks traded on NYSE/Amex/Nasdaq during the period between 1963 and 2018, with sharecodes 10 and 11.

Models

Regression Types

Staggered - 1mo Staggered - 2mo Staggered - 3mo Predictive - 6mo

Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic

Panel (1)

Int 0.048 3.24 0.050 3.06 0.050 2.91 0.106 4.32
β 0.032 2.23 0.028 2.00 0.026 1.91 0.007 0.45

Adj R2 3.8 % 4.2 % 3.9 % 2.6 %

Panel (2)

Int 0.044 2.94 0.043 2.63 0.050 2.86 0.101 4.23
β− 0.031 3.19 0.032 3.36 0.024 2.67 0.012 1.22

Adj R2 2.7 % 2.8 % 2.8 % 2.0 %

Panel (3)

Int 0.073 4.16 0.069 3.81 0.065 3.44 0.111 4.32
β+ 0.007 0.93 0.008 1.14 0.011 1.60 0.004 0.64

Adj R2 2.1 % 2.3 % 2.1 % 1.3 %

Panel (4)

Int 0.047 3.20 0.048 2.90 0.050 2.93 0.103 4.36
β− 0.033 3.96 0.034 4.08 0.023 3.13 0.014 1.53
β+ -0.005 -0.94 -0.005 -1.02 0.001 0.15 -0.006 -1.15

Adj R2 3.6 % 3.9 % 3.6 % 2.4 %

Panel (5)

Int 0.044 3.00 0.047 2.88 0.048 2.81 0.105 4.34
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Table 3: (Continued.)

Models

Regression Types

Staggered - 1mo Staggered - 2mo Staggered - 3mo Predictive - 6mo

Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic

β 0.034 2.40 0.030 2.14 0.027 1.98 0.006 0.38
β+ − β− -0.016 -4.31 -0.017 -4.27 -0.009 -2.60 -0.008 -1.82

Adj R2 4.3 % 4.7 % 4.4 % 3.0 %

Panel (6)

Int 0.043 2.98 0.047 2.86 0.048 2.83 0.105 4.31
β 0.035 2.40 0.031 2.13 0.027 1.98 0.006 0.43
Cosk -0.069 -4.48 -0.067 -4.81 -0.033 -2.58 -0.034 -2.20

Adj R2 4.2 % 4.5 % 4.2 % 2.9 %

Panel (7)

Int 0.049 3.27 0.048 2.94 0.050 2.91 0.104 4.29
β 0.032 2.24 0.028 2.00 0.026 1.92 0.006 0.41
ρexc 0.005 0.58 -0.008 -0.98 -0.002 -0.29 -0.047 -3.81

Adj R2 4.0 % 4.4 % 4.2 % 2.8 %

Panel (8)

Int 0.047 3.20 0.048 2.94 0.050 2.90 0.105 4.30
β 0.032 2.25 0.028 2.00 0.026 1.92 0.006 0.42
Jadj 0.000 0.29 -0.000 -1.46 0.000 0.15 -0.001 -3.50

Adj R2 4.0 % 4.3 % 4.1 % 2.7 %

41



Table 4: Comparison of staggered cross-sectional regressions of with factor loading estimation
periods preceding (A) and following (B) periods used to estimate average returns. This table
compares the results of staggered Fama-MacBeth regressions: In Staggered A, for each month
t, factor loadings are estimated using months t− 16, t− 13, t− 10, t− 7, t− 4, and t− 1,
and average returns are estimated using months t − 15, t − 12, t − 9, t − 6, t − 3, and
t, so that return estimation periods effectively follow factor loading estimation periods. In
Staggered B, the return and factor loading estimation periods are swapped. Each panel
reports results of a separate single- or multiple regression model. Reported t-statistics are
adjusted for overlapping periods using the Newey-West method. Average AdjR2 of cross-
sectional regressions are reported for each model. The study used daily return time series
of stocks traded on NYSE/Amex/Nasdaq during the period between 1963 and 2018, with
sharecodes 10 and 11.

Models

Regression Types

Staggered - A Staggered - B

Coefficient t-Statistic Coefficient t-Statistic

Panel (1)

Int 0.048 3.24 0.059 3.75
β 0.032 2.23 0.024 1.73

Adj R2 3.8 % 3.5 %

Panel (2)

Int 0.044 2.94 0.051 3.25
β− 0.031 3.19 0.028 3.10

Adj R2 2.7 % 2.5 %

Panel (3)

Int 0.073 4.16 0.085 4.60
β+ 0.007 0.93 -0.004 -0.63

Adj R2 2.1 % 1.9 %

Panel (4)

Int 0.047 3.20 0.058 3.73
β− 0.033 3.96 0.038 4.44
β+ -0.005 -0.94 -0.017 -2.77

Adj R2 3.6 % 3.4 %

Panel (5)

Int 0.044 3.00 0.053 3.47
β 0.034 2.40 0.028 2.02
β+ − β− -0.016 -4.31 -0.024 -4.87

Adj R2 4.3 % 4.1 %

Panel (6)

Int 0.043 2.98 0.054 3.53
β 0.035 2.40 0.027 1.94
Cosk -0.069 -4.48 -0.092 -5.55

Adj R2 4.2 % 4.0 %

Panel (7)

Int 0.049 3.27 0.056 3.61
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Table 4: (Continued.)

Models

Regression Types

Staggered - A Staggered - B

Coefficient t-Statistic Coefficient t-Statistic

β 0.032 2.24 0.024 1.74
ρexc 0.005 0.58 -0.011 -1.38

Adj R2 4.0 % 3.7 %

Panel (8)

Int 0.047 3.20 0.057 3.66
β 0.032 2.25 0.024 1.74
Jadj 0.000 0.29 -0.000 -1.77

Adj R2 4.0 % 3.6 %

A Robustness Checks

In this section, we report regression results controlled for size, book-to-market ratio, and momentum

factors (short- and medium-term). Table A1 summarizes the results. Additional robustness checks

are reported in the Online Appendix.

B Estimated Premium of a Factor with an AR(1) Process

In this Section, we derive the relative premium estimate γ̂/γ for a factor evolving in time according

to a mean-reverting AR(1) process introduced in Section 4.3, for each stock i:

fiτ = fiτ−1 + (1− φ)(fi − fiτ−1) + εiτ . (26)

The process reverts to the mean fi = E[fit] on a time scale defined by the time constant, TB =

−1/ log φ. As in Section 4.3, VarC(fi) = σ2
f0 and Var(εiτ ) = σ2, which we assume to be independent

of time and asset.
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For this process, we have:

1

T1T2

∑
s∈I2

∑
u∈I1

CovC(fis, fiu) =
1

N

1

T1T2

∑
s∈I2,u∈I1

N∑
i=1

∫
(fis − f)(fiu − f)p(fis, fiu) dΩisdΩiu, (27)

where f is the cross-sectional population mean, f ≡ E[EC [fiτ ]]; Ωiτ represents all the possible

realizations of factor f for stock i at time τ ; and p(fis, fiu) is the joint pdf of the factor realizations

for stock i at times s and u, such that
∫
p(fis, fiu) dΩisdΩiu = 1.

We can decompose the cross-sectional covariance in Eq. (27) into two parts:

1

T1T2

∑
s∈I2

∑
u∈I1

CovC(fis, fiu) =

=
1

N

1

T1T2

∑
s∈I2,u∈I1

N∑
i=1

∫
(fis − fi + fi − f)(fiu − fi + fi − f)p(fis, fiu) dΩisdΩiu (28)

=
1

N

1

T1T2

∑
s∈I2,u∈I1

N∑
i=1

[ ∫
(fis − fi)(fiu − fi)p(fis, fiu) dΩisdΩiu+

+

∫
(fi − f)(fi − f)p(fis, fiu) dΩisdΩiu

]
, (29)

where, since variation in factor loading of a specific stock i is independent of cross-sectional varia-

tion, the cross-terms of the form
∫

(fis − fi)(fi − f)p(fis, fiu) dΩisdΩiu cancel out.

In Equation (29), the first term is the sum of individual stock autocovariances from time s to

time u; the second term is the cross-sectional variance of long-term factor means, σ2
f0:

1

T1T2

∑
s∈I2

∑
u∈I1

CovC(fis, fiu) =

=
1

T1T2

∑
s∈I2

∑
u∈I1

Cov(fis, fiu) + σ2
f0 (30)

Similarly,

1

T 2
1

∑
s,u∈I1

CovC(fis, fiu) = =
1

T 2
1

∑
s,u∈I1

Cov(fis, fiu) + σ2
f0 (31)
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For the AR(1) process in Eq. (26), the factor autocovariance Cov(fis, fiu) takes the form:

Cov(fis, fiu) =
φ|s−u|σ2

1− φ2
, (32)

where σ2 is the variance of the disturbance term ωiτ .

Using the time constant, TB ≡ − 1
log φ , we can write:

Cov(fis, fiu) =
e−|s−u|/TB

1− e−2/TB
σ2. (33)

When the time-variation of factor f follows an AR(1) process, the autocovariance of the factor

takes an exponentially-declining form, where the time constant TB reflects the rate of decline –

slower decline if TB is larger and faster decline if TB is smaller.

We therefore have:

γ̂/γ =
1
T1T2

∑
s∈I2

∑
u∈I1 Cov(fis, fiu) + σ2

f0
1
T 2
1

∑
s,u∈I1 Cov(fis, fiu) + σ2

f0

=
T1

T2

∑
s∈I2

∑
u∈I1 e

−|s−u|/TB + η2∑
s,u∈I1 e

−|s−u|/TB + η2
, (34)

where

η2 ≡
σ2
f0

σ2
(1− e−2/TB ). (35)

We can now use Eq. (34) to derive the γ̂/γ for contemporaneous, predictive, and staggered

regressions.

For contemporaneous regressions, under our simplifying assumptions outlined in Section 4, we

have:

γ̂/γctp = 1. (36)

In contemporaneous regressions, the estimation periods for factors and returns are the same, I1 = I2,

and, in the expression for γ̂/γ in Eq. (23), the numerator and the denominator are equal.
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For predictive and staggered regressions we can also derive closed-form expressions for γ̂/γ,

if we assume that the sampling time step in the time series of stock returns is much smaller than

TB (a realistic scenario). Under this assumption, we can apply a continuous approximation to

sums over I1 and I2, which allows us to evaluate these sums analytically, as shown in the Online

Appendix.

C Exceedance Correlations and the Distribution of Stock Returns

Exceedance correlations, defined in Section 3.1 (Eq. 5), are based on the Pearson correlation func-

tion, highly sensitive to outliers in the data. When an outlier is added to an otherwise jointly normal

distribution of two random variables, as in Figure 5, their Pearson correlation is suppressed.

In this section, we demonstrate how the presence of outlier stock returns – jumps and crashes

(i.e. negative jumps) – can produce the appearance of asymmetric dependence in exceedance corre-

lations. Jumps and crashes are common in stock return time series; they are what makes the joint

distribution of stock return leptokurtic and contribute to its non-zero skewness.

Consider a situation where the estimation window for exceedance correlations captures a single

positive jump and no negative jumps; in this case, the expected value of the exceedance correlation

will be negative, even if the jumps are uncorrelated with market moves. The geometry of exceedance

correlation induces the linkage, as demonstrated in Figure 6: if the positive jump coincides with

a negative market move, it falls outside the cutoff boundary and does not affect exceedance corre-

lations. But if the positive jump coincides with a positive market move, it falls within the cutoff

boundary and reduces ρ+. If, in the absence of an outlier (a state of the world we denote as N ),

the expected value of ρ+ equals the expected value of ρ−, E[ρ+|N ] = E[ρ−|N ], in the presence of

a positive outlier O+, we have E[ρ+|O+] < E[ρ−|O+] and E[ρexc|O+] = E[ρ+ − ρ−|O+] < 0. At

the same time, the presence of a positive outlier in a time series of stock returns makes it more

likely that the realized total return during the estimation window was positive, creating a statistical

link between positive average returns and negative exceedance correlations – in the absence of any

underlying asymmetric dependence. Similar logic leads to a similar conclusion for a negative outlier
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O−, and E[ρexc|O−] > 0, while the returns for the period are likely to be negative.

In this section, we demonstrate how the statistical linkage between exceedance correlations

and returns arises in the presence of jumps, resulting in an apparent premium associated with

this factor in contemporaneous regressions. We use a simple market model of individual stock

returns with jumps, in which the dependence of the stock returns on the market does not exhibit

any asymmetric dependence. We confirm the results of the theoretical model using simulations in

Appendix C.4.

C.1 Exceedance correlations in the presence of jumps

To model the impact of large idiosyncratic moves – or jumps – on exceedance correlations, we start

with the market model, where the excess return of stock i, ri, has a linear dependence on excess

market return rm:

riτ = βirmτ + ωiτ . (37)

The disturbance term, ωiτ , represents idiosyncratic noise. Each idiosyncratic move can be either a

“regular” move with variance σ2
i0 or – with probability q – a “jump” with variance B2

i , such that

B2
i � σ2

i0. The idiosyncratic move process ωiτ can be written as:

ωiτ = yiτ (1− biτ ) + ziτ biτ , (38)

where biτ is a Bernoulli process (where biτ = 1 with probability q and biτ = 0 with probability

1−q) that determines whether the idiosyncratic move of stock i at time t is a “regular” move yiτ or

a jump ziτ . The idiosyncratic process ωiτ is uncorrelated with the market rmτ and the dependence

of stock returns on market returns in this model is linear, with no asymmetric dependence.

The variances of random variables yi,t and zi,t are finite and equal Var(yi,t) = σ2
i0 and

Var(zi,t) = B2
i . The jump process can have a non-zero mean, such that E[zi,t] = B̄i ≥ 0. The

combined process is leptokurtic, with kurtosis K > 3 (for q > 0). If the mean jump is non-zero
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(B̄i 6= 0), the combined process is also skewed, with a non-zero skewness of the same sign as B̄i.
10

To evaluate the impact of jumps on exceedance correlations, we first consider the impact of

jumps on the Pearson correlation function between individual stock returns and the market return.

For the process in Eq. (37), the Pearson correlation function is equal to:

ρiB = βi
σm
σiB

=
σi0
σiB

ρi0, (39)

where the subscript B indicates the presence of jumps and the subscript 0 indicates no jumps (i.e.

q = 0); σ2
m is the variance of market returns, and σ2

iB is the variance of the individual stock returns

in the presence of jumps. As shown in Appendix C.2, we can derive an expression for σiB as a

function of σi0, q, B̄i and B2
i , so that we have (dropping the stock index i to streamline notation):

ρB =
1√

(1− q) + q(1− q) B̄2

σ2
0

+ qB
2

σ2
0

ρ0 ≡ DBρ0 < ρ0, (40)

When B > σ0, the denominator in the fraction above is greater than 1 and, therefore, ρB < ρ0.

To simplify notation, we introduced DB the fractional reduction of correlation in the presence of

outliers. Figure 5 demonstrates the rapid decline of the Pearson correlation function as kurtosis of

returns increases due to jumps.

With the expression for the Pearson correlation function in the presence of outliers, we quan-

tify the impact of outliers on exceedance correlation estimates and contemporaneous estimates of

average returns. We show that, in the presence of a (net) positive outlier, expected exceedance

correlations are negative, but expected idiosyncratic returns are positive; in the presence of a neg-

ative outlier, the expected exceedance correlations are positive, and the expected idiosyncratic

returns are negative. We then apply Bayes theorem to estimate expected exceedance correlations

conditioned on positive and negative returns. Appendix C.3 provides the details of the analysis.

In Appendix C.3, we show that expected exceedance correlations given the sign of average

10If B̄i > 0, then the market model in Eq. (37) needs to include αi = −qB̄i: ri,t = αi+βirm,t+ωi,t, to compensate
for the net positive impact of jumps. The addition of the constant term αi does not affect the Pearson correlation
function or exceedance correlations.
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returns (p or n) are

E[ρexc|p] = −ρ0(1−DB)δa < 0

E[ρexc|n] = ρ0(1−DB)δa > 0, (41)

where a represents the increased probability of a positive (negative) return in the presence of a

positive (negative) outlier and δ is the number of outliers expected during estimation period T .

Because DB < 1 and δ, a, ρ0 > 0, in the presence of jumps, exceedance correlations conditioned

on positive returns are negative and vice versa.

The spread between exceedance correlations conditioned on positive and negative returns can

be material: The probability δ of capturing an outlier in six months of daily data can be of the

order unity (we assume it is 50%). The constant a measuring the likelihood that a total return

during a period with a net positive jump is positive and vice versa can also be quite large. Stocks,

particularly small stocks, experience 10-20% jumps quite often. If stock returns are normally

distributed otherwise, with a 2% standard deviation, a 20% jump during a half-year measurement

period makes it approximately 70% likely that the total return will be positive. In this case, a = 0.4.

The decline in correlation due to kurtosis and skewness, (1−DB), can be 10-20%, as can be inferred

from Figure 5 and empirical measures of kurtosis (Table 1). Putting these numbers together in

Eq. (41), we get a 6% difference in ρexc conditioned on positive returns vs. negative idiosyncratic

returns.

It is important to note that, if the distribution of idiosyncratic stock returns is persistently

skewed and leptokurtic (as shown to be true for individual stock returns by, e.g. Boyer, Mitton,

and Vorkink, 2009), the link between exceedance correlation and returns can persist even if the

factor loadings and the average returns are estimated using non-overlapping periods. To understand

this mechanical effect, consider a period with a realized positive idiosyncratic return. This period

is much more likely to contain a positive jump than a negative jump. A positive jump is more

likely to happen to a stock with a persistently positively skewed and leptokurtic distribution. The

stock with a persistently positively skewed and leptokurtic distribution is likely to have a negative
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exceedance correlation. Through this Bayesian chain, a link between realized positive (negative)

returns and negative (positive) exceedance correlation can persist even when the returns and the

correlation are measured using non-overlapping periods.

C.2 Variance in the Presence of Outliers

In this section, we calculate the variance of the process described in Section C.1, Eqs. (37) and (38),

where the “regular” process yτ (we consider a single asset and drop the asset index i to streamline

notation) has a mean y0, variance σ2
0, and the jump process has a mean B̄, jump variance B2. The

probability that an idiosyncratic move is a jump is q.

The mean of the combined process is

ȳ = (1− q)y0 + qB̄. (42)

The variance of T steps (T � 1) of the combined process is:

σ2 =
1

T

T∑
τ=1

(yτ − (1− q)y0 − qB̄)2 = (43)

=
1

T
∑
τ∈1−q

(yτ − y0 + qy0 − qB̄)2+

+
1

T
∑
τ∈q

(yτ − y0 + qy0 − qB̄)2, (44)

where τ ∈ q (and τ ∈ 1− q) is a shorthand for “step τ is (isn’t) a jump.”

We regroup the expressions in parentheses in different ways for regular steps and jump steps

(the expressions in the square brackets below are equivalent):

σ2 =
1

T
∑
τ∈1−q

[
(yτ − y0) + q(y0 − B̄)

]2
+

+
1

T
∑
τ∈q

[
(yτ − B̄) + (1− q)(B̄ − y0)̄]

2
. (45)
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We now expand the quadratic expressions in brackets:

σ2 =
1

T
∑
τ∈1−q

[
(yτ − y0)2 + 2q(y0 − B̄)(yτ − y0) + q2(B̄ − y0)2

]
+

+
1

T
∑
τ∈q

[
(yτ − B̄)2 + 2(1− q)(yτ − B̄)(B̄ − y0) + (1− q)2(B̄ − y0)2

]
(46)

For a large enough T , the second term in each bracket tends to 0. The first term in the brackets

is the variance of the “regular” process and the jump process respectively. The last term in the

brackets is a constant. Thus, we have:

σ2 = (1− q)
[
σ2

0 + q2(B̄ − y0)2
]
+

+ q
[
B2 + (1− q)2(B̄ − y0)2

]
. (47)

Simple manipulation leads to:

σ2 =(1− q)σ2
0 + q(1− q)(B̄ − y0)2 + qB2. (48)

Because y0 << B̄, we can simplify the expression further if we assume y0 = 0:

σ2 =(1− q)σ2
0 + q(1− q)B̄2 + qB2. (49)

C.3 Expected Exceedance Correlations Given the Sign of Realized Returns

In this section, we derive the impact of jumps on exceedance correlations.

Exceedance correlations are affected if the jumps are within the boundaries of r̃i > c, r̃m > c

and r̃i < c, r̃m < c. In what follows, we consider the case of c = 0 for simplicity, and it is straight

predictive to extend the analysis to c > 0.

In the presence of a positive jump (and no negative jumps), expected exceedance correlation
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is negative and equal to:

E[ρexc|O+] =
1

2
(ρ+

0 − ρ
−
0 ) +

1

2

(
ρ+

0

1√
(1− q) + q(1− q) B̃2

4 + qB̃2

− ρ−0
)

=

= −1

2

(
1− 1√

(1− q) + q(1− q) B̃2

4 + qB̃2

)
ρ−0 =

= −1

2
(1−DB)ρ−0 < 0, (50)

where O+ denotes a scenario a positive jump; ρ+
0 and ρ−0 are the positive and negative exceedance

correlations for the model with no jumps, and ρ+
0 = ρ−0 ; B̃ is the size of the jump in units of

standard deviation of the model without jumps; for a single jump, q = 1/T , where T is the number

of return data points in the estimation window.

Similarly, in the presence of a negative jump (and no positive jumps), expected exceedance

correlation is positive:

E[ρexc|O−] =
1

2

(
1− 1√

(1− q) + q(1− q) B̃2

4 + qB̃2

)
ρ−0 = (51)

=
1

2
(1−DB)ρ−0 > 0. (52)

Since the distribution of idiosyncratic stock returns is positively skewed – i.e. tends to have

more positive outliers – it is not surprising that the mean exceedance correlation estimated for a

sample of stock returns is negative, as can be seen in the Statistical summary of factors provided

in Table 1.

The geometry of exceedance correlation not only affects exceedance correlation estimation,

but also the estimation of premia associated with this correlation. This effect arises because jumps

affect not only exceedance correlations, but also average returns.

To demonstrate this linkage, we estimate the expected value of exceedance correlation during

periods of positive returns, denoted by p, and during periods of negative returns, denoted by n.
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For the state of the world s with a realized positive p or negative n return, we have:

E[ρexc|s] = E[ρexc|O+]P (O + |s) + E[ρexc|O−]P (O − |s) + ρexc0 P (N |s) (53)

where P (•|s) is the probability of capturing a positive (O+), negative (O−), or no (N) outlier in

the estimation window conditioned on s.

To estimate the probabilities of having captured a positive or negative jump when the realized

returns were positive or negative, we use the following assumptions:

P (O+) = P (O−) = δ ≈ qT (54)

P (p) = P (n) =
1

2
(55)

P (p|N) = P (n|N) =
1

2
(56)

P (p|O+) = P (n|O−) =
1 + a

2
(57)

P (p|O−) = P (n|O+) =
1− a

2
(58)

We assume that the probability of capturing a jump in the estimation window is equal to δ, which

is approximately equal to qT when qT � 1. We also assume that a realized positive return and

a realized negative return are unconditionally equally likely and are equally likely if no jump is

captured. Lastly, a positive jump makes a positive realized return more likely and a negative

return makes a negative return more likely (a > 0). The converse is true as well.

We apply Bayes theorem to estimate probabilities of having captured a jump in the estimation

window given a positive or negative return:

P (O + |p) = P (O − |n) = (1 + a)δ (59)

P (O − |p) = P (O + |n) = (1− a)δ. (60)
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The expected exceedance correlations given the sign of realized returns (p or n) then are

E[ρexc|p] = −ρ0(1−DB)δa < 0

E[ρexc|n] = ρ0(1−DB)δa > 0. (61)

C.4 Impact of skewness and kurtosis on ρexc and Jadj: Simulations

To generalize the relationship between exceedance correlations and average returns in the pres-

ence of jumps and other deviations of the stock return distribution from multivariate normality

(Eq. 41), we conduct a series of simulations. The simulations do not build in any asymmetric

dependence (idiosyncratic risk distributions are the same for positive and negative market moves)

or any exogenous risk premia.

To perform the simulations, we created a data-generating process for N = 500 shares with

randomly assigned CAPM βs for each stock i, with βi ∼ N(1, 0.5), consistently with empirical

results. We used an unobserved macroeconomic variable r0 to create a set of time series of individual

stock returns {ri,t}Tt=1, where T = 132, to represent six months of daily data, such that

ri,t = βir0 + εi,t, (62)

where εi,t is an idiosyncratic noise process. The noise process εi,t samples from a non-central t

distribution with a variety of degrees of freedom from ν = 2 to 100 and noncentrality parameters

from d = 0 to 1 to match skewness and kurtosis levels in idiosyncratic returns observed empirically.

We then created an initially equally-weighted index of stocks in our sample and used this index

without rebalancing as the basis for estimating conditional systematic factor loadings.

To model individual stock returns, we used a continuously compounded process without con-

version to daily compounding (in contrast to the β− and β+ simulations described in the Online

Appendix), because daily compounding of a symmetric continuously compounded process induces

a positively skewed return profile. In exceedance correlation simulations we aim to demonstrate the

impact of long-tailed skewness and therefore use a process that allows us to turn skewness down to
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zero.

Table A2 summarizes the results. We used the non-central t distribution to model the stylized

features of individual stock returns such as fat tails and positive skewness. We used a non-central t

distribution with degrees of freedom ν = 4 and non-centrality parameter d = 0.3 to match summary

statistical features of return time series. Using the simulated return time series, we estimated factor

loadings and average returns, and ran Fama-MacBeth regressions to estimate “premia” associated

with factors in the simulation. We then compared the results of simulated regressions for the

realistic ν = 4 (d = 0.3) return distribution with those for a symmetric leptokurtic distribution

ν = 4 (d = 0) and the normal distribution.

When the distribution of idiosyncratic returns is leptokurtic (ν = 4), there is a large and

highly statistically significant negative slope between exceedance correlations (ρexc or Jadj) and

average returns [Table A2, panel (a)]. When the distribution of idiosyncratic return is not only

leptokurtic, but also skewed (d = 0.3), the mean values of ρexc or Jadj are negative [Table A2, panel

(b)], because the positively skewed distribution of returns contains positive jumps that suppress the

values of ρexc or Jadj . For the (approximately) symmetric (d = 0) idiosyncratic return distribution,

the mean values of ρexc or Jadj are close to zero, because positive and negative jumps are now

in balance. However, the highly statistically significant slope between returns and ρexc or Jadj

remains, as would be expected from theory developed in Section C.1. When the distribution of

idiosyncratic returns is normal – i.e. there are no jumps – the coefficient between returns and

exceedance correlation goes to zero.

Lastly, even though the regression coefficient between exceedance correlations and returns is

artificially induced by outliers, controlling for kurtosis and skewness in regressions is insufficient to

eliminate it.

55



C.5 Exceedance correlation as a measure of deviation of stock return distribu-

tion from normal

Exceedance correlations have been used widely to study asymmetric dependence phenomena, but

because of their sensitivity to other deviations of stock return distributions from multivariate nor-

mality, they could potentially be re-purposed for other applications. Investment managers could use

exceedance correlations to screen past stock returns for influence of large jumps; corporate boards

and CFOs could diagnose whether issued option-like instruments would be accurately priced by

Black-Scholes equation.
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Table A1: Contemporaneous, staggered, and predictive cross-sectional regressions of average returns on estimated risk, size, book-to-market, and momentum
factor loadings. This table compares the results of three types of Fama-MacBeth regressions: Contemporaneous, in which returns and factor loadings for each
month t are estimated using the same data periods (t− T1, t], where T = 6 months; Staggered regressions, in which returns and factor loadings are estimated
on staggered months as described in Section 2 (where, in each estimation period (t− T̃1, t] for each t, where T̃1 is 18 months, months t−15, t−12, t−9, t−6,
t−3, and t are used for realized return estimation and months t−16, t−13, t−10, t−7, t−4, and t−1 are used for factor loading estimation); and Predictive
regressions, where, for each time t, factor loadings are estimated using return time series [t−T1, t) and average returns are estimated for either a single month
t+ 1 or for the period (t, t+ T1], where T1 is six months. Size and book-to-market factors are estimated using classic Fama and French (1992) method. Size
factor is the logarithm of issuing firm market capitalization measured in December of year preceding the first date of return estimation period. Book-to-market
factor is based on latest reported annual book equity preceding the first date of return estimation period. If return estimation period starts before July 1 of year
Y0, then size and book-to-market are estimated using data from Y0 − 2. Medium term momentum factor, Past Ret−T , is based on the period prior and equal
in length to the return estimation period. Short-term momentum, Ret−1, is based on one month preceding the estimation period (for Staggered regressions,
Ret−1 is estimated on staggered basis, contemporaneously to systematic risk factors). Panels (1) through (8) report results of separate multiple regression
models. Reported t-statistics are adjusted for overlapping periods using the Newey-West method. Average AdjR2 of cross-sectional regressions are reported
for each estimation model. The study used daily return time series of stocks traded on NYSE/Amex/Nasdaq during the period between 1963 and 2018, with
sharecodes 10 and 11.

Models

Regression Types

Contemporaneous Staggered Predictive – 1mo Predictive – 6mo

Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic

Panel (1)

Int 0.191 5.33 0.113 3.65 0.217 4.66 0.228 4.74
β 0.055 3.04 0.027 2.09 0.011 0.71 0.008 0.68
Mcap -0.027 -5.71 -0.014 -3.79 -0.025 -4.63 -0.027 -4.60
B/M 0.020 2.98 0.015 2.57 0.012 1.40 0.017 2.08
Past Ret−T 0.029 2.73 0.014 2.35 0.043 2.90 0.050 3.41
Ret−1 -0.009 -5.41 -0.024 -2.97 -0.049 -7.09 -0.008 -4.04

Adj R2 18.7 % 31.1 % 15.4 % 16.2 %

Panel (2)

Int 0.171 4.74 0.104 3.36 0.207 4.40 0.219 4.56
β− 0.040 3.57 0.023 2.91 0.006 0.58 0.006 0.80
Mcap -0.023 -5.49 -0.012 -3.50 -0.023 -4.63 -0.025 -4.59
B/M 0.023 3.17 0.015 2.52 0.013 1.46 0.019 2.21
Past Ret−T 0.031 2.80 0.014 2.37 0.041 2.65 0.048 3.25
Ret−1 -0.009 -5.14 -0.022 -2.74 -0.048 -7.01 -0.007 -4.00

Adj R2 17.5 % 30.4 % 14.6 % 15.6 %
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Table A1: (Continued.)

Models

Regression Types

Contemporaneous Staggered Predictive – 1mo Predictive – 6mo

Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic

Panel (3)

Int 0.213 5.33 0.131 3.86 0.214 4.32 0.224 4.47
β+ 0.010 1.19 0.007 1.10 0.009 1.16 0.007 1.25
Mcap -0.025 -5.54 -0.014 -3.65 -0.024 -4.68 -0.026 -4.57
B/M 0.019 2.68 0.014 2.33 0.014 1.49 0.019 2.23
Past Ret−T 0.035 3.08 0.015 2.26 0.039 2.53 0.050 3.25
Ret−1 -0.009 -5.01 -0.022 -2.67 -0.046 -6.80 -0.008 -3.97

Adj R2 16.8 % 30.3 % 14.5 % 15.4 %

Panel (4)

Int 0.177 4.92 0.108 3.51 0.210 4.49 0.221 4.61
β− 0.042 4.16 0.023 3.57 0.003 0.36 0.004 0.71
β+ -0.000 -0.08 0.000 0.01 0.005 0.93 0.003 0.72
Mcap -0.023 -5.45 -0.013 -3.59 -0.024 -4.62 -0.026 -4.59
B/M 0.022 3.13 0.014 2.43 0.013 1.48 0.018 2.19
Past Ret−T 0.028 2.66 0.014 2.36 0.041 2.71 0.049 3.31
Ret−1 -0.009 -5.34 -0.023 -2.92 -0.048 -7.03 -0.008 -4.06

Adj R2 18.4 % 31.0 % 15.1 % 16.0 %

Panel (5)

Int 0.181 5.12 0.108 3.53 0.219 4.72 0.229 4.78
β 0.058 3.22 0.029 2.28 0.010 0.63 0.008 0.64
β+ − β− -0.017 -3.60 -0.009 -3.06 0.002 0.54 0.000 0.13
Mcap -0.025 -5.63 -0.013 -3.72 -0.025 -4.68 -0.027 -4.64
B/M 0.021 3.09 0.015 2.50 0.012 1.40 0.017 2.07
Past Ret−T 0.026 2.48 0.013 2.33 0.044 2.97 0.051 3.48
Ret−1 -0.009 -5.57 -0.024 -3.01 -0.050 -7.15 -0.008 -4.14

Adj R2 19.3 % 31.5 % 15.6 % 16.5 %

Panel (6)

Int 0.186 5.19 0.110 3.58 0.219 4.71 0.229 4.77
β 0.058 3.23 0.030 2.24 0.011 0.70 0.008 0.65
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Table A1: (Continued.)

Models

Regression Types

Contemporaneous Staggered Predictive – 1mo Predictive – 6mo

Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic

Cosk -0.084 -5.31 -0.040 -3.34 0.006 0.43 0.004 0.38
Mcap -0.026 -5.67 -0.013 -3.76 -0.025 -4.69 -0.027 -4.64
B/M 0.021 2.99 0.014 2.44 0.012 1.39 0.017 2.07
Past Ret−T 0.027 2.56 0.013 2.33 0.043 2.88 0.050 3.42
Ret−1 -0.009 -5.51 -0.024 -3.00 -0.049 -7.13 -0.007 -4.03

Adj R2 19.1 % 31.3 % 15.5 % 16.4 %

Panel (7)

Int 0.133 4.06 0.115 3.71 0.219 4.69 0.231 4.80
β 0.052 2.94 0.028 2.13 0.011 0.68 0.008 0.66
ρexc -0.304 -9.65 0.011 1.70 0.000 0.03 -0.001 -0.19
Mcap -0.022 -5.07 -0.014 -3.84 -0.025 -4.66 -0.027 -4.63
B/M 0.020 2.98 0.015 2.54 0.012 1.40 0.017 2.06
Past Ret−T 0.032 3.02 0.013 2.31 0.044 2.92 0.051 3.40
Ret−1 -0.009 -5.43 -0.023 -2.92 -0.050 -7.14 -0.008 -3.99

Adj R2 21.1 % 31.2 % 15.4 % 16.3 %

Panel (8)

Int 0.163 4.76 0.114 3.67 0.219 4.69 0.230 4.77
β 0.054 3.01 0.028 2.12 0.011 0.69 0.008 0.66
Jadj -0.007 -9.51 0.000 1.19 0.000 0.23 0.000 0.08
Mcap -0.024 -5.42 -0.014 -3.82 -0.025 -4.65 -0.027 -4.62
B/M 0.020 2.97 0.015 2.55 0.012 1.40 0.017 2.08
Past Ret−T 0.030 2.88 0.014 2.33 0.044 2.94 0.051 3.41
Ret−1 -0.009 -5.43 -0.024 -2.97 -0.050 -7.11 -0.008 -4.00

Adj R2 19.9 % 31.2 % 15.4 % 16.3 %

Panel (9)

Int 0.160 4.70 0.108 3.56 0.219 4.72 0.230 4.80
β 0.056 3.12 0.030 2.31 0.010 0.61 0.007 0.62
β+ − β− -0.000 -0.02 -0.011 -3.36 0.002 0.58 0.001 0.23
Jadj -0.007 -9.41 0.001 2.91 0.000 0.05 -0.000 -0.02
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Table A1: (Continued.)

Models

Regression Types

Contemporaneous Staggered Predictive – 1mo Predictive – 6mo

Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic

Mcap -0.024 -5.43 -0.013 -3.75 -0.025 -4.68 -0.027 -4.65
B/M 0.021 3.08 0.015 2.49 0.012 1.41 0.017 2.07
Past Ret−T 0.028 2.69 0.013 2.29 0.045 3.01 0.051 3.49
Ret−1 -0.009 -5.52 -0.024 -2.92 -0.050 -7.16 -0.008 -4.12

Adj R2 20.4 % 31.5 % 15.6 % 16.5 %

Panel (10)

Int 0.165 4.82 0.111 3.61 0.219 4.71 0.230 4.79
β 0.054 3.05 0.030 2.28 0.011 0.70 0.008 0.64
Cosk 0.062 3.93 -0.052 -3.92 0.004 0.25 0.003 0.33
Jadj -0.007 -9.50 0.001 3.74 0.000 0.32 0.000 0.36
Mcap -0.025 -5.50 -0.014 -3.78 -0.025 -4.69 -0.027 -4.64
B/M 0.020 2.96 0.014 2.42 0.012 1.40 0.017 2.07
Past Ret−T 0.030 2.83 0.013 2.30 0.044 2.92 0.051 3.42
Ret−1 -0.009 -5.41 -0.023 -2.84 -0.049 -7.13 -0.007 -4.01

Adj R2 20.3 % 31.4 % 15.5 % 16.4 %
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Table A2: Apparent risk premia of exceedance correlations: Simulation results. This table presents the results
of contemporaneous regressions of average returns on estimated factor loadings performed on simulated data.
Part (a) summarizes regression results; part (b) presents a summary of factor estimates. To demonstrate the
impact of outlier stock returns on exceedance correlations and measured risk premia, we model idiosyncratic
risk with “long tails” using the non-central t distribution with degrees of freedom ν and noncentrality param-
eter d. There is no asymmetric dependence built into the model. We run panels of 200 market simulations
for 500 stocks.

(a) Regression results

ν = 4(d = 0.3) ν = 4(d = 0) Normal

Panel Coeff. t-stat Coeff. t-stat Coeff. t-stat

I Int -0.057 -9.1 -0.003 -0.4 0.003 0.45
β 0.107 21.2 0.085 17.0 0.074 14.6

ρexc -0.204 -35.8 -0.224 -39.7 -0.002 -0.3

II Int -0.053 -8.5 -0.003 -0.5 0.003 0.5
β 0.109 21.5 0.086 17.1 0.074 14.6

Jadj -0.014 -29.6 -0.016 -33.8 -0.000 -0.4

III Int -0.042 -6.7 -0.003 0.0 0.003 0.4
β 0.115 22.5 0.087 17.2 0.074 14.6

Cosk 0.055 1.7 0.056 1.8 -0.010 -0.3

IV Int -0.106 -15.7 0.007 1.1 0.046 1.6
β 0.088 18.6 0.075 16.0 0.074 14.6

ρexc -0.084 -15.3 -0.105 -19.2 -0.002 -0.3
Skew 0.308 82.5 0.292 85.2 -0.001 -0.0
Kurt -0.006 -11.1 0.000 0.3 -0.014 -1.5

V Int -0.105 -15.5 0.007 1.1 0.046 1.6
β 0.089 18.7 0.076 16.0 0.074 14.6

Jadj -0.005 -11.5 -0.007 -15.5 -0.000 -0.4
Skew 0.313 84.3 0.297 87.2 -0.001 -0.1
Kurt -0.006 -11.3 0.000 0.2 -0.014 -1.5
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Table A2: Simulation results for exceedance correlations (Continued).

(b) Statistical summary

ν = 4(d = 0.3) ν = 4(d = 0) Normal

Mean Std Mean Std Mean Std

Ret 0.068 0.89 0.081 0.89 0.075 0.88
β 0.95 0.77 0.96 0.78 0.97 0.77

Idio 0.03 0.02 0.03 0.01 0.03 0.02
Skew 0.34 1.06 0.00 1.10 0.00 0.21
Kurt 7.4 7.2 7.4 7.1 3.0 0.4
ρexc -0.12 0.69 -0.01 0.7 0.03 0.68
Jadj -1.21 8.1 -0.04 8.1 0.24 7.7

Cosk -0.00 0.13 0.00 0.13 0.00 0.12
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OA “Are Conditional Factors Priced? Characterizing Risk Pre-

mia of Conditional Systematic Risk Factors with Staggered

Regressions”: Online Appendix

OA.1 Monte-Carlo Simulations

OA.1.1 Construction

To perform the simulations described in Section 3.6, we created a data-generating process for

N = 500 shares with randomly assigned CAPM βs for each stock i, as described in Appendix C.4.

Because non-linearity is a potentially important driver of regression results for factors mea-

suring non-linearity of the dependence of stock returns and market returns, we experimented with

different modes of compounding: continuous compounding, daily compounding, and compounding

where the data generating process uses continuous compounding, but the returns are converted into

daily compounding for estimation of factor loadings. None of these modifications had a material

impact on factor estimates.

The continuously compounded return process combined with conversion into daily returns

before beta estimation produced the closest match to empirical findings. With continuous com-

pounding alone, our simulations resulted in a dispersion of β− and of β+ much higher than that seen

empirically (Table OA2), even when levels of idiosyncratic risk, skewness and kurtosis were closely

matched. Daily compounding resulted in a number problems at the data generation step (outside

of the scope of this paper). We therefore recommend the combined method of compounding for

simulations.

To match levels of kurtosis and skewness in empirical data, we used the non-central t distri-

bution with degrees of freedom ν = 4 and noncentrality parameter d = 0.3 for simulations with

continuous compounding and d = 0.1 for those with combined compounding. In Tables OA1 and

OA2 we use the shorthand D.C. for combined compounding to indicate that daily compounded

returns are used for estimation of factor loadings. In column (e) of these tables, we also introduce

OA1



heteroskedasticity and make idiosyncratic risk slightly larger conditionally on positive market moves

than on negative market moves (with realized idiosyncratic risk circa 0.025 and 0.027 respectively).

Other than the natural non-linearity arising from compounding and a slight asymmetry in

idiosyncratic risk introduced in column (e) only, no other asymmetry is modeled in the reported

simulations. The dependence of simulated stock returns on the market is noisy, but perfectly linear

and symmetric.

OA.1.2 Results

We report simulation results in Table OA1. The table provides a summary of mean factor premia

and their Newey-West adjusted t-stats – the latter, in parentheses. A quick scan through the table

reveals that, in simulations, β− and β+ are associated with similar risk premia, even when the

premia are estimated in a multiple regression. Not only is the premium associated with β− not

greater than that for β+, but, in simulation, the situation is the reverse: β+ “earns” a higher

premium than β− and at a higher level of statistical significance.

As may be expected from the theoretical model in Section C.1, simulation parameters, par-

ticularly those related to skewness and kurtosis of idiosyncratic risk, did affect the estimate and

apparent economic significance of exceedance correlations and the related metric Jadj .

OA.2 Continuous Approximation Integrals to Estimate Factor Covariances

Starting with predictive regressions, we first evaluate the sum in the numerator of Eq. (23):

1

T1T2

∑
s∈I2

∑
u∈I1

e−|s−u|/TB ≈ 1

TT1

∫ t

t−T

∫ t+T1

t
e−|s−u|/TB du ds (63)

=
1

TT1

∫ 0

−T

∫ T1

0
e−|x−y|/TB dx dy (64)

=
1

TT1

∫ 0

−T
ex/TBdx

∫ T1

0
e−y/TBdy (65)

=
T 2
B

TT1
(1− e−T/TB )(1− e−T1/TB ) (66)
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We then evaluate the sum in the denominator:

1

T 2
1

∑
s,u∈I1

e−|s−u|/TB ≈ 1

T 2

∫ t

t−T

∫ t

t−T
e−|s−u|/TB du ds (67)

=
1

T 2

∫ T

0

∫ T

0
e−|x−y|/TB dx dy (68)

=
1

T 2

[ ∫ T

0
dx

∫ x

0
e−(x−y)/TBdy +

∫ T

0
dx

∫ T

x
e(x−y)/TBdy

]
(69)

= 2
TB
T

[
1− TB

T
(1− e−T/TB )

]
(70)

Thus, for predictive regressions we have:

γ̂/γprd =

T 2
B

TT1
(1− e−T/TB )(1− e−T1/TB ) + η2

2TBT
[
1− TB

T (1− e−T/TB )
]

+ η2
. (71)

For staggered regressions, we have, in the numerator:

1

T1T2

∑
s∈I2

∑
u∈I1

e−|s−u|/TB ≈ 1

T 2

K∑
k1=1

K∑
k2=1

∫ t−3k1TS+2TS

t−3k1TS+TS

∫ t−3k2TS+3TS

t−3k2TS+2TS

e−|s−u|/TB du ds (72)

=
1

T 2

K∑
k1=1

K∑
k2=1

∫ TS

0

∫ TS

0
e−|x−y+3(k1−k2)TS+TS |/TB dx dy (73)

=
1

T 2

[ K∑
k1=1

k1∑
k2=1

e−3(k1−k2)TS/TB

∫ TS

0

∫ TS

0
e−(x−y+TS)/TB dx dy+

+

K−1∑
k1=1

K∑
k2=k1+1

e3(k1−k2)TS/TB

∫ TS

0

∫ TS

0
e(x−y+TS)/TB dx dy

]
(74)

=
T 2
B

T 2

[(
K +

K−1∑
k=1

(K − k)e−3kTS/TB
)(

1− e−TS/TB
)2

+

+

K−1∑
k=1

(K − k)e−3kTS/TB
(
eTS/TB − 1

)2]
(75)

=
T 2
B

T 2

[
K + (1 + e2TS/TB )

K−1∑
k=1

(K − k)e−3kTS/TB
](

1− e−TS/TB
)2

(76)

where K ≡ T/TS and TS is the staggered estimation subperiod.
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Similarly, in the denominator, we have:

1

T 2
1

∑
s,u∈I1

e−|s−u|/TB ≈ 1

T 2

K∑
k1=1

K∑
k2=1

∫ t−3k1TS+2TS

t−3k1TS+TS

∫ t−3k2TS+2TS

t−3k2TS+TS

e−|s−u|/TB du ds (77)

=
1

T 2

K∑
k1=1

K∑
k2=1

∫ TS

0

∫ TS

0
e−|x−y+3(k1−k2)TS |/TB dx dy (78)

=
1

T 2

[
K

∫ TS

0

∫ TS

0
e−|x−y|/TB dx dy+

+
K−1∑
k=1

(K − k)

∫ TS

0

∫ TS

0
e−(x−y+3kTS)/TB dx dy+

+

K−1∑
k=1

(K − k)

∫ TS

0

∫ TS

0
e(x−y−3kTS)/TB dx dy

]
(79)

=
T 2
B

T 2

[(
2K

TS
TB

[1− TB
TS

(1− e−TS/TB )]+

+ 2eTS/TB (1− e−TS/TB )2
K−1∑
k=1

(K − k)e−3kTS/TB
]

(80)

For staggered regressions, we have for γ̂/γ:

γ̂/γstg =

T 2
B
T 2

[
K + (1 + e2TS/TB )

∑K−1
k=1 (K − k)e−3kTS/TB

](
1− e−TS/TB

)2
+ η2

T 2
B
T 2

[(
2K TS

TB
[1− TB

TS
(1− e−TS/TB )] + 2eTS/TB (1− e−TS/TB )2

∑K−1
k=1 (K − k)e−3kTS/TB

]
+ η2

.

(81)

OA Robustness Checks

In this section, we report regression results controlled for size, book-to-market ratio, momentum

factors (short- and medium-term), skewness, and kurtosis.

A note on the skewness premium observed in Table OA4. The premium not only becomes

statistically less significant in the absence of data overlap, but also reverses sign in staggered

regressions. Staggered regressions appear to capture a reversal effect, which takes places on the

order of a few days to a few weeks (the two-day skip between months used for factor and return

estimation ensures the effect is not due to very near-term reversals or non-synchronous trading),
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again pointing to interesting dynamics at this time scale.

OA5



Table OA1: Simulation results for β− and β+

This table presents results of two types of Monte-Carlo simulations: panels (a)-(c) use continuously com-
pounded returns to create return time series and to estimate β’s; in (d) and (e), simulated continuously
compounded returns are converted into daily compounded returns before β estimation. We model idiosyn-
cratic risk using the non-central t distribution with degrees of freedom ν and noncentrality parameter d. We
run panels of 200 market simulations for 500 stocks.

(a) (b) (c) (d) (e)
ν = 4 ν = 4 ν = 4 ν = 4

Panel (d = 0.3) (d = 0) Normal D.C. D.C/A.D.

I Int -0.010 0.000 -0.005 0.066 0.017
(-1.6) (0.0) (-0.8) (10.6) (2.6)

β 0.110 0.080 0.088 0.079 0.161
(21.8) (16.1) (17.1) (14.6) (28.5)

II Int 0.082 0.065 0.059 0.104 0.103
(18.1) (14.5) (12.9) (20.5) (19.1)

β− 0.013 0.013 0.022 0.041 0.074
(5.9) (5.7) (9.3) (10.2) (17.3)

III Int 0.070 0.056 0.066 0.098 0.071
(15.6) (12.6) (14.5) (19.0) (13.4)

β+ 0.026 0.022 0.014 0.047 0.1056
(11.8) (9.7) (6.3) (11.7) (25.3)

IV Int 0.058 0.046 0.046 0.066 0.018
(11.6) (9.2) (9.1) (10.5) (2.7)

β− 0.013 0.012 0.021 0.036 0.062
(5.6) (5.4) (9.2) (9.0) (14.3)

β+ 0.026 0.022 0.014 0.043 0.098
(11.7) (9.5) (6.1) (10.6) (23.3)

V Int -0.010 0.000 -0.005 0.066 0.019
(-1.5) (0.0) (-0.8) (10.6) (2.9)

β 0.110 0.081 0.088 0.079 0.159
(21.6) (16.1) (17.1) (14.6) (28.1)

β− − β+ -0.006 -0.004 0.004 -0.002 -0.013
(-3.9) (-2.6) (2.1) (-0.7) (-3.9)
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Table OA2: Simulation results for β− and β+: Statistical summary

Means and standard deviations (the latter – in brackets) of βs estimated in simulations described in Table
OA1

(a) (b) (c) (d) (e)

ν = 4 ν = 4 ν = 4 ν = 4

(d = 0.3) (d = 0) Normal D.C. D.C/A.D.

β 0.96 0.97 0.97 1.00 1.00

[0.78] [0.78] [0.77] [0.58] [0.58]

β− 0.96 0.96 0.97 0.99 1.00

[1.74] [1.76] [1.75] [0.79] [0.77]

β+ 0.95 0.96 0.96 1.00 1.00

[1.78] [1.75] [1.76] [0.78] [0.79]
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Table OA3: Contemporaneous, staggered, and predictive cross-sectional regressions of average returns on estimated risk, size, and book-to-market factor
loadings. This table compares the results of three types of Fama-MacBeth regressions: Contemporaneous, in which returns and factor loadings for each month
t are estimated using the same data periods [t − T1, t), where T1 = 6 months; Staggered regressions, in which returns and factor loadings are estimated on
staggered months as described in Section 2 (where, in each estimation period [t− T̃1, t) for each t, where T̃1 is 18 months, months t− 16, t− 13, t− 10, t− 7,
t− 4, and t− 1 are used for realized return estimation and months t− 17, t− 14, t− 11, t− 8, t− 5, and t− 2 are used for factor loading estimation); and
Predictive regressions, where, for each time t, factor loadings are estimated using return time series [t− T1, t) and average returns are estimated either for a
single month t+ 1 or for the period (t, t+ T1], where T1 is six months. Panels (1) through (8) report results of separate single- or multiple regression models.
Reported t-statistics are adjusted for overlapping periods using the Newey-West method. Average AdjR2 of cross-sectional regressions are reported for each
estimation model. The study used daily return time series of stocks traded on NYSE/Amex/Nasdaq during the period between 1963 and 2018, with sharecodes
10 and 11.

Models

Regression Types

Contemporaneous Staggered Predictive – 1mo Predictive – 6mo

Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic

Panel (1)

Int 0.193 5.22 0.130 3.91 0.229 4.91 0.243 4.74
β 0.064 3.40 0.040 2.73 0.023 1.42 0.021 1.43
Mcap -0.027 -5.60 -0.018 -4.27 -0.026 -4.85 -0.029 -4.55
B/M 0.022 3.12 0.023 3.51 0.012 1.36 0.019 2.10

Adj R2 18.3 % 11.2 % 13.5 % 14.7 %

Panel (2)

Int 0.176 4.65 0.120 3.56 0.222 4.67 0.234 4.56
β− 0.048 3.97 0.031 3.41 0.016 1.53 0.016 1.74
Mcap -0.023 -5.36 -0.016 -3.98 -0.025 -4.83 -0.027 -4.52
B/M 0.024 3.25 0.024 3.53 0.014 1.50 0.021 2.23

Adj R2 16.9 % 10.0 % 12.6 % 14.0 %

Panel (3)

Int 0.230 5.42 0.157 4.10 0.236 4.66 0.248 4.52
β+ 0.016 1.74 0.012 1.72 0.015 1.91 0.014 2.02
Mcap -0.026 -5.49 -0.019 -4.11 -0.027 -4.87 -0.028 -4.50
B/M 0.021 2.79 0.022 3.37 0.014 1.50 0.021 2.20

Adj R2 16.2 % 9.8 % 12.5 % 13.7 %

Panel (4)
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Table OA3: (Continued.)

Models

Regression Types

Contemporaneous Staggered Predictive – 1mo Predictive – 6mo

Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic

Int 0.181 4.85 0.125 3.75 0.224 4.76 0.237 4.63
β− 0.049 4.59 0.031 4.04 0.011 1.20 0.013 1.65
β+ 0.001 0.16 0.002 0.32 0.008 1.32 0.005 1.07
Mcap -0.024 -5.34 -0.017 -4.09 -0.025 -4.82 -0.028 -4.54
B/M 0.024 3.28 0.023 3.54 0.014 1.49 0.020 2.20

Adj R2 18.0 % 10.9 % 13.3 % 14.4 %

Panel (5)

Int 0.181 4.98 0.123 3.79 0.230 4.94 0.244 4.78
β 0.067 3.61 0.042 2.91 0.022 1.33 0.021 1.40
β+ − β− -0.019 -3.95 -0.012 -3.53 -0.000 -0.05 -0.003 -0.70
Mcap -0.026 -5.50 -0.018 -4.24 -0.026 -4.88 -0.029 -4.59
B/M 0.023 3.28 0.023 3.52 0.012 1.36 0.018 2.08

Adj R2 19.0 % 11.6 % 13.8 % 15.0 %

Panel (6)

Int 0.186 5.06 0.126 3.85 0.229 4.92 0.243 4.76
β 0.067 3.59 0.042 2.88 0.023 1.41 0.021 1.41
Cosk -0.090 -5.40 -0.047 -3.59 -0.002 -0.13 -0.007 -0.66
Mcap -0.026 -5.54 -0.018 -4.28 -0.026 -4.88 -0.029 -4.57
B/M 0.022 3.14 0.023 3.43 0.012 1.36 0.019 2.08

Adj R2 18.7 % 11.5 % 13.7 % 14.9 %

Panel (7)

Int 0.134 3.96 0.134 4.01 0.231 4.94 0.243 4.75
β 0.060 3.29 0.040 2.76 0.023 1.42 0.021 1.41
ρexc -0.306 -9.63 0.023 2.72 0.002 0.17 -0.018 -2.19
Mcap -0.022 -4.95 -0.019 -4.34 -0.027 -4.89 -0.028 -4.55
B/M 0.022 3.11 0.023 3.51 0.012 1.35 0.018 2.08

Adj R2 20.7 % 11.4 % 13.7 % 14.8 %

Panel (8)
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Table OA3: (Continued.)

Models

Regression Types

Contemporaneous Staggered Predictive – 1mo Predictive – 6mo

Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic

Int 0.164 4.65 0.131 3.95 0.231 4.93 0.243 4.75
β 0.063 3.37 0.040 2.76 0.023 1.41 0.021 1.41
Jadj -0.007 -9.45 0.000 2.18 0.000 0.23 -0.000 -1.70
Mcap -0.024 -5.29 -0.019 -4.31 -0.027 -4.87 -0.028 -4.55
B/M 0.022 3.10 0.023 3.51 0.012 1.35 0.019 2.09

Adj R2 19.5 % 11.3 % 13.6 % 14.8 %

Panel (9)

Int 0.159 4.56 0.125 3.83 0.230 4.94 0.243 4.78
β 0.065 3.51 0.042 2.94 0.022 1.33 0.020 1.38
β+ − β− -0.002 -0.43 -0.014 -4.11 -0.001 -0.17 -0.002 -0.52
Jadj -0.007 -9.34 0.001 4.06 0.000 0.51 -0.000 -1.59
Mcap -0.024 -5.29 -0.018 -4.26 -0.027 -4.89 -0.029 -4.59
B/M 0.023 3.26 0.023 3.54 0.012 1.38 0.018 2.09

Adj R2 20.1 % 11.7 % 13.9 % 15.0 %

Panel (10)

Int 0.165 4.69 0.127 3.88 0.229 4.91 0.243 4.76
β 0.063 3.42 0.043 2.93 0.023 1.43 0.021 1.40
Cosk 0.056 3.47 -0.067 -4.63 -0.009 -0.52 -0.002 -0.21
Jadj -0.007 -9.43 0.001 4.83 0.000 0.82 -0.000 -1.15
Mcap -0.025 -5.36 -0.018 -4.29 -0.027 -4.88 -0.028 -4.57
B/M 0.022 3.11 0.023 3.45 0.012 1.38 0.019 2.09

Adj R2 19.9 % 11.6 % 13.8 % 14.9 %
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Table OA4: Contemporaneous, staggered, and predictive cross-sectional regressions of average returns on estimated risk factor loadings, controlled for skewness,
kurtosis, book-to-market ratio, and size. This table compares the results of three types of Fama-MacBeth regressions: Contemporaneous, in which returns and
factor loadings for each month t are estimated using the same data periods (t− T, t], where T = 6 months; Staggered regressions, in which returns and factor
loadings are estimated on staggered months as described in Section 2 (where, in each estimation period (t− T̃1, t] for each t, where T̃1 is 18 months, months
t − 15, t − 12, t − 9, t − 6, t − 3, and t are used for realized return estimation and months t − 16, t − 13, t − 10, t − 7, t − 4, and t − 1 are used for factor
loading estimation); and Predictive regressions, where, for each time t, factor loadings are estimated using return time series [t− T1, t) and average returns
are estimated for either a single month t+ 1 or for the period (t, t+ T1], where T1 is six months. Size and Book-to-Market factors are estimated using classic
Fama and French (1992) method. Size factor is the logarithm of issuing firm market capitalization measured in December of year preceding the first date of
return estimation period. Book-to-market factor is based on latest reported annual book equity preceding the first date of return estimation period. If return
estimation period starts before July 1 of year Y0, then size and book-to-market are estimated using data from Y0 − 2. Medium term momentum factor, Past
Ret−T , is based on the period prior and equal in length to the return estimation period. Short-term momentum, Ret−1, is based on one month preceding the
estimation period (for Staggered regressions, Ret−1 is estimated on staggered basis, contemporaneously to systematic risk factors). Panels (1) through (8)
report results of separate multiple regression models. Reported t-statistics are adjusted for overlapping periods using the Newey-West method. Average AdjR2

of cross-sectional regressions are reported for each estimation model. The study used daily return time series of stocks traded on NYSE/Amex/Nasdaq during
the period between 1963 and 2018, with sharecodes 10 and 11.

Models

Regression Types

Contemporaneous Staggered Predictive – 1mo Predictive – 6mo

Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic

Panel (1)

Int 0.066 2.97 0.081 3.97 0.109 3.83 0.111 4.02
Skew 0.146 9.95 -0.007 -1.98 0.008 1.99 0.019 3.57

Adj R2 10.6 % 0.5 % 0.5 % 0.6 %

Panel (2)

Int 0.027 1.78 0.053 3.56 0.093 4.12 0.101 4.26
β 0.048 2.69 0.029 2.11 0.012 0.78 0.007 0.45
Skew 0.144 10.03 -0.010 -3.01 0.007 1.82 0.016 3.63

Adj R2 15.0 % 3.9 % 3.2 % 2.9 %

Panel (3)

Int 0.061 4.06 0.057 3.92 0.099 4.35 0.100 4.19
β 0.044 2.52 0.029 2.10 0.011 0.72 0.006 0.43
Skew 0.156 9.98 -0.009 -2.87 0.011 2.57 0.018 3.95
Kurt -0.006 -7.53 -0.001 -1.92 -0.001 -2.68 -0.000 -0.24

Adj R2 15.6 % 4.0 % 3.3 % 3.0 %
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Table OA4: (Continued.)

Models

Regression Types

Contemporaneous Staggered Predictive – 1mo Predictive – 6mo

Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic

Panel (4)

Int 0.054 3.66 0.055 3.86 0.098 4.33 0.101 4.20
β 0.044 2.52 0.029 2.13 0.011 0.69 0.006 0.40
Jadj -0.003 -8.24 -0.000 -0.67 -0.000 -1.21 -0.001 -2.79
Skew 0.150 9.99 -0.010 -3.05 0.010 2.51 0.017 3.96
Kurt -0.006 -7.53 -0.001 -1.89 -0.001 -2.66 -0.000 -0.21

Adj R2 16.0 % 4.1 % 3.3 % 3.1 %

Panel (5)

Int 0.194 5.23 0.112 3.73 0.229 4.91 0.243 4.74
β 0.064 3.40 0.028 2.12 0.023 1.42 0.021 1.43
Mcap -0.027 -5.60 -0.014 -3.86 -0.026 -4.85 -0.029 -4.55
B/M 0.022 3.11 0.015 2.62 0.012 1.36 0.019 2.10

Adj R2 17.2 % 30.2 % 13.5 % 14.7 %

Panel (6)

Int 0.141 3.44 0.144 3.87 0.248 4.58 0.251 4.40
Skew 0.134 9.93 -0.014 -5.27 -0.003 -1.13 0.007 2.17
Mcap -0.015 -3.72 -0.014 -3.70 -0.026 -4.93 -0.027 -4.47
B/M 0.014 1.70 0.016 2.58 0.015 1.50 0.022 2.16

Adj R2 21.7 % 28.0 % 11.4 % 12.8 %

Panel (7)

Int 0.109 3.41 0.119 3.88 0.230 4.91 0.240 4.71
β 0.056 3.05 0.029 2.22 0.024 1.47 0.021 1.43
Skew 0.132 10.00 -0.016 -5.74 -0.004 -1.63 0.005 1.89
Mcap -0.017 -4.03 -0.014 -3.99 -0.027 -4.87 -0.028 -4.52
B/M 0.013 1.94 0.016 2.75 0.013 1.44 0.019 2.10

Adj R2 25.6 % 30.4 % 13.7 % 14.8 %

Panel (8)
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Table OA4: (Continued.)

Models

Regression Types

Contemporaneous Staggered Predictive – 1mo Predictive – 6mo

Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic

Int 0.152 4.58 0.127 4.16 0.242 5.12 0.244 4.76
β 0.053 2.91 0.029 2.20 0.022 1.40 0.020 1.38
Skew 0.142 10.02 -0.015 -5.58 -0.000 -0.02 0.007 3.06
Kurt -0.006 -7.65 -0.001 -3.08 -0.002 -3.78 -0.001 -1.25
Mcap -0.018 -4.27 -0.015 -4.06 -0.027 -4.92 -0.028 -4.54
B/M 0.012 1.71 0.016 2.72 0.012 1.37 0.018 2.06

Adj R2 26.2 % 30.5 % 13.7 % 14.9 %

Panel (9)

Int 0.143 4.37 0.126 4.15 0.243 5.14 0.245 4.77
β 0.053 2.91 0.029 2.23 0.022 1.38 0.020 1.37
Jadj -0.003 -8.05 -0.000 -0.34 0.000 0.05 -0.000 -1.12
Skew 0.137 10.02 -0.015 -5.62 0.000 0.05 0.007 3.03
Kurt -0.006 -7.66 -0.001 -3.08 -0.002 -3.79 -0.001 -1.25
Mcap -0.017 -4.15 -0.015 -4.07 -0.027 -4.94 -0.028 -4.54
B/M 0.012 1.73 0.016 2.69 0.012 1.36 0.018 2.06

Adj R2 26.5 % 30.5 % 13.8 % 15.0 %

Panel (10)

Int 0.191 5.33 0.113 3.65 0.217 4.66 0.228 4.74
β 0.055 3.04 0.027 2.09 0.011 0.71 0.008 0.68
Mcap -0.027 -5.71 -0.014 -3.79 -0.025 -4.63 -0.027 -4.60
B/M 0.020 2.98 0.015 2.57 0.012 1.40 0.017 2.08
Past Ret−T 0.029 2.73 0.014 2.35 0.043 2.90 0.050 3.41
Ret−1 -0.009 -5.41 -0.024 -2.97 -0.049 -7.09 -0.008 -4.04

Adj R2 18.7 % 31.1 % 15.4 % 16.2 %

Panel (11)

Int 0.113 3.06 0.138 3.84 0.216 4.16 0.225 4.38
Skew 0.134 10.00 -0.012 -4.47 -0.000 -0.02 0.001 0.26
Mcap -0.013 -3.64 -0.013 -3.65 -0.023 -4.69 -0.026 -4.60
B/M 0.012 1.57 0.015 2.49 0.015 1.46 0.020 2.25
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Table OA4: (Continued.)

Models

Regression Types

Contemporaneous Staggered Predictive – 1mo Predictive – 6mo

Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic

Past Ret−T 0.055 4.36 0.014 2.05 0.037 2.29 0.050 3.15
Ret−1 -0.008 -4.24 -0.010 -1.10 -0.046 -6.72 -0.008 -3.96

Adj R2 23.9 % 29.3 % 13.7 % 14.7 %

Panel (12)

Int 0.105 3.45 0.118 3.81 0.216 4.64 0.228 4.75
β 0.047 2.63 0.028 2.20 0.011 0.72 0.007 0.60
Skew 0.133 10.03 -0.013 -4.86 -0.000 -0.07 -0.000 -0.10
Mcap -0.016 -4.09 -0.014 -3.93 -0.024 -4.60 -0.027 -4.61
B/M 0.011 1.74 0.016 2.70 0.013 1.44 0.017 2.13
Past Ret−T 0.048 4.33 0.013 2.17 0.044 2.80 0.053 3.35
Ret−1 -0.008 -5.00 -0.014 -1.68 -0.050 -7.10 -0.008 -4.06

Adj R2 27.2 % 31.3 % 15.5 % 16.4 %

Panel (13)

Int 0.147 4.63 0.127 4.09 0.229 4.86 0.230 4.78
β 0.044 2.49 0.028 2.17 0.010 0.66 0.007 0.59
Skew 0.143 10.05 -0.012 -4.80 0.004 1.48 0.002 0.58
Kurt -0.006 -7.63 -0.001 -3.36 -0.002 -3.99 -0.001 -1.00
Mcap -0.017 -4.34 -0.015 -4.00 -0.025 -4.66 -0.027 -4.63
B/M 0.010 1.51 0.016 2.66 0.012 1.38 0.017 2.11
Past Ret−T 0.047 4.27 0.013 2.18 0.042 2.69 0.052 3.35
Ret−1 -0.008 -5.02 -0.014 -1.73 -0.050 -7.11 -0.008 -4.08

Adj R2 27.7 % 31.4 % 15.6 % 16.4 %

Panel (14)

Int 0.138 4.43 0.126 4.09 0.231 4.89 0.232 4.81
β 0.043 2.50 0.028 2.20 0.010 0.65 0.007 0.59
Jadj -0.003 -8.08 -0.000 -0.59 0.000 0.32 0.000 0.00
Skew 0.138 10.05 -0.012 -4.87 0.005 1.55 0.002 0.55
Kurt -0.006 -7.64 -0.001 -3.35 -0.002 -4.00 -0.001 -1.01
Mcap -0.017 -4.22 -0.015 -4.01 -0.025 -4.67 -0.027 -4.64
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Table OA4: (Continued.)

Models

Regression Types

Contemporaneous Staggered Predictive – 1mo Predictive – 6mo

Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic

B/M 0.010 1.53 0.015 2.64 0.012 1.37 0.017 2.11
Past Ret−T 0.047 4.27 0.012 2.17 0.042 2.73 0.052 3.34
Ret−1 -0.008 -5.06 -0.015 -1.78 -0.050 -7.13 -0.008 -4.02

Adj R2 28.0 % 31.4 % 15.6 % 16.5 %
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