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Abstract—In an interior permanent magnet synchronous motor 

(IPMSM) with segmented skewed poles, the armature reaction 

magnetic field (AR-MF) changes nonlinearly due to the saturation 

of the rotor magnetic barrier. Meanwhile, this varies under 

different excitation currents. As a result, it is difficult to be 

calculated by means of analytical methods. In this paper, the 

calculation model of AR-MF of IPMSM is first established by 

vector superposition method, without considering the saturation 

effect of rotor and the slotting effect of stator. In the second step, 

the virtual magnetic field of the rotor is introduced to 

quantitatively calculate the influence of local inhomogeneous 

saturation on the AR-MF. The latter is derived by combining both 

the subdomain method and equivalent magnetic circuit method. 

The complex relative permeance is also introduced to establish the 

AR-MF accounting for the stator slotting effect. To validate the 

AR-MF calculation method proposed, an 8-pole 48-slot IPMSM 

with segmented skewed poles is considered as a case study, 

showing a comparison by both with finite element (FE) results and 

the electromagnetic torque measured on a test bench. The model 

proposed in this paper shows high accuracy and fast computation 

with respect to FE analysis. 

 
Index Terms—Interior permanent magnet synchronous motor, 

segmented skewed poles, armature reaction magnetic field, virtual 

magnetic field of rotor magnetic barrier, local inhomogeneous 

saturation. 

I. INTRODUCTION 

PMSM with segmented skewed poles has been subject of 

research and gained more interest for its high power density, 

high torque density and wide speed range [1]-[5]. The armature 

reaction magnetic field (AR-MF) affects the torque, efficiency, 
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vibration and noise performance of the motor [2]. The magnetic 

field of the IPMSM is difficult to calculate due to its nonlinear 

behavior is due to the saturation of rotor magnetic barrier [1]. 

Therefore, the calculation of AR-MF is an important and 

difficult problem. 

The calculation methods used to compute AR-MF are either 

analytical or using finite element (FE) analysis. The latter can 

take the influence of saturation on the AR-MF into 

consideration, and its accuracy is high [3][6]. However, it is 

time-consuming, which is not desired when a fast performance 

evaluation of a motor is required in the industry. The analytical 

methods presented in literature are based on the following: 

magnetic potential-permeance [2][7]-[13], vector superposition 

[14][15], subdomain models [4][16]-[19], winding functions 

[1][5][20] and magnetic equivalent circuit [21]-[23]. The 

magnetic potential-permeance method is widely used, in which 

the slotting effect can be calculated by the permeance function 

[7]-[13]. However, this method usually assumes that the 

permeability of the core is infinite, so the nonlinear variation of 

magnetic field caused by core saturation cannot be considered. 

In [2], the complex relative permeance of rotor magnetic barrier 

is introduced, and the influence of rotor magnetic barrier 

saturation on AR-MF can be calculated. However, the complex 

relative permeance of rotor magnetic barrier still needs to be 

calculated by finite element simulation, which reduces the 

calculation efficiency. Alternatively, the spatial distribution of 

the AR-MF can be obtained by vector superposition method, 

while the saturation effect is ignored due to the neglect of rotor 

structure [14][15]. On the other hand, subdomain method uses 

boundary conditions to solve the AR-MF, and the accuracy will 
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be high if there is no core saturation [4][16]-[19]. However, the 

boundary conditions increase significantly the complexity of 

the magnetic field calculation if the saturation is considered. In 

addition, the AR-MF can also be obtained from the winding 

function theory [20]. However, the saturation effect cannot be 

calculated simply by this method. In [5], the saturation effect is 

calculated by a combination of winding function and magnetic 

equivalent circuit methods. The latter assumes that the flux 

lines are perpendicular to the interface between the core and the 

air gap. Therefore, it can only calculate the radial component of 

the magnetic field, but not the tangential. In order to make the 

calculation more accurate, either the finite element method 

needs to be combined [21] or the magnetic circuit needs to be 

divided more finely [22][23], which will increase the number 

of magnetic circuit nodes and make the calculation model more 

complex. In [1], the equivalent air gap function is used to 

calculate the AR-MF considering inhomogeneous saturation of 

the core. However, in many positions where the actual magnetic 

field is not zero, the analytical calculation result is zero. This is 

because the equivalent air gap function is in the denominator, 

which cannot divide zero into non-zero result, leading to 

inaccurate calculation results. 

From the discussion so far, it can be summarized that there 

are four major problems in computing the AR-MF of IPMSM 

with segmented skewed poles using existing methods: 

1) The finite element method is time-consuming. 

2) The traditional equivalent magnetic circuit method cannot 

calculate the tangential component of magnetic field. 

3) The equivalent air gap function method is complex and has 

a large calculation error. 

4) The other analytical methods cannot account for saturation 

effects. 

In order to overcome the above limitations, the virtual 

magnetic field of rotor magnetic barrier is introduced in a novel 

fashion to calculate the influence of rotor local inhomogeneous 

saturation on the AR-MF, and the accurate calculation model of 

AR-MF of IPMSM is established. The accuracy of the 

calculation model is verified by both finite element simulations 

and experimentally. The results show that this model can not 

only ensure the calculation accuracy, but also greatly reduce the 

computational time. 

II. CALCULATION MODEL OF AR-MF OF IPMSM WITH 

SEGMENTED SKEWED POLES 

A. Calculation model of slotless AR-MF without considering 

saturation 

The geometric model of both stator and rotor of the IPMSM 

with segmented skewed poles considered, is shown in Fig. 1. 

The stator winding is distributed, and its layout is shown in Fig. 

2. The main parameters of the motor are summarized in Table 

I, and the BH curve of core material is shown in Fig. 3. 
 

 
(a)                                                              (b) 

Fig. 1.  Geometric model of IPMSM. (a) Rotor with segmented skewed poles. 
(b) Stator. 

 

 
Fig. 2.  Stator winding layout. 
 

TABLE I 
MOTOR PARAMETERS 

Parameter Symbol Quantity 

Number of pole pairs 𝑝 4 

Number of slots 𝑁𝑠 48 

Number of rotor segments 𝑁 6 

Skew angle of each segment 𝛼𝑠𝑘𝑒𝑤
 2.5° 

Inner radius of stator 𝑅𝑠 79.8 mm 

Outer radius of rotor 𝑅𝑟 79.1 mm 

Slot width 𝑏𝑠𝑎 0.05 rad 

Slot opening width 𝑏𝑜𝑎 0.011 rad 

Axial length of core 𝐿𝑧 130 mm 

Lamination factor 𝐶𝑠 0.97 

Coil specification a×b 3.2 mm×2.6 mm 

Coil layers per slot 𝑁𝑡 4 

Number of parallels 𝑁𝑝 2 

Permeability of vacuum 𝜇0 4𝜋 × 10−7 H/m 

Saturation flux density of rotor 

magnetic barrier 
𝐵𝑠 2 T 

Thickness of permanent magnet ℎ𝑀 6 mm 

Width of permanent magnet 𝐿𝑀 17 mm 

Relative permeability of permanent 

magnet 
𝜇𝑟 1.059 

Pole arc 𝛼𝑝 0.558 rad 

Width of magnetic barrier 𝛼𝑏 0.035 rad 

Thickness of magnetic barrier at 

rotor end 
ℎ𝑏 2.1 mm 

Thickness of magnetic barrier 
between poles 

ℎ𝑏
′  2.8 mm 
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Fig. 3.  BH curve of core material. 
 

By using the vector superposition method, the radial and 

tangential components of the slotless AR-MF without 

considering saturation can be expressed as: 
 

𝐵𝑟_𝑢𝑠(𝑧, 𝑟, 𝛼, 𝑡) = ∑ 𝐵𝑚𝑟(𝑟) { ∑ [𝐼𝑞(𝑡) ∑ 𝑆𝑞𝑖 cos 𝑚 (𝛼 −
2𝜋

𝑁𝑠

(𝛼𝑞𝑖 − 1))

𝑁𝑐

𝑖=1

]

𝑞=𝐴,𝐵,𝐶

}

∞

𝑚=1

 (1) 

 

𝐵𝑡_𝑢𝑠(𝑧, 𝑟, 𝛼, 𝑡) = ∑ 𝐵𝑚𝑡(𝑟) { ∑ [𝐼𝑞(𝑡) ∑ 𝑆𝑞𝑖 sin 𝑚 (𝛼 −
2𝜋

𝑁𝑠

(𝛼𝑞𝑖 − 1))

𝑁𝑐

𝑖=1

]

𝑞=𝐴,𝐵,𝐶

}

∞

𝑚=1

 (2) 

     

where, 𝐵𝑚𝑟(𝑟) and 𝐵𝑚𝑡(𝑟) are the amplitude of m-order radial 

and tangential flux density at the radial length 𝑟, respectively; 

𝑆𝑞𝑖  is the sign vector of magnetomotive force, and 𝛼𝑞𝑖  is an 

angle vector, which can be obtained by using the rules in [14]; 

𝐼𝑞(𝑡) is the q-phase current at time t; 𝑁𝑐 is the number of coils; 

𝑧 is the axial length; 𝛼 is the mechanical angle. 

B. Calculation model of slotless AR-MF considering 

saturation 

The saturation effect of the rotor magnetic barrier will affect 

the AR-MF, which is essentially caused by the magnetomotive 

force drop while the flux lines are crossing the rotor magnetic 

barrier. The ‘virtual magnetic field of the rotor magnetic barrier’ 

is introduced to calculate the influence of the saturation effect 

of the rotor magnetic barrier on the AR-MF. 

The subdomain method combined with equivalent magnetic 

circuit method is used to calculate the virtual magnetic field of 

rotor magnetic barrier. It is assumed that the stator is not slotted 

and the permanent magnets do not produce magnetomotive 

force, and the permeability of the rest of the core is infinite 

except for the rotor magnetic barriers. The subdomain regions 

and interface conditions are shown in Fig. 4. 
   

 
Fig. 4.  Subdomain regions and interface conditions. 

 

The radial and tangential components of air gap flux density 

can be expressed as follows: 
   

( )

( )

_

1

1

sin
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k k

r V k k

k s r

k k
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k s r
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
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
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
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    
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(4) 

     

where, 𝐴𝑘, 𝐵𝑘, 𝐶𝑘 and 𝐷𝑘 are undetermined coefficients. 

1) The tangential air gap flux density on the interface between 

air gap region and stator region is 0. 
   

_ 0
st V r RB = =  (5) 

   

By combining (4) and (5), we can get (6): 
 

𝐴𝑘 − 𝐵𝑘𝐺𝑘 = 0 

𝐶𝑘 − 𝐷𝑘𝐺𝑘 = 0 
(6) 

 

where, 𝐺𝑘 = (
𝑅𝑟

𝑅𝑠
)

𝑘

. 

Writing (5) and (6) in matrix form, we can obtain (7): 
 

11 12

13 24

0

0

k k

k k

K A K B

K C K D

+ =

+ =
 (7) 

   

where, 
 

( )

( )

11 23

12 24 1 2

= diag 1,1, ,1

= diag , , , , ,

K K

k K

K K

K K G G G G


=

= − − − −
  

 

2) The scalar magnetic potential at the interface between the air 

gap region and the rotor region is continuous. 

The scalar magnetic potential at the outer radius of the rotor 

can be expressed as [25]: 
 

( )

( ) ( ) ( ) ( )

1

1 1

cos

cos cos sin sin

r rk t

k

rk t rk t

k k

k

k k k k

 

   



=

 

= =

 =  −  

=  + 



 

 
(8) 

 

( ), , ,  /  is odd

0,                          /  is even

r k p b

rk

p k p

k p

  
 = 



 
(9) 

     

( ) 2

8
, , = sin sin

2 2

p b b
k p b

b

p
p k k

k

  
 



+   
    

  

 (10) 
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where, 𝛼𝑡 is the position of the rotor at time 𝑡, and 𝛼𝑡 = 𝜔𝑡 +
𝛼0;  𝜔 is the rotational speed; 𝛼0 is the initial position of the 

rotor. 

The scalar magnetic potential in the air gap region can be 

obtained by integrating the tangential magnetic field intensity: 
 

( )

( )

10

10

1
sin

1
cos

r

k

r
g r R k k

k s

k

r
k k

k s

R
A B k

R

R
C D k

R









=

=



=

  
  = − 
   

  
 − − 
   





 
(11) 

 

Based on the continuity of scalar magnetic potential at the 

interface between air gap region and rotor region, we can obtain 

(12): 
 

( ) ( )

( ) ( )

0

0

, , sin

, , cos

k k k
r k p b t

k k k
r k p b t

A G B
p k

C G D
p k

  


  


−
=  




−− =  


 
(12) 

 

Writing (12) in matrix form, we can obtain (13): 
 

31 32 35

43 44 45

0

0

k k r

k k r

K A K B K

K C K D K

+ +  =

+ +  =
 (13) 

 

where, 
 

( )

( )

31 43 1 2

32 44

=diag , , , , ,

=diag 1, 1, , 1

k K

K K

K K G G G G

K K


=

= − − −

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

35 0 1 2

45 0 1 2

= sin , sin 2 , , sin , , sin

= cos , cos 2 , , cos , , cos

T

t t k t K t

T

t t k t K t

K k K

K k K

    

    

−      

     

 
 

 

3) The air gap flux at the interface between the air gap region 

and the rotor region is continuous. 

The air gap flux on the rotor surface in the air gap region can 

be expressed as follows: 
 

( ) ( )
1

sin

r r

t w t w

g Z r R r R

k ak k bk k ck k dk w

k

L A A

A G B G C G D G k

     



= =
= + = −



=

 
 = − 

 

= + + +

 
(14) 

   

where, 𝛼𝑤  is the total width of the single magnet and the 

magnetic barrier, and 
 

( )

( )

( )

( )

2

2

2 sin

2 sin

2 cos

2 cos .

p b

w

ak Z k t

bk Z t

ck Z k t

dk Z t

G L G k

G L k

G L G k

G L k

 










+
=

= −

= −

=

=

 

 

The equivalent magnetic circuit diagram of rotor region is 

shown in Fig. 5. 
 

 
Fig. 5.  Equivalent magnetic circuit diagram of rotor region. 

 

The virtual magnetic flux entering the air gap through the 

rotor surface can be obtained by (15): 
 

Φ𝑔 = −
Ω𝑟

𝑅𝑀

+
𝐹𝑀

′

𝑅𝑀

− 𝛷𝑎
′ − 𝛷𝑏

′  (15) 

   

where, 

𝐹𝑀
′ :  the virtual permanent magnet magnetomotive force, and 

𝐹𝑀
′ = 0; 

𝑅𝑀:  the permanent magnet reluctance;  

Φ𝑎
′ :  the virtual leakage flux of magnetic barrier at rotor end; 

Φ𝑏
′ :  the virtual leakage flux of magnetic barrier between 

poles.  

and can be calculated by the following formulas respectively: 
 

 𝑅𝑀 =
ℎ𝑀

𝜇0𝜇𝑟𝐿𝑀𝐿𝑍

 (16) 

𝛷𝑎
′ = 𝐵𝑠

′ℎ𝑏𝐿𝑍 (17) 

𝛷𝑏
′ = 𝐵𝑠

′
ℎ𝑏

′

2
𝐿𝑍  (18) 

   

𝐵𝑠
′ is the virtual saturation magnetic flux density of magnetic 

barrier, which can be determined by the following empirical 

function: 
 

𝐵𝑠
′ = {

0 𝑥 < 50
0.03𝑥 − 1.5 𝑥 ≥ 50

 (19) 

   

where 𝑥 is numerically equal to the RMS value of the current 
in stator winding. 

According to the continuity of the air gap flux at the interface 

between the air gap region and the rotor region, we can be 

obtained: 
 

( ) ( )
1

sin r
k ak k bk k ck k dk w a b

k M

A G B G C G D G k
R




=


 + + + = − −  − 

 
(20) 

   

Writing (20) in matrix form: 
 

51 52 53 54 55k k k k rK A K B K C K D K Y+ + + +  =  (21) 

   

where, 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

51 1 2

52 1 2

53 1 2

54 1 2

sin , sin 2 , , sin , , sin

sin , sin 2 , , sin , , sin

sin , sin 2 , , sin , , sin

sin , sin 2 , , sin , , sin

a w a w ak w aK w

b w b w bk w bK w

c w c w ck w cK w

d w d w dk w dK w

K G G G k G K

K G G G k G K
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   
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   

=   

=   

=   

=   
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M
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K
R

Y

=

 = − − 

 

 

   

4) By combining (7), (13) and (21), we can obtain (22): 
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     
     
         

 
(22) 

   

By solving (22), the undetermined coefficient 𝐴𝑘, 𝐵𝑘, 𝐶𝑘 and 

𝐷𝑘 are obtained. By substituting them into (3) and (4), the radial 

and tangential components of the virtual magnetic field of the 

rotor magnetic barrier can be obtained. 

The virtual magnetic field of the rotor magnetic barrier is not 

uniform in the axial direction of the motor due to the segmented 

skewed poles of the rotor. For the IPMSM with segmented 

skewed poles, the rotor is divided into N segments in the axial 

length L, so the length of each segment is 𝐿𝑧 = 𝐿/𝑁 . It is 

assumed that the skewed angle of the jth segment of the rotor 

with respect to the first segment is 𝛽𝑗 , 𝛽𝑗 ∈

{𝛽1, 𝛽2, ⋯ , 𝛽𝑗 , ⋯ , 𝛽𝑁}. Taking the center of the first end face of 

the rotor as the origin, a point on any axial length z belongs to 

the (⌊𝑧 𝐿𝑧⁄ ⌋ + 1)𝑡ℎ  segment, and its skew angle is 𝛽⌊𝑧 𝐿𝑧⁄ ⌋+1 , 

where ⌊ ⌋  denotes rounding down. Then the radial and 

tangential components of the virtual magnetic field of the 

IPMSM with segmented skewed poles can be expressed as 

follows: 
 

𝐵𝑟𝑉
(𝑧, 𝑟, 𝛼, 𝑡) = − ∑

𝑘

𝑟
[𝐴𝑘(𝑧, 𝑟, 𝛼, 𝑡) (

𝑟

𝑅𝑠
)

𝑘
∞

𝑘=1

+ 𝐵𝑘(𝑧, 𝑟, 𝛼, 𝑡) (
𝑟

𝑅𝑟
)

−𝑘

] 𝑠𝑖𝑛[𝑘(𝛼

+ 𝜔𝑡 + 𝛽⌊𝑧 𝐿𝑧⁄ ⌋+1)]

+ ∑
𝑘

𝑟
[𝐶𝑘(𝑧, 𝑟, 𝛼, 𝑡) (

𝑟

𝑅𝑠
)

𝑘
∞

𝑘=1

+ 𝐷𝑘(𝑧, 𝑟, 𝛼, 𝑡) (
𝑟

𝑅𝑟
)

−𝑘

] 𝑐𝑜𝑠[𝑘(𝛼

+ 𝜔𝑡 + 𝛽⌊𝑧 𝐿𝑧⁄ ⌋+1)] 

(23) 

 

𝐵𝑡_𝑉(𝑧, 𝑟, 𝛼, 𝑡) = − ∑
𝑘

𝑟
[𝐴𝑘(𝑧, 𝑟, 𝛼, 𝑡) (

𝑟

𝑅𝑠
)

𝑘
∞

𝑘=1

− 𝐵𝑘(𝑧, 𝑟, 𝛼, 𝑡) (
𝑟

𝑅𝑟
)

−𝑘

] 𝑐𝑜𝑠[𝑘(𝛼

+ 𝜔𝑡 + 𝛽⌊𝑧 𝐿𝑧⁄ ⌋+1)]

− ∑
𝑘

𝑟
[𝐶𝑘(𝑧, 𝑟, 𝛼, 𝑡) (

𝑟

𝑅𝑠
)

𝑘
∞

𝑘=1

− 𝐷𝑘(𝑧, 𝑟, 𝛼, 𝑡) (
𝑟

𝑅𝑟
)

−𝑘

] 𝑠𝑖𝑛[𝑘(𝛼

+ 𝜔𝑡 + 𝛽⌊𝑧 𝐿𝑧⁄ ⌋+1)] 

(24) 

     

By adding the slotless AR-MF without considering saturation 

and the virtual magnetic field of the rotor magnetic barrier, the 

slotless AR-MF considering saturation can be obtained: 
 

𝐵𝑟_𝐴𝑅
(𝑧, 𝑟, 𝛼, 𝑡) = 𝐵𝑟_𝑢𝑠

(𝑧, 𝑟, 𝛼, 𝑡) + 𝐵𝑟_𝑉
(𝑧, 𝑟, 𝛼, 𝑡) (25) 

𝐵𝑡_𝐴𝑅
(𝑧, 𝑟, 𝛼, 𝑡) = 𝐵𝑡_𝑢𝑠

(𝑧, 𝑟, 𝛼, 𝑡) + 𝐵𝑡_𝑉
(𝑧, 𝑟, 𝛼, 𝑡) (26) 

     

C. Calculation model of slotted AR-MF considering saturation 

By introducing the 3-D complex relative permeance to 

calculate the stator slotting effect [24], the radial and tangential 

components of slotted AR-MF of IPMSM with segmented 

skewed poles can be obtained: 
   

( ) ( ) ( )

( ) ( )

_

_

, , , , , , , ,

, , , , ,

ar r AR a

t AR b

B z r t B z r t z r

B z r t z r

   

  

=

+

 (27) 

( ) ( ) ( )

( ) ( )

_ AR

_

, , , , , , , ,

, , , , ,

at t a

r AR b

B z r t B z r t z r

B z r t z r

   

  

=

−

 (28) 

     

where, 𝜆𝑎 is the real part of complex relative permeance, 𝜆𝑏 is 

the imaginary part of complex relative permeance. 

III. FE VERIFICATION AND CHARACTERISTIC ANALYSIS OF 

AR-MF 

The armature reaction electromagnetic finite element model 

of an 8-pole 48-slot IPMSM with segmented skewed poles for 

electric vehicle is established. The sinusoidal current excitation 

with RMS value of 150 A and lead angle of 46° is applied in 

the stator winding. The rotor initial angle is 3.75°. The 

calculation cycle is a mechanical cycle at rated speed condition 

and the number of calculation steps is 960. It takes 35 minutes 

for calculation with the proposed model and 420 minutes for 

finite element simulation under the same calculation conditions. 

The spatial distribution and order of AR-MF of IPMSM are 

shown in Fig. 6. Compared with the results of finite element 

method, the accuracy of calculation model without considering 

saturation (M1) is 81.78%, and the accuracy of calculation 

model considering saturation (M2) is 99.49% (calculated by 

coefficient of determination). The spatial orders of AR-MF 

mainly include 4, 12, 20, 28, 36 and so on, satisfying 𝑘 =
(2𝑛 − 1)𝑝, where n is a positive integer and 𝑝 is the number of 

pole pairs. 
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(a) 

  

(b) 

Fig. 6.  Spatial distribution and order of AR-MF. (a) Radial component. (b) 

Tangential component. 

 

The temporal variation and amplitude-frequency 

characteristics of AR-MF of IPMSM are shown in Fig. 7. 

Compared with the results of finite element method, the 

accuracy of calculation model without considering saturation 

(M1) is 67.67%, and the accuracy of calculation model 

considering saturation (M2) is 99.74%. The frequencies of AR-

MF are mainly 340 Hz, 1020 Hz, 1700 Hz, 2380 Hz, 3060 Hz 

and so on, satisfying 𝑓 = (2𝑛 − 1)𝑓0 , where n is a positive 

integer and 𝑓0 is the fundamental frequency. 
 

  

(a) 

  

(b) 

Fig. 7.  Time variation and amplitude-frequency characteristics of AR-MF. (a) 

Radial component. (b) Tangential component. 

 

According to the 3-D spatial distribution of AR-MF of 

IPMSM with segmented skewed poles shown in Fig. 8, the 

change of AR-MF along the axial length of the motor is uneven. 

Although the stator is not segmented, the virtual magnetic field 

of the rotor magnetic barrier generated by the rotor changes 

along the axial length of the motor. The virtual magnetic field 

of the rotor magnetic barrier has an impact on the AR-MF, 

resulting in the phenomenon of stratification of the AR-MF. 

The rotor has 6 segments, and the skewed angle of each segment 

is 2.5°. Therefore, in the axial direction of the motor, the results 

show that the AR-MF also shows 6-segment stratification, and 

the adjacent segments are staggered by 2.5° in space. 
 

  

(a) 

  

(b) 

Fig. 8.  The 3-D spatial distribution of AR-MF. (a) Calculation results. (b) Finite 
element simulation results. 

 

IV. VERIFICATION OF INDUCTANCE AND ELECTROMAGNETIC 

TORQUE 

A. Verification of inductance 

Based on the armature reaction magnetic field, the self-

inductance and mutual inductance of each phase winding can 

be calculated by [14]: 
 

2

_
02

s
XX X ar X

X

LR
L N B d

I



=   (29) 

 

2

_
02

s
XY X ar Y

Y

LR
L N B d

I



=   (30) 

 

where, 𝐼𝑋 and 𝐼𝑌 represent currents of the X-phase and Y-phase 

windings respectively; 𝑁𝑋 represents windings function of the 

X-phase; 𝐵𝑎𝑟_𝑋  and 𝐵𝑎𝑟_𝑌  represent the radial component of 

armature reaction magnetic field generated by X-phase and Y-

phase windings respectively. 

In order to verify the accuracy of the calculation model, the 

self and mutual inductance of each phase winding under 

sinusoidal current excitation with different RMS values are 

calculated. Since the self-inductance of each phase winding has 

the same amplitude and change trend, the self-inductance LAA 

is selected as an example. Similarly, the mutual inductance LAB 

is selected. The calculation results are shown in Fig. 9. The 

calculation results are in good agreement with the finite element 
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simulation results. Compared with the finite element simulation 

results, the error of the calculation results is less than 8%. 
 

  
(a) (b) 

Fig. 9.  Self and mutual inductance. (a) Self-inductance (LAA). (b) Mutual 
inductance (LAB). 

 

B. Verification of electromagnetic torque 

The electromagnetic torque of IPMSM with segmented 

skewed poles can be calculated by the following expression: 
 

( )( )
2

2

0
0

em mr ar mt at

Lr
T B B B B d






= + +  (31) 

 

where 𝐵𝑚𝑟  and 𝐵𝑚𝑡 are the radial and tangential components of 

the open circuit air gap magnetic field, respectively, and can be 

obtained by the method proposed in [24]. 

The accuracy of calculation results of AR-MF of IPMSM 

with segmented skewed poles can be indirectly verified by 

electromagnetic torque measurement. The photo of the 

experimented motor is shown in Fig. 10. The electromagnetic 

torque measurement system is shown in Fig. 11. The IPMSM 

under test is used as prime mover and servo motor as load. The 

speed and torque of the tested IPMSM are controlled to achieve 

the test target condition, and the torque is recorded in real time. 

The experimental setup is shown in Fig. 12. 
 

  
(a) (b) 

Fig. 10.  The experimented motor. (a) Stator. (b) Rotor. 

 

 
Fig. 11.  The electromagnetic torque measurement system. 

 

 
Fig. 12.  The experimental setup. 
 

The calculation model, finite element simulation and 

measurement results of electromagnetic torque under the 

operating conditions of sinusoidal winding current with RMS 

value of 0-200 A at constant speed of 5100 rpm are shown in 

Fig. 13. The results of calculation model and finite element 

simulation are in good agreement with the experimental results, 

and the latter is slightly smaller, which is due to the influence 

of mechanical friction torque of motor. Compared with the 

experimental results, the error of calculation results is 2.11%, 

and that of finite element simulation is 0.39%. The results of 

electromagnetic torque measurement indirectly verify the 

accuracy of the calculation model of AR-MF. 
 

  
Fig. 13. Average torque vs current characteristic comparison: calculation model, 

finite element simulation (FEM) and measurement results. 

 

V. CONCLUSION 

In this paper, the influence of local inhomogeneous 

saturation effect of rotor magnetic barrier on AR-MF is 

quantitatively calculated by using the virtual magnetic field 

calculation model of rotor magnetic barrier. At the same time, 

the influence of stator slotting effect on AR-MF is 
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quantitatively calculated by introducing complex relative 

permeance. An accurate calculation model of AR-MF of 

IPMSM with segmented skewed poles is therefore established, 

and the main conclusions are as follows: 

1) This calculation model can take the saturation effect of 

rotor magnetic barrier and the slotting effect of stator into 

consideration. Moreover, it can calculate the 3-D spatial 

distribution of AR-MF of IPMSM with segmented skewed 

poles along the axial and circumferential direction of the 

motor. 

2) The main spatial order of the AR-MF satisfies 𝑘 =
(2𝑛 − 1)𝑝 , where n is a positive integer and 𝑝  is the 

number of pole pairs; the main frequency of the AR-MF 

satisfies 𝑓 = (2𝑛 − 1)𝑓0 , where 𝑓0  is the fundamental 

frequency. The AR-MF of the IPMSM with segmented 

skewed poles presents N-segment stratification in the axial 

direction of the motor, and N is the number of rotor 

segments; the AR-MF of adjacent segments are staggered 

by an angle of 𝛼𝑠𝑘𝑒𝑤  in space, and 𝛼𝑠𝑘𝑒𝑤 is the skew angle. 

3) Compared with the finite element method, the accuracy of 

the calculation model is more than 99% in alignment, 

while the time consumption is less than 10% of the finite 

element method. This model can greatly shorten the 

calculation time while ensuring the calculation accuracy. 
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