

TITLE:

Remarks on conjugation and antilinear operators and their numerical range (Research on structure of operators by order and related topics)

AUTHOR(S):

Chō, Muneo; Hur, Injo; Lee, Ji Eun

CITATION:

Chō, Muneo ...[et al]. Remarks on conjugation and antilinear operators and their numerical range (Research on structure of operators by order and related topics). 数理解析研究所講究錄 2021, 2202: 9-18

ISSUE DATE:

2021-10

URL:

http://hdl.handle.net/2433/266242

RIGHT:

Remarks on conjugation and antilinear operators and their numerical range

Muneo Chō¹, Injo Hur ², and Ji Eun Lee^{3*}

Abstract

In this paper, we investigate the numerical ranges of conjugations and antilinear operators on a Hilbert space, which will be shown to be annuli in general. This result proves that Toeplitz-Hausdorff Theorem, which says the convexity on the numerical ranges of linear operators, does not hold for the ones of antilinear operators. Moreover, we extend these results to a Banach space.

1 Introduction

The results in this paper will be appeared in other journals. Let $\mathcal{L}(\mathcal{H})$ be the algebra of all bounded linear operators on a separable complex Hilbert space \mathcal{H} .

For $T \in \mathcal{L}(\mathcal{H})$, its numerical range W(T) is defined as

$$W(T) = \{ \langle Tx, x \rangle : x \in \mathcal{H}, ||x|| = 1 \},$$

where $\langle \cdot, \cdot \rangle$ is the standard sesquilinear form on \mathcal{H} and $||\cdot||$ is its induced norm.

Theorem 1.1. (Toeplitz-Hausdorff Theorem, [8], [20]) For $T \in \mathcal{L}(\mathcal{H})$, its numerical range W(T) is convex in \mathbb{C} .

Now, we give basic properties of the numerical range W(T) of $T \in \mathcal{L}(\mathcal{H})$ which come from [7, 18, 19]. Let $T, S \in \mathcal{L}(\mathcal{H})$ and $\lambda \in \mathbb{C}$. Then the following properties hold.

- (i) $W(T^*) = \overline{W(T)}$.
- (ii) $W(T) = \{\lambda\}$ if and only if $T = \lambda I$.
- (iii) W(T) contains all of the eigenvalues of T.
- (iv) W(T) lies in the closed disk of radius ||T|| centered at 0.
- (v) $W(\alpha T + \beta I_{\mathcal{H}}) = \alpha W(T) + \beta I$ for $\alpha, \beta \in \mathbb{C}$.
- (vi) $W(UTU^*) = W(T)$ for a unitary U.
- (vii) T is self-adjoint, i.e., $T = T^*$ if and only if $W(T) \subset \mathbb{R}$.
- (viii) W(T) is closed (and compact) when \mathcal{H} is finite dimensional.
- (ix) $W(T+S) \subset W(T) + W(S)$.

This work was supported by the Research Institute for Mathematical Sciences, a Joint Usage/Research Center located in Kyoto University.

Example 1.2. (i) If $T = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ on \mathbb{C}^2 , then W(T) is the closed unit interval.

(ii) If $T = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ on \mathbb{C}^2 , then W(T) is the closed disc of radius $\frac{1}{2}$ centered at 0.

(iii) If $T = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$ on \mathbb{C}^2 , then W(T) is the closed elliptical disc foci at 0 and 1, minor axis 1 and major axis $\sqrt{2}$.

Theorem 1.3. (i) Let T be a 2×2 matrix with distinct eigenvalues α and β and corresponding normalized eigenvectors x and y. Then W(T) is the closed elliptical disc foci at α and β , minor axis $\frac{\gamma|\alpha-\beta|}{\delta}$ and major axis $\frac{|\alpha-\beta|}{\delta}$ where $\gamma=|(x,y)|$ and $\delta=\sqrt{1-\gamma^2}$.

(ii) Let T have only one eigenvalue α . Then W(T) is the closed disc of radius $\frac{1}{2}||T-\alpha||$ centered at α .

Example 1.4. (i) If $T = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ on \mathbb{C}^3 , then W(T) is the equilateral triangle whose vertices are the three cubic roots of 1, i.e., 1, w, and w^2 .

(ii) If $T = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ on \mathbb{C}^3 , then W(T) is the union of all the closed segments that join

the point 1 to all points of the closed disc with center 0 and radius $\frac{1}{2}$.

Example 1.5. Let T be defined on ℓ^2 by

$$T(x_0, x_1, x_2, x_3, \cdots) = (x_1, x_2, x_3, \cdots)$$

for $(x_1, x_2, x_3, \dots) \in \ell^2$. Then $W(T) = \mathbb{D}$ where $\mathbb{D} = \{\lambda \in \mathbb{C} : |\lambda| < 1\}$.

Theorem 1.6. Let $T \in \mathcal{L}(\mathcal{H})$. Then $\sigma(T) \subset \overline{W(T)}$ where $\sigma(T)$ is the spectrum of T.

Recall that two operators $T, S \in \mathcal{L}(\mathcal{H})$ are approximately unitarily equivalent if there exists a sequence $\{U_n\}_{n\geq 1}$ of unitaries such that $\lim_{n\to\infty} \|U_nSU_n^* - T\| = 0$.

Theorem 1.7. Let $T, S \in \mathcal{L}(\mathcal{H})$. If T and S are approximately unitarily equivalent, then $\overline{W(T)} = \overline{W(S)}$.

Definition 1.8. An operator C is said to be a conjugation on \mathcal{H} if the following conditions hold:

- (i) C is antilinear; $C(ax + by) = \overline{a}Cx + \overline{b}Cy$ for all $a, b \in \mathbb{C}$ and $x, y \in \mathcal{H}$,
- (ii) C is isometric; $\langle Cx, Cy \rangle = \langle y, x \rangle$ for all $x, y \in \mathcal{H}$, and
- (iii) C is involutive; $C^2 = I$.

For any conjugation C, there is an orthonormal basis $\{e_n\}_{n=0}^{\infty}$ for \mathcal{H} such that $Ce_n = e_n$ for all n (see [10] for more details). We present the following examples for conjugations.

Example 1.9. Let us define an operator C as follows:

- (i) $C(x_1, x_2, x_3, \dots, x_n) = (\overline{x_1}, \overline{x_2}, \overline{x_3}, \dots, \overline{x_n})$ on \mathbb{C}^n .
- (ii) $C(x_1, x_2, x_3, \dots, x_n) = (\overline{x_n}, \overline{x_{n-1}}, \overline{x_{n-2}}, \dots, \overline{x_1})$ on \mathbb{C}^n .
- (iii) [Cf](x) = f(x) on $\mathcal{L}^2(\mathcal{X}, \mu)$.
- (iv) $[Cf](x) = \overline{f(1-x)}$ on $L^2([0,1])$.
- (v) $[Cf](x) = \overline{f(-x)}$ on $L^2(\mathbb{R}^n)$.
- (vi) $Cf(z) = \overline{zf(z)}u(z) \in \mathcal{K}_u^2$ for all $f \in \mathcal{K}_u^2$ where u is an inner function and $\mathcal{K}_u^2 = H^2 \odot uH^2$ is a Model space.

Then each C in (i)-(vi) is a conjugation.

Let \mathcal{X} be a separable complex Banach space and $\mathcal{L}(\mathcal{X})$ denote the algebra of all bounded linear operators on \mathcal{X} . Let \mathcal{X}^* be the dual space of a Banach space \mathcal{X} and let T^* be the adjoint operator of $T \in \mathcal{L}(\mathcal{X})$. The set Π is defined by

$$\Pi = \{ (x, f) \in \mathcal{X} \times \mathcal{X}^* : ||f|| = f(x) = ||x|| = 1 \}.$$

For $T \in \mathcal{L}(\mathcal{X})$, the numerical range V(T) of T is defined by

$$V(T) = \{ f(Tx) : (x, f) \in \Pi \}.$$

Let $\sigma(T)$ denote the spectrum of $T \in \mathcal{L}(\mathcal{X})$. For a subset M of \mathbb{C} , we denote the closure of M by \overline{M} . Note that for any $T \in \mathcal{L}(\mathcal{X})$, $\sigma(T) \subset V(T)$ holds (see [W]) and V(T)is connected (see [2] and [3, Corollary 5, page 102]). In general, V(T) is ([3, Example 1, page 98) and we denote the closed convex hull of V(T) by $\overline{\operatorname{co}} V(T)$. An operator $T \in \mathcal{L}(\mathcal{X})$ is said to be Hermitian if $V(T) \subset \mathbb{R}$. If T is Hermitian on \mathcal{X} , then $V(T) = \cos \sigma(T)$ ([3, Corollary 11, page 53). If H is a Hermitian operator, then H^2 may not be Hermitian from [3, Example 1, Page 58]. In 2018, Chō and Tanahashi [6] introduce the concept of a conjugation on a Banach space. An operator $C: \mathcal{X} \to \mathcal{X}$ is called a *conjugation* on \mathcal{X} , if C satisfies

$$C^{2} = I, \ \|C\| \le 1, \ C(x+y) = Cx + Cy, \ C(\lambda x) = \overline{\lambda}Cx,$$
 (1)

for $x, y \in \mathcal{X}$ and $\lambda \in \mathbb{C}$. Note that (1) implies that ||Cx|| = ||x|| for all $x \in \mathcal{X}$.

Main results 2

First, we consider the following questions:

- (i) What is the numerical range W(C) of a conjugation C on a Hilbert space \mathcal{H} ?
- (ii) What is the numerical range W(A) of an antilinear operator A on a Hilbert space \mathcal{H} ?

Theorem 2.1. (In 1965, Godic and Lucenko [14])

If U is a unitary operator on \mathcal{H} , then there exist conjugations C and J such that U = CJ and $U^* = JC$.

Lemma 2.2. (In 2014, S. R. Garcia, E. Prodan, and M. Putinar [12]) If C and J are conjugations on \mathcal{H} , then U := CJ is a unitary operator. Moreover, U is both C-symmetric and J-symmetric.

A vector $x \in \mathcal{H}$ is called *isotropic* with respect to C if $\langle Cx, x \rangle = 0$ (see [12]).

Lemma 2.3. (Garcia, Prodan and Putinar, [12, Lemma 4.11])

If $C: \mathcal{H} \to \mathcal{H}$ is a conjugation, then every subspace of dimension ≥ 2 contains isotropic vectors for the bilinear form $\langle \cdot, C \cdot \rangle$.

Theorem 2.4. (In 2018, Hur and Lee [9]) Let C be a conjugation on \mathcal{H} . Then its the numerical range W(C) is the following:

- (i) $W(C) = \{z : |z| = 1\}$, when dim $\mathcal{H} = 1$ (equivalently, $\mathcal{H} = \mathbb{C}$).
- (ii) $W(C) = \{z : |z| \le 1\}$ for dim $\mathcal{H} \ge 2$.

A bounded antilinear operator A on a Hilbert space \mathcal{H} is defined by taking complex conjugation on the coefficients on a linear one, i.e., for $x, y \in \mathcal{H}$ and for $\alpha, \beta \in \mathbb{C}$

$$A(\alpha x + \beta y) = \overline{\alpha}A(x) + \overline{\beta}A(y).$$

Crucial observation For any antilinear operator A and $x \in \mathcal{H}$,

$$\langle Ae^{i\theta}x, e^{i\theta}x \rangle = \langle e^{-i\theta}Ax, e^{i\theta}x \rangle = e^{-2i\theta}\langle Ax, x \rangle$$
 for real θ , (2)

which means that, if any complex number λ is in W(A), then the circle $\{z \in \mathbb{C} : |z| = |\lambda|\}$ is contained in W(A).

In other words, (2) shows why the numerical ranges of any antilinear operators should be *circular* regions, which would be much easier than the numerical ranges of linear operators. For a linear operator T, the quantity

$$\langle Te^{i\theta}x, e^{i\theta}x \rangle = \langle Tx, x \rangle$$

is independent of θ , so a similar computation (2) for linear operators does not give further information on W(T).

Theorem 2.5. (In 2018, Hur and Lee [9]) Let A be a bounded antilinear operator on \mathcal{H} . Put $a =: \inf\{|\langle Ax, x \rangle| : ||x|| = 1\}$ and $b =: \sup\{|\langle Ax, x \rangle| : ||x|| = 1\}$. Then its numerical range W(A) of A is the following:

- (i') When dim $\mathcal{H} = 1$ (equivalently, $\mathcal{H} = \mathbb{C}$), a = b and $W(A) = \{z : |z| = a\}$.
- (ii') For dim $\mathcal{H} \geq 2$, W(A) is contained in the annulus whose boundaries are two circles $\{z: |z|=a\}$ and $\{z: |z|=b\}$. Inner or outer boundary circle is in W(A) if and only if the infimum or supremum becomes the minimum or maximum, respectively.

Note that if T is a linear operator and A is an antilinear operator, then TA and AT are an antilinear operators.

Example 2.6. (In 2018, Hur and Lee [9]) Consider $A_1 := C$ diag $\{2 - 1/n\}_{n=1}^{\infty}$ on $\ell^2(\mathbb{N})$, where C is the canonical conjugation on $\ell^2(\mathbb{N})$ and diag $\{2 - 1/n\}_{n=1}^{\infty}$ is the (infinite-sized) diagonal matrix (which is linear). Then

$$W(A_1) = \{z : 1 \le |z| < 2\}.$$

Similarly put $A_2 := C$ diag $\{1/n\}_{n=1}^{\infty}$ on $\ell^2(\mathbb{N})$ and $A_3 := A_1 \oplus A_2$, where \oplus is the direct sum of two antilinear operators. Hence

$$W(A_2) = \{z : 0 < |z| \le 1\} \text{ and } W(A_3) = \{z : 0 < |z| < 2\}.$$

Next, we consider the following questions:

- (i) What is the numerical range V(C) of a conjugation C on a Hilbert space \mathcal{X} ?
- (ii) What is the numerical range V(A) of an antilinear operator A on a Hilbert space \mathcal{X} ?

A topological space X is called *connected* if there are two open subsets A and B in X such that $X = A \cup B$ and $A \cap B = \emptyset$, then either $A = \emptyset$ or $B = \emptyset$.

Lemma 2.7. (Bonsall and Duncan [3, Theorem11.4])

Let \mathcal{X} be a complex Banach space. Then Π is a connected subset of $\mathcal{X} \times \mathcal{X}^*$ with the norm \times weak* topology.

We define the numerical range of C by

$$V(C) = \{ f(Cx) : (x, f) \in \Pi \}.$$

Lemma 2.8. If dim $\mathcal{X} \geq 2$, then both 0 and 1 are in V(C).

Theorem 2.9. Let \mathcal{X} be a complex Banach space and let C be a conjugation on \mathcal{X} . Then V(C) is in the complex plane \mathbb{C} .

Theorem 2.10. Let \mathcal{X} be a Banach space and let C be a conjugation on \mathcal{X} . Then the numerical range V(C) of C is the following:

- (i) $V(C) = \{z : |z| = 1\}$, when dim $\mathcal{X} = 1$ (equivalently, $\mathcal{X} = \mathbb{C}$).
- (ii) $V(C) = \{z : |z| \le 1\}$ for dim $\mathcal{X} \ge 2$.

In general, $V(T) \subset V(T^*)$ for $T \in \mathcal{L}(\mathcal{X})$ and its adjoint operator T^* on \mathcal{X}^* . For a conjugation C on \mathcal{X} , we define the dual conjugation C^* on \mathcal{X}^* of C by

$$(C^*f)(x) = \overline{f(Cx)} \quad (x \in \mathcal{X}),$$

where $\overline{f(Cx)}$ is the complex conjugation of the complex number f(Cx).

The numerical range $V(C^*)$ of C^* is given by

$$V(C^*) = \{ \mathcal{F}(C^*f) : \|\mathcal{F}\| = \mathcal{F}(f) = \|f\| = 1, \ \mathcal{F} \in \mathcal{X}^{**}, \ f \in \mathcal{X}^* \}.$$

For $(x, f) \in \Pi$, let \hat{x} be the Gelfand transformation of x. Then since $||\hat{x}|| = \hat{x}(f) = ||f|| = 1$ and by the definition of C^* it holds

$$\hat{x}(C^*f) = (C^*f)(x) = \overline{f(Cx)},$$

we have $\{\overline{z}: z \in V(C)\} \subset V(C^*)$.

Corollary 2.11. Let \mathcal{X} be a complex Banach space and let C be a conjugation on \mathcal{X} . Then $V(C) = V(C^*)$.

A space \mathcal{X} is called *path-connected* if for any two points x and y in \mathcal{X} there exists a continuous path f from [0,1] to \mathcal{X} such that f(0)=x and f(1)=y.

Remark In general, there is no relation between connectedness and path-connectedness. For example, topologist's sine curve, i.e.,

$$\{x + i\sin\frac{1}{x} : 0 < x \le 1\} \cup \{iy : -1 \le y \le 1\} \subset \mathbb{C}$$

is connected but not path-connected (even though \mathbb{C} is path-connected). Path-connectedness is not hereditary either, i.e., even though a total space X is path-connected, we do not know if every subset of X is path-connected.

Recall that \mathcal{X} is a reflexive Banach space if $\mathcal{X}^{**} = \{\hat{x} : x \in \mathcal{X}\}.$

Lemma 2.12. (Luna, [16, Corollary 7]) Let \mathcal{X} be a complex reflexive Banach space with $\dim \mathcal{X} \geq 2$ and let $T \in \mathcal{L}(\mathcal{X})$. Then V(T) is path-connected.

Theorem 2.13. With same hypothsis as in provious theorem, if \mathcal{X} is reflexive, then the numerical range V(C) of C is

$$V(C) = \{z : |z| \le 1\}.$$

For an antilinear operator A on \mathcal{X} , we define the numerical range V(A) by $V(A) = \{f(Ax) : (x, f) \in \Pi\}$.

Theorem 2.14. Let \mathcal{X} be a Banach space and let A be a bounded antilinear operator on \mathcal{X} . Put $a:=\inf\{|f(Ax)|: ||f||=||x||=1\}$ and $b:=\sup\{|f(Ax)|: ||f||=||x||=1\}$. Then its numerical range V(A) of A is the following:

- (i) When dim $\mathcal{X} = 1$ (equivalently, $\mathcal{X} = \mathbb{C}$), a = b and $V(A) = \{z : |z| = a\}$.
- (ii) For dim $\mathcal{X} \geq 2$, V(A) is contained in the annulus whose boundaries are two circles $\{z: |z|=a\}$ and $\{z: |z|=b\}$. Inner or outer boundary circle is in V(A) if and only if the infimum or supremum becomes the minimum or maximum, respectively.

For an antilinear operator A on \mathcal{X} , we define the adjoint operator A^* of A by

$$(A^*f)(x) = \overline{f(Ax)}, \quad (x \in \mathcal{X}, \ f \in \mathcal{X}^*),$$

where $\overline{f(Ax)}$ is the complex conjugation of the complex number f(Ax). Then A^* is an antilinear operator on \mathcal{X}^* .

Corollary 2.15. Let \mathcal{X} be a Banach space and let A be an antilinear operator on \mathcal{X} . Then $V(A) \subseteq V(A^*)$ and the equality holds when \mathcal{X} is reflexive.

Remark If \mathcal{X} is non-reflexive, then $\Pi(\mathcal{X})$ is strictly smaller than $\Pi(\mathcal{X}^*)$ in the sense that there exists $f \in \mathcal{X}^*$ such that it does not have $x \in \mathcal{X}$ such that $(x, f) \in \Pi(\mathcal{X})$. Due to this, it is possible that, even though V(A) does not contain a in (ii) on Theorem (for example), $V(A^*)$ may contain a.

It does not occur when we consider conjugation C, since V(C) was closed.

Finally, we focus on the single-valued extension property of operators on a Banach space \mathcal{X} .

An operator $T \in \mathcal{L}(\mathcal{X})$ is said to have the single-valued extension property (or SVEP) if for every open subset G of \mathbb{C} and any \mathcal{X} -valued analytic function φ on G such that

$$(T - \lambda)\varphi(\lambda) \equiv 0$$

on G, then we have $\varphi(\lambda) \equiv 0$ on G (see [1]).

Definition 2.16. (i) $T \in \mathcal{L}(\mathcal{H})$ has the property (I) if $\lambda \in \sigma_a(T)$ and $\{x_n\}$ is a sequence of unit vectors of \mathcal{H} such that $\|(T - \lambda)x_n\| \to 0$ as $n \to \infty$, then $\|(T - \lambda)^*x_n\| \to 0$ as $n \to \infty$.

(ii) $T \in \mathcal{L}(\mathcal{H})$ has the property (I') if $\lambda \in \sigma_a(T) \setminus \{0\}$ and $\{x_n\}$ is a sequence of unit vectors of \mathcal{H} such that $\|(T - \lambda)x_n\| \to 0$ as $n \to \infty$, then $\|(T - \lambda)^*x_n\| \to 0$ as $n \to \infty$.

(iii) $T \in \mathcal{L}(\mathcal{H})$ has the property (II) if $\lambda, \mu \in \sigma_a(T)$ ($\lambda \neq \mu$) and $\{x_n\}$ and $\{y_n\}$ are sequences of unit vectors of \mathcal{H} such that $\|(T - \lambda)x_n\| \to 0$ and $\|(T - \mu)y_n\| \to 0$ as $n \to \infty$, then $\langle x_n, y_n \rangle \to 0$, where $\langle \cdot, \cdot \rangle$ is the inner product on \mathcal{H} .

Proposition 2.17. (Uchiyama and Tanahashi, [21, Proposition 3.1]) If $T \in \mathcal{L}(\mathcal{H})$ has the property (II), then T also has the single-valued extension property.

Let \mathcal{X}^* be the dual space of a Banach space \mathcal{X} and let T^* be the adjoint operator of $T \in \mathcal{L}(\mathcal{X})$. The set Π is defined by

$$\Pi = \{ (x, f) \in \mathcal{X} \times \mathcal{X}^* : ||f|| = f(x) = ||x|| = 1 \}.$$

Lemma 2.18. Let $x \in \mathcal{X}$ be nonzero. Then there exists a functional $f \in \mathcal{X}^*$ such that ||f|| = 1 and f(x) = ||x||.

Hence, for every unit vector $x \in \mathcal{X}$, there exists $f \in \mathcal{X}^*$ such that $(x, f) \in \Pi$.

Definition 2.19. (Banach space version)

- (i) $T \in \mathcal{L}(\mathcal{X})$ has the property (I) if $\lambda \in \sigma_a(T)$ and $\{x_n\}$ is a sequence of unit vectors of \mathcal{X} such that $\|(T \lambda)x_n\| \to 0$ as $n \to \infty$, then $\|(T \lambda)^*f_n\| \to 0$ as $n \to \infty$, where $f_n \in \mathcal{X}^*$ such that $(x_n, f_n) \in \Pi$.
- (ii) $T \in \mathcal{L}(\mathcal{X})$ has the property (I') if $\lambda \in \sigma_a(T) \setminus \{0\}$ and $\{x_n\}$ is a sequence of unit vectors of \mathcal{X} such that $\|(T \lambda)x_n\| \to 0$ as $n \to \infty$, then $\|(T \lambda)^*f_n\| \to 0$ as $n \to \infty$, where $f_n \in \mathcal{X}^*$ such that $(x_n, f_n) \in \Pi$.
- (iii) $T \in \mathcal{L}(\mathcal{X})$ has the property (II) if $\lambda, \mu \in \sigma_a(T)$ ($\lambda \neq \mu$) and $\{x_n\}$ and $\{y_n\}$ are sequences of unit vectors of \mathcal{X} such that $\|(T \lambda)x_n\| \to 0$ and $\|(T \mu)y_n\| \to 0$ as $n \to \infty$, then $f_n(y_n) \to 0$ and $g_n(x_n) \to 0$, where (x_n, f_n) and (y_n, g_n) are in Π .

Theorem 2.20. (Mattila, [17, Theorem 3.11]) If \mathcal{X}^* is uniformly convex and $T \in \mathcal{L}(\mathcal{X})$ is normal, then T has the property (I).

Theorem 2.21. If $T \in \mathcal{L}(\mathcal{X})$ has the property (I), then T has the property (II).

Corollary 2.22. Let $T \in \mathcal{L}(\mathcal{X})$ have the property (I). If $\lambda, \mu \in \sigma_p(T)$ ($\lambda \neq \mu$) and x, y are the corresponding eigenvectors of \mathcal{X} where ||x|| = ||y|| = 1, then for $(x, f), (y, g) \in \Pi$, it holds f(Ty) = g(Tx) = 0.

Theorem 2.23. (Banach space version)

If $T \in \mathcal{L}(\mathcal{X})$ has the property (II) or the property (I'), then T also has the single-valued extension property.

For an operator $T \in \mathcal{L}(\mathcal{X})$ and for a vector $x \in \mathcal{X}$, the local resolvent set $\rho_T(x)$ of T at x is defined as the union of every open subset G of \mathbb{C} on which there is an analytic function $\varphi : G \to \mathcal{X}$ such that $(T - \lambda)\varphi(\lambda) \equiv x$ on G. The local spectrum of T at x is given by $\sigma_T(x) = \mathbb{C} \setminus \rho_T(x)$. We define the local spectral subspace of an operator $T \in \mathcal{L}(\mathcal{X})$ by $X_T(F) = \{x \in \mathcal{X} : \sigma_T(x) \subset F\}$ for a subset F of \mathbb{C} (see [1]).

Corollary 2.24. If $T \in \mathcal{L}(\mathcal{X})$ has the property (I') or the property (II), then the following statements hold.

- (i) For any analytic function on some open neighborhood of $\sigma(T)$, f(T) has the single-valued extension property.
- (ii) If $S \in \mathcal{L}(\mathcal{X})$ and YS = TY where Y has trivial kernel and dense range, then S has the single-valued extension property and $YX_S(F) \subset X_T(F)$ for any subset F of \mathbb{C} .

References

- [1] P. Aiena, Fredholm and local spectral theory with applications to multipliers, Kluwer Academic Pub., 2004.
- [2] F. F. Bonsall, B. E. Cain and H. Schneider, *The numerical range of a continuous mapping a normed space*, Aequationes Math. **2**(1968), 86-93.

- [3] F. F. Bonsall and J. Duncan, Numerical ranges of operators on normed spaces and of elements of normed algebras, London Math. Soc. Lecture Note Series 2, Cambridge Univ. Press, London, 1971.
- [4] ______, Numerical ranges II, London Math. Soc. Lecture Note Series 10, Cambridge Univ. Press, London, 1973.
- [5] M. Chō, Injo Hur and Ji Eun Lee, Numerical ranges of conjugations and antilinear operators on a Banach space, preprint.
- [6] M. Chō and K. Tanahashi, On conjugations for Banach spaces, Sci. Math. Jpn. 81(2018)(1), 37-45.
- [7] T. Furuta, Invitation to linear operator, CRC Press, 2001.
- [8] F. Hausdorff, Der Wertvorrat einer Bilinearform (German), Math. Z. 3 (1919), no. 1, 314-316.
- [9] Injo Hur and Ji Eun Lee, Numerical ranges of conjugations and antilinear operators, preprint.
- [10] S. R. Garcia and M. Putinar, Complex symmetric operators and applications, Trans. Amer. Math. Soc. 358(2006), 1285-1315.
- [11] ______, Complex symmetric operators and applications II, Trans. Amer. Math. Soc. **359**(2007), 3913-3931.
- [12] S. R. Garcia, E. Prodan, and M. Putinar, Mathematical and physical aspects of complex symmetric operators, J. Phys. A: Math. Gen. 47 (2014), 353001.
- [13] S. R. Garcia and W. R. Wogen, Some new classes of complex symmetric operators, Trans. Amer. Math. Soc. **362**(2010), 6065-6077.
- [14] V.I. Godic and I.E. Lucenko, On the representation of a unitary operator as a product of two involutions, Uspehi Mat. Nauk 20 (1965), 64-65.
- [15] Gu K. Gustafson, The Toeplitz-Hausdorff theorem for linear operators, Proc. Amer. Math. Soc. 25(1970), 203-204.
- [16] G. Luna, On the numerical range in Reflexive Banach spaces, Math. Ann. 231(1977), 33-38.
- [17] K. Mattila, Normal operators and proper boundary points of the spectra of operators on an Banach space, Math. Ph. D. Dissertations, 19 (1978).
- [18] J. H. Shapiro, Notes on the numerical range, Lecture Notes, 2003, 1-15.
- [19] P. Skoufranis, Numerical ranges of operators, Lecture Notes, 2014, 1-23.

- [20] O. Toeplitz, Das algebraische Analogon zu einem Satze von Fejer (German), Math.Z. 2 (1918), no. 1-2, 187-197.
- [21] A. Uchiyama and K. Tanahashi, Bishop's property (β) for paranormal operators, Oper. Matrices 3(2009)(4), 517-524.
- [22] J. P. Williams, Spectra of products and numerical ranges, J. Math. Anal. Appl. 17 (1967), 214-220.

Muneo Chō¹

Department of Mathematics, Kanagawa University, Hiratuka 259-1293, Japan e-mail: chiyom01@kanagawa-u.ac.jp

Injo Hur²

Department of Mathematics Education, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea e-mail: injohur@jnu.ac.kr

Ji Eun Lee 3*

Department of Mathematics and Statistics, Sejong University, Seoul 143-747, Korea e-mail: jieunlee7@sejong.ac.kr; jieun7@ewhain.net