TITLE：

Remarks on conjugation and antilinear operators and their numerical range（Research on structure of operators by order and related topics）

AUTHOR（S）：
Chō，Muneo；Hur，Injo；Lee，Ji Eun

CITATION：
 Chō，Muneo ．．．［et al］．Remarks on conjugation and antilinear operators and their numerical range（Research on structure of operators by order and related topics）．数理解析研究所講究録 2021，2202：9－18

ISSUE DATE：
2021－10
URL：
http：／／hdl．handle．net／2433／266242
RIGHT：

Remarks on conjugation and antilinear operators and their numerical range

Muneo Chō ${ }^{1}$, Injo Hur ${ }^{2}$, and Ji Eun Lee ${ }^{3 *}$

Abstract

In this paper, we investigate the numerical ranges of conjugations and antilinear operators on a Hilbert space, which will be shown to be annuli in general. This result proves that Toeplitz-Hausdorff Theorem, which says the convexity on the numerical ranges of linear operators, does not hold for the ones of antilinear operators. Moreover, we extend these results to a Banach space.

1 Introduction

The results in this paper will be appeared in other journals. Let $\mathcal{L}(\mathcal{H})$ be the algebra of all bounded linear operators on a separable complex Hilbert space \mathcal{H}.

For $T \in \mathcal{L}(\mathcal{H})$, its numerical range $W(T)$ is defined as

$$
W(T)=\{\langle T x, x\rangle: x \in \mathcal{H},\|x\|=1\},
$$

where $\langle\cdot, \cdot\rangle$ is the standard sesquilinear form on \mathcal{H} and $\|\cdot\|$ is its induced norm.
Theorem 1.1. (Toeplitz-Hausdorff Theorem, [8], [20])
For $T \in \mathcal{L}(\mathcal{H})$, its numerical range $W(T)$ is convex in \mathbb{C}.
Now, we give basic properties of the numerical range $W(T)$ of $T \in \mathcal{L}(\mathcal{H})$ which come from [7, 18, 19]. Let $T, S \in \mathcal{L}(\mathcal{H})$ and $\lambda \in \mathbb{C}$. Then the following properties hold.
(i) $W\left(T^{*}\right)=\overline{W(T)}$.
(ii) $W(T)=\{\lambda\}$ if and only if $T=\lambda I$.
(iii) $W(T)$ contains all of the eigenvalues of T.
(iv) $W(T)$ lies in the closed disk of radius $\|T\|$ centered at 0 .
(v) $W\left(\alpha T+\beta I_{\mathcal{H}}\right)=\alpha W(T)+\beta I$ for $\alpha, \beta \in \mathbb{C}$.
(vi) $W\left(U T U^{*}\right)=W(T)$ for a unitary U.
(vii) T is self-adjoint, i.e., $T=T^{*}$ if and only if $W(T) \subset \mathbb{R}$.
(viii) $W(T)$ is closed (and compact) when \mathcal{H} is finite dimensional.
(ix) $W(T+S) \subset W(T)+W(S)$.

[^0]Example 1.2. (i) If $T=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ on \mathbb{C}^{2}, then $W(T)$ is the closed unit interval.
(ii) If $T=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ on \mathbb{C}^{2}, then $W(T)$ is the closed disc of radius $\frac{1}{2}$ centered at 0 .
(iii) If $T=\left(\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right)$ on \mathbb{C}^{2}, then $W(T)$ is the closed elliptical disc foci at 0 and 1 , minor axis 1 and major axis $\sqrt{2}$.

Theorem 1.3. (i) Let T be a 2×2 matrix with distinct eigenvalues α and β and corresponding normalized eigenvectors x and y. Then $W(T)$ is the closed elliptical disc foci at α and β, minor axis $\frac{\gamma|\alpha-\beta|}{\delta}$ and major axis $\frac{|\alpha-\beta|}{\delta}$ where $\gamma=|(x, y)|$ and $\delta=\sqrt{1-\gamma^{2}}$.
(ii) Let T have only one eigenvalue α. Then $W(T)$ is the closed disc of radius $\frac{1}{2}\|T-\alpha\|$ centered at α.
Example 1.4. (i) If $T=\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$ on \mathbb{C}^{3}, then $W(T)$ is the equilateral triangle whose vertices are the three cubic roots of 1 , i.e., $1, w$, and w^{2}.
(ii) If $T=\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$ on \mathbb{C}^{3}, then $W(T)$ is the union of all the closed segments that join the point 1 to all points of the closed disc with center 0 and radius $\frac{1}{2}$.

Example 1.5. Let T be defined on ℓ^{2} by

$$
T\left(x_{0}, x_{1}, x_{2}, x_{3}, \cdots\right)=\left(x_{1}, x_{2}, x_{3}, \cdots\right)
$$

for $\left(x_{1}, x_{2}, x_{3}, \cdots\right) \in \ell^{2}$. Then $W(T)=\mathbb{D}$ where $\mathbb{D}=\{\lambda \in \mathbb{C}:|\lambda|<1\}$.

Theorem 1.6. Let $T \in \mathcal{L}(\mathcal{H})$. Then $\sigma(T) \subset \overline{W(T)}$ where $\sigma(T)$ is the spectrum of T.
Recall that two operators $T, S \in \mathcal{L}(\mathcal{H})$ are approximately unitarily equivalent if there exists a sequence $\left\{U_{n}\right\}_{n \geq 1}$ of unitaries such that $\lim _{n \rightarrow \infty}\left\|U_{n} S U_{n}{ }^{*}-T\right\|=0$.

Theorem 1.7. Let $T, S \in \mathcal{L}(\mathcal{H})$. If T and S are approximately unitarily equivalent, then $\overline{W(T)}=\overline{W(S)}$.

Definition 1.8. An operator C is said to be a conjugation on \mathcal{H} if the following conditions hold:
(i) C is antilinear; $C(a x+b y)=\bar{a} C x+\bar{b} C y$ for all $a, b \in \mathbb{C}$ and $x, y \in \mathcal{H}$,
(ii) C is isometric; $\langle C x, C y\rangle=\langle y, x\rangle$ for all $x, y \in \mathcal{H}$, and
(iii) C is involutive; $C^{2}=I$.

For any conjugation C, there is an orthonormal basis $\left\{e_{n}\right\}_{n=0}^{\infty}$ for \mathcal{H} such that $C e_{n}=e_{n}$ for all n (see [10] for more details). We present the following examples for conjugations.

Example 1.9. Let us define an operator C as follows:
(i) $C\left(x_{1}, x_{2}, x_{3}, \cdots, x_{n}\right)=\left(\overline{x_{1}}, \overline{x_{2}}, \overline{x_{3}}, \cdots, \overline{x_{n}}\right)$ on \mathbb{C}^{n}.
(ii) $C\left(x_{1}, x_{2}, x_{3}, \cdots, x_{n}\right)=\left(\overline{x_{n}}, \overline{x_{n-1}}, \overline{x_{n-2}}, \cdots, \overline{x_{1}}\right)$ on \mathbb{C}^{n}.
(iii) $[C f](x)=\overline{f(x)}$ on $\mathcal{L}^{2}(\mathcal{X}, \mu)$.
(iv) $[C f](x)=\overline{f(1-x)}$ on $L^{2}([0,1])$.
(v) $[C f](x)=\overline{f(-x)}$ on $L^{2}\left(\mathbb{R}^{n}\right)$.
(vi) $C f(z)=\overline{z f(z)} u(z) \in \mathcal{K}_{u}^{2}$ for all $f \in \mathcal{K}_{u}^{2}$ where u is an inner function and $\mathcal{K}_{u}^{2}=H^{2} \ominus u H^{2}$ is a Model space.
Then each C in (i)-(vi) is a conjugation.
Let \mathcal{X} be a separable complex Banach space and $\mathcal{L}(\mathcal{X})$ denote the algebra of all bounded linear operators on \mathcal{X}. Let \mathcal{X}^{*} be the dual space of a Banach space \mathcal{X} and let T^{*} be the adjoint operator of $T \in \mathcal{L}(\mathcal{X})$. The set Π is defined by

$$
\Pi=\left\{(x, f) \in \mathcal{X} \times \mathcal{X}^{*}:\|f\|=f(x)=\|x\|=1\right\}
$$

For $T \in \mathcal{L}(\mathcal{X})$, the numerical range $V(T)$ of T is defined by

$$
V(T)=\{f(T x):(x, f) \in \Pi\} .
$$

Let $\sigma(T)$ denote the spectrum of $T \in \mathcal{L}(\mathcal{X})$. For a subset M of \mathbb{C}, we denote the closure of M by \bar{M}. Note that for any $T \in \mathcal{L}(\mathcal{X}), \sigma(T) \subset \overline{V(T)}$ holds (see [W]) and $V(T)$ is connected (see [2] and [3, Corollary 5, page 102]). In general, $V(T)$ is ([3, Example 1, page 98]) and we denote the closed convex hull of $V(T)$ by $\overline{\text { co }} V(T)$. An operator $T \in \mathcal{L}(\mathcal{X})$ is said to be Hermitian if $V(T) \subset \mathbb{R}$. If T is Hermitian on \mathcal{X}, then $V(T)=\operatorname{co} \sigma(T)$ ([3, Corollary 11, page 53]). If H is a Hermitian operator, then H^{2} may not be Hermitian from [3, Example 1, Page 58]. In 2018, Chō and Tanahashi [6] introduce the concept of a conjugation on a Banach space. An operator $C: \mathcal{X} \rightarrow \mathcal{X}$ is called a conjugation on \mathcal{X}, if C satisfies

$$
\begin{equation*}
C^{2}=I,\|C\| \leq 1, C(x+y)=C x+C y, C(\lambda x)=\bar{\lambda} C x \tag{1}
\end{equation*}
$$

for $x, y \in \mathcal{X}$ and $\lambda \in \mathbb{C}$. Note that (1) implies that $\|C x\|=\|x\|$ for all $x \in \mathcal{X}$.

2 Main results

First, we consider the following questions:
(i) What is the numerical range $W(C)$ of a conjugation C on a Hilbert space \mathcal{H} ?
(ii) What is the numerical range $W(A)$ of an antilinear operator A on a Hilbert space \mathcal{H} ?

Theorem 2.1. (In 1965, Godic and Lucenko [14])
If U is a unitary operator on \mathcal{H}, then there exist conjugations C and J such that $U=C J$ and $U^{*}=J C$.
Lemma 2.2. (In 2014, S. R. Garcia, E. Prodan, and M. Putinar [12]) If C and J are conjugations on \mathcal{H}, then $U:=C J$ is a unitary operator. Moreover, U is both C-symmetric and J-symmetric.

A vector $x \in \mathcal{H}$ is called isotropic with respect to C if $\langle C x, x\rangle=0$ (see [12]).
Lemma 2.3. (Garcia, Prodan and Putinar, [12, Lemma 4.11])
If $C: \mathcal{H} \rightarrow \mathcal{H}$ is a conjugation, then every subspace of dimension ≥ 2 contains isotropic vectors for the bilinear form $\langle\cdot, C \cdot\rangle$.
Theorem 2.4. (In 2018, Hur and Lee [9]) Let C be a conjugation on \mathcal{H}. Then its the numerical range $W(C)$ is the following:
(i) $W(C)=\{z:|z|=1\}$, when $\operatorname{dim} \mathcal{H}=1$ (equivalently, $\mathcal{H}=\mathbb{C}$).
(ii) $W(C)=\{z:|z| \leq 1\}$ for $\operatorname{dim} \mathcal{H} \geq 2$.

A bounded antilinear operator A on a Hilbert space \mathcal{H} is defined by taking complex conjugation on the coefficients on a linear one, i.e., for $x, y \in \mathcal{H}$ and for $\alpha, \beta \in \mathbb{C}$

$$
A(\alpha x+\beta y)=\bar{\alpha} A(x)+\bar{\beta} A(y)
$$

Crucial observation For any antilinear operator A and $x \in \mathcal{H}$,

$$
\begin{equation*}
\left\langle A e^{i \theta} x, e^{i \theta} x\right\rangle=\left\langle e^{-i \theta} A x, e^{i \theta} x\right\rangle=e^{-2 i \theta}\langle A x, x\rangle \quad \text { for real } \theta, \tag{2}
\end{equation*}
$$

which means that, if any complex number λ is in $W(A)$, then the circle $\{z \in \mathbb{C}:|z|=|\lambda|\}$ is contained in $W(A)$.

In other words, (2) shows why the numerical ranges of any antilinear operators should be circular regions, which would be much easier than the numerical ranges of linear operators. For a linear operator T, the quantity

$$
\left\langle T e^{i \theta} x, e^{i \theta} x\right\rangle=\langle T x, x\rangle
$$

is independent of θ, so a similar computation (2) for linear operators does not give further information on $W(T)$.

Theorem 2.5. (In 2018, Hur and Lee [9]) Let A be a bounded antilinear operator on \mathcal{H}. Put $a=: \inf \{|\langle A x, x\rangle|:\|x\|=1\}$ and $b=: \sup \{|\langle A x, x\rangle|:\|x\|=1\}$. Then its numerical range $W(A)$ of A is the following:
(i') When $\operatorname{dim} \mathcal{H}=1$ (equivalently, $\mathcal{H}=\mathbb{C}$), $a=b$ and $W(A)=\{z:|z|=a\}$.
(ii') For $\operatorname{dim} \mathcal{H} \geq 2, W(A)$ is contained in the annulus whose boundaries are two circles $\{z:|z|=a\}$ and $\{z:|z|=b\}$. Inner or outer boundary circle is in $W(A)$ if and only if the infimum or supremum becomes the minimum or maximum, respectively.

Note that if T is a linear operator and A is an antilinear operator, then $T A$ and $A T$ are an antilinear operators.

Example 2.6. (In 2018, Hur and Lee [9]) Consider $A_{1}:=C \operatorname{diag}\{2-1 / n\}_{n=1}^{\infty}$ on $\ell^{2}(\mathbb{N})$, where C is the canonical conjugation on $\ell^{2}(\mathbb{N})$ and $\operatorname{diag}\{2-1 / n\}_{n=1}^{\infty}$ is the (infinite-sized) diagonal matrix (which is linear). Then

$$
W\left(A_{1}\right)=\{z: 1 \leq|z|<2\}
$$

Similarly put $A_{2}:=C \operatorname{diag}\{1 / n\}_{n=1}^{\infty}$ on $\ell^{2}(\mathbb{N})$ and $A_{3}:=A_{1} \oplus A_{2}$, where \oplus is the direct sum of two antilinear operators. Hence

$$
W\left(A_{2}\right)=\{z: 0<|z| \leq 1\} \text { and } W\left(A_{3}\right)=\{z: 0<|z|<2\}
$$

Next, we consider the following questions:
(i) What is the numerical range $V(C)$ of a conjugation C on a Hilbert space \mathcal{X} ?
(ii) What is the numerical range $V(A)$ of an antilinear operator A on a Hilbert space \mathcal{X} ?

A topological space X is called connected if there are two open subsets A and B in X such that $X=A \cup B$ and $A \cap B=\emptyset$, then either $A=\emptyset$ or $B=\emptyset$.

Lemma 2.7. (Bonsall and Duncan [3, Theorem11.4])
Let \mathcal{X} be a complex Banach space. Then Π is a connected subset of $\mathcal{X} \times \mathcal{X}^{*}$ with the norm \times weak * topology.

We define the numerical range of C by

$$
V(C)=\{f(C x):(x, f) \in \Pi\} .
$$

Lemma 2.8. If $\operatorname{dim} \mathcal{X} \geq 2$, then both 0 and 1 are in $V(C)$.
Theorem 2.9. Let \mathcal{X} be a complex Banach space and let C be a conjugation on \mathcal{X}. Then $V(C)$ is in the complex plane \mathbb{C}.

Theorem 2.10. Let \mathcal{X} be a Banach space and let C be a conjugation on \mathcal{X}. Then the numerical range $V(C)$ of C is the following:
(i) $V(C)=\{z:|z|=1\}$, when $\operatorname{dim} \mathcal{X}=1$ (equivalently, $\mathcal{X}=\mathbb{C}$).
(ii) $V(C)=\{z:|z| \leq 1\}$ for $\operatorname{dim} \mathcal{X} \geq 2$.

In general, $V(T) \subset V\left(T^{*}\right)$ for $T \in \mathcal{L}(\mathcal{X})$ and its adjoint operator T^{*} on \mathcal{X}^{*}. For a conjugation C on \mathcal{X}, we define the dual conjugation C^{*} on \mathcal{X}^{*} of C by

$$
\left(C^{*} f\right)(x)=\overline{f(C x)} \quad(x \in \mathcal{X})
$$

where $\overline{f(C x)}$ is the complex conjugation of the complex number $f(C x)$.

The numerical range $V\left(C^{*}\right)$ of C^{*} is given by

$$
V\left(C^{*}\right)=\left\{\mathcal{F}\left(C^{*} f\right):\|\mathcal{F}\|=\mathcal{F}(f)=\|f\|=1, \mathcal{F} \in \mathcal{X}^{* *}, f \in \mathcal{X}^{*}\right\}
$$

For $(x, f) \in \Pi$, let \hat{x} be the Gelfand transformation of x. Then since $\|\hat{x}\|=\hat{x}(f)=\|f\|=1$ and by the definition of C^{*} it holds

$$
\hat{x}\left(C^{*} f\right)=\left(C^{*} f\right)(x)=\overline{f(C x)}
$$

we have $\{\bar{z}: z \in V(C)\} \subset V\left(C^{*}\right)$.
Corollary 2.11. Let \mathcal{X} be a complex Banach space and let C be a conjugation on \mathcal{X}. Then $V(C)=V\left(C^{*}\right)$.

A space \mathcal{X} is called path-connected if for any two points x and y in \mathcal{X} there exists a continuous path f from $[0,1]$ to \mathcal{X} such that $f(0)=x$ and $f(1)=y$.
Remark In general, there is no relation between connectedness and path-connectedness. For example, topologist's sine curve, i.e.,

$$
\left\{x+i \sin \frac{1}{x}: 0<x \leq 1\right\} \cup\{i y:-1 \leq y \leq 1\} \subset \mathbb{C}
$$

is connected but not path-connected (even though \mathbb{C} is path-connected). Path-connectedness is not hereditary either, i.e., even though a total space X is path-connected, we do not know if every subset of X is path-connected.

Recall that \mathcal{X} is a reflexive Banach space if $\mathcal{X}^{* *}=\{\hat{x}: x \in \mathcal{X}\}$.
Lemma 2.12. (Luna, [16, Corollary 7]) Let \mathcal{X} be a complex reflexive Banach space with $\operatorname{dim} \mathcal{X} \geq 2$ and let $T \in \mathcal{L}(\mathcal{X})$. Then $V(T)$ is path-connected.

Theorem 2.13. With same hypothsis as in provious theorem, if \mathcal{X} is reflexive, then the numerical range $V(C)$ of C is

$$
V(C)=\{z:|z| \leq 1\} .
$$

For an antilinear operator A on \mathcal{X}, we define the numerical range $V(A)$ by $V(A)=$ $\{f(A x):(x, f) \in \Pi\}$.

Theorem 2.14. Let \mathcal{X} be a Banach space and let A be a bounded antilinear operator on \mathcal{X}. Put $a:=\inf \{|f(A x)|:\|f\|=\|x\|=1\}$ and $b:=\sup \{|f(A x)|:\|f\|=\|x\|=1\}$. Then its numerical range $V(A)$ of A is the following:
(i) When $\operatorname{dim} \mathcal{X}=1$ (equivalently, $\mathcal{X}=\mathbb{C}$), $a=b$ and $V(A)=\{z:|z|=a\}$.
(ii) For $\operatorname{dim} \mathcal{X} \geq 2, V(A)$ is contained in the annulus whose boundaries are two circles $\{z:|z|=a\}$ and $\{z:|z|=b\}$. Inner or outer boundary circle is in $V(A)$ if and only if the infimum or supremum becomes the minimum or maximum, respectively.

For an antilinear operator A on \mathcal{X}, we define the adjoint operator A^{*} of A by

$$
\left(A^{*} f\right)(x)=\overline{f(A x)}, \quad\left(x \in \mathcal{X}, f \in \mathcal{X}^{*}\right),
$$

where $\overline{f(A x)}$ is the complex conjugation of the complex number $f(A x)$. Then A^{*} is an antilinear operator on \mathcal{X}^{*}.

Corollary 2.15. Let \mathcal{X} be a Banach space and let A be an antilinear operator on \mathcal{X}. Then $V(A) \subseteq V\left(A^{*}\right)$ and the equality holds when \mathcal{X} is reflexive.

Remark If \mathcal{X} is non-reflexive, then $\Pi(\mathcal{X})$ is strictly smaller than $\Pi\left(\mathcal{X}^{*}\right)$ in the sense that there exists $f \in \mathcal{X}^{*}$ such that it does not have $x \in \mathcal{X}$ such that $(x, f) \in \Pi(\mathcal{X})$. Due to this, it is possible that, even though $V(A)$ does not contain a in (ii) on Theorem (for example), $V\left(A^{*}\right)$ may contain a.

It does not occur when we consider conjugation C, since $V(C)$ was closed.
Finally, we focus on the single-valued extension property of operators on a Banach space \mathcal{X}.

An operator $T \in \mathcal{L}(\mathcal{X})$ is said to have the single-valued extension property (or SVEP) if for every open subset G of \mathbb{C} and any \mathcal{X}-valued analytic function φ on G such that

$$
(T-\lambda) \varphi(\lambda) \equiv 0
$$

on G, then we have $\varphi(\lambda) \equiv 0$ on G (see [1]).
Definition 2.16. (i) $T \in \mathcal{L}(\mathcal{H})$ has the property (I) if $\lambda \in \sigma_{a}(T)$ and $\left\{x_{n}\right\}$ is a sequence of unit vectors of \mathcal{H} such that $\left\|(T-\lambda) x_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$, then $\left\|(T-\lambda)^{*} x_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$.
(ii) $T \in \mathcal{L}(\mathcal{H})$ has the property (I') if $\lambda \in \sigma_{a}(T) \backslash\{0\}$ and $\left\{x_{n}\right\}$ is a sequence of unit vectors of \mathcal{H} such that $\left\|(T-\lambda) x_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$, then $\left\|(T-\lambda)^{*} x_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$.
(iii) $T \in \mathcal{L}(\mathcal{H})$ has the property (II) if $\lambda, \mu \in \sigma_{a}(T)(\lambda \neq \mu)$ and $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are sequences of unit vectors of \mathcal{H} such that $\left\|(T-\lambda) x_{n}\right\| \rightarrow 0$ and $\left\|(T-\mu) y_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$, then $\left\langle x_{n}, y_{n}\right\rangle \rightarrow 0$, where $\langle\cdot, \cdot\rangle$ is the inner product on \mathcal{H}.

Proposition 2.17. (Uchiyama and Tanahashi, [21, Proposition 3.1]) If $T \in \mathcal{L}(\mathcal{H})$ has the property (II), then T also has the single-valued extension property.

Let \mathcal{X}^{*} be the dual space of a Banach space \mathcal{X} and let T^{*} be the adjoint operator of $T \in \mathcal{L}(\mathcal{X})$. The set Π is defined by

$$
\Pi=\left\{(x, f) \in \mathcal{X} \times \mathcal{X}^{*}:\|f\|=f(x)=\|x\|=1\right\}
$$

Lemma 2.18. Let $x \in \mathcal{X}$ be nonzero. Then there exists a functional $f \in \mathcal{X}^{*}$ such that $\|f\|=1$ and $f(x)=\|x\|$.

Hence, for every unit vector $x \in \mathcal{X}$, there exists $f \in \mathcal{X}^{*}$ such that $(x, f) \in \Pi$.

Definition 2.19. (Banach space version)
(i) $T \in \mathcal{L}(\mathcal{X})$ has the property (I) if $\lambda \in \sigma_{a}(T)$ and $\left\{x_{n}\right\}$ is a sequence of unit vectors of \mathcal{X} such that $\left\|(T-\lambda) x_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$, then $\left\|(T-\lambda)^{*} f_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$, where $f_{n} \in \mathcal{X}^{*}$ such that $\left(x_{n}, f_{n}\right) \in \Pi$.
(ii) $T \in \mathcal{L}(\mathcal{X})$ has the property (I') if $\lambda \in \sigma_{a}(T) \backslash\{0\}$ and $\left\{x_{n}\right\}$ is a sequence of unit vectors of \mathcal{X} such that $\left\|(T-\lambda) x_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$, then $\left\|(T-\lambda)^{*} f_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$, where $f_{n} \in \mathcal{X}^{*}$ such that $\left(x_{n}, f_{n}\right) \in \Pi$.
(iii) $T \in \mathcal{L}(\mathcal{X})$ has the property (II) if $\lambda, \mu \in \sigma_{a}(T)(\lambda \neq \mu)$ and $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are sequences of unit vectors of \mathcal{X} such that $\left\|(T-\lambda) x_{n}\right\| \rightarrow 0$ and $\left\|(T-\mu) y_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$, then $f_{n}\left(y_{n}\right) \rightarrow 0$ and $g_{n}\left(x_{n}\right) \rightarrow 0$, where $\left(x_{n}, f_{n}\right)$ and $\left(y_{n}, g_{n}\right)$ are in Π.
Theorem 2.20. (Mattila, [17, Theorem 3.11]) If \mathcal{X}^{*} is uniformly convex and $T \in \mathcal{L}(\mathcal{X})$ is normal, then T has the property (I).

Theorem 2.21. If $T \in \mathcal{L}(\mathcal{X})$ has the property (I), then T has the property (II).
Corollary 2.22. Let $T \in \mathcal{L}(\mathcal{X})$ have the property (I). If $\lambda, \mu \in \sigma_{p}(T)(\lambda \neq \mu)$ and x, y are the corresponding eigenvectors of \mathcal{X} where $\|x\|=\|y\|=1$, then for $(x, f),(y, g) \in \Pi$, it holds $f(T y)=g(T x)=0$.

Theorem 2.23. (Banach space version)
If $T \in \mathcal{L}(\mathcal{X})$ has the property (II) or the property (I'), then T also has the single-valued extension property.

For an operator $T \in \mathcal{L}(\mathcal{X})$ and for a vector $x \in \mathcal{X}$, the local resolvent set $\rho_{T}(x)$ of T at x is defined as the union of every open subset G of \mathbb{C} on which there is an analytic function $\varphi: G \rightarrow \mathcal{X}$ such that $(T-\lambda) \varphi(\lambda) \equiv x$ on G. The local spectrum of T at x is given by $\sigma_{T}(x)=\mathbb{C} \backslash \rho_{T}(x)$. We define the local spectral subspace of an operator $T \in \mathcal{L}(\mathcal{X})$ by $X_{T}(F)=\left\{x \in \mathcal{X}: \sigma_{T}(x) \subset F\right\}$ for a subset F of \mathbb{C} (see [1]).
Corollary 2.24. If $T \in \mathcal{L}(\mathcal{X})$ has the property (I') or the property (II), then the following statements hold.
(i) For any analytic function on some open neighborhood of $\sigma(T), f(T)$ has the singlevalued extension property.
(ii) If $S \in \mathcal{L}(\mathcal{X})$ and $Y S=T Y$ where Y has trivial kernel and dense range, then S has the single-valued extension property and $Y X_{S}(F) \subset X_{T}(F)$ for any subset F of \mathbb{C}.

References

[1] P. Aiena, Fredholm and local spectral theory with applications to multipliers, Kluwer Academic Pub., 2004.
[2] F. F. Bonsall, B. E. Cain and H. Schneider, The numerical range of a continuous mapping a normed space, Aequationes Math. 2(1968), 86-93.
[3] F. F. Bonsall and J. Duncan, Numerical ranges of operators on normed spaces and of elements of normed algebras, London Math. Soc. Lecture Note Series 2, Cambridge Univ. Press, London, 1971.
[4] \qquad , Numerical ranges II, London Math. Soc. Lecture Note Series 10, Cambridge Univ. Press, London, 1973.
[5] M. Chō, Injo Hur and Ji Eun Lee, Numerical ranges of conjugations and antilinear operators on a Banach space, preprint.
[6] M. Chō and K. Tanahashi, On conjugations for Banach spaces, Sci. Math. Jpn. 81(2018)(1), 37-45.
[7] T. Furuta, Invitation to linear operator, CRC Press, 2001.
[8] F. Hausdorff, Der Wertvorrat einer Bilinearform (German), Math. Z. 3 (1919), no. 1, 314-316.
[9] Injo Hur and Ji Eun Lee, Numerical ranges of conjugations and antilinear operators, preprint.
[10] S. R. Garcia and M. Putinar, Complex symmetric operators and applications, Trans. Amer. Math. Soc. 358(2006), 1285-1315.
[11] \qquad , Complex symmetric operators and applications II, Trans. Amer. Math. Soc. 359(2007), 3913-3931.
[12] S. R. Garcia, E. Prodan, and M. Putinar, Mathematical and physical aspects of complex symmetric operators, J. Phys. A: Math. Gen. 47 (2014), 353001.
[13] S. R. Garcia and W. R. Wogen, Some new classes of complex symmetric operators, Trans. Amer. Math. Soc. 362(2010), 6065-6077.
[14] V.I. Godic and I.E. Lucenko, On the representation of a unitary operator as a product of two involutions, Uspehi Mat. Nauk 20 (1965), 64-65.
[15] Gu K. Gustafson, The Toeplitz-Hausdorff theorem for linear operators, Proc. Amer. Math. Soc. 25(1970), 203-204.
[16] G. Luna, On the numerical range in Reflexive Banach spaces, Math. Ann. 231(1977), 33-38.
[17] K. Mattila, Normal operators and proper boundary points of the spectra of operators on an Banach space, Math. Ph. D. Dissertations, 19 (1978).
[18] J. H. Shapiro, Notes on the numerical range, Lecture Notes, 2003, 1-15.
[19] P. Skoufranis, Numerical ranges of operators, Lecture Notes, 2014, 1-23.
[20] O. Toeplitz, Das algebraische Analogon zu einem Satze von Fejer (German), Math. Z. 2 (1918), no. 1-2, 187-197.
[21] A. Uchiyama and K. Tanahashi, Bishop's property (β) for paranormal operators, Oper. Matrices 3(2009)(4), 517-524.
[22] J. P. Williams, Spectra of products and numerical ranges, J. Math. Anal. Appl. 17 (1967), 214-220.

Muneo Chō ${ }^{1}$
Department of Mathematics, Kanagawa University, Hiratuka 259-1293, Japan
e-mail: chiyom01@kanagawa-u.ac.jp
Injo Hur ${ }^{2}$
Department of Mathematics Education, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
e-mail: injohur@jnu.ac.kr
Ji Eun Lee ${ }^{3 *}$
Department of Mathematics and Statistics, Sejong University, Seoul 143-747, Korea
e-mail: jieunlee7@sejong.ac.kr; jieun7@ewhain.net

[^0]: This work was supported by the Research Institute for Mathematical Sciences, a Joint Usage/Research Center located in Kyoto University.

