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Approximate point spectra of m-complex symmetric 
operators and others 

Muneo Cho1 and Taiga Saito2 

Abstract 

Let C be a conjugation on a complex Hilbert space 1{. If {xn} is a sequence of 

unit vectors, then so is { Cxn}- Under the assumption such that (T - >.)xn ➔ 0 

(n ➔ oo), we show spectral properties concerning with a sequence {Cxn} of unit 

vectors. 

1 Introduction and conjugation 

Let 1{ be a complex Hilbert space with the inner product (·, ·). First we introduce a 

conjugation C on 1{. 

Definition 1.1 Let 1{ be a complex Hilbert space. For a mapping C 1{ -----+ 1{ is said 

to be antilinear if 

C(ax+by)=aCx+bCy ('va,bEC, vx,yE1i). 

An antilinear operator C is said to be a conjugation if 

C2 = I and (Cx, Cy) = (y, x) ( v x, y E 1-i). 

If C is a conjugation, then IICxll = llxll for all x E 1-i, i.e., C is isometric. In this paper, 

when a sequence {xn} of unit vectors satisfies (T- >.)xn ➔ 0 (n ➔ oo), we show spectral 

properties concerning with a sequence { Cxn} of unit vectors. 

2 m-Complex symmetric operator 

Let B(1i) be the set of all bounded linear operators on a complex Hilbert space 1{. 

Definition 2.1 An operator T E B(1i) is said to be m-complex symmetric if 
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It holds that Jm(T; C) · (CTC) -T* · '5m(T; C) = Dm+1(T; C). 

Hence, if T is m-complex symmetric, then T is n-complex symmetric for all n :::: m. 

Theorem 2.2 Let T be an m-complex symmetric operator and {xn} be a sequence of unit 

vectors. For A EC, if (T-.X.)xn ➔ 0 (n ➔ oo), then ((T-.x.rcxn, Cxn) ➔ 0 (n ➔ oo). 

Hence, if (T - .X.)x = 0, then ((T- .x.rcx, Cx) = 0. 

Proof. Since (T - .X.)xn ➔ 0 and C(T - .x.rc = - I)-1)1 (77:) (T*1 - >.3)crm-Jc, it 
j=l J 

holds 

Hence we have Theorem 2.2. D 

Corollary 2.3 Under the assumption of Theorem 2.2, we have: 

(2) ((Tk - _x.k)Cxn, Cxn) ➔ 0 for all k EN. 

Example 2.4 Let T = ( ~ ~ ) and Cx = G:) for x = G:) on C2 . Then for a vector 

x = G), it holds Tx = 0. But since Cx = (~), we have 

(TCx, Cx) = 1 -f= 0. 

Theorem 2.5 Let T be an m-complex symmetric operator and {xn} be a sequence of unit 

vectors. For .X. E lR, if (T - .X.)xn ➔ 0, then (T* - .x.rcxn ➔ 0. Hence, if (T - .X.)x = 0, 

then (T* - .x.rcx = 0. 

Proof. Since A E JR, (T - .X.)xn ➔ 0 and 

we have 

(T* - .x.rcxn = I)-1)1 (77:)cr•m-jc(T1 - .X.1)xn. 
j=l J 

Therefore we have Theorem 2.5. □ 
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3 [m, CJ-Symmetric operator 

Definition 3.1 An operator TE B(1i) is said to be [m, CJ-symmetric if 

Then it holds (CTC) · am(T; C) - am(T; C) · T = am+1(T; C). 

Hence, if T is [m, CJ-symmetric, then T is [n, CJ-complex symmetric for all n ~ m. 

Also if T is [m, CJ-symmetric, then so is T*. 

Theorem 3.2 Let T be [m, CJ-symmetric and {xn} be a sequence of unit vectors. For 

A E C, if (T - >.)xn ➔ 0, then (T - ">:)mCxn ➔ 0. Hence, if, for A E C, (T - >.)x = 0, 

then (T - >:rcx = 0. 

Proof. Since T* is [m, CJ-symmetric, am(T*, C) = 0 and 

Hence 

If T is [m, CJ-symmetric, then so is Tk for any k E N (see [4]). Hence we have following 

corollary. 

Corollary 3.3 Under the assumption of Theorem 3.2, it holds 

for all k EN. 

Example 3.4 Let T = . and Cx = _ for x = on C2 • Then CTC = ( 2i 1 ) (X2) (Xl) 
1 -2i X1 X2 

T and T is [1, CJ-symmetric. For an eigenvalue v'3i and an eigen-vector x = (( v'3 ~ 2)i), 
it holds 

. (4v'3- 6) . (T - v'3i)Cx = r.,. =/= 0 and (T + v'3i)Cx = 0. 
-2v3i 
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4 Skew m-complex operator 

Definition 4.1 An operator TE B(1i) is said to be skew m-complex symmetric if 

Since it holds that 

'Ym(T;C) = f (7':)r•J · crm-Jc = 0. 
j=O J 

T* . 'Ym(T; C) + 'Ym(T; C). CTC = 'Ym+l (T; C), 

if T is skew m-complex symmetric, then T is skew n-complex symmetric for all n 2> m. 

Theorem 4.2 Let T be a skew m-complex symmetric operator and { xn} be a sequence of unit 

vectors. For>. EC, if (T->.)xn ---+ 0 (n---+ oo), then ((T+>.rcxn, Cxn) ---+ 0 (n---+ oo). 

Hence, if (T - >.)x = 0, then ((T + >-rcx, Cx) = 0. 

Proof. Since (T- >.)xn ---+ 0 and C(T +>-re= f (7':)>/ · crm-Jc, 
j=l J 

((T + >-rCxn, Cxn) = - f (7':) ((TJ - >.J)xn, CTm-Jcxn) □ 
j=l J 

Example 4.3 If T ism-complex symmetric, then so is Tn for every n EN. But there exists 

a skew I-complex symmetric operator T such that T 2 is not skew I-complex symmetric. For 

example, let 

( 1 + i O ) (X2) (XI) 2 T = 0 _ 1 _ i and Cx = xi for x = x2 on C . 

Then it is easy to see CTC = = -T* and hence T is skew I-complex ( -l+i O) 
0 1- i 

symmetric. But since T 2 = , we have CT2C = T 2* and hence T 2 is complex ( 2i O ) 
0 2i 

symmetric and not skew I-complex symmetric. 

Theorem 4.4 Let T be a skew m-complex symmetric operator and {xn} be a sequence of 

unit vectors. For>. EC, if (T- >.)xn ---+ 0 (n---+ oo), then (T* + Arcxn ---+ 0 (n---+ oo). 

Hence, if (T - >.)x = 0, then ((T* + Arcx, Cx) = 0. 
. -j 

Proof. Since (T- >.)xn ---+ 0, (CT1C - A )Cxn---+ 0 and 

Cbm(T; C))*C = f (7':)r•m-j. crm-Jc, 
j=O J 
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it holds 

Hence, we have Theorem 4.4. □ 

Corollary 4.5 Let T be skew m-complex symmetric. Then: 

(1) If>. E CYa(T), then -A E CYa(T*). 

(2) If>. E CYp(T), then -A E CYp(T*). 

By Theorem 4.4 since OE CYa((T* + A)m), by the spectral mapping theorem of the approxi­

mate point spectrum, 0 E CYa(T* + A) and hence -A E CYa(T*). 

5 Skew [m, CJ-symmetric operator 

Definition 5.1 An operator TE B('H) is said to be skew [m, CJ-symmetric if 

It holds CTC · (m(T; C) + (m(T; C) · T = Cm+1(T; C). 

Therefore if T is skew [m, CJ-symmetric, then T is skew [n, CJ-symmetric for all n 2 m. If 

T is skew [m, CJ-symmetric, then it holds 

and hence so is T* . 

Theorem 5.2 Let T be a skew [m, CJ-symmetric operator and {xn} be a sequence of unit 

vectors. For>. E C, if (T - >.)xn ➔ 0, then (T* + ArCxn ➔ 0. Hence, if (T - >.)x = 0, 

then (T* + Arcx = 0. 

Proof. Since (T- >.)xn ➔ 0 and C((m(T*; C))*C = f (":)rm-j · CT1C = 0, 
j=O J 

Hence, we have Theorem 5.2. □ 

Corollary 5.3 Let T be skew [m, CJ-symmetric. Then: 

(1) If>. E CYa(T), then -A E CYa(T*). 
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By Theorem 5.2 since OE ua((T* + "X)m), by the spectral mapping theorem of the approx­

imate point spectrum, 0 E ua(T* + "X) and hence -"X E ua(T*). 

Example 5.4 Let 

T = ( Ji ~~ ) and Cx = G:) for x = G:) on C2 . 

Then it holds CTC = -T and hence T is skew [1, CJ-symmetric. For the eigenvalue v'3 i of 

T and the corresponding eigenvector x = ( ~ +i) , we have 

r,:;. ( 2v'3i ) r,,. (T + v.:> i)Cx = r,, . # 0 and (T- v3i)Cx = 0. 
-v3 + 3i 

Theorem 5.5 Let T be a skew [m, CJ-symmetric operator and {xn} be a sequence of unit 

vectors. For .X. E C, if (T - .X.)xn -+ 0, then ((T* + .x.rcxn, Cxn) -+ 0. Hence, if 

(T - .X.)x = 0, then ((T* + .x.rcx, Cx) = 0. 

Proof. Since CT*mC = - f (7':)r*J. CT*m-Jc, 
j=l J 

Hence we have Theorem 5.5. □ 

Example 5.6 If T is [m, CJ-symmetric, then so is rn for every n E N. But there exists a 

skew [1, CJ-symmetric operator T such that T 2 is not skew [1, CJ-symmetric. For example, 

let 

( -1 -2i ) (X2) (Xl) 2 T = _2i 1 and Cx = xi for x = x2 on C . 

Then it is easy to see CTC = ( ;i ~: ) = -T and hence T is skew [1, CJ-symmetric. 

But since T2 = ( - 3 O ) , we have CT2C = T2. Hence T2 is [1, CJ-symmetric and not 
0 -3 

skew [1, CJ-symmetric. 

6 Square hyponormal operator 

We begin with the definition of square hyponormal operators. 
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Definition 6.1 An operator TE B(1i) is said to be square hyponormal if T 2 is hyponormal. 

Following results are famous. 

(1) If ker(T- z)1-ker(T- w) for any distinct nonzero eigenvalues z and w, then T has 

SVEP. 

(2) Let p be polynomial. If p(T) has SVEP, then T has SVEP. 

Hence, if T is square hyponormal, then T has SVEP. 

In general, T is 2-hyponormal if 2 0 ( I T* ) 
T T*T 

We have many papers about 2-hyponormal operators. So T is said to be square hyponormal 

if T 2 is hyponormal. About 2-hyponormal operators, please see "R. Curto and Woo Young 

Lee, Towards a model theory for 2-hyponormal operators, Integr. Equat. Oper. Theory, 

44(2002), 290-315". 

Basic properties are the following: 

Theorem 6.2 Let T be square hyponormal. Then the following statements hold. 

( 1) If T is invertible, then so is r-1 . 

1 
(2) If n = 2k EN is even, then yn is -y;;-hyponormal. 

(3) If SE B(1i) and Sc:::- T, then S is square hyponormal. 

( 4) If T - t are square hyponormal for all t > 0, then T is hyponormal. 

(5) If M is an invariant subspace for T, then TIM is square hyponormal. 

By Aluthge and Wang' result, T is hyponormal, then T 2 is semi-hyponormal. But we have 

many examples non hyponormal operator T which T 2 is hyponormal. 

Curto and Han studied algebraically hyponormal operators. 

For T, we set the following property: 

(*) u(T) n (-u(T)) c {O} 

Lemma 6.3 Let T satisfy ( *). If z is an isolated point of u(T), then z2 is an isolated point 

of u(T2 ). 

Proof. If z = 0, then it is clear. If z =/- 0, then proof follows from T 2 - z2 = (T + z)(T - z) 

and(*)- □ 

Theorem 6.4 Let T be square hyponormal and satisfy (* ), then u(T) = { z : z E ua(T) }. 

Theorem 6.5 Let T be square hyponormal and satisfy ( *), M be an invariant subspace for 

T such that u(T1M) = {z}. Then: 
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(1) If z = 0, then (1]M )2 = 0. 

(2) If z -/- 0, then TIM = z. 

Theorem 6.5 Let T be square hyponormal and satisfy ( *). Then: 

(1) Let Tx = zx and Ty= wy. If z-/- w, then (x, y) = 0. 

(2) Similar result holds for approximate eigenvalues. 

Theorem 6.6 Let T be square hyponormal and satisfy(*). Let Tx = zx (z-/- 0). Then 

ker(T- z) = ker(T2 - z2 ) c ker(T*2 - z2 ) = ker(T* - z). 

Remark About proofs and other results, please see [lJ - [5J. 
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