

TITLE:

Approximate point spectra of \$m\$complex symmetric operators and others (Research on structure of operators by order and related topics)

AUTHOR(S):

Chō, Muneo; Saito, Taiga

CITATION:

Chō, Muneo ...[et al]. Approximate point spectra of \$m\$-complex symmetric operators and others (Research on structure of operators by order and related topics). 数理解析研究所講究録 2021, 2202: 1-8

ISSUE DATE: 2021-10

URL: http://hdl.handle.net/2433/266241 RIGHT:

Approximate point spectra of *m*-complex symmetric operators and others

Muneo $\mathrm{Ch}\overline{\mathrm{o}}^1$ and Taiga Saito^2

Abstract

Let C be a conjugation on a complex Hilbert space \mathcal{H} . If $\{x_n\}$ is a sequence of unit vectors, then so is $\{Cx_n\}$. Under the assumption such that $(T - \lambda)x_n \to 0$ $(n \to \infty)$, we show spectral properties concerning with a sequence $\{Cx_n\}$ of unit vectors.

1 Introduction and conjugation

Let \mathcal{H} be a complex Hilbert space with the inner product $\langle \cdot, \cdot \rangle$. First we introduce a conjugation C on \mathcal{H} .

Definition 1.1 Let \mathcal{H} be a complex Hilbert space. For a mapping $C : \mathcal{H} \longrightarrow \mathcal{H}$ is said to be *antilinear* if

$$C(ax + by) = \overline{a} Cx + \overline{b} Cy \ (\forall a, b \in \mathbb{C}, \ \forall x, y \in \mathcal{H}).$$

An antilinear operator C is said to be a *conjugation* if

$$C^2 = I$$
 and $\langle Cx, Cy \rangle = \langle y, x \rangle$ ($\forall x, y \in \mathcal{H}$).

If C is a conjugation, then ||Cx|| = ||x|| for all $x \in \mathcal{H}$, i.e., C is isometric. In this paper, when a sequence $\{x_n\}$ of unit vectors satisfies $(T - \lambda)x_n \to 0$ $(n \to \infty)$, we show spectral properties concerning with a sequence $\{Cx_n\}$ of unit vectors.

2 *m*-Complex symmetric operator

Let $B(\mathcal{H})$ be the set of all bounded linear operators on a complex Hilbert space \mathcal{H} .

Definition 2.1 An operator $T \in B(\mathcal{H})$ is said to be *m*-complex symmetric if

This work was supported by the Research Institute for Mathematical Sciences,

a Joint Usage/Research Center located in Kyoto University.

$$\delta_m(T;C) = \sum_{j=0}^m (-1)^j \binom{m}{j} T^{*j} \cdot CT^{m-j}C = 0.$$

It holds that $\delta_m(T;C) \cdot (CTC) - T^* \cdot \delta_m(T;C) = \delta_{m+1}(T;C).$

Hence, if T is m-complex symmetric, then T is n-complex symmetric for all $n \ge m$.

Theorem 2.2 Let T be an m-complex symmetric operator and $\{x_n\}$ be a sequence of unit vectors. For $\lambda \in \mathbb{C}$, if $(T-\lambda)x_n \to 0$ $(n \to \infty)$, then $\langle (T-\lambda)^m Cx_n, Cx_n \rangle \to 0$ $(n \to \infty)$. Hence, if $(T-\lambda)x = 0$, then $\langle (T-\lambda)^m Cx, Cx \rangle = 0$.

Proof. Since $(T - \lambda)x_n \to 0$ and $C(T - \lambda)^m C = -\sum_{j=1}^m (-1)^j \binom{m}{j} (T^{*j} - \overline{\lambda}^j) C T^{m-j} C$, it holds

$$\langle (T-\lambda)^m C x_n, C x_n \rangle = -\sum_{j=1}^m (-1)^j \binom{m}{j} \langle (T^j - \lambda^j) x_n, C T^{m-j} C x_n \rangle.$$

Hence we have Theorem 2.2. \Box

Corollary 2.3 Under the assumption of Theorem 2.2, we have:

(1) $\langle (T^* - \overline{\lambda})^m x_n, x_n \rangle \to 0,$ (2) $\langle (T^k - \lambda^k) C x_n, C x_n \rangle \to 0$ for all $k \in \mathbb{N}.$

Example 2.4 Let $T = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ and $Cx = \begin{pmatrix} \overline{x_2} \\ \overline{x_1} \end{pmatrix}$ for $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ on \mathbb{C}^2 . Then for a vector $x = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, it holds Tx = 0. But since $Cx = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, we have $\langle TCx, Cx \rangle = 1 \neq 0$.

Theorem 2.5 Let T be an m-complex symmetric operator and $\{x_n\}$ be a sequence of unit vectors. For $\lambda \in \mathbb{R}$, if $(T - \lambda)x_n \rightarrow 0$, then $(T^* - \lambda)^m Cx_n \rightarrow 0$. Hence, if $(T - \lambda)x = 0$, then $(T^* - \lambda)^m Cx = 0$.

Proof. Since $\lambda \in \mathbb{R}$, $(T - \lambda)x_n \to 0$ and

$$C(T^* - \lambda)^m C = -\sum_{j=1}^m (-1)^j \binom{m}{j} CT^{*m-j} C(T^j - \lambda^j),$$

we have

$$(T^* - \lambda)^m C x_n = \sum_{j=1}^m (-1)^j \binom{m}{j} C T^{*m-j} C (T^j - \lambda^j) x_n.$$

Therefore we have Theorem 2.5. \Box

3 [m, C]-Symmetric operator

Definition 3.1 An operator $T \in B(\mathcal{H})$ is said to be [m, C]-symmetric if

$$\alpha_m(T;C) = \sum_{j=0}^m (-1)^j \binom{m}{j} C T^{m-j} C \cdot T^j = 0.$$

Then it holds $(CTC) \cdot \alpha_m(T;C) - \alpha_m(T;C) \cdot T = \alpha_{m+1}(T;C).$

Hence, if T is [m, C]-symmetric, then T is [n, C]-complex symmetric for all $n \ge m$.

Also if T is [m, C]-symmetric, then so is T^* .

Theorem 3.2 Let T be [m, C]-symmetric and $\{x_n\}$ be a sequence of unit vectors. For $\lambda \in \mathbb{C}$, if $(T - \lambda)x_n \rightarrow 0$, then $(T - \overline{\lambda})^m C x_n \rightarrow 0$. Hence, if, for $\lambda \in \mathbb{C}$, $(T - \lambda)x = 0$, then $(T - \overline{\lambda})^m C x = 0$.

Proof. Since T^* is [m, C]-symmetric, $\alpha_m(T^*, C) = 0$ and

$$\alpha_m(T^*, C)^* = \sum_{j=0}^m (-1)^j \binom{m}{j} T^{m-j} \cdot CT^j C = 0.$$

Hence

$$0 = \left(\sum_{j=0}^{m} (-1)^{j} \binom{m}{j} T^{m-j} \cdot CT^{j}C\right) Cx_{n}$$
$$= (T - \overline{\lambda})^{m} Cx_{n} + \sum_{j=1}^{m} (-1)^{j} \binom{m}{j} T^{m-j} \cdot (CT^{j}C - \overline{\lambda}^{j}) Cx_{n}. \quad \Box$$

If T is [m, C]-symmetric, then so is T^k for any $k \in \mathbb{N}$ (see [4]). Hence we have following corollary.

Corollary 3.3 Under the assumption of Theorem 3.2, it holds

$$\|(T^k - \overline{\lambda}^k)^m C x_n\| \to 0$$

for all $k \in \mathbb{N}$.

Example 3.4 Let
$$T = \begin{pmatrix} 2i & 1 \\ 1 & -2i \end{pmatrix}$$
 and $Cx = \begin{pmatrix} \overline{x_2} \\ \overline{x_1} \end{pmatrix}$ for $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ on \mathbb{C}^2 . Then $CTC = -\frac{1}{2}$

T and T is [1, C]-symmetric. For an eigenvalue $\sqrt{3}i$ and an eigen-vector $x = \begin{pmatrix} 1 \\ (\sqrt{3}-2)i \end{pmatrix}$, it holds

$$(T - \sqrt{3}i)Cx = \begin{pmatrix} 4\sqrt{3} - 6\\ -2\sqrt{3}i \end{pmatrix} \neq 0 \text{ and } (T + \sqrt{3}i)Cx = 0$$

4 Skew *m*-complex operator

Definition 4.1 An operator $T \in B(\mathcal{H})$ is said to be *skew m-complex symmetric* if

$$\gamma_m(T;C) = \sum_{j=0}^m \binom{m}{j} T^{*j} \cdot CT^{m-j}C = 0.$$

Since it holds that

$$T^* \cdot \gamma_m(T;C) + \gamma_m(T;C) \cdot CTC = \gamma_{m+1}(T;C),$$

if T is skew m-complex symmetric, then T is skew n-complex symmetric for all $n \ge m$.

Theorem 4.2 Let T be a skew m-complex symmetric operator and $\{x_n\}$ be a sequence of unit vectors. For $\lambda \in \mathbb{C}$, if $(T-\lambda)x_n \to 0$ $(n \to \infty)$, then $\langle (T+\lambda)^m Cx_n, Cx_n \rangle \to 0$ $(n \to \infty)$. Hence, if $(T-\lambda)x = 0$, then $\langle (T+\lambda)^m Cx, Cx \rangle = 0$.

Proof. Since $(T - \lambda)x_n \to 0$ and $C(T + \lambda)^m C = \sum_{j=1}^m \binom{m}{j} \overline{\lambda}^j \cdot CT^{m-j}C$,

$$\langle (T+\lambda)^m C x_n, C x_n \rangle = -\sum_{j=1}^m \binom{m}{j} \langle (T^j - \lambda^j) x_n, C T^{m-j} C x_n \rangle \square$$

Example 4.3 If T is *m*-complex symmetric, then so is T^n for every $n \in \mathbb{N}$. But there exists a skew 1-complex symmetric operator T such that T^2 is not skew 1-complex symmetric. For example, let

$$T = \begin{pmatrix} 1+i & 0\\ 0 & -1-i \end{pmatrix} \text{ and } Cx = \begin{pmatrix} \overline{x_2}\\ \overline{x_1} \end{pmatrix} \text{ for } x = \begin{pmatrix} x_1\\ x_2 \end{pmatrix} \text{ on } \mathbb{C}^2.$$

Then it is easy to see $CTC = \begin{pmatrix} -1+i & 0\\ 0 & 1-i \end{pmatrix} = -T^*$ and hence T is skew 1-complex symmetric. But since $T^2 = \begin{pmatrix} 2i & 0\\ 0 & 2i \end{pmatrix}$, we have $CT^2C = T^{2*}$ and hence T^2 is complex symmetric and not skew 1-complex symmetric.

Theorem 4.4 Let T be a skew m-complex symmetric operator and $\{x_n\}$ be a sequence of unit vectors. For $\lambda \in \mathbb{C}$, if $(T - \lambda)x_n \to 0$ $(n \to \infty)$, then $(T^* + \overline{\lambda})^m C x_n \to 0$ $(n \to \infty)$. Hence, if $(T - \lambda)x = 0$, then $\langle (T^* + \overline{\lambda})^m C x, C x \rangle = 0$. Proof. Since $(T - \lambda)x_n \to 0$, $(CT^j C - \overline{\lambda}^j)C x_n \to 0$ and

$$C(\gamma_m(T;C))^*C = \sum_{j=0}^m \binom{m}{j} T^{*m-j} \cdot CT^{m-j}C,$$

it holds

$$0 = (T^* + \overline{\lambda})^m C x_n + \sum_{j=1}^m \binom{m}{j} T^{*m-j} \cdot (CT^j C - \overline{\lambda}^j) C x_n$$

Hence, we have Theorem 4.4. \Box

Corollary 4.5 Let T be skew m-complex symmetric. Then:

- (1) If $\lambda \in \sigma_a(T)$, then $-\overline{\lambda} \in \sigma_a(T^*)$.
- (2) If $\lambda \in \sigma_p(T)$, then $-\overline{\lambda} \in \sigma_p(T^*)$.

By Theorem 4.4 since $0 \in \sigma_a((T^* + \overline{\lambda})^m)$, by the spectral mapping theorem of the approximate point spectrum, $0 \in \sigma_a(T^* + \overline{\lambda})$ and hence $-\overline{\lambda} \in \sigma_a(T^*)$.

5 Skew [m, C]-symmetric operator

Definition 5.1 An operator $T \in B(\mathcal{H})$ is said to be *skew* [m, C]-symmetric if

$$\zeta_m(T;C) := \sum_{j=0}^m \binom{m}{j} CT^{m-j}C \cdot T^j = 0.$$

It holds $CTC \cdot \zeta_m(T;C) + \zeta_m(T;C) \cdot T = \zeta_{m+1}(T;C).$

Therefore if T is skew [m, C]-symmetric, then T is skew [n, C]-symmetric for all $n \ge m$. If T is skew [m, C]-symmetric, then it holds

$$0 = C(\zeta_m(T;C))^*C = \sum_{j=0}^m \binom{m}{j} CT^{*j}C \cdot T^{*m-j} = \zeta_m(T^*;C)$$

and hence so is T^* .

Theorem 5.2 Let T be a skew [m, C]-symmetric operator and $\{x_n\}$ be a sequence of unit vectors. For $\lambda \in \mathbb{C}$, if $(T - \lambda)x_n \to 0$, then $(T^* + \overline{\lambda})^m C x_n \to 0$. Hence, if $(T - \lambda)x = 0$, then $(T^* + \overline{\lambda})^m C x = 0$.

Proof. Since $(T - \lambda)x_n \to 0$ and $C(\zeta_m(T^*; C))^*C = \sum_{j=0}^m \binom{m}{j}T^{m-j} \cdot CT^jC = 0$,

$$0 = (T^* + \overline{\lambda})^m x_n + \sum_{j=1}^m \binom{m}{j} T^{m-j} \cdot (CT^j C - \overline{\lambda}^j) Cx_n.$$

Hence, we have Theorem 5.2. \Box

Corollary 5.3 Let T be skew [m, C]-symmetric. Then:

(1) If $\lambda \in \sigma_a(T)$, then $-\overline{\lambda} \in \sigma_a(T^*)$.

(2) If $\lambda \in \sigma_p(T)$, then $-\overline{\lambda} \in \sigma_p(T^*)$.

By Theorem 5.2 since $0 \in \sigma_a((T^* + \overline{\lambda})^m)$, by the spectral mapping theorem of the approximate point spectrum, $0 \in \sigma_a(T^* + \overline{\lambda})$ and hence $-\overline{\lambda} \in \sigma_a(T^*)$.

Example 5.4 Let

$$T = \begin{pmatrix} 1 & 2i \\ 2i & -1 \end{pmatrix}$$
 and $Cx = \begin{pmatrix} \overline{x_2} \\ \overline{x_1} \end{pmatrix}$ for $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ on \mathbb{C}^2 .

Then it holds CTC = -T and hence T is skew [1, C]-symmetric. For the eigenvalue $\sqrt{3} i$ of T and the corresponding eigenvector $x = \begin{pmatrix} 1 \\ \frac{\sqrt{3}+i}{2} \end{pmatrix}$, we have

$$(T + \sqrt{3}i)Cx = \begin{pmatrix} 2\sqrt{3}i \\ -\sqrt{3} + 3i \end{pmatrix} \neq 0 \text{ and } (T - \sqrt{3}i)Cx = 0.$$

Theorem 5.5 Let T be a skew [m, C]-symmetric operator and $\{x_n\}$ be a sequence of unit vectors. For $\lambda \in \mathbb{C}$, if $(T - \lambda)x_n \to 0$, then $\langle (T^* + \lambda)^m Cx_n, Cx_n \rangle \to 0$. Hence, if $(T - \lambda)x = 0$, then $\langle (T^* + \lambda)^m Cx, Cx \rangle = 0$. Proof. Since $CT^{*m}C = -\sum_{j=1}^m \binom{m}{j}T^{*j} \cdot CT^{*m-j}C$,

$$C(T^* + \lambda)^m C = -\sum_{j=1}^m \binom{m}{j} (T^{*j} - \overline{\lambda}^j) \cdot CT^{*m-j}C.$$

Hence we have Theorem 5.5. \Box

Example 5.6 If T is [m, C]-symmetric, then so is T^n for every $n \in \mathbb{N}$. But there exists a skew [1, C]-symmetric operator T such that T^2 is not skew [1, C]-symmetric. For example, let

$$T = \begin{pmatrix} -1 & -2i \\ -2i & 1 \end{pmatrix}$$
 and $Cx = \begin{pmatrix} \overline{x_2} \\ \overline{x_1} \end{pmatrix}$ for $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ on \mathbb{C}^2 .

Then it is easy to see $CTC = \begin{pmatrix} 1 & 2i \\ 2i & -1 \end{pmatrix} = -T$ and hence T is skew [1, C]-symmetric.

But since $T^2 = \begin{pmatrix} -3 & 0 \\ 0 & -3 \end{pmatrix}$, we have $CT^2C = T^2$. Hence T^2 is [1, C]-symmetric and not skew [1, C]-symmetric.

6 Square hyponormal operator

We begin with the definition of square hyponormal operators.

Definition 6.1 An operator $T \in B(\mathcal{H})$ is said to be *square hyponormal* if T^2 is hyponormal.

Following results are famous.

- (1) If $\ker(T-z) \perp \ker(T-w)$ for any distinct nonzero eigenvalues z and w, then T has SVEP.
- (2) Let p be polynomial. If p(T) has SVEP, then T has SVEP.

Hence, if T is square hyponormal, then T has SVEP.

In general, *T* is 2-hyponormal if
$$\begin{pmatrix} I & T^* \\ T & T^*T \end{pmatrix} \ge 0$$

We have many papers about 2-hyponormal operators. So T is said to be square hyponormal if T^2 is hyponormal. About 2-hyponormal operators, please see "R. Curto and Woo Young Lee, Towards a model theory for 2-hyponormal operators, Integr. Equat. Oper. Theory, 44(2002), 290-315".

Basic properties are the following:

Theorem 6.2 Let T be square hyponormal. Then the following statements hold.

- (1) If T is invertible, then so is T^{-1} .
- (2) If $n = 2k \in \mathbb{N}$ is even, then T^n is $\frac{1}{k}$ -hyponormal.
- (3) If $S \in B(\mathcal{H})$ and $S \simeq T$, then S is square hyponormal.
- (4) If T t are square hyponormal for all t > 0, then T is hyponormal.
- (5) If M is an invariant subspace for T, then $T_{|M}$ is square hyponormal.

By Aluthge and Wang' result, T is hyponormal, then T^2 is semi-hyponormal. But we have many examples non hyponormal operator T which T^2 is hyponormal.

Curto and Han studied algebraically hyponormal operators.

For T, we set the following property:

 $(*) \qquad \sigma(T) \ \bigcap \ (-\sigma(T)) \subset \{0\}$

Lemma 6.3 Let T satisfy (*). If z is an isolated point of $\sigma(T)$, then z^2 is an isolated point of $\sigma(T^2)$.

Proof. If z = 0, then it is clear. If $z \neq 0$, then proof follows from $T^2 - z^2 = (T + z)(T - z)$ and (*). \Box

Theorem 6.4 Let T be square hyponormal and satisfy (*), then $\sigma(T) = \{\overline{z} : z \in \sigma_a(T)\}.$

Theorem 6.5 Let T be square hyponormal and satisfy (*), M be an invariant subspace for T such that $\sigma(T_{|M}) = \{z\}$. Then:

- (1) If z = 0, then $(T_{|M})^2 = 0$.
- (2) If $z \neq 0$, then $T_{|M} = z$.

Theorem 6.5 Let T be square hyponormal and satisfy (*). Then:

- (1) Let Tx = zx and Ty = wy. If $z \neq w$, then $\langle x, y \rangle = 0$.
- (2) Similar result holds for approximate eigenvalues.

Theorem 6.6 Let T be square hyponormal and satisfy (*). Let Tx = zx ($z \neq 0$). Then $\ker(T-z) = \ker(T^2 - z^2) \subset \ker(T^{*2} - \overline{z}^2) = \ker(T^* - \overline{z})$.

Remark About proofs and other results, please see [1] - [5].

References

- M. Chō, E. Ko and Ji Eun Lee, On *m*-complex symmetric operators, Mediterr. J. Math. 13(2016), 2025-2038.
- [2] M. Chō, Ji Eun Lee and H. Motoyoshi, On [m, C]-isometric operators, Filomat 31:7 (2017) 2073-2080.
- [3] M. Chō, Ji Eun Lee, B. N. Nastovska and T. Saito, On the approximate point spectra of m-complex symmetric operators, [m, C]-symmetric operators and others, Funct. Anal. App. Comp. 11 (1) (2019), 11-20.
- [4] M. Chō, Ji Eun Lee, K. Tanahashi and J. Tomiyama, On [m, C]-symmetric operators, Kyungpook Math. J. 58 (4) (2018), 637-650.
- [5] M. Chō, D. Mosić, B. Načevska Nastovska and T. Saito, Spectral properties of square hyponormal operators, to appear in Filomat.
- [6] R. Curto and Y.M. Han, Weyl's theorem for algebraically hyponormal operators, Integr. Equat. Oper. Theory 47 (2003), 307-314.
- [7] S. Jung, E. Ko and Ji Eun Lee, On complex symmetric operators, J. Math. Anal. Appl. 406 (2013) 373-385.

Muneo $Ch\bar{o}^1$ and Taiga Saito²

Department of Mathematics, Kanagawa University, Hiratsuka 259-1293, Japan

e-mail¹: chiyom01@kanagawa-u.ac.jp

e-mail²: taiga 1996227@
outlook.jp