TITLE：

Approximate point spectra of \＄m\＄－ complex symmetric operators and others（Research on structure of operators by order and related topics）

AUTHOR（S）：
Chō，Muneo；Saito，Taiga

[^0]
Approximate point spectra of m-complex symmetric operators and others

Muneo Chō ${ }^{1}$ and Taiga Saito ${ }^{2}$

Abstract

Let C be a conjugation on a complex Hilbert space \mathcal{H}. If $\left\{x_{n}\right\}$ is a sequence of unit vectors, then so is $\left\{C x_{n}\right\}$. Under the assumption such that $(T-\lambda) x_{n} \rightarrow 0$ $(n \rightarrow \infty)$, we show spectral properties concerning with a sequence $\left\{C x_{n}\right\}$ of unit vectors.

1 Introduction and conjugation

Let \mathcal{H} be a complex Hilbert space with the inner product $\langle\cdot, \cdot\rangle$. First we introduce a conjugation C on \mathcal{H}.

Definition 1.1 Let \mathcal{H} be a complex Hilbert space. For a mapping $C: \mathcal{H} \longrightarrow \mathcal{H}$ is said to be antilinear if

$$
C(a x+b y)=\bar{a} C x+\bar{b} C y \quad\left({ }^{\forall} a, b \in \mathbb{C}, \quad{ }^{\forall} x, y \in \mathcal{H}\right) .
$$

An antilinear operator C is said to be a conjugation if

$$
C^{2}=I \quad \text { and }\langle C x, C y\rangle=\langle y, x\rangle \quad\left({ }^{\forall} x, y \in \mathcal{H}\right) .
$$

If C is a conjugation, then $\|C x\|=\|x\|$ for all $x \in \mathcal{H}$, i.e., C is isometric. In this paper, when a sequence $\left\{x_{n}\right\}$ of unit vectors satisfies $(T-\lambda) x_{n} \rightarrow 0(n \rightarrow \infty)$, we show spectral properties concerning with a sequence $\left\{C x_{n}\right\}$ of unit vectors.

2 m-Complex symmetric operator

Let $B(\mathcal{H})$ be the set of all bounded linear operators on a complex Hilbert space \mathcal{H}.
Definition 2.1 An operator $T \in B(\mathcal{H})$ is said to be m-complex symmetric if

$$
\delta_{m}(T ; C)=\sum_{j=0}^{m}(-1)^{j}\binom{m}{j} T^{* j} \cdot C T^{m-j} C=0 .
$$

It holds that $\delta_{m}(T ; C) \cdot(C T C)-T^{*} \cdot \delta_{m}(T ; C)=\delta_{m+1}(T ; C)$.
Hence, if T is m-complex symmetric, then T is n-complex symmetric for all $n \geq m$.
Theorem 2.2 Let T be an m-complex symmetric operator and $\left\{x_{n}\right\}$ be a sequence of unit vectors. For $\lambda \in \mathbb{C}$, if $(T-\lambda) x_{n} \rightarrow 0(n \rightarrow \infty)$, then $\left\langle(T-\lambda)^{m} C x_{n}, C x_{n}\right\rangle \rightarrow 0(n \rightarrow \infty)$. Hence, if $(T-\lambda) x=0$, then $\left\langle(T-\lambda)^{m} C x, C x\right\rangle=0$.
Proof. Since $(T-\lambda) x_{n} \rightarrow 0$ and $C(T-\lambda)^{m} C=-\sum_{j=1}^{m}(-1)^{j}\binom{m}{j}\left(T^{* j}-\bar{\lambda}^{j}\right) C T^{m-j} C$, it holds

$$
\left\langle(T-\lambda)^{m} C x_{n}, C x_{n}\right\rangle=-\sum_{j=1}^{m}(-1)^{j}\binom{m}{j}\left\langle\left(T^{j}-\lambda^{j}\right) x_{n}, C T^{m-j} C x_{n}\right\rangle .
$$

Hence we have Theorem 2.2.
Corollary 2.3 Under the assumption of Theorem 2.2, we have:
(1) $\left\langle\left(T^{*}-\bar{\lambda}\right)^{m} x_{n}, x_{n}\right\rangle \rightarrow 0$,
(2) $\left\langle\left(T^{k}-\lambda^{k}\right) C x_{n}, C x_{n}\right\rangle \rightarrow 0$ for all $k \in \mathbb{N}$.

Example 2.4 Let $T=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$ and $C x=\binom{\overline{x_{2}}}{\overline{x_{1}}}$ for $x=\binom{x_{1}}{x_{2}}$ on \mathbb{C}^{2}. Then for a vector $x=\binom{1}{0}$, it holds $T x=0$. But since $C x=\binom{0}{1}$, we have

$$
\langle T C x, C x\rangle=1 \neq 0 .
$$

Theorem 2.5 Let T be an m-complex symmetric operator and $\left\{x_{n}\right\}$ be a sequence of unit vectors. For $\lambda \in \mathbb{R}$, if $(T-\lambda) x_{n} \rightarrow 0$, then $\left(T^{*}-\lambda\right)^{m} C x_{n} \rightarrow 0$. Hence, if $(T-\lambda) x=0$, then $\left(T^{*}-\lambda\right)^{m} C x=0$.
Proof. Since $\lambda \in \mathbb{R},(T-\lambda) x_{n} \rightarrow 0$ and

$$
C\left(T^{*}-\lambda\right)^{m} C=-\sum_{j=1}^{m}(-1)^{j}\binom{m}{j} C T^{* m-j} C\left(T^{j}-\lambda^{j}\right),
$$

we have

$$
\left(T^{*}-\lambda\right)^{m} C x_{n}=\sum_{j=1}^{m}(-1)^{j}\binom{m}{j} C T^{* m-j} C\left(T^{j}-\lambda^{j}\right) x_{n}
$$

Therefore we have Theorem 2.5.

3 [$m, C]$-Symmetric operator

Definition 3.1 An operator $T \in B(\mathcal{H})$ is said to be $[m, C]$-symmetric if

$$
\alpha_{m}(T ; C)=\sum_{j=0}^{m}(-1)^{j}\binom{m}{j} C T^{m-j} C \cdot T^{j}=0 .
$$

Then it holds $\quad(C T C) \cdot \alpha_{m}(T ; C)-\alpha_{m}(T ; C) \cdot T=\alpha_{m+1}(T ; C)$.
Hence, if T is $[m, C]$-symmetric, then T is $[n, C]$-complex symmetric for all $n \geq m$.
Also if T is $[m, C]$-symmetric, then so is T^{*}.
Theorem 3.2 Let T be $[m, C]$-symmetric and $\left\{x_{n}\right\}$ be a sequence of unit vectors. For $\lambda \in \mathbb{C}$, if $(T-\lambda) x_{n} \rightarrow 0$, then $(T-\bar{\lambda})^{m} C x_{n} \rightarrow 0$. Hence, if, for $\lambda \in \mathbb{C},(T-\lambda) x=0$, then $(T-\bar{\lambda})^{m} C x=0$.
Proof. Since T^{*} is $[m, C]$-symmetric, $\alpha_{m}\left(T^{*}, C\right)=0$ and

$$
\alpha_{m}\left(T^{*}, C\right)^{*}=\sum_{j=0}^{m}(-1)^{j}\binom{m}{j} T^{m-j} \cdot C T^{j} C=0 .
$$

Hence

$$
\begin{gathered}
0=\left(\sum_{j=0}^{m}(-1)^{j}\binom{m}{j} T^{m-j} \cdot C T^{j} C\right) C x_{n} \\
=(T-\bar{\lambda})^{m} C x_{n}+\sum_{j=1}^{m}(-1)^{j}\binom{m}{j} T^{m-j} \cdot\left(C T^{j} C-\bar{\lambda}^{j}\right) C x_{n} .
\end{gathered}
$$

If T is $[m, C]$-symmetric, then so is T^{k} for any $k \in \mathbb{N}$ (see [4]). Hence we have following corollary.

Corollary 3.3 Under the assumption of Theorem 3.2, it holds

$$
\left\|\left(T^{k}-\bar{\lambda}^{k}\right)^{m} C x_{n}\right\| \rightarrow 0
$$

for all $k \in \mathbb{N}$.
Example 3.4 Let $T=\left(\begin{array}{cc}2 i & 1 \\ 1 & -2 i\end{array}\right)$ and $C x=\binom{\overline{x_{2}}}{\overline{x_{1}}}$ for $x=\binom{x_{1}}{x_{2}}$ on \mathbb{C}^{2}. Then $C T C=$ T and T is $[1, C]$-symmetric. For an eigenvalue $\sqrt{3} i$ and an eigen-vector $x=\binom{1}{(\sqrt{3}-2) i}$, it holds

$$
(T-\sqrt{3} i) C x=\binom{4 \sqrt{3}-6}{-2 \sqrt{3} i} \neq 0 \text { and }(T+\sqrt{3} i) C x=0 .
$$

4 Skew m-complex operator

Definition 4.1 An operator $T \in B(\mathcal{H})$ is said to be skew m-complex symmetric if

$$
\gamma_{m}(T ; C)=\sum_{j=0}^{m}\binom{m}{j} T^{* j} \cdot C T^{m-j} C=0
$$

Since it holds that

$$
T^{*} \cdot \gamma_{m}(T ; C)+\gamma_{m}(T ; C) \cdot C T C=\gamma_{m+1}(T ; C)
$$

if T is skew m-complex symmetric, then T is skew n-complex symmetric for all $n \geq m$.
Theorem 4.2 Let T be a skew m-complex symmetric operator and $\left\{x_{n}\right\}$ be a sequence of unit vectors. For $\lambda \in \mathbb{C}$, if $(T-\lambda) x_{n} \rightarrow 0(n \rightarrow \infty)$, then $\left\langle(T+\lambda)^{m} C x_{n}, C x_{n}\right\rangle \rightarrow 0(n \rightarrow \infty)$. Hence, if $(T-\lambda) x=0$, then $\left\langle(T+\lambda)^{m} C x, C x\right\rangle=0$.
Proof. Since $(T-\lambda) x_{n} \rightarrow 0$ and $C(T+\lambda)^{m} C=\sum_{j=1}^{m}\binom{m}{j} \bar{\lambda}^{j} \cdot C T^{m-j} C$,

$$
\left\langle(T+\lambda)^{m} C x_{n}, C x_{n}\right\rangle=-\sum_{j=1}^{m}\binom{m}{j}\left\langle\left(T^{j}-\lambda^{j}\right) x_{n}, C T^{m-j} C x_{n}\right\rangle
$$

Example 4.3 If T is m-complex symmetric, then so is T^{n} for every $n \in \mathbb{N}$. But there exists a skew 1-complex symmetric operator T such that T^{2} is not skew 1-complex symmetric. For example, let

$$
T=\left(\begin{array}{cc}
1+i & 0 \\
0 & -1-i
\end{array}\right) \quad \text { and } C x=\binom{\overline{x_{2}}}{\overline{x_{1}}} \text { for } x=\binom{x_{1}}{x_{2}} \text { on } \mathbb{C}^{2}
$$

Then it is easy to see $C T C=\left(\begin{array}{cc}-1+i & 0 \\ 0 & 1-i\end{array}\right)=-T^{*}$ and hence T is skew 1 -complex symmetric. But since $T^{2}=\left(\begin{array}{cc}2 i & 0 \\ 0 & 2 i\end{array}\right)$, we have $C T^{2} C=T^{2 *}$ and hence T^{2} is complex symmetric and not skew 1-complex symmetric.

Theorem 4.4 Let T be a skew m-complex symmetric operator and $\left\{x_{n}\right\}$ be a sequence of unit vectors. For $\lambda \in \mathbb{C}$, if $(T-\lambda) x_{n} \rightarrow 0(n \rightarrow \infty)$, then $\left(T^{*}+\bar{\lambda}\right)^{m} C x_{n} \rightarrow 0(n \rightarrow \infty)$. Hence, if $(T-\lambda) x=0$, then $\left\langle\left(T^{*}+\bar{\lambda}\right)^{m} C x, C x\right\rangle=0$.
Proof. Since $(T-\lambda) x_{n} \rightarrow 0,\left(C T^{j} C-\bar{\lambda}^{j}\right) C x_{n} \rightarrow 0$ and

$$
C\left(\gamma_{m}(T ; C)\right)^{*} C=\sum_{j=0}^{m}\binom{m}{j} T^{* m-j} \cdot C T^{m-j} C
$$

it holds

$$
0=\left(T^{*}+\bar{\lambda}\right)^{m} C x_{n}+\sum_{j=1}^{m}\binom{m}{j} T^{* m-j} \cdot\left(C T^{j} C-\bar{\lambda}^{j}\right) C x_{n}
$$

Hence, we have Theorem 4.4.
Corollary 4.5 Let T be skew m-complex symmetric. Then:
(1) If $\lambda \in \sigma_{a}(T)$, then $-\bar{\lambda} \in \sigma_{a}\left(T^{*}\right)$.
(2) If $\lambda \in \sigma_{p}(T)$, then $-\bar{\lambda} \in \sigma_{p}\left(T^{*}\right)$.

By Theorem 4.4 since $0 \in \sigma_{a}\left(\left(T^{*}+\bar{\lambda}\right)^{m}\right)$, by the spectral mapping theorem of the approximate point spectrum, $0 \in \sigma_{a}\left(T^{*}+\bar{\lambda}\right)$ and hence $-\bar{\lambda} \in \sigma_{a}\left(T^{*}\right)$.

5 Skew [$m, C]$-symmetric operator

Definition 5.1 An operator $T \in B(\mathcal{H})$ is said to be skew $[m, C]$-symmetric if

$$
\zeta_{m}(T ; C):=\sum_{j=0}^{m}\binom{m}{j} C T^{m-j} C \cdot T^{j}=0 .
$$

It holds $C T C \cdot \zeta_{m}(T ; C)+\zeta_{m}(T ; C) \cdot T=\zeta_{m+1}(T ; C)$.
Therefore if T is skew $[m, C]$-symmetric, then T is skew $[n, C]$-symmetric for all $n \geq m$. If T is skew [m, C]-symmetric, then it holds

$$
0=C\left(\zeta_{m}(T ; C)\right)^{*} C=\sum_{j=0}^{m}\binom{m}{j} C T^{* j} C \cdot T^{* m-j}=\zeta_{m}\left(T^{*} ; C\right)
$$

and hence so is T^{*}.
Theorem 5.2 Let T be a skew $[m, C]$-symmetric operator and $\left\{x_{n}\right\}$ be a sequence of unit vectors. For $\lambda \in \mathbb{C}$, if $(T-\lambda) x_{n} \rightarrow 0$, then $\left(T^{*}+\bar{\lambda}\right)^{m} C x_{n} \rightarrow 0$. Hence, if $(T-\lambda) x=0$, then $\left(T^{*}+\bar{\lambda}\right)^{m} C x=0$.
Proof. Since $(T-\lambda) x_{n} \rightarrow 0$ and $C\left(\zeta_{m}\left(T^{*} ; C\right)\right)^{*} C=\sum_{j=0}^{m}\binom{m}{j} T^{m-j} . C T^{j} C=0$,

$$
0=\left(T^{*}+\bar{\lambda}\right)^{m} x_{n}+\sum_{j=1}^{m}\binom{m}{j} T^{m-j} \cdot\left(C T^{j} C-\bar{\lambda}^{j}\right) C x_{n}
$$

Hence, we have Theorem 5.2.
Corollary 5.3 Let T be skew $[m, C]$-symmetric. Then:
(1) If $\lambda \in \sigma_{a}(T)$, then $-\bar{\lambda} \in \sigma_{a}\left(T^{*}\right)$.
(2) If $\lambda \in \sigma_{p}(T)$, then $-\bar{\lambda} \in \sigma_{p}\left(T^{*}\right)$.

By Theorem 5.2 since $0 \in \sigma_{a}\left(\left(T^{*}+\bar{\lambda}\right)^{m}\right)$, by the spectral mapping theorem of the approximate point spectrum, $0 \in \sigma_{a}\left(T^{*}+\bar{\lambda}\right)$ and hence $-\bar{\lambda} \in \sigma_{a}\left(T^{*}\right)$.

Example 5.4 Let

$$
T=\left(\begin{array}{cc}
1 & 2 i \\
2 i & -1
\end{array}\right) \text { and } C x=\binom{\overline{x_{2}}}{\overline{x_{1}}} \text { for } x=\binom{x_{1}}{x_{2}} \text { on } \mathbb{C}^{2} .
$$

Then it holds $C T C=-T$ and hence T is skew [1,C]-symmetric. For the eigenvalue $\sqrt{3} i$ of T and the corresponding eigenvector $x=\binom{1}{\frac{\sqrt{3}+i}{2}}$, we have

$$
(T+\sqrt{3} i) C x=\binom{2 \sqrt{3} i}{-\sqrt{3}+3 i} \neq 0 \text { and }(T-\sqrt{3} i) C x=0
$$

Theorem 5.5 Let T be a skew $[m, C]$-symmetric operator and $\left\{x_{n}\right\}$ be a sequence of unit vectors. For $\lambda \in \mathbb{C}$, if $(T-\lambda) x_{n} \rightarrow 0$, then $\left\langle\left(T^{*}+\lambda\right)^{m} C x_{n}, C x_{n}\right\rangle \rightarrow 0$. Hence, if $(T-\lambda) x=0$, then $\left\langle\left(T^{*}+\lambda\right)^{m} C x, C x\right\rangle=0$.
Proof. Since $C T^{* m} C=-\sum_{j=1}^{m}\binom{m}{j} T^{* j} \cdot C T^{* m-j} C$,

$$
C\left(T^{*}+\lambda\right)^{m} C=-\sum_{j=1}^{m}\binom{m}{j}\left(T^{* j}-\bar{\lambda}^{j}\right) \cdot C T^{* m-j} C
$$

Hence we have Theorem 5.5.
Example 5.6 If T is $[m, C]$-symmetric, then so is T^{n} for every $n \in \mathbb{N}$. But there exists a skew $[1, C]$-symmetric operator T such that T^{2} is not skew $[1, C]$-symmetric. For example, let

$$
T=\left(\begin{array}{cc}
-1 & -2 i \\
-2 i & 1
\end{array}\right) \text { and } C x=\binom{\overline{x_{2}}}{\overline{x_{1}}} \text { for } x=\binom{x_{1}}{x_{2}} \text { on } \mathbb{C}^{2} .
$$

Then it is easy to see $C T C=\left(\begin{array}{cc}1 & 2 i \\ 2 i & -1\end{array}\right)=-T$ and hence T is skew $[1, C]$-symmetric. But since $T^{2}=\left(\begin{array}{cc}-3 & 0 \\ 0 & -3\end{array}\right)$, we have $C T^{2} C=T^{2}$. Hence T^{2} is $[1, C]$-symmetric and not skew $[1, C]$-symmetric.

6 Square hyponormal operator

We begin with the definition of square hyponormal operators.

Definition 6.1 An operator $T \in B(\mathcal{H})$ is said to be square hyponormal if T^{2} is hyponormal.

Following results are famous.
(1) If $\operatorname{ker}(T-z) \perp \operatorname{ker}(T-w)$ for any distinct nonzero eigenvalues z and w, then T has SVEP.
(2) Let p be polynomial. If $p(T)$ has SVEP, then T has SVEP.

Hence, if T is square hyponormal, then T has SVEP.
In general, T is 2-hyponormal if $\left(\begin{array}{cc}I & T^{*} \\ T & T^{*} T\end{array}\right) \geq 0$
We have many papers about 2-hyponormal operators. So T is said to be square hyponormal if T^{2} is hyponormal. About 2-hyponormal operators, please see "R. Curto and Woo Young Lee, Towards a model theory for 2-hyponormal operators, Integr. Equat. Oper. Theory, 44(2002), 290-315".

Basic properties are the following:
Theorem 6.2 Let T be square hyponormal. Then the following statements hold.
(1) If T is invertible, then so is T^{-1}.
(2) If $n=2 k \in \mathbb{N}$ is even, then T^{n} is $\frac{1}{k}$-hyponormal.
(3) If $S \in B(\mathcal{H})$ and $S \simeq T$, then S is square hyponormal.
(4) If $T-t$ are square hyponormal for all $t>0$, then T is hyponormal.
(5) If M is an invariant subspace for T, then $T_{\mid M}$ is square hyponormal.

By Aluthge and Wang' result, T is hyponormal, then T^{2} is semi-hyponormal. But we have many examples non hyponormal operator T which T^{2} is hyponormal.

Curto and Han studied algebraically hyponormal operators.
For T, we set the following property:
$(*) \quad \sigma(T) \cap(-\sigma(T)) \subset\{0\}$
Lemma 6.3 Let T satisfy (*). If z is an isolated point of $\sigma(T)$, then z^{2} is an isolated point of $\sigma\left(T^{2}\right)$.
Proof. If $z=0$, then it is clear. If $z \neq 0$, then proof follows from $T^{2}-z^{2}=(T+z)(T-z)$ and (*).

Theorem 6.4 Let T be square hyponormal and satisfy $(*)$, then $\sigma(T)=\left\{\bar{z}: z \in \sigma_{a}(T)\right\}$.
Theorem 6.5 Let T be square hyponormal and satisfy $(*), M$ be an invariant subspace for T such that $\sigma\left(T_{\mid M}\right)=\{z\}$. Then:
(1) If $z=0$, then $\left(T_{\mid M}\right)^{2}=0$.
(2) If $z \neq 0$, then $T_{\mid M}=z$.

Theorem 6.5 Let T be square hyponormal and satisfy (*). Then:
(1) Let $T x=z x$ and $T y=w y$. If $z \neq w$, then $\langle x, y\rangle=0$.
(2) Similar result holds for approximate eigenvalues.

Theorem 6.6 Let T be square hyponormal and satisfy $(*)$. Let $T x=z x(z \neq 0)$. Then $\operatorname{ker}(T-z)=\operatorname{ker}\left(T^{2}-z^{2}\right) \subset \operatorname{ker}\left(T^{* 2}-\bar{z}^{2}\right)=\operatorname{ker}\left(T^{*}-\bar{z}\right)$.

Remark About proofs and other results, please see [1] - [5].

References

[1] M. Chō, E. Ko and Ji Eun Lee, On m-complex symmetric operators, Mediterr. J. Math. 13(2016), 2025-2038.
[2] M. Chō, Ji Eun Lee and H. Motoyoshi, On [$m, C]$-isometric operators, Filomat 31:7 (2017) 2073-2080.
[3] M. Chō, Ji Eun Lee, B. N. Nastovska and T. Saito, On the approximate point spectra of m-complex symmetric operators, $[m, C]$-symmetric operators and others, Funct. Anal. App. Comp. 11 (1) (2019), 11-20.
[4] M. Chō, Ji Eun Lee, K. Tanahashi and J. Tomiyama, On $[m, C]$-symmetric operators, Kyungpook Math. J. 58 (4) (2018), 637-650.
[5] M. Chō, D. Mosić, B. Načevska Nastovska and T. Saito, Spectral properties of square hyponormal operators, to appear in Filomat.
[6] R. Curto and Y.M. Han, Weyl's theorem for algebraically hyponormal operators, Integr. Equat. Oper. Theory 47 (2003), 307-314.
[7] S. Jung, E. Ko and Ji Eun Lee, On complex symmetric operators, J. Math. Anal. Appl. 406 (2013) 373-385.

Muneo Chō ${ }^{1}$ and Taiga Saito ${ }^{2}$
Department of Mathematics, Kanagawa University, Hiratsuka 259-1293, Japan
e-mail ${ }^{1}$: chiyom01@kanagawa-u.ac.jp
e-mail ${ }^{2}$: taiga1996227@outlook.jp

[^0]: CITATION：
 Chō，Muneo ．．．［et al］．Approximate point spectra of \＄m\＄－complex symmetric operators and others（Research on structure of operators by order and related topics）．数理解析研究所講究録 2021，2202：1－8

 ISSUE DATE：
 2021－10
 URL：
 http：／／hdl．handle．net／2433／266241
 RIGHT：

