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Approximate point spectra of m-complex symmetric
operators and others

Muneo Cho' and Taiga Saito?

Abstract

Let C be a conjugation on a complex Hilbert space H. If {x,} is a sequence of
unit vectors, then so is {Cx,}. Under the assumption such that (T"— Nz, — 0
(n — 00), we show spectral properties concerning with a sequence {Cx,,} of unit

vectors.

1 Introduction and conjugation

Let H be a complex Hilbert space with the inner product (-,-). First we introduce a

conjugation C' on H.

Definition 1.1 Let H be a complex Hilbert space. For a mapping C : ‘H — H is said

to be antilinear if
Clax+by) =aCx+bCy (Ya,b€C, "x,y € H).
An antilinear operator C' is said to be a conjugation if

C?=1 and (Cz,Cy) = (y,z) (Yz,y €H).

If C is a conjugation, then ||Cz| = ||z|| for all z € H, i.e., C is isometric. In this paper,
when a sequence {z,,} of unit vectors satisfies (T'— A)z,, — 0 (n — o), we show spectral

properties concerning with a sequence {Cz,,} of unit vectors.

2 m-Complex symmetric operator
Let B(H) be the set of all bounded linear operators on a complex Hilbert space H.

Definition 2.1 An operator T' € B(H) is said to be m-complex symmetric if

This work was supported by the Research Institute for Mathematical Sciences,
a Joint Usage/Research Center located in Kyoto University.



(T C) :Z ( )T"J CT™ C =0.

7=0
It holds that 6, (T5C) - (CTC) =T - 60 (T;C) = 01 (T C).
Hence, if T is m-complex symmetric, then T is n-complex symmetric for all n > m.

Theorem 2.2 Let T be an m-complex symmetric operator and {x,} be a sequence of unit
vectors. For A € C, if (T—N)x,, — 0 (n — o0), then (T'—A\)"Cxy, Cz,) — 0 (n — o0).
Hence, if (T — N)x =0, then (T — X\)™Cz, Cz) =0

Proof. Since (T — Az, — 0 and C(T — A\)"C = = (~1) (7;‘) (T — X)oT™=ic, it
holds .
(T = N)"Cy, Can) == (1 ( ) — X))z, CT™ I C,).

j=1
Hence we have Theorem 2.2. [
Corollary 2.3 Under the assumption of Theorem 2.2, we have:
(1) {(T* — N)"xp, 7)) — 0,

(2) ((T* — A\F)Cz,,, Cz) — O for all k € N.
0 0 To 1 2
Example 2.4 Let T' = andCzx=|_"| forx = on C*. Then for a vector
0 1 I T2
1\ . . 0
T = <O>’ it holds Tx = 0. But since Cz = (1>, we have

(ICz,Czy=1 # 0.

Theorem 2.5 Let T' be an m-complex symmetric operator and {x,} be a sequence of unit
vectors. For A € R, if (T — Nz, — 0, then (T* —\)"Cz, — 0. Hence, if (T —\)xz =0,
then (T* — \)™Cx = 0.

Proof. Since A € R, (T — M)z, — 0 and

C(T* —\)"C = — i(q)j (’7) CT*™=IC(TI — N,

we have
m

(T* = \)"Cy = Y (1) (’J") CT™IC(T? — Nz,

j=1

Therefore we have Theorem 2.5. O



3 [m, C]-Symmetric operator
Definition 3.1 An operator T € B(H) is said to be [m, C]-symmetric if

am(T; C) = i(—mi (’7) CT™=C . T9 = 0.

Jj=0
Then it holds (CTC) - ap(T;C) — an(T;C) - T = a1 (T C).
Hence, if T is [m, C]-symmetric, then T is [n, C]-complex symmetric for all n > m.
Also if T' is [m, C]-symmetric, then so is T*.
Theorem 3.2 Let T be [m, Cl-symmetric and {x,} be a sequence of unit vectors. For
AN€C, if (T~ Nz, — 0, then (T —\)"Cx, — 0. Hence, if, for \ € C, (T — Nz =0,

then (T — \)™Cz = 0.
Proof. Since T* is [m, C]-symmetric, a,, (T, C) = 0 and

Om T*,C * = —1 J . ij] . CTJC =0.
(.0 =3 >(j>

Jj=0

Hence
m

0= (1) <m> T3 . CTIC)Cay,

i=0 J

_ m /m B ‘ -
=T -N"Cx, + —17< _)T’” J.(C1°C - X)Cxyp. O
( ) > (- ; ( )

=1

If T is [m, C]-symmetric, then so is T* for any k € N (see [4]). Hence we have following

corollary.

Corollary 3.3 Under the assumption of Theorem 3.2, it holds
(T = Xy Cay|| — 0
for all k € N.

2, 1 T3 T 2
Example 3.4 Let T = ) and Cx = for x = on C*. Then CTC =
i

—92 T T2
1

T and T is [1,C)-symmetric. For an eigenvalue v/3i and an eigen-vector z = ((\/g 2) ,>,
—2)i

it holds

(T —V3i)Cx = (4‘/23\/_52,6) # 0 and (T + V3i)Cz = 0.



4 Skew m-complex operator

Definition 4.1 An operator T' € B(H) is said to be skew m-complex symmetric if

T (T;C) = ( )T*J CT™C =0.
7=0
Since it holds that
T Am(T5C) + 4m(T5C) - CTC = Y4 (T C),
if T' is skew m-complex symmetric, then T is skew n-complex symmetric for all n > m.

Theorem 4.2 Let T be a skew m-complex symmetric operator and {z,} be a sequence of unit
vectors. For XA € C, if (T—X)z, — 0 (n— 00), then (T+AN)"Cxy,, Cz,) — 0 (n — c0).
Hence, if (T — Nz =0, then (T + A)™Cz, Cz) = 0.

Proof. Since (T — N)z,, — 0and C(T +N)"C = Z( >>\ -cT™ I,

j=1

m

(T +N)"Cty, Cr) =~ (T) (17— N)ap, CT™ I C,) O

j=1
Example 4.3 If T' is m-complex symmetric, then so is 7" for every n € N. But there exists

a skew 1-complex symmetric operator 7" such that 72 is not skew 1-complex symmetric. For

T = 1+ 0 . and Cx = 2 for x = 1 on C2.
0 —1—1 T1 T2

—14¢ 0
Then it is easy to see CTC = ( ! ) = —T* and hence T is skew 1-complex

example, let

0 1—1
2i 0
symmetric. But since T2 = 0 9 >, we have CT?C = T?* and hence T2 is complex
i

symmetric and not skew 1-complex symmetric.

Theorem 4.4 Let T be a skew m-complex symmetric operator and {x,} be a sequence of
unit vectors. For A € C, if (T — Nz, — 0 (n — 0), then (T*+X\)™Cz, — 0 (n — o0).
Hence, if (T — N)x =0, then {(T* + \)"Cx, Cz) = 0.

Proof. Since (T — Nz, — 0,(CTIC —X')Cx,, — 0 and

Clym(T; C))*C = Z( )T*m i.ormic,



it holds
0= (T"+\)"Cz, +Z <j )T*m i(C chij)C:rn.

7j=1

Hence, we have Theorem 4.4. [

Corollary 4.5 Let T be skew m-complex symmetric. Then:
(1) If X € 0,(T), then —X\ € a,(T™).
(2) If X € 0,(T), then —\ € 0, (T*).

By Theorem 4.4 since 0 € o, ((T* + X)™), by the spectral mapping theorem of the approxi-
mate point spectrum, 0 € o, (T* + \) and hence —\ € o, (T*).

5 Skew [m, C]-symmetric operator
Definition 5.1 An operator T € B(H) is said to be skew [m, C]-symmetric if
(n(T;C) = Xm: (m) CT™C-T? = 0.
—~\J
iz
It holds CTC - ((T5C) + (u(T;C) - T = (ura (T 0).

Therefore if T is skew [m, Cl]-symmetric, then T is skew [n, C]-symmetric for all n > m. If

T is skew [m, C]-symmetric, then it holds
C((n(T;C))*C = Z( ) CTHC - T = (,(T*; C)
7=0

and hence so is T*.

Theorem 5.2 Let T be a skew [m, C|-symmetric operator and {z,} be a sequence of unit
vectors. For A € C, if (T — N)x, — 0, then (T* +X)"Cx, — 0. Hence, if (T — Nz =0,
then (T* + \)™Cz = 0.

Proof. Since (T — ANz, — 0 and C(G,(T*;C))*C = Z ( )T"’ i.cTic =0,

0= (T +X) xn+z< >Tm I (CTIC - N)Cp.

Jj=1

Hence, we have Theorem 5.2. [
Corollary 5.3 Let T be skew [m, Cl-symmetric. Then:

(1) If A€ 0u(T), then —X € 04 (T).



(2) If X € 0,(T), then —X € a,(T™).
By Theorem 5.2 since 0 € o, ((T* +X)™), by the spectral mapping theorem of the approx-
imate point spectrum, 0 € o,(T* + \) and hence —\ € o, (T*).

Example 5.4 Let

T = 1. 2i and Cx = ? for x = 1 on C2.
21 —1 X1 To

Then it holds CTC = —T and hence T is skew [1, C]-symmetric. For the eigenvalue v/3 i of
. . 1
T and the corresponding eigenvector x = < V3 +i>, we have
2

(T +V3i)Cx = (\2/;—/?:32) # 0and (T — V3i)Cx = 0.

Theorem 5.5 Let T be a skew [m, C|-symmetric operator and {z,} be a sequence of unit
vectors. For A € C, if (T — Nz, — 0, then {(T* + \)"Cx,, Cz,) — 0. Hence, if
(T — XNz =0, then (T* + X\)™Czx, Cx) = 0.

Proof. Since CT*™(C = — Z <m> T . cT*™IC,

j=1
C(T" +N)"C==>" (TJ”) (1% - ¥y oT*™m-iC,
j=1

Hence we have Theorem 5.5. [

Example 5.6 If T' is [m, C]-symmetric, then so is 7™ for every n € N. But there exists a

skew [1, C]-symmetric operator T such that T2 is not skew [1, C]-symmetric. For example,

let , -
T = 71. —2 and Cx = E for x = e on C2.
—21 1 T T2

1 2

Then it is easy to see CTC = ( o; )
i —

) = —T and hence T is skew [1, C]-symmetric.

-3 0
0 -3
skew [1, Cl-symmetric.

But since T? = ( >7 we have CT2C = T?. Hence T? is [1, C]-symmetric and not

6 Square hyponormal operator

We begin with the definition of square hyponormal operators.



Definition 6.1 An operator T' € B(H) is said to be square hyponormal if T? is hyponormal.

Following results are famous.

(1) If ker(T — z) L ker(T' — w) for any distinct nonzero eigenvalues z and w, then T" has
SVEP.
(2) Let p be polynomial. If p(T") has SVEP, then T has SVEP.

Hence, if T is square hyponormal, then T" has SVEP.

I T
In general, T is 2-hyponormal if >0
T T*T

We have many papers about 2-hyponormal operators. So T is said to be square hyponormal
if T2 is hyponormal. About 2-hyponormal operators, please see “R. Curto and Woo Young

Lee, Towards a model theory for 2-hyponormal operators, Integr. Equat. Oper. Theory,
44(2002), 290-315”.

Basic properties are the following:
Theorem 6.2 Let T be square hyponormal. Then the following statements hold.

) If T is invertible, then so is T~1.

~

1
If n =2k € N 1is even, then T™ is ?—hyponormal.
If S € B(H) and S ~ T, then S is square hyponormal.
If T —t are square hyponormal for allt > 0, then T is hyponormal.

— —

(1
(2
(3
(4
(5) If M is an invariant subspace for T, then T\ is square hyponormal.

By Aluthge and Wang’ result, 7" is hyponormal, then 72 is semi-hyponormal. But we have

many examples non hyponormal operator 7" which 72 is hyponormal.

Curto and Han studied algebraically hyponormal operators.

For T', we set the following property:

(x)  o(T) N (=a(T)) c {0}
Lemma 6.3 Let T satisfy (). If z is an isolated point of o(T), then 22 is an isolated point
of o(T?).
Proof. If z = 0, then it is clear. If z # 0, then proof follows from T2 — 22 = (T + 2)(T — z)
and (x). O
Theorem 6.4 Let T be square hyponormal and satisfy (), then o(T) ={Z : z € 0,(T) }.

Theorem 6.5 Let T be square hyponormal and satisfy (x), M be an invariant subspace for
T such that o(T\y;) = {z}. Then:



(1) If z=0, then (T}pr)* = 0.
(2) If z#0, then Tip = 2.

Theorem 6.5 Let T be square hyponormal and satisfy (x). Then:

(1) Let Tx = za and Ty = wy. If z # w, then (x, y) = 0.
(2) Similar result holds for approximate eigenvalues.

Theorem 6.6 Let T be square hyponormal and satisfy (x). Let Tx = zx (z # 0). Then
ker(T — 2) = ker(T? — 22) C ker(I"? — 2%) = ker(T" - 2).

Remark About proofs and other results, please see [1] - [5].
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