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Characterization of theories by hierarchies of logical formulas 

Satoshi Tokizaki 
University of Tsukuba 

1 Introduction and Preliminaries 

At first, we introduce some basic concepts in model theory. 

Definition 1. A language L consists of the following: 

• constant symbols, 

• n-ary function symbols (n > 0), 

• n-ary predicate symbols (n > 0). 

Example 2. The language LoRing of ordered rings is {ea, c1, f+, f-Jx, P<}, where 

• ea and c1 are constant symbols; 

• f + and f x are binary function symbols; 

• f _ is a unary function symbols; 

• P < is a binary function symbols. 

Let L be a language. We use x, y, z, x1, x2 , .•. , y1, y2 , ... as variables. 

Definition 3. An £-structure M is a set with interpretations sM for each s E L, where 

• If c EL is a constant symbol, then cM EM; 

• If f EL is a n-ary function symbol, then JM: Mn---+ M; 

• If P E L is an n-ary predicate symbol, then pM c;; Mn. 

Example 4. lR = (JR; 0, 1, +, -, -, <) is an LoRing-structure. 

Definition 5. An L-term is defined as follows. 

• Every variable is an £-term. 

• Every constant symbol of L is an £-term. 

• If f EL is an n-ary function symbol and t1, ... , tn are £-terms, then f(t1, ... , tn) is an £-term. 

Example 6. f+Ux(ca,x),f-(c1)) is an LoRing-term. 

Let Mand N be £-structures. For each £-term t(x) and ii E M, the interpretation tM (a) E Mis naturally 
defined. 

Example 7. fxU+(x,c1),y)R(2,3) = f ~(f! (2,~),3) = (2+ 1) x 3 = 9. 

Definition 8. An atomic £-formula is defined as follows. 
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• If t1 and t2 are £-terms, then t1 = t2 is an atomic £-formula. 

• If P E L is an n-ary predicate symbol and t1 , ... , tn are £-terms, then P(t1 , ... , tn) is an atomic 
£-formula. 

Example 9. fx(x,y) = Co and Pdf+(c1,c1),f-(x)) are atomic LoRing-formulas. 

Definition 10. An £-formula is defined as follows. 

• Every atomic £-formula ia an £-formula. 

• If r.p is an £-formula, then ,r.p is an £-formula. 

• If r.p and 'I/; are £-formulas, then r.p I\ 'I/;, r.p V 'I/;, r.p -+ 'I/;, r.p +-+ 'I/; are £-formulas. 

• If r.p is an £-formula and x is a variable, then \/xr.p and :lxr.p are £-formulas. 

Example 11. :ly((,(x = 0))-+ Pdfx(x,y), 1)) is an Lolling-formula. 

Definition 12. For each £-formula r.p(x) and a E M, the satisfication relation M F r.p(a) is defined as 
follows. 

• If t1 (x) and t2(x) are £-terms, then M p= (t1 = t2)(a) {cc} tj\,f (a) = tr (a). 

• If PEL is an n-ary predicate symbol and f1, ... ,tn are £-terms, then MF (P(t1, ... ,tn))(a) {cc} 

(tf'1(a), ... ,t;'!(a)) E pM_ 

• If '1/;(x) is an £-formula, then MF ( ,'lj;)(a) {cc} M ~ '1/;(a). 

If '1/;1 (x) and 'l/;2(x) are £-formulas, then 

• MF ('1/;1 /\ 'l/;2)(a) {cc} MF 'l/;1(a) and MF 'l/;2(a); 

• M F ( '1/;1 v 'l/;2)(a) {cc} M F '1/;1 (a) or M F 'l/;2(a); 

• MF ('1/;1-+ 'l/;2)(a) {cc} MF 'l/;1(a) implies MF 'l/;2(a); 

• MF ('1/;1 +-+ 'l/;2)(a) {cc} MF 1/J1(a) is equivalent to MF 'l/;2(a). 

If '1/;(x, y) is an £-formula, then 

• M F (Vy'l/;)(a) {cc} M F '1/;(a, b) for all b EM; 

• M F (:ly'l/;)(a) {cc} M F '1/;(a, b) for some b EM. 

Example 13. Let r.p(x) be :ly(f+(x,x) = fx(Y,Y)). Then lR F r.p(3) because lR F f+(3,3) = fx(v'6,v'6). 

\;/ and :3 are called quantifiers. 

Definition 14. Let r.p be an £-formula and x be a variable which appears in r.p. Then x is said to be free in 
r.p if x does not appear in the scope of any quantifier in r.p. An £-formula r.p is said to be an £-sentence if r.p 
do not have any free variable. 

Example 15. Let r.p be :ly((,(x = 0))-+ fx(x,y) = 1). Then x is free in r.p, so r.p is not an Lolling-sentence. 
Let 'I/; be \/x:ly((,(x = 0)) -+ fx (x, y) = 1). Then 'I/; is an LoRing-sentence. 

A set of £-sentences is called an £-theory. Let T, T1 and T2 be £-theories. 

Definition 16. M is said to be a model of T (M p= T) if M F r.p for all r.p E T. 

Definition 17. T2 is said to follow from T1 (T1 F T2) if M F T2 for all MF T1. 
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Definition 18. T1 is said to be equivalent to T2 if T1 F T2 and T2 F T1. 

We introduce the hierarchy of £-formulas. 

Definition 19. £-formulas are classfied as follows. 

• A .6.0 formula is a quantifier-free £-formula. 

• A II1 formula is an £-formula of the form \lx1 \lx2 ... \lxn'I/J where 'ljJ is a .6.0 formula and n 2'. 0. 

• A E1 formula is an £-formula of the form :lx1:lx2 ... :lxn'I/J where 'ljJ is a .6.o formula and n 2'. 0. 

• A Ih formula is an £-formula of the form \lx1 \lx2 ... \lxn:ly1:ly2 ... :lym'I/J where 'ljJ is a .6.o formula and 
n,m;::o. 

• A E 2 formula is an £-formula of the form :lxi:lx2 ... :lxn \ly1 \ly2 ... \lym'I/J where 'ljJ is a .6.0 formula and 
n,m;::o . . . . . 

Example 20. \lx:ly((,(x = 0))--+ fx(x,y) = 1) is a II2 LoRing-sentence. 

Definition 21. Mis said to be a substructure of N (M <;;; N) if Mis a subset of N and the following holds: 

• If c E L is a constant symbol, then cM = cN; 

• If f EL is an n-ary funciton symbol, then JM= JNIMn; 

• If P E L is an n-ary function symbol, then pM = pN n Mn. 

Example 22. Z is a substructure of lR as LoRing-structures. 

Definition 23. M is said to be elementarily equivalent to N (M = N) if M F <p {cc} N F <p for all 
£-sentences <p. 

We introduce one of the most important theorems in model theory. 

Fact 24 (Compactness theorem). T has a model if and only if every finite subset of T has a model. 

The following facts follow from the compactness theorem. 

Fact 25. Suppose that T1 F <p or T2 F •'P for all En (IIn) sentences <p. Then there exist M1 F T1 and 
M2 F T2 such that M1 F <p or M2 F •'P for all En (IIn) sentences <p. 

Fact 26. Suppose that M F <p => N p= <p for all En sentences <p. Then there exists an £-structure N' such 
that M <;;; N' = N and M F cp(a) => N' F cp(a) for all En formulas cp(x) and a E M. 

2 Hereditary theories and I11 theories 

Remark 27. Let M be a substructure of N. Then M F cp(a) {cc} N F cp(a) for all .6.0 formulas cp(x) and 
a EM. Thus N p= <p => M F <p for all II1 sentences <p. 

We introduce hereditary theories and II1 theories. 

Definition 28. T is said to be hereditary if the following holds: If Mis a substructure of N and N p= T, 
then M p=T. 

Definition 29. T is said to be a II1 theory if T is equivalent to an £-theory consisting of II1 sentences. 

Remark 30. By Remark 27, T is hereditary if T is a II1 theory. 
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Example 31. Let L 1 = {•},where • is a binary function symbol. Let T1 be a set of the following L 1-sentences: 

• 'efx'efy'efz ((x · y) · z = x · (y · z)), 

• "C:Jy'efx(x·y=y·x=x), 

• 'efx"C:Jy (x · y = y · x = e). 

Then T1 is not hereditary, so T1 is not a II1 theory. To make T1 hereditary, we have to add some constant 
symbols and function symbols to L1 . Let L2 = L 1 U { e, -l }, where e is a constant symbol and -l is a unary 
function symbol. Let T2 be a set of the following L2-sentences: 

• 'efx'efy'efz ((x · y) · z = x · (y · z)), 

• 'efx (x · e = e · x = x), 

• 'efx (x · x- 1 = x- 1 • x = e). 

Then T2 is a II1 theory, so T2 is hereditary. 

The converse of Remark 30 also holds. 

Theorem 32. Suppose that T is hereditary. Then T is a II1 theory. 

Proof. Let T* = {'i,b : II1 sentence I T p= i,b }. We prove T* p= T. Let rp E T. It is sufficient to show that 
there exists a II 1 sentence i,b such that T p= i,b and ~rp F ~i,b. 

Suppose that T ~ i,b or ~rp ~ ~i,b for all II1 sentences ?,b. By Fact 25, there exist M1 FT and M2 F ~rp 
such that M 1 ~ i,b or M 2 ~ ~i,b for all II1 sentences ?,b. Thus M 2 F i,b => M 1 F i,b for all I:1 sentences i,b 
because the negation of I:1 formulas arc equivalent to II1 formulas. By Fact 26, there exists M{ such that 
M 2 c;; M{ = M 1 . Then M{ p= T. Since T is hereditary, we have M 2 FT. Especially we obtain M 2 F rp, 
which is a contradiction. □ 

Therefore, T is hereditary {? T is a II1 theory. 

3 Inductive theories and II2 theories 

Let w = {O, 1, 2, ... }. 

Remark 33. Let (M;)iEw be a chain of £-structures and N := LJiEw M;, that is, 

Moc;; M1 c;; · ·· c;; M; c;; M;+1 c;; · · · c;; N (Vi E w). 

Let rp be a II2 sentence. Suppose that M; p= rp for all i E w. Then N p= rp. 

We introduce inductive theories and II2 theories. 

Definition 34. T is said to be inductive if the union of any chain of models of Tisa model of T. 

Definition 35. T is said to be a II2 theory if T is equivalent to an £-theory consisting of II2 sentences. 

Remark 36. By Remark 33, T is inductive if T is a II2 theory. 

Example 37. The theories of groups, rings, fields and dense linear orders without endpoints are II2 theories, 
so these are inductive. 

Example 38. Let L ={<},where < is a binary predicate symbol. Then T := {rp: £-sentence I Z F rp} is 
not inductive, so T is a II2 theory. 

1 1 
·:) Consider the following chain: Z c 2z c 4z c · · ·. 
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The union of this chain is dense. However, Z is not dense, that is, Z F :lx:ly\iz(x < y I\ ,(x < z < y)). 

Definition 39. Let M be a substructure of N. Then M is an elementary substructure of N (M :< N) if 
M F r.p(a) {cc} N p= r.p(a) for all £-formulas r.p(x) and a E M. 

Fact 40. Let (N;)iEw be a chain of £-structures and N := LJiEw N;. Suppose that N; :< N;+1 for all i E w. 
Then N; :< N for all i E w. 

The converse of Remark 36 also holds. 

Theorem 41. Suppose that T is inductive. Then T is a II2 theory. 

Proof. Let T* = {'lj!: II2 sentence IT p= 'lj!}. We prove T* FT. Let r.p ET. It is sufficient to show that 
there exists a Ih sentence 'ljJ such that T p= 'ljJ and ,r.p F ,'lj!. Suppose that T F '1/J or "P F ,'lj! for all 
Ih sentences 'lj!. By Fact 25, there exist M F T and No F ,r.p such that M F '1/J or No F ,'lj! for all Ih 
sentences 'lj!. Hence N 0 F 'ljJ ⇒ M F 'ljJ for all ~ 2 sentences 'lj!. By Fact 26, there exists an £-structure 
Mo such that No C:: Mo = M and No p= 'lj!(a) ⇒ Mo F 'lj!(a) for all ~2 formulas 'lj!(x) and a E Na. Thus 
Mo F 'lj!(a) ⇒ No F 'lj!(a) for all ~1 formulas 'lj!(x) and a E No. Consider in the language L(No) := LU No, 
where each a E No is a constant symbol. Then Mo F '1/J ⇒ No F '1/J for all ~1 L(No)-sentences 'lj!. By Fact 26, 
there exists an L(N0 )-structure N1 such that Mo C:: N1 = N 0 . Since N 0 = N1 as L(N0 )-structures, N 0 :< N1 
as £-structures. 

By repeating the above discussion, we obtain the following chain: 

where M; = M and N; :< N;+1 for all i E w. Let N = LJiEw N; = LJiEw M;. By Fact 40, we have N; :< N for 
all i E w. Hence N p= ,r.p. Since M; F T for all i E w and T is inductive, we have N p= T. Especially we 
have N p= r.p, which is a contradiction. □ 

Therefore, T is inductive {cc} T is a II2 theory. 
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