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ARTICLE

Observation of spin-space quantum transport
induced by an atomic quantum point contact
Koki Ono 1✉, Toshiya Higomoto1, Yugo Saito1, Shun Uchino2, Yusuke Nishida 3 & Yoshiro Takahashi 1

Quantum transport is ubiquitous in physics. So far, quantum transport between terminals has

been extensively studied in solid state systems from the fundamental point of views such as

the quantized conductance to the applications to quantum devices. Recent works have

demonstrated a cold-atom analog of a mesoscopic conductor by engineering a narrow

conducting channel with optical potentials, which opens the door for a wealth of research of

atomtronics emulating mesoscopic electronic devices and beyond. Here we realize an

alternative scheme of the quantum transport experiment with ytterbium atoms in a two-

orbital optical lattice system. Our system consists of a multi-component Fermi gas and a

localized impurity, where the current can be created in the spin space by introducing the spin-

dependent interaction with the impurity. We demonstrate a rich variety of localized-impurity-

induced quantum transports, which paves the way for atomtronics exploiting spin degrees of

freedom.
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A transport measurement between terminals has played an
important role, especially for solid-state systems, in the
fundamental studies of the quantum systems such as the

quantized conductance and the quantum many-body effect like
superconductivity and the Kondo effect as well as in the appli-
cations for electronic devices1,2. In recent years, the quantum
simulations using ultracold atomic gases, which successfully
reproduced paradigmatic models of condensed matter physics3,
have extended the domain into quantum transport
experiments4,5, often called atomtronics6. As a specific example,
by creating a mesoscopic quantum point contact (QPC) structure
in real space with sophisticatedly designed optical potentials for
ultracold atoms, the quantization of conductance between two
terminals, expected from the Landauer–Büttiker formula7,8, was
successfully demonstrated9. In addition, owing to the ability of
manipulating the reservoirs or terminals that possess coherent
character for the ultracold atoms isolated from an environment,
the effect of fermion superfluidity of the reservoirs was revealed10.

More recently, a scheme of a quantum transport experiment
that exploits the spin degrees of freedom of ultracold atoms has
been proposed11–14. Different from the spin transport experiments
with spatially separated spin distribution15–18, this proposal con-
siders a spatially overlapped cloud of itinerant spinful Fermi gases
interacting with a localized impurity. The itinerant atom obtains a
spin-dependent phase shift via an impurity scattering, resulting in
the quantum transport in the synthetic dimension of spin space
instead of the real space, thus evading the need for preparation of
elaborated potentials for atoms. The spin degrees of freedom of
the Fermi gas and the localized impurity correspond to the
terminals and the QPC, respectively. Consequently, multiterminal
quantum transport via a QPC can be realized by working with the
multiple spin components of atoms14. This spin-space scheme
shares with the above-mentioned real-space scheme the coherent
character of terminals consisting of ultracold atoms isolated from
an environment and the controllability of the interatomic inter-
actions. In addition, since the QPC in this scheme is also an atom
with internal degrees of freedom, this system provides an intri-
guing possibility for the study of the nonequilibrium Anderson’s
orthogonality catastrophe by measuring the spin coherence of the
localized impurity13.

In this work, we successfully demonstrate the spin-space
quantum transport induced by an atomic QPC using ultracold
ytterbium atoms of 173Yb with the nuclear spin I= 5/2. By uti-
lizing the mixed dimensional experimental platform consisting of
the two-orbital system with an itinerant one-dimensional (1D)
repulsively interacting Fermi gas in the ground state g

�� �
= j1S0i

and a resonantly interacting impurity atom in the metastable state
ej i= j3P0i localized in 0D19, we elucidate fundamental properties
of the transport dynamics. Our work realizes atomtronics with a
spin, providing unique possibilities in the quantum simulation of
quantum transport11–14.

EXPERIMENTAL SCHEME
Figure 1a shows the schematic illustration of the impurity-
induced quantum transport. Here, we consider the system com-
posed of a Fermi gas with two spin components, labeled as ↑ and
↓, and a localized impurity. In our experiments, the spin degrees
of freedom and the impurity correspond to the magnetic sublevels
in the ground state g

�� �
and the atom in the metastable state ej i,

respectively. While the spin-flip process "
�� � $ #

�� �
is not

induced under a high magnetic field due to the energy mismatch
between the initial and final states, the two spin components
acquire spin-dependent phase shifts due to the impurity scatter-
ing. This scattering process is expressed as σj i ! e2iδσ ðεÞ σj i,
corresponding to a unitary operator U shown in Fig. 1b, where

δσ(ε) represents the scattering phase shift of the atom in the σj i
state with the kinetic energy ε. The scattering process of the atom
in the superposition state þj i ¼ Rθ¼π=2 "

�� � ¼ ð "
�� �þ #

�� �Þ ffiffiffi
2

p
,

where Rθ is the rotation operator with an angle θ, can be
described as follows:

þj i ! ψ
�� � ¼ U þj i ¼ ðe2iδ"ðεÞ "

�� �þ e2iδ#ðεÞ #
�� �Þ=

ffiffiffi
2

p

¼ eiðδ"ðεÞþδ#ðεÞÞ cosðδ"ðεÞ � δ#ðεÞÞ þj i
n

þi sinðδ"ðεÞ � δ#ðεÞÞ �j i
o
;

ð1Þ

where ψ
�� �

is the spin state after the impurity scattering and �j i ¼
ð "
�� �� #

�� �Þ= ffiffiffi
2

p
is orthogonal to the þj i state. Thus, the prob-

ability to find the �j i state after the impurity scattering is given
by

�h j ψ
�� ��� ��2 ¼ sin2ðδ"ðεÞ � δ#ðεÞÞ; ð2Þ

showing that the spin-flip process is now induced in the þj i and
�j i basis and the spin-flip probability depends on the phase shift
difference between the "

�� �
and #

�� �
states. It should be noted that

spin degrees of freedom of the þj i and �j i states are associated
with the spatial degrees of freedom of left and right leads in the
mesoscopic transport experiment, and thus the spin-flip process
is associated with the current in the spin-space two-terminal
system.

As is also shown in Fig. 1a, the differential Fermi–Dirac dis-
tribution is responsible for giving rise to the current from a source
( þj i) to a drain ( �j i), quantitatively described with the
Landauer–Büttiker formula

Iþ!� ¼ Nimp

Z
dε
h
T θ¼π=2ðεÞff ðε� μþÞ � f ðε� μ�Þg; ð3Þ

where T θðεÞ is the transmittance, associated with the spin-flip
probability, and h denotes the Planck constant. Here, Nimp

represents the number of the ej i atoms and f(ε− μ) is the
Fermi–Dirac distribution function with a chemical potential μ.
The transmittance in Eq. (3) in the case of 1D is expressed as
follows14:

T θ¼π=2ðεÞ ¼ ∑
l¼0;1

sin2ðδl"ðεÞ � δl#ðεÞÞ; ð4Þ
where l= 0 and l= 1 correspond to the even wave scattering and
the odd wave scattering, respectively. The scattering phase shift is
calculated by numerically solving the scattering problem in the
quasi-(0+ 1)D system (see Supplementary Note 1). Note that the
spin-space reservoirs labeled as ±j i can thermalize via the col-
lision between the atoms in the ±j i states.

The fact that the quantum transport manifests itself as the spin
flip suggests that the transport phenomenon can be measured by
the Ramsey sequence, as is shown in the quantum-circuit
description of Fig. 1b. The first π/2-pulse creates the spin
superposition state and the time interval between the two pulses
is responsible for the transport time during which the atoms
acquire spin-dependent phase shifts, described by the unitary
operator U. After the second π/2-pulse, the spin state after the
transport time is measured in the original "

�� �
and #

�� �
basis. If

the localized impurity in the ej i state is absent, the spin popu-
lation should coherently oscillate with time. In the presence of the
impurity in the ej i state, on the other hand, the oscillation signal
is expected to decay in its amplitude because of the impurity
scattering phase shift. Thus, the impurity atom can be regarded as
a control qubit consisting of the jgi and ej i states.

Two-orbital system with the 173Yb atoms in the g
�� �

and ej i
states can provide the experimental platform for the impurity-
induced quantum transport. Using the 2D-magic-wavelength
optical lattice and the 1D near-resonant optical lattice, we realize
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the quasi (0+ 1)D system, where the g
�� �

atom is itinerant in the
1D tube and the ej i atom is localized in 0D19 (see “Methods”). In
this work, the "

�� �
and #

�� �
states are defined as the þ5=2

�� � ¼
g
�� �

mF ¼ þ5=2
�� �

and þ1=2
�� � ¼ g

�� �
mF ¼ þ1=2
�� �

states,
respectively, and the atom in the ej i mF0 ¼ �5=2

�� �
state is

responsible for the localized impurity, where mF denotes the
projection of the hyperfine spin F= I onto the quantization axis
defined by a magnetic field. We perform the coherent spin
manipulation using the Raman transition between the "

�� �
and

#
�� �

states20 (see “Methods”). Figure 1c shows the Raman Rabi
oscillation between the "

�� �
and #

�� �
states. The interorbital

interaction between the g
�� �

and ej i atoms with the orbital Fes-
hbach resonance21–23 naturally realizes the spin-dependent
interaction with the localized ej i atom. The readout of the spin
state is performed by the optical Stern–Gerlach (OSG)
technique24, which enables one to separately observe the atoms in
the "

�� �
and #

�� �
states, as shown in Fig. 1d.

RESULTS
Ohmic conduction. Figure 2a shows the time evolution of the
spin precession in the absence of the ej i atom, exhibiting the
coherent oscillation of Ramsey signals with the frequency corre-
sponding to the differential Raman light shift between "

�� �
and

#
�� �

states (see “Methods”). As shown in Fig. 2b, on the other
hand, the damping of the oscillation is observed in the presence of
the ej i atom, indicating that the impurity-induced quantum
transport is successfully demonstrated. Figure 2c represents the
observed oscillation amplitude A(t) as functions of the hold time.
The oscillation amplitude is associated with the spin polarization,
defined as ΔN/N, where ΔN=N+−N− and N=N++N−, with
Nσ being the number of atoms in the σj i state. After the second
Raman pulse of Rπ− θ, N+ and N− correspond to N↑ and N↓,
respectively. Thus, using the measured quantities of N↑ and N↓,
N↑/N=N↑/(N↑+N↓), and ΔN/N= (N↑−N↓)/(N↑+N↓) can be
extracted. See “Methods” for the detail of the procedure of
extracting N↑/N and ΔN/N from the measurements. We focus on
the transport dynamics after 10 ms, where N−, which is the
number of atoms in the drain, becomes of the order of ten and

enough to justify thermodynamic treatments25. The transient
regime is also determined by the thermalization rate, which
depends on the atom density, the scattering cross section and the
atom velocity. The thermalization rate is estimated as 100 Hz,
corresponding to the transient regime of t < 10 ms. We confirm
the ohmic conduction, which manifests itself as the exponential
decay of the oscillation amplitude with the finite lifetime of the ej i
state taken into consideration (see “Methods”), and the deco-
herence rate is obtained as γ= 47(4) Hz from the data fits. We
note that the 25% reduction of N was observed during the hold
time of 40 ms, which is comparable with the ej i atom number
loss, suggesting that the loss is caused by the inelastic collision
between the ej i and g

�� �
atoms. After 10 ms hold time, which is

the temporal region of our interest, however, the reduction of N is
only about 8%, comparable to the uncertainty of the measure-
ments, and thus is not taken into consideration in the analysis.
The measured decoherence rate is larger than the decay rate of
the ej i atom and smaller compared to the thermalization rate,
suggesting that a quasi-steady approximation is applicable, where
Nimp and μ± in Eq. (3) are replaced with those at the instanta-
neous time t. In contrast, the data at an early time deviates from
the data fits after 10 ms, implying the nonlinear nature of the
transport dynamics. The quantitative explanation including these
data is an interesting future theory work.

More directly, we can confirm the ohmic conduction from the
linearity between the current and chemical potential bias. The
current I+→− which flows from þj i to �j i is defined as

Iþ!� ¼ � 1
2
d
dt

ΔN; ð5Þ

and thus can be extracted from the slope for ΔN in Fig. 2c. It is
noted that the factor 1/2 in Eq. (5) accounts for the double
counting of the decreased atom number in the þj i state and the
increased atom number in the �j i state. Here N+ and N− can be
rewritten as functions of μ+ and μ− based on the thermo-
dynamics in 1D trapped fermions (see “Methods”). Circles in
Fig. 2d show thus obtained chemical-potential-bias dependence
of the current. Because of the finite lifetime of the ej i atom, the
finite chemical potential bias Δμ is present even when the current

Fig. 1 Schematic illustration of the experiment. a Schematic representation of spin-space quantum transport. By spin rotation, quantum transport is induced
in spin space. Black lines show the Fermi-Dirac distribution function, and a red line shows the differential distribution function Δf(ε)= f(ε− μ+)− f(ε− μ−).
b Quantum-circuit representation of a typical experimental sequence. The 3P0 excitation (Rπ) transfers the gj i mF ¼ �5=2

�� �
state to ej i mF0 ¼ �5=2

�� �
.

The initially prepared "
�� �

state is rotated by the first Raman pulse (Rθ= π/2), subjected to the interaction with the impurity acquiring a spin-dependent phase
shift (U) during the hold time, rotated again by the second Raman pulse (Rπ− θ), and finally detected by an OSG light. Although a single spin-flip event is shown
in the circuit for simplicity, the multiple impurity scattering should occur in experiments. c Raman Rabi oscillation between the "

�� �
and #

�� �
states. Error bars

show the standard deviations of the mean values obtained by averaging three measurements. Solid lines represent fits to the data. d Typical example of
simultaneous observation of both spin states in false color time-of-flight (ToF) image of the two-component 173Yb gas subjected to the OSG light. The distorted
shape of the atom cloud in the #

�� �
state is ascribed to the photon scattering by the OSG light.
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asymptotically approaches to zero. In order to compensate for
this finite lifetime effect, we multiply the observed current by the
factor e+t/τ, which leads to I+→−= γΔN shown as squares in
Fig. 2d. As a result, we obtain the linear dependence between the
current and chemical potential bias, indicating the ohmic
conduction. The conductance, defined as I+→−=GΔμ, is
obtained as G= 0.45/h.

We theoretically estimate the conductance from the numerical
calculation of the transport dynamics, shown as a dashed line in
Fig. 2c. In the calculation, we take into account the spatial

inhomogeneity of the atom numbers among many tubes, and the
total atom number difference ΔNtot is expressed as

d
dt

ΔN tot ¼
d
dt

∑
i
ΔNi ¼ �2∑

i
Iþ!�ðμiþ; μi�Þ; ð6Þ

where i means the index of the tube, and ΔNi and μi± correspond
to the atom number difference and the chemical potentials for the
±j i states in the ith tube, respectively. As a result, we obtain
G= 0.41/h, which is consistent with the measured value (see
Supplementary Fig. 3).

Figure 2e shows the impurity-fraction dependence of the spin-
flip rate, revealing that the spin-flip rate is proportional to
ρimp=Nimp(t= 0)/N. This is consistent with our expectation that
each impurity atom serves as a single-mode QPC and the overall
transport current should be proportional to the number of
impurity atoms. Based on this linear dependence, the single-
impurity conductance is estimated as G0= 4.1 × 10−2/h. By
increasing the sensitivity of our experiment, the low impurity-
fraction limit of this measurement will reveal the conductance
discretized in units of G0, namely in the form of NimpG0, expected
from the Landauer-Büttiker formula.

Spin-rotation-angle dependence. We investigate how the quan-
tum transport dynamics depends on the choice of the basis sets of
the spin states. In Fig. 2, we consider the basis set of þj i and �j i
created by rotation Rθ= π/2, but, in general, we can consider basis
sets created by Rθ with any value of θ. The generalization of the
Eq. (4) for arbitrary θ is straightforward, and is given as14:

T θðεÞ ¼ sin2 θ ∑
l¼0;1

sin2ðδl"ðεÞ � δl#ðεÞÞ; ð7Þ

indicating that the θ dependence of the transport current is
expected to be proportional to sin2 θ. Figure 3a shows the

Fig. 2 Demonstration of spin-space quantum transport induced by an atomic QPC. a, b Time evolution of measured up-spin fraction ðN"=NÞmeas at
45 Gauss: a in the absence of or (b) in the presence of the ej i atoms, with ρimp= 0.45. Note that the spin-up and spin-down populations are not oscillating
during the transport process before the second Raman pulse. Error bars show the standard deviations of three independent measurements. Solid lines
represent guides to the eye by obtaining the fits to the data with the compensation of the magnetic field drift. Each inset shows the zoom-in view of the
oscillation. c Time evolution of the oscillation amplitude A(t) shown in (b). A blue solid line represents the fit to the data after 10 ms with Eq. (9), and the
corresponding values of ΔN/N= 2N↑/N− 1= A(t)/A(t)∣max are also given on the right vertical axis (see “Methods”). A dashed line shows the numerical
calculation of the transport dynamics (see Supplementary Fig. 3). The inset shows the oscillation amplitude shown in (a), and a red solid line shows the fit
to the data with Eq. (9). Note that the normalization factor A(t)∣max is different between the blue and red data. d Current as a function of chemical potential
bias with ρimp= 0.45. Circles show the currents extracted from the slope of the decoherence in (c), and a dashed line shows the linear fit to the data.
Squares are the currents obtained from I+→−= γΔN compensating for the finite impurity lifetime, and a solid line shows the linear fit to the data. In the
calculation of the chemical potential, N= 30 is used for the total number of atoms in a tube. e Impurity-fraction dependence of the spin-flip rate, defined as
the slope of the measured decay curve at the initial time dA

dt

��
t¼0 ¼ �γA0. Error bars in (c–e) are 1σ confidence intervals of the data fits.

Fig. 3 Spin-rotation-angle dependence of transport dynamics. a Time
evolution of the oscillation amplitude for different spin-rotation angles:
θ= π/2, 5π/12, π/3, π/4, and π/6. Error bars are 1σ confidence intervals of
the oscillation amplitude. Solid lines represent fits to the data with Eq. (9). b
Spin-flip rate as a function of the rotation angle θ. Error bars are 1σ
confidence intervals of the spin-flip rate. A solid line represents a fit to the
data with a sine-squared function.
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transport dynamics with different rotation angles in a magnetic
field of 45 Gauss, exhibiting the clear θ dependence. Quantita-
tively, the spin-flip rate is obtained as the slope of the fitting curve
at the initial time t= 0. Figure 3b shows the obtained spin-flip
rate as a function of the rotation angle, which is in agreement
with the expected sin2 θ dependence.

Time-resolved control. Since the QPC in this scheme is provided
by individual atoms in the ej i state, rather than the channel
structure, the quantum transport can be controlled by the exci-
tation and de-excitation for the ej i atom. Figure 4a summarizes
the time-resolved control of transport dynamics observed with
the pulse sequences depicted in Fig. 4b–d. The experiment is
performed in a magnetic field of 45 Gauss. The pulse sequence (b)
illustrates the typical transport experiment similar to Fig. 2b. In
the pulse sequence (c), after the transport time of 5 ms, we return
the ej i atoms back to the g

�� �
state by shining the repumping light

which is resonant with the 3P0–3D1 transition. This can be
regarded as an operation of π-pulse in the control qubit in the
quantum-circuit model of Fig. 1b. The result clearly shows the
suppression of the transport. Note that the atoms should return
to the ground state via several spontaneous emissions with no
preferential spin components, and thus they neither contribute to
the creation of spin coherence nor the decoherence. In the pulse
sequence (d), after shining the repumping light we wait for 35 ms,
and then apply the clock excitation pulse again to transfer the
atoms in the �5=2

�� �
state to the ej i state. As shown in Fig. 4a, the

revival of the transport dynamics is observed, demonstrating the
dynamical switching of the quantum transport almost at will with
the excitation and de-excitation pulses.

Control of spin-dependent interaction. Furthermore, we inves-
tigate the possibility of controlling the spin-dependent interaction
responsible for the quantum transport. Owing to the existence of the
orbital Feshbach resonance between the g

�� �
and ej i atoms of 173Yb,

the scattering phase shift depends on a magnetic field, suggesting the
tunability of the transport current with a magnetic field. Figure 5a, b
show the transport dynamics in a magnetic field of (a) 45Gauss and
(b) 135Gauss for various impurity fractions ρimp, showing that the
transport current depends on the magnetic field. The result of the
numerical calculation of the phase shift difference, associated with the
transmittance, is consistent with the faster transport dynamics
observed in a magnetic field of 135Gauss than in 45Gauss (see
Supplementary Fig. 2). We repeat a similar transport measurement
using 171Yb, which does not show an orbital Feshbach resonance in
the magnetic field range of the present experiment26. The result
shows much slow decoherence consistent with the expectation.

Three-terminal Y-junction. The high spin degrees of freedom of
173Yb with SU(N ≤ 6) symmetry allow one to study the multi-
terminal quantum transport system up to 6. Here, the SU(N )
symmetry is crucial, because otherwise the spin-changing collisions
take place and the system shows spin dynamics even without the
localized impurities27. We realize the three-terminal quantum
transport system by coherently connecting the j þ 5=2i, j þ 1=2i,
and j � 3=2i states as shown in Fig. 6a. This corresponds to the Y-
junction, which has been studied theoretically28,29 and
experimentally30,31. We prepare the superposition with almost equal
weights of the three mF states with the Raman pulse with the
duration of t0= 0.31 ms (see Fig. 6b for the Raman Rabi oscillation).
After the transport time, the second Raman pulse is applied with the
pulse duration of T− t0, and the spin population is detected in the
original basis. Here T= 1.06ms denotes the period of the Raman
Rabi oscillation. It is noted that the remaining jgi atoms in the
j � 5=2i state are removed using the light resonant with the
1S0–3P1(F0 ¼ 7=2) transition since the remaining atom is undesirably
coupled with the j � 1=2i state via the Raman transition.

Figure 6c–e show the time evolution of the spin population in
the presence of the ej i atom in a magnetic field of 119 Gauss,
which clearly exhibit the decoherence of the spin precession. In
the absence of the ej i atom, the coherent oscillation is observed
with no discernible decoherence up to at least 40 ms. In Fig. 6f,
the spin populations at several transport times are plotted. The

Fig. 4 Dynamical control of transport dynamics. a Time evolution of the
oscillation amplitude for different pulse sequences. Error bars are 1σ
confidence intervals of the oscillation amplitude. Solid lines represent fits to
the data with Eq. (9). Mismatches between the data points in the overlapping
region of the different pulse sequences are due to experimental uncertainties.
b–d Pulse sequences relevant to the experiments shown in (a).

Fig. 5 Magnetic field dependence of transport dynamics. a, b Time
evolution of the oscillation amplitude for different magnetic fields: a
45 Gauss and b 135 Gauss. Error bars are 1σ confidence intervals of the
oscillation amplitude. Solid lines represent the fits to the data with Eq. (9).
In the data fits shown in (b), τ in Eq. (9) is treated as a free parameter for
the better estimation of the spin-flip rate. Each inset shows the spin-flip
rate as a function of the impurity fraction ρimp. Error bars are 1σ confidence
intervals of the spin-flip rate obtained from the data fits in (a, b).
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number of the terminals can be increased up to 6 by fully utilizing
the spin degrees of freedom of 173Yb.

DISCUSSION
We investigate fundamental properties of the transport dynamics
such as the ohmic nature of transport and its linear dependence
on the impurity atom number. We also demonstrate the con-
trollability of the transport current via an orbital Feshbach
resonance as well as the dynamical switching of the quantum
transport by optical excitation of an impurity atom. In addition,
the unique spin degrees of freedom of 173Yb with SU(N ) sym-
metry enable us to successfully realize a three-terminal quantum
transport system.

Our work opens up the door to the atomtronics enabled by
spin degrees of freedom. Interesting future works include the
nonequilibrium Anderson’s orthogonality catastrophe by obser-
ving the spin dynamics of the localized ej i atom11,13, the effect of
interatomic interaction between jgi atoms14, the full-counting
statistics13 by combining a Yb quantum-gas microscope
technique32–34, and the observation of quantized conductance. In
addition, the realization of multiterminal systems with 173Yb is
promising for the quantum simulation of the mesoscopic trans-
port via a Y-junction and more complex nanostructures.

METHODS
Optical lattice. A 2D array of the 1D tubes is produced using the 2D state-
independent optical lattice with a wavelength of 759.4 nm. The 1D near-resonant
optical lattice is superimposed along the axis of the tubes. The wavelength of the
near-resonant optical lattice is chosen to be 650.7 nm, close to the 3P0–3S1 tran-
sition wavelength of 649.1 nm, giving the strong confinement to the ej i atom alone
and no net effect to the g

�� �
atom19.

After the preparation of the two-component Fermi gas (j± 5=2i) with the typical
atom number 4 × 104 and the temperature 0.2TF, where TF is the Fermi temperature,
the atoms are adiabatically loaded into the optical lattices, resulting in the 2D array of
about 1 × 103 1D tubes with a typical atom number of 30 per tube. The initial lattice
depths of the 2D-magic-wavelength optical lattice and the 1D near-resonant optical
lattice are set to 30ER and 6.8ER for the ej i atom, respectively, where ER= h × 2.0 kHz
represents the recoil energy for the magic wavelength. After the coherent transfer to the
ej i state, the near-resonant optical lattice is ramped up to 27ER to localize the ej i atoms.
The axial and radial trap frequencies for the ground state are 76Hz and 22 kHz,
respectively, and those for the excited state 24 and 22 kHz, respectively. In this system,
the jgi atom can be regarded as a 1D fermion since the radial vibrational energy is
much larger than the Fermi energy in the central tube, which is estimated as h × 2 kHz.

Transfer to ej i state. The atom in the jgij � 5=2i state is coherently excited to the
ej ij � 5=2i state with π-polarized light in a magnetic field, which is kept constant
during the transport dynamics. The Rabi frequency of the clock excitation is
2π × 2.5 kHz, and the impurity fraction ρimp is tuned by choosing the pulse
duration from 70 to 200 μs. The excitation laser is stabilized using an ultra-low-
expansion glass cavity35, and the typical linewidth is a few Hz.

Coherent spin manipulation. In the two-terminal experiment, the Raman light is
blue-detuned by 1.00 GHz from the 3P1 (F 0 ¼ 7=2) state, and the polarization is
perpendicular to the quantization axis defined by the magnetic field, and this
results in an equal mixture of σ+ and σ− polarization, realizing the Raman tran-
sition between the j þ 5=2i and j þ 1=2i states. Note that the spin-dependent light
shifts induced by the Raman light alter the resonance frequency of the j þ 5=2i $
j þ 1=2i Raman transition, resulting in the oscillatory behavior of the Ramsey
signal, as shown in Fig. 2a, b. They also make the otherwise resonant transition to
the j � 3=2i state off-resonant and suppressed.

In the three-terminal experiment, in contrast, the Raman light is blue-detuned
by 3.35 GHz from the 3P1 (F0 ¼ 7=2) state, and the polarization is an equal mixture
of π, σ+, and σ− polarization, resulting in the equal level spacing of the jgi state
manifold. The oscillatory behavior of the Ramsey signal shown in Fig. 6 also comes
from the spin-dependent light shifts induced by the Raman light.

Detection of spin population. The spin population is detected with the OSG
method24, where a spin-dependent optical potential gradient is applied to sepa-
rately observe the atoms in the different mF

�� �
states. The circularly polarized OSG

light propagated along the quantization axis is blue-detuned by 1.13 GHz from the

Fig. 6 Demonstration of three-terminal quantum spin transport.
a Schematic representation of the 173Yb nuclear spin states relevant
to the experiment and the Raman transitions between the different
mF

�� �
mF states. b Raman Rabi oscillation of the three-level system.

Error bars show the standard deviations of the mean values obtained by
averaging three measurements. Solid lines represent fits to the data.
c–e Time evolution of the relative population of the nuclear spin
states: c þ5=2

�� �
, d þ1=2

�� �
, and e �3=2

�� �
. Error bars show the standard

deviations of the mean values obtained by averaging three
measurements. Solid lines represent fits to the data with the time
constant fixed to 80 ms, corresponding to the lifetime of the ej i atom
in the three-terminal experiment. During the 40 ms hold time, the
reduction of the total number of the gj i atoms is negligible. Dashed
lines show the envelopes of the data fits as guides to the eye. Time
evolution of the local maxima or minima of the oscillation shown in
(c–e). Error bars are smaller than the symbol sizes. Solid lines represent
guides to the eye.
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3P1 (F0 ¼ 7=2) state. The non-negligible photon scattering associated with the OSG
light results in the production of a small number of otherwise nonexisting spin
components. We include the number of these spin components in the analysis,
although it is typically <15%.

Analysis of the oscillation amplitude A(t). The oscillation amplitude A(t) at the
hold time t is obtained from the fit to the data in the time interval t0 2 ½t; t þ 1ms �
with the following function ðN"=NÞmeas ¼ AðtÞ cosðωðtÞt0 þ φðtÞÞ þ BðtÞ, where
ω(t), φ(t), and B(t) ≈ 1/2 correspond to the precession angular frequency, the
oscillation phase, and the offset, respectively. In addition, to compensate for the
systematic effects associated with the detection process, we introduce the nor-
malization of 2A(t) by its maximum value of 2A(t)∣max. We then obtain N↑/N= 1/
2+ A(t)/(2A(t)∣max).

From Eqs. (3) and (5) for the two-terminal system, the time derivative of ΔN is
found to be proportional to ΔN when the current is linearized in terms of Δμ∝ ΔN,
and the oscillation amplitude of the spin precession corresponds to ΔN/N as is
mentioned in the main text. In order to analyze the transport dynamics
quantitatively, the finite lifetime of the ej i atom τ is taken into consideration by
introducing the time-dependent damping factor e−t/τ. Consequently, the oscillation
amplitude A(t) satisfies the following differential equation in terms of the transport
time t:

d
dt

AðtÞ ¼ �γe�t=τAðtÞ; ð8Þ

where γ is associated with the decoherence rate. Solving Eq. (8) yields

AðtÞ ¼ A0 expf�γτð1� e�t=τ Þg: ð9Þ
Except for the data fits in Fig. 5b, τ is fixed to the measured lifetime of the ej i atom
during the transport dynamics, which is 60 ms in a magnetic field of 45 Gauss.

Thermodynamics of trapped 1D fermions. The partition function is expressed as

Z ¼
Y

n;σ

ð1þ eβðμσ�εnÞÞ; ð10Þ

where εn= ℏωtrapn (n= 0, 1, 2, ...). Here, ωtrap= 2π × 76 Hz is the axial trap fre-
quency of the tube potential. Thus, the grand potential is obtained as

Ω ¼ �β�1logZ ¼ 1

β2_ωtrap

∑
σ
Li2ð�eβμσ Þ; ð11Þ

where Lin (z) is the polylogarithm function. In this calculation, a continuous
approximation βℏωtrap→ 0 is applied to convert the sum over n in logZ to an
integral. Using Eq. (11), the number of the atoms in the σj i state can be given by

Nσ ¼ � ∂Ω

∂μσ
¼ 1

β_ωtrap
log ð1þ eβμσ Þ: ð12Þ

Data availability
The datasets are available from the corresponding author on reasonable request.

Code availability
The codes used for the numerical simulations within this paper are available from the
corresponding author upon reasonable request.
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