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Abstract 

In this paper, we give infinite dimensional stochastic processes generated by functions of the 
Levy Laplacian. Moreover we introduce an operator to connect the Levy Laplacian with the 
Number operator and also give a relationship between a (C0)-semigroup generated by the Levy 
Laplacian and an infinite dimensional Ornstein-Uhlenbeck process. 

1. Introduction 

An infinite dimensional Laplacian, the Levy Laplacian, was introduced by P. Levy (17]. This 
Laplacian was introduced into the framework of white noise analysis initiated by T. Hida [4] .. L. 
Accardi et al. [l] obtained an important relationship between this Laplacian and the Yang-Mills 
equations. It has been studied by many authors ( see [l, 2, 3, 5, 7, 8, 13, 15, 16, 18, 21, 22, 23, 
24 etc]). 

In the previous papers [25,26] we obtained stochastic processes generated by the powers of an 
extended Levy Laplacian and also in (29] we obtained stochastic processes generated by some 
functions of the Laplacian. 

The purpose of this paper is to present recent developments on stochastic processes generated 
by functions of the Levy Laplacian acting on white noise distributions based on the idea in [29] 
and to give a stochastic expression of an equi-continuous semigroup of class (Co) generated by 
the Laplacian related to an infinite dimensional Ornstein-Uhlenbeck process following (27]. 

The paper is organized as follows. In Section 2 we summarize some basic definitions and results 
in white noise analysis. In Section 3 we introduce a Hilbert space as a domain of the extended 
Levy Laplacian which is self-adjoint on the domain following our previous paper [27], and we 
give an equi-continuous semigroup of class (Co) generated by some functions of the extended 
Levy Laplacian. In Section 4 we give infinite dimensional stochastic processes generated by 
those functions of the Levy Laplacian. In the last section we give a relationship between the 
semigroup generated by the Levy Laplacian and an infinite dimensional Ornstein-Uhlenbeck 
process. 
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2. Preliminaries 

In this section we assemble some basic notations of white noise analysis following [7, 12, 15, 
19]. 

We take the space E* = S (R) of tempered distributions with the standard Gaussian measure 
µ which satisfies 

l. exp{i(x,m dµ(x) = exp (-~1~15), ~EE= S(R), 

where(·,•) is the canonical bilinear form on E* x E. 
Let A= -(d/du)2 +u2 + 1. This is a densely defined self-adjoint operator on L2(R) and there 

exists an orthonormal basis {ev;v <:'. 0} for L2(R) such that Aev = 2(v + l)ev. We define the 
norm I · IP by lflp = jAP !lo for J E E and p ER, where I · lo is the L2 (R)- norm, and let Ep be 
the completion of E with respect to the norm I • IP- Then Ep ia a real separable Hilbert space 
with the norm I· IP and the dual space E~ of Ep is the same as E-p (see [10]). 

Let Ebe the projective limit space of {EpiP <:: 0} and E* the dual space of E. Then E becomes 
a nuclear space with the Gel'fand triple EC L2 (R) CE*. We denote the complexifications of 
L2 (R), E and Ep by Lb(R), Ee and Ee,p, respectively. 

The space (£2) = L 2(E*, µ) of complex-valued square-integrable functionals defined on E* 
admits the well-known Wiener-Ito decomposition: 

where Hn is the space of multiple Wiener integrals of order n EN and Ho= C. Let Lb(R)®n 
denote the n-fold symmetric tensor product of Lb(R). If cp E (£2) has the representation 

cp = E;:"=oln(Jn), fn E Lb(R)®n, then the (£2)-norm ll'Pllo is given by 

( 
00 ) 1/2 

ll'Pllo = fa n!lfnl5 , 

where I· lo is the norm of Lb(R)®n. 

For p E R, let ll'Pllp = llf(A)Pcpllo, where r(A) is the second quantization operator of A. If 
p <:: 0, let (E)p be the domain of r(A)P. If p < 0, let (E)p be the completion of (£2) with respect 
to the norm II· lip• Then (E)p, p ER, is a Hilbert space with the norm II· lip• It is easy to see 
that for p > 0, the dual space (E); of (E)p is given by (E)-p- Moreover, for any p ER, we have 
the decomposition 

00 

(E) - ffiH(p) p-i;;:v n' 
n=O 

where H!f) is the completion of {In(!); f E E~n} with respect to II· lip• Here E~n is then-fold 

symmetric tensor product of Ee. We also have Hf!')= {In(!); f E Ee®n} for any p ER, where ,p 
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E~~ is also then-fold symmetric tensor product of Ee,p• The norm ll'Pllp of cp = E::"=o In Un) E 
(E)p is given by 

( 
oo ) 1/2 

ll'Pllp = ,; n!lfnl; ' 

where the norm of E~n is denoted also by I· IP• ,P 
The projective limit space (E) of spaces (E)p, p ER is a nuclear space. The inductive limit 

space (E)* of spaces (E)p,P ER is nothing but the dual space of (E). The space (E)* is called 
the space of generalized white noise functionals. We denote by « •, • » the canonical bilinear 
form on (E)* x (E). Then we have 

00 

« 4>, cp »= L n!(FnJn) 
n=O 

for any 4> = E::"=o In(Fn) E (E)* and cp = E::"=o InUn) E (E), where the canonical bilinear 
form on (E~n)• x (E~n) is denoted also by (·, •}. 

Since exp(·,{) E (E), the S-transform is defined on (E)* by 

S(w]({) = exp (-~(U}) « w, exp(·,{) », {E Ee. 

3. An equi-continuous semigroup of class (Co) generated by a function of the Levy 
Laplacian 

Let q, be in (E)*. Then the S-transform S(w] of 4> is Frechet differentiable, i.e. 

s(w](e + 11) = s(w](e) + S(w]'(e)(11) + 0(11), 

where 0(11) means that there exists p;;:: 0 depending on { such that 0(11)/IT/lp • 0 as IT/Ip • 0. 

We fix a finite interval Tin R. Take an orthonormal basis {(n}::"=o CE for L2 (T} satisfying 
the equally dense and uniform boundedness property ( see (7,15,16,18,24, etc] ). Let 'DL denote 
the set of all 4> E ( E)* such that the limit 

exists for any { E Ee and is in S((E)*]. The Levy Laplacian .6.L is defined by 

for 4> E 'DL, We denote the set of all functionals 4> E 'DL such that S[w](11) = 0 for all T/ E E 
with supp(11} C ye by DI, 
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A generalized white noise functional 

is equal to 

<I>= { f(u1, ... , Un) : eia1z(u1) ... eianz(un) : du E 'DI, 
Jan 

f E Lb(R)®n n Lb(R)®n, ak ER, k = 1, 2, ... , n, 

f f(ui, ... , Un) : eia1z(u1) ... /•nz(un) : du 
lr• 

and the $-transform S[<I>] of <I> is given by 

(3.1) 

(3.2) 

This functional is important as an eigenfunction of the operator t::.L. In fact, we have the 
following result: 

Theorem 1.[27] A generalized white noise functional <I> as in (3.1} satisfies the equation 

1 n 

ll.L<I> = -ITI L ai<I>. 
k=I 

(3.3) 

We set 

Dn = {l n f(u) : fr i*-l: du E vf; f E Ec(R)®n} 
T v=l 

for each n EN and set Do= C. Then Dn is a linear subspace of (E)-p for any p,:: 1, and t::.L is 
a linear operator from Dn into itself such that llt::.L <I>!l-p = ]T[ ll<I>ll-p for any <I> E Dn. We define 

a space Dn by the completion ofDn in (E)-p with respect to II· 11-p- Then for each n E NU{0}, 
Dn becomes a Hilbert space with the inner product of (E)-p- For each n E Nu{0}, the operator 
Cl.L can be extended to a continuous linear operator Cl.L from Dn into itself satisfying 

The operator Cl.L is a self-adjoint operator on Dn for each n E NU {0}. 

Proposition 2. [27] Let <I> = E::"=o <I>n, IV = E::"=o IVn be generalized white noise functionals 
such that <I>n and IVn are in Dn for each n EN U {0}. If <I> = IV in (E)*, then <I>n = IVn in (E)* 
for each n EN U {0}. 

Proposition 2 says that E::"=o <I>n, <I>n E Dn, is uniquely determined as an element of (E)*. 
Therefore, for any £ E R, we can define a space E-p,t by 

{ 
co co ( n )2l } 

E-p,l = fa <I>n E (E)*; fa 1 + ITI l!<I>nll:p < oo, <I>n E Dn, n = 0, 1, 2, ... 
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with the norm Ill· 111-p,f given by 

for each e E R and p :C:: 1. For any e E R and p :C:: 1, E-p,t is a Hilbert space with the norm 

111 · 111-p,l· 

Put E-p,oo = nt>l E-p,l with the projective limit topology and put E-p,-oo = Ue>I E-p,-l with 
the inductive limit topology. Then, for any l :C:: 1, we have the following inclusion relations: 

E-p,oo C E-p,t+l C E-p,£ C E-p,l C (E)-p C E-p,-l C E-p,-t C E-p,-l-l C E-p,-oo· 

The space E-p,oo includes Dn for any n E NU {O}. The operator Cl£ can be extended to a 
continuous linear operator defined on E-p,-oo, denoted by the same notation CiL, satisfying 
IIIAL4>Jll-p,£::; 1114>111-p,l+I, 4> E E-p,t+I, for each e ER. Any restriction of l::,.L is also denoted 
by the same notation A£. With these properties, we have the following: 

Theorem 3. The operator AL restricted on E-p,t+l is a self-adjoint operator densely defined 
on E-p,l for each e E R and p :C:: 1. 

Proof We can apply the same proof of Theorem 2 in (27] to this theorem. D 

Let {X1; t :C:: O} be a stochastic process and ex, (z) be a characteristic function of X 1• For each 
t :C:: 0 we consider an operator G[X1] on E-p,-oo defined by 

for 4> = E::'=o 4>n E E-p,-oo• For any <l> = E::'=o <I>n in E-p,-oo, there exists e E R such that 
<l> E E-p,l· Then, for any t :C:: O,p :C:: 1, the norm IIIG(X1]4>1ll-p,e is estimated as follows: 

fo (1 + 1;/t llcx, c;1) 4>nlC 

::; E (1 + J;/e il<l>nll:.P = lll<l>lll:.p,t· 

Thus the operator G(Xt] is a continuous linear operator from E-p,-oo into itself. Moreover we 
have the following: 

Proposition 4. Let {X1;t :C:: O} be a stochastic process. Then the family {G[Xt];t :C:: O} is an 
equi-continuous semigroup of class (Co) if and only if there exists a complex-valued continuous 
function h(z) of z ER such that h(O) = 0 and cx,(z) = eh(,)t for all t :C:: 0. 
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Proof If there exists a complex-valued continuous function h(z) of z ER such that cx,(z) = 
eh(z)t, then it is easily checked that G[Xo] = I, G[Xt]G[X,] = G[Xt+•l for each t, s ;;=: 0. Moreover 
we can estimate that 

IIIG[Xt]<l.> - G[Xto]<I>lll:.p,I E (1 + 1;1flx, c;1) -cx,o c;1) 12 
ll<I>nll:.p 

::; 4; ( 1 + 1; 1) 
21 

ll<I>nll:.P = 4l ll<I>lll:.p,t < 00 

for each t, to ;;=: 0, e E R and iJ.> = I:::"=o il>n E E-p,l· Therefore, by the Lebesgue convergence 
theorem, we get that 

Jim G[Xt]iJ.> = G[X10 ]iJ.> in E_p oo 
H~ ' 

for each to;;:: 0 and iJ.> E E-p,-oo• Thus the family {G[X1]; t ;;=: O} is an equi-continuous semigroup 
of class (Co). Conversely, if {G[X1];t;;:: O} is an equi-continuous semigroup of class (Co), then 

it is easily checked that cx0 ( frr) = 1, ex, ( frr) ex, ( frr) = ex<+, ( frr) for any t, s ;;=: 0 and 

lim1--,10 ex, (m) = ex,0 (frr) for any toe:: 0 and n EN. Therefore, by the continuity of ex,(z) 
of z, we have that ex0 = 1, ex, ex, = ex,+, for any t, s ;;=: 0 and lim1--,t0 ex, = ex,0 for any 
to ;;:: 0. Consequently, there exists a complex-valued function h(z) of z E R such that h(O) = 0 
and cx,(z) = eh(z)t. Since cx,(z) is a characteristic function, the function h(z) is continuous. • 

For any p ;;=: 1 and complex-valued continuous function h(z), z ER satisfying the condition: 

(P) there exists a polynomial r(z) of z ER such that lh(z)I S r(\z\) for all z ER, 

the operator h(-LlL) on E-p,-oo is given by 

h(-LlL)iJ.> = L::°=o h ( JTf) <l>n, for iJ.> = L::°=o il>n E E-p,-oo• 

Theorem 5. If h(z) in Proposition 4 satisfies the condition (P), then the infinitesimal gen
erator of { G[X1]; t ;;=: O} is given by h(-LlL). 

Proof: Let p ;;=: 1 and let iJ.> = I:::"=o <l.>n E E-p,-oo• Then, there exists e E R such that 
iJ.> E E-p,l· Let cl,. be the degree of the polynomial r in the condition (P). Then we note that 

Ill G[X1]t<l> - <l.> - h(-LlL)<l.>IICl-dr = E ( 1 + l;i) 2(1-dr) II ( l(mt- 1 - h (i;I)) <l.>nlC 

(3.4) 
Since eh(z)t is a characteristic function, we note that Re[h(z)] S 0. By the mean value theorem, 
for any t > 0 there exists a constant 0 E (0, 1) such that 

li(ml1 -1l=lh(~)1 Re[h(m)]w< (~) 
t ITI e - r ITI · 
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Therefore we get that 

ll l(ml1 
_ 1 _ (__!:_) 11

2 

t <I>n h jTj <I>n 
-p 

ll(m;t-l _hc;Jj\<I>nll:.p 

~ 4r (i;/ ll<I>nll=-p· 

( ) 2(t-d,) ( )2 
Since there exists a positive constant Cr depending on r such that 1 + frr r frr ~ 

Cr ( 1 + frr) 21
, we have 

oo ( n )2(t-d,) ( n )2 
~ 1 + ITI r ITI ll<I>nll:p < oo. (3.5) 

By (3.4), (3.5) and 

ll(m) 1 _1 (n)j 
/~ t - h ITI = o, 

the Lebesgue convergence theorem admits 

limlllG[X1]<I>-<I> -h(-AL)<I>lll2 =0. 
t• O t -p,t-d, 

Thus the proof is completed. D 

4. Stochastic processes generated by functions of the Levy Laplacian 

In this section, we give stochastic processes generated by functions of the extended Levy 
Laplacian by considering the stochastic expression of the operator G[X1]. 

Let {X1; t 2: 0} be a stochastic process such that {G[Xt]; t 2: 0} is an equi-continuous semi
group of class (Co) and satisfies the condition of Theorem 5. Take a smooth function rrr EE 

with T/T = J1'r on T. Put G[X1) = SG[X1Js-1 on S[E-p,oo] with the topology induced from E-p,oo 

by the S-transform. Then by Theorem 5, {G[X1]; t 2: 0} is an equi-continuous semigroup of 
class (Co) generated by the operator h(-.6.L), where LlL means SALs-1 • 

Theorem 6. Let F be the S-transform of a generalized white noise functional in E-p,oo· Then 
it holds that 

G[X1]F({) = E[F({ + X1T1T)), {EE. 

Proof Put F({) = fr• f(u)ei{(ui) · · · ei{(u,)du with f E E~n. Then we have 

E[F({ + X1rrr)] = fr• f(u)ei{(u,) · · · ei{(u.}E[imx']du 
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= i(#i)1F({) = G[X1]F({). 

Let F = I:~o Fn E S(E-p,00]. Then for any n EN U {O}, Fn is expressed in the following form: 

where (JINl)N is a sequence of functions in E~"- Hence we have 

00 

L E[IFn({ + X17tr)I] 
n=O 

f: E [IimN• oo lfr• j[Nl(u)ei{(u1) ... i{(u.)eiX,J)T(u1) ... eiX,'lT(u,)dul] 
n=O 

f: Iim I r JINl(u)ei{(u1) ... ei{(u.)dul 
n=ON-+co lrn 
00 

L IFn({)!. 
n=O 

Since Fn E S[E-p,oo], there exists some <I>n E E-p,oo such that Fn = S[<I>n] for any n. By the 
characterization theorem of the U-functional (see [12,20,21, etc]), we see that 

00 00 

L IFn({)I :s L ll<I>nll-pll'Pellp 
n=O n=O 

for all { EE and some f. <": 1, where 'Pe(x) =: exp{(x,{}} : . Therefore by the continuity of 
G[X1] we get that 

Thus we obtain the assertion. D 
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n=O 
00 

L G[Xt]Fn({) 
n=O 

G[X1]F({). 



Theorem 6 says that the infinite dimensional stochastic process {( + XtT/T;t 2: O} is generated 
by h(-AL). 

For any <I> E (E)* and 1/ E E, the translation Tq'P of <I> by 1/ is defined as a generalized white 
noise functional Tq'P whose S-transform is given by S[rq<I>](() = S[<I>](( + 11), ( E Ee. Then we 
can translate Theorem 6 to be in words of generalized white noise functionals. 

Corollary 7. Let 4' be a generalized white noise functional in E-p,oo• Then it holds that 

G[Xt]<I>(x) = E[rx,'7T41(x)]. 

By Corollary 7 we can see that {rx,IJT;t 2: O} is an operator-valued stochastic process and 
{E[rx,1JT)i t 2: O} is an equi-continuous semigroup of class (Co) generated by h(-AL). 

Example: Let {Xti t 2: O} be an additive process with the characteristic function cx,(z) of 
Xt for each t 2: 0 given by 

cx,(z) = exp [t{imz- -2v z2 + { (ei•u-1-izu) dv(u) + { (eizu _ 1) dv(u)}], 
/lu\<l /lu\2:1 

where m ER, v 2: 0 and vis a measure on R satisfying v( {O}) = 0 and fa(l /\ lul2)dv(u) < oo. 
Then the function 

h(z) = imz - ~z2 + { (ei•u -1- izu) dv(u) + { (eizu - 1) dv(u} 
2 /lu\<l /lu\2:1 

satisfies conditions of Proposition 5 and the condition (P). Therefore {G[Xt);t 2:: O} is an equi
continuous semigroup of clajCo) generated by h(-AL), The stochastic process {( +XtT/Ti t 2: 
O} is also generated by h(-AL), 

In particular, if {Xl'; t 2: O}, 0 < 'Y ::, 2, is a strictly stable process with the characteristic 
function cx1(z) of x;r given by cx1(z) = e-t\•I', then {( + Xl'T/T;t 2: O} is generated by 

-(-AL)'. 

5. A relationship to an infinite dimensional Ornstein-Uhlenbeck process 

Put 

for q 2: 0 and e 2: 0. Define a space [EJ 9,t by the completion of [E]9,t with respect to the norm 
11 · ll(EJ •. , given by 
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for tp = E~o lnUn) E (E)'. Then [E]q,l is a Hilbert space with norm II· lliEJ,,,· It is easily 

checked that (E]q,l C (E)q for any q ;?: 0. Put [E]oo,t = nq2'.0 [E]q,l with the projective limit 
topology and also put [E]oo,oo = nl2'.1 [EJoo,l with the projective limit topology. 

Define an operator K on [E]00 ,00 by 

Then we have the following: 

Proposition 8. Let p ;?: 1. Then the operator K is a continuous linear operator from (E] 00 ,00 

into E-p,oo• 

Proof Let p ;?: 1. Then for each e ;?: 1 we can calculate the norm IIIK[ip]lll:.p,t of K(ip] for 

tp = E::":o lnUn) E [E]oo,oo as follows: 

jjjK[c,o]lll:.p,l t ( 1 + 1;y jj(: (eix)®n :, fn)ll:.p 

~ t (1 + l;l)t~l! k1,-~=0j~(2k; +W2p ll~l~ (Fv,ek, © ···©ek,)12' 
~ n ®v· 

where II= (111, ... , lln) E NU{O}, jvl = 111+ · -+vn, 11! = 111! ... Vn! and Fv = fR• f(u)®;=16,.;' du. 
Since there exists q ;?: 0 such that 

I: IT (2k; + 2)-2P I L ~ (Fv, ek, 0 · · · 0 ek,) 1
2 

k1 , ... ,k,=O J=I lvl=l 

~ lfnl~n2e(L ~) 2
(I:(2k+2)-2Pjekj:.q)t, 

Jvl=l k=O 

we get that 

IIIK[cp]llj:.p,l ~ t ( 1 + ,;, r en' E:'=o(2k+2)-2(p+9)l/nl~ 

~ t (1+ 1; 1)\n'/21/nl~-

This is nothing but the inequality: 

IIIK[ipJlll-p,l ~ ll'Pll1EJ,,, · 

Thus the proof is completed. D 
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The operator K implies a relationship between 11L and the number operator Non (E)' given 
by 

00 

Nil>= I>In(/n) for <I>= L~=Oln(Jn) E (E)*. 
n=O 

The operator K implies also a relationship between the semigroup { G[Xl]; t ;:: 0} and the 
E'-valued Ornstein-Uhlenbeck process: 

U1 = e-1x + ./2 l e-<t-,)dB(s), t;:: 0, 

where {B(t); t ;:: O} is a standard E'-valued Wiener process starting at 0. Since [E]00 ,00 is in 
(E), we can apply the same proofs of Proposition 5 and Theorem 6 in [27] to get the following 
results. 

Proposition 9. For any <p E [E]00,00 we have 

Theorem 10. For any <p E [E]00,00 we have 

G[Xf]K[,p](x) = K[E[,p(Uf;ITI)]]. 
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