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Theta lifting of two-step nilpotent orbits 
for the pair O(p, q) x Sp(2n, JR) 

Introduction 

Kyo Nishiyama 

Faculty of Integrated Human Studies 
Kyoto University 

Sakyo, Kyoto 606-8501, Japan 

E-mail: kyoGmath.h.kyoto-u.ac.jp 

Let G be a linear reductive Lie group which is a subgroup in its complexification Ge, We 
denote the Lie algebra of G by g0 , and its complexification by g = C ®JR g0 • We will use 
the similar notation for any linear Lie group L; thus, Le denotes its complexification, 10 

its Lie algebra, and I the complexification of 10 . 

Take a maximal compact subgroup K of G. Then K determines a Cartan decomposi­
tion g0 = t0 EB s0 and its complexification g = e EB s. The adjoint action of Kc preserves s, 
and the set of all nilpotent elements N. in s. It is well known that N. is a normal variety 
and that it has finitely many Kc-orbits ([2)). 

Now consider a dual pair {G, G') = (O(p, q), Sp(2n, JR)) (see [1] for the properties of 
dual pairs). In this note, we define certain double fibration maps of nilpotent varieties for 
O(p, q) and Sp(2n, JR). We use the double fibration maps to get a correspondence between 
nilpotent Kc-orbits ins and nilpotent Kc-orbits ins', which is called a "theta lift". We 
describe the theta lifts of two-step nilpotent orbits in N.,, where g' = t' EB s' is a Cartan 
decomposition for G' = Sp(2n, IR) (Proposition 1.3). 

If a nilpotent Kc-orbit O c s is the theta lift of a nilpotent Kc-orbit CJ' c s', 
it is interesting to describe the regular function ring C[O] by means of C[ 0']. Our 
main results are descriptions of the Kc-module structure of C[O] in terms of the double 
fibration maps (Theorem 2.4 and Proposition 3.4). In the course of the proof, we realize 
the closure O of the orbit as a geometric quotient of the fiber of O' (Proposition 3.3). As 
an application of these results, we get a formula of branching coefficients between different 
kind of classical groups (Corollary 3.5). 

The Kc-module structures of nilpotent orbits may reflect the K-type decompositions 
of the corresponding admissible representation of G via orbit method ( or geometric quan­
tization). Thus we can expect to extract information on the admissible representations 
from the geometry of nilpotent orbits. This will be treated elsewhere. 

278 



Acknowledgments. The author thanks Cheng-Bo Zhu for the discussions on the 
double fibration maps. Some of the ideas used here are due to him. He also thanks 
Takuya Ohta and Hiroshi Yamashita for stimulating conversations. 

1 Double fibration of nilpotent varieties 

Let G == O(p, q) be an orthogonal group of signature (p, q). Then a maximal compact 
subgroup K is isomorphic to O(p) x O(q). We realize them as follows. 

G == O(p, q) == {g E GL(p + q, JR) I tglp,99 == lp,9}, l _ (lp O ) p,q - 0 -19 ' 

( O(p) 0 ) 
K = O(p) x O(q) = O O(q) . 

Then the corresponding (complexified) Cartan decomposition is given by 

{( a /3) aEAltp(C) } 
g= 113 'Y I 'YEAltg(C) ,/3EMp,q(C) 

( Altp(C) 0 ) ( 0 
= 0 Alt q(C) EB I Mp,q(C) 

Hence we identify .s with Mp,9(C) via 

Mp,9(C) 3 /3 t-t ( 1~ ~) E .s. 

Denote the set of nilpotent elements in .s by N.. Then, by the above identification, 
/3 E Mp,9(C) belongs to N. if and only if 1/3/3 is a nilpotent matrix, if and only if /3 1/3 is 
so. 

Next we consider the symplectic group G' == Sp(2n, JR) of rank n. A maximal compact 
subgroup K' is isomorphic to the unitary group U(n) of size n. To realize I(' in a simple 
way, we define Sp(2n, JR) in a slightly different manner from the usual one. Namely, we 
put 

G' = U(n,n) nSp(2n,C) 

= {g E GL(2n,C) I 1'§ln,n9 = ln,n, 1gJg = J}, 

where 

( ln O ) 
ln,n == Q -ln , 

Then G' is isomorphic to Sp(2n, IR.), and 
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is a maximal compact subgroup. The corresponding Cartan decomposition is given by 

We identify s' with Sym n ( C) EB Sym n ( C) via 

Symn(C)EBSymn(C) 3(C,D)t-t (~ ~) Es'. 

Then (C, D) belongs to the nilpotent variety N., if and only if C • D is nilpotent, if and 
only if D • C is so. 

Now we shall define the double fibration maps. Let W = Mp+q,n(C) be the space of 
all the (p + q) x n-matrices. We express a matrix Z in W as 

A E Mp,n(C), B E Mq,n(C). 

We define two maps tp and VJ by 

Put 

tp :W 3 Z t-+ A tB E Mp,q(C) = s, 
VJ :W 3 Z t-+ ( tAA, tBB) E Symn(C) EB Symn(C) = s'. 

Mc= GLp(C) x GLq(C) :) O(p, C) x O(q, C) = Kc, 

Mc= GLn(C) x GLn(C) :) AGLn(C) = Kc, 

and define Mc x Mc-action on W by 

where 

m = (m1,m2) E Mc= GLp(C) x GLq(C), 

m' = (m~, m~) E Mc= GLn(C) x GLn(C). 

We introduce Mc-action on s (resp. Mc-action on s') so that 'P : ·W -+ s is an Mc x Kc­
equivariant map (resp. VJ: W-+ s' is a Kc x Mc-equivariant map). Note that the induced 
action is compatible with the adjoint Kc-action on s (resp. Kc-action on s'). As a GLn(C)­
module, the second component Symn(C) of s' is regarded as the contragredient of the 
first component. By this reason, sometimes we will write 51 = Symn(C) EB Symn(C)•. 

Our first observation is the following. 
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Lemma 1.1 rp o 1/J-1 and 1/J o rp-1 preserve nilpotent elements: 

PROOF. This is an easy consequence of direct calculations. Q.E.D. 

Definition 1.2 Let O (resp. O') be a nilpotent Kc-orbit in s (resp. Kc-orbit in s'). If 
0 = rp('I/J-1 (0')) holds, we say that O is the theta lift of 0'. 

Note that rp('I/J- 1(0')) is an affine closed cone. 

Proposition 1.3 Assume that 2n < min(p,q). Let Ofr,s) = O~ •.• C N., be a nilpotent 
Kc-orbit through 

Then there exists a nilpotent Kc-orbit O C N. for which rp(1/J-1(0fr,,J)) = 0 holds, i.e., 
the theta lift of Ofr,s) exists. We denote O = O[n;r,s)· 

Remark 1.4 We allow r = s = 0, which means that Ofo,oJ = {O}. Note that Ofr,,J 
exhausts all the two-step nilpotent orbits in s'. 

PROOF. We will specify the nilpotent Kc-orbit O = O[n;r,sJ in the end of the proof. 
To prove the proposition, it suffices to prove that 1/J-1(0fr,,J) is irreducible. In fact, if 

it is irreducible, then rp(1/J-1(0fr,,))) is an irreducible closed set, and is Kc-stable in N.. 
Since N. contains only a finite number of Kc-orbits, it must be the closure of a single 
orbit. 

Let us see that 1/J-1 ( Ofr,,J) is irreducible. We call 

'Ri,,k = {A e M,,,k(C) I 1AA = o} 

a null cone of size (p, k). It is known to be irreducible if 2k < p. Thus, if we put 

Nr,, = { Z = (~) E WI A= ( ci I~) 1 B = (~I ~ ) , 
where E E 'Jl,,-r,n-r and F E ffiq-,,n-s} 

then Nr,s is irreducible and is contained in the fiber of >-r,s• Moreover, under the condition 
that 2n < min(p, q), it is easy to check that the exact fiber of >.,,s is given by 

Kc. Nr,s = 1/J-1 (>-r,s), 

281 



where Kc c::: SO(p, C) x SO(q, C) is the identity component of Kc, Now we see that 

(Kc X Kc) . N,,s = 'lj;- 1(0fr,s]), 

is irreducible, and hence 'lj;-1(0fr,s)) is irreducible. 
We can take the following matrix as a representative of a generic Kc x Kc-orbit in 

'1f'-l(Ofr,,]). 

Z= (~) E W; 

0 0 ) ( •·-· n EM,,.(q A= ln-r 
E Mp,n(C), B= 0 (1.1) 

il~-r il~-• 

By the above arguments, we know that the theta lift of Ofr,s] should be exactly the Kc­
orbit through ip(Z), where Z is given in (1.1). Q.E.D. 

By the above proof, we conclude that the theta lift O[n;r,s) of Ofr,,) consists of at most 
three-step nilpotents. It is two-step nilpotent if and only if r = s = 0. Thus, we see that 
the theta lift of a k-step nilpotent orbit is a (k + 1)-step nilpotent orbit. 

2 Regular function ring of nilpotent orbits 

In this section, we always assume that 2n < min(p,q). 
Let Ofr,,J = O~ •.• (r + s ~ n) be a nilpotent Kc-orbit in N., given in Proposition 1.3. 

We denote the corresponding theta lift by O[n;r,,), which is a nilpotent Kc-orbit in N.. 
We consider the case s = 0 in the following. Then we have 

Ofr,o] = {(C,O) Es' ICE Symn(C),rankC = r}, 

and it is known that Ofr,o) is the associated variety of an irreducible unitary highest 
weight representation of Sp(2n, R) (or its metaplectic double cover). In particular, 
Of n,OJ ~ Sym n ( C) is the associated variety of a holomorphic discrete series representation 
of Sp(2n, JR). 

Since Ofr,oJ is a Kc-orbit, the regular function ring C[ Of,,oi) carries a natural Kc­
module structure. Note that Kc= GLn(C). We denote by A the set of all partitions of 
length ~ k, i.e., 'Pk = {>, = (.X1, ... , .Xk) E zk I .X1 ~ .X2 ~ • • • ~ .Xk ~ O}. 

Theorem 2.1 The regular function ring C[ Of,,oiJ is decomposed as 

C( Ofr,oil ~ Ee rv: (as a GLn(C)-module), 
J.E1', 

where Tµ denotes an irreducible finite dimensional representation of GLn(C) with highest 
weight µ, and Tµ • is its contragredient. 
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PROOF. See [5], for example. 

Note that the fibration map 

1/1: W = Mp,n(C) X Mq,n(C) -+ Symn(C) X Symn(C)* = 51 

is a product of two maps of the same kind, 

1/lp: Mp,n 3 A >-7 tAA E Symn(C) and 

1/lq: Mq,n 3 B >-7 1BB E Symn(C)*. 

Q.E.D. 

Since Sp(2n, R.)/U(n) is a Hermitian symmetric space, s' decomposes into two pieces 
of Kc-stable subspaces s' = s~ EB s'..., which we can identify with the decomposition 
s' = Symn(C) EB Symn(C)•. Our orbit Ofr,o] lives in 5~ alone. Therefore, if we put 

=1r,0J = 1/l-1(Ofr,o]), it is decomposed as a product of closed affine cones 

where !Jlq,n denotes the null cone given in the proof of Proposition 1.3, and 

Recall that 

3~) = 1/l;'(Ofr,o]) = {A E Mp,n(C) I tAA E Ofr,o]} 

= {A E Mp,n(C) I rank tAA $ r}. 

The following lemma is now clear. 

Lemma 2.2 The fiber =1r,0J = 7/J-1(Ofr,o]) is a product 3!J'l x!Jlq,n, and hence it is KcxMc,­
stable. The regular function ring breaks up into 

C(21r,oi) c:= C(2~>] t8I C(1Jt9,n] 

as an (O(p, C) x GLn(C)) x (O(q, C) x GLn(C))-module. 

The regular function ring C( 1Jt9,n] consists of precisely the O(q, C)-harmonic polyno­
mials in C( M9,n] (see [4], for example). As a consequence, it decomposes in a multiplicity­
free manner, 

C(IJtq,n] c:= Le o-tq) [81rµ (as an O(q,C) x GLn(C)-module), (2.1) 
µE'Pn 
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where aiq) denotes an irreducible finite dimensional representation of O(q, C) with highest 
weightµ. Let us decompose C[3~P)] as an O(p,C) x GLn(C)-module, 

C[2~Pl] ~ Lem(>., 17) £T},1') l8I r.,,* (as an O(p, C) x GLn(C}-module), (2.2) 
).,~ 

where m(>., 17) denotes the multiplicity. 
For >. E 'Pn, decompose an irreducible representation rlp) of GLp(C) restricted to 

O(p,C), 

(p)I ~ ~e bA (p) 
T). O(p,C) - L.., ~ O"~ ' (2.3) 

rJE1'n. 

where b~ denotes the branching coefficient. Note that 77 is also a partition of length ::; n. 

Lemma 2.3 The summation in (2.2) is taken over>., 17 E 'Pn; and the multiplicity m(>., 17) 
satisfies the following inequality, 

(2.4) 

where d).,~ denotes Kronecker's delta. Moreover, we have a decomposition 

C[2[r,oi] ~ Le m(>., 17) (at) l8I 0"1q)) l8I (r). • l8I rµ) (2.5) 
A,µ,qE'Pn 

as an (O(p, C) x O(q, C)) x (GLn(C) x GLn(C))-module, where m(>., 17) denotes the mul­
tiplicity given above. 

PROOF. Since 2~Pl is a closed subvariety of Mp,n, C[siJ'l] is a quotient of C[ Mp,n]. On 
the other hand, it is well known that C[ Mp,n] decomposes as 

(as a GLp(C) x GLn(C)-module). 

Therefore, we have 

C[ Mp,n] ~ Le b; O"t> l8I rln)* (as an O(p, C) x GLn(C)-module) . 
.\,qE'Pn 

Now the second inequality in (2.4) is clear. The first inequality follows from the fact that 
9'lp,n C 3iJ'l (cf. (2.1)). Q.E.D. 

284 



Theorem 2.4 We assume that 2n < min(p,q). Then the regular Junction ring of the 
theta lift O[n;r,oJ decomposes as 

C[ O[n;r,oi] '.:::'. LEB m(>.., 77) at> [8J o{q) (2.6) 
A111EPn 

as a Kc= O(p, C) x O(q, C)-module, where the multiplicity m(>,., 77) is given in (2.2) (cf. 
Lemma 2.3). 

We shall prove Theorem 2.4 in the next section. 

Corollary 2.5 (1) We have a multiplicity-free decomposition 

C[ O[n;o,oi] '.:::'. LEB of) [8J aiq) (cf. [4]). 
AE1'n 

(2) If we denote the branching coefficient of the restriction GLp(C) .j, O(p, C) by b~ (see 
(2.3)), the following decomposition holds. 

C[ O[n;n,oi] '.:::'. LEB b; a¥') [8J aiq)_ 
A,11E'Pn. 

3 Harmonic polynomials and geometric quotient 

In this section, we always assume that 2n < min(p, q) as in the former section. 
To prove Theorem 2.4, we study the induced algebra homomorphisms 

rp*: C[s] ~ C[W), and 1/J*: C(s'] ~ C[W]. 

Let us introduce a coordinate on s'. Take ( C, D) E s~ EB s'... = s', where C = ( C;j) and 
D = (D;j) are symmetric matrices. We use {C;j I 1 $ i $ j $ n} U {D;j j 1 $ i $ j $ n} 
as a coordinate on s'. Then 1/J* is given explicitly by 

p q 

1/J*(C;j) = LAkiAkji 1/J*(D;j) = LBliB1j, 
k=l 1=1 

where {A;j = Z;j 11 $ i $ p, 1 $ j $ n} U {B;j = Zp+iJ I l $ i $ q, l $ j $ n} is 
considered as a system of coodinate functions on W which extracts the (i,j)-th element 

of Z = (~) E Mp+q,n(C) = W. Note that the image of the coodinate functions via 'lj;* is 

precisely the fundamental invariants for Kc = O(p, C) x O(q, C), which generate all the 
Kc-invariants in C( W]. Thus 

is surjective. Moreover, we have 
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Lemma 3.1 Assume that 2n < min(p,q). Then the map 7/J*: C[s'] ---t IC[wtc is an 
isomorphism. 

Similarly, if we introduce a coordinate on s by the (k, l)-th element of X = (Xk1) E 
Mp,q(C) = s, we see that 

n 

cp*(Xkc) = L Ak;Bc;, 
i=l 

which is a fundamental invariant for Kc = G Ln (IC). Thus cp* : IC [ 5] • IC [ W tc is 
surjective by the similar arguments as above. Let S[n) = { X E Mp,q(C) I rank X $ n} be 
the determinantal variety of rank n. 

Lemma 3.2 Assume that 2n < min(p, q). Then the image of cp is precisely the determi­
nantal variety: cp(W) = S[n)· Thus the induced algebra homomorphism cp* : IC[ S[nJ] ---t 

C[wtc is an isomorphism. 

The proofs of the above two lemmas are almost immediate. We omit them. 

Proposition 3.3 Let O[n;r,•J be the theta lift of Of,,,]· Then O[n;r,a] is the geometric quo­

tient of the fiber =1,,•J = -rp- 1 ( Of,,,1) by Kc, i.e. 1 O[n;r,•J = =1r,,J/ / Kc- In particular, we 
have 

C[ Oln;r,,i) :::= C(B1r,,i)«c_ 

PROOF. Let J = I(B[r,s]) be the defining ideal of B[r,s) C W. Then, I = (cp•)- 1(J) is 

the defining ideal of O[n;r,,], since cp(B[r,,]) = O[n;r,s]• Recall that cp• : C[ s] • C[ W] K/: is 
surjective. 

C[ 5] <p* : surjection c[wtc 
projection 1 1 projection 

c[ O[n;r,,il = C[ 5] / [ ~ c[wtc!J«c 

Therefore, we get C[s]/I :::= IC[wtc!J«c. Note that IC[B1r,,i)«c = (IC[W]/J)«c ~ 
C[Wt"/J«c. Thus, the proposition is proved. Q.E.D. 

Let us consider the case where s = 0, and recall the decomposition (2.5). By the 
proposition above, we get 

C[ O[n;r,oi) :::= IC[B1r,0Jtc 

= Le m(>., 1)) ( at 181 aiq)) 181 (TA• 181 rµ).c,.aL.(C). 

A1µ,11E'Pn 
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By Schur's lemma, we have 

Therefore, the above formula becomes 

if>.. 'P µ, 
if>..=µ. 

C[ O[n;r,oJ] ~ Lai m(>.., 1/) a¥')~ aiq), 
>..,11E'Pn 

which finishes the proof of Theorem 2.4. 
Finally, let us assume that r = n, and express the multiplicity m(>.., 1/) by the 

Littlewood-Richardson coefficient c;,v, which is defined by the following formula 

Proposition 3.4 Let O[n;n,D] be the theta lift of the open Kc-orbit O[n,o] in .s~. Then we 
get a Kc-type decomposition 

"'[,;,-] ~ '"'ai ('"' .\ ) (p)"" (q) "- V[n;n,D] - L.., L.., c~. 2µ a~ "" a.\ . 
A,fJE'Pn µE'Pn 

Therefore, the multiplicity m(>.., 1/) in Theorem 2.,/ is given by 

m(>.., 1/) = L c~~2µ, 

µE'Pn 

forr = n. 

PROOF. In this case, we have :::;!fl = Mp,n· Let 1i be the space of all O(p, C)-harmonics 
in C [ Mp,n] . Then we have an isomorphism 

given by the multiplication map. Thus we get 

From the following two decompositions, 

1l ~ C['Y!,,,n] ~ Lai a¥') ~r/ (as an O(p,C) x GLn(C)-module), 
11E'Pn 

C[ .s'+J ~ Lai r2/ (as a GLn(C)-module), 
µE'Pn 
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we conclude that 

c[s~l] :::1-l®C[s~] 

::: LEB u);'l C8l ( Tq • ® T2µ •) 

::: LEB u);'l C8l LEB cq~ 2µ T;. • 

r, 1µEPn AE'Pn 

::: LEB ( L cq~ 2µ) u);'l C8l T;. •. 

A,qE'Pn µE'Pn 

Q.E.D. 

As an application of the above proposition, we get an interesting formula for the 
branching coefficient b~ (see (2.3) for definition). 

Corollary 3.5 If Zn< min(p,q), then we have 

b~ = L Cq~2µ for>., T/ E Pn, 
µE'Pn 

Remark 3.6 The branching coefficient b~ is naturally identified with the multiplicity of 
the K-type T;. in the holomorphic discrete series of Sp(Zn, JR) with the minimal K-type 
Tq, Thus, it does not depend on the particular value p, but only depends on>., T/ E Pn, 

PROOF. This follows from Corollary 2.5 (2). Q.E.D. 

4 Further results and comments 

Let us briefly discuss generalizations of the results above. 
First, we note that we can develop the similar theory interchanging the role of the 

pair (G, G'), if p + q ::; n holds. So, if one of the pair is very small (i.e., if the pair is in 
the stable range), we can define the theta lifting from the smaller member of the pair to 
the larger one. 

Almost all the arguments and results above are also valid for the other type I dual 
pairs with appropriate modifications. However, we must develop a new, unified language 
to describe them in general. For example, at present, we have to construct double fibration 
maps based on the case-by-case analysis. See the arguments in [6] for the pair U(p, q) x 
U(n, n). 

Though the double fibration maps defined here might seem quite ad hoc, we have a 
natural interpretation for them, using the kernels and the images of nilpotent elements 
(cf. [7], [3]). Also there may be another interpretation by using moment maps. These 
interpretations will be useful for a general theory. 
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Our correspondence of nilpotent orbits is intimately related to the theta lifts of repre­
sentations of Sp(2n, JR) to O(p, q). The orbits Ofr,o] treated in this note are associated to 
the unitary highest weight representations of Sp(2n, IR) {or its metaplectic double cover). 
In particular, Ofn,oJ corresponds to a holomorphic discrete series representation. There­
fore, the theta lift O[n;n,oJ should be associated to the theta lift of a holomorphic discrete 
series. See [8) for the theta lift of the trivial representation, which is associated to the 
trivial orbit Ofo,oJ = { 0}. 

Detailed discussions on the subjects commented above will appear elsewhere. 
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