
RIGHT:

URL:

CITATION:

AUTHOR(S):

ISSUE DATE:

TITLE:

GROWTH OF PETERSSON INNER PRODUCTS
OF FOURIER-JACOBI COEFFICIENTS OF
SIEGEL CUSP FORMS (Analytic, geometric
and $p$-adic aspects of automorphic forms
and $L$-functions)

PAUL, BIPLAB

PAUL, BIPLAB. GROWTH OF PETERSSON INNER PRODUCTS OF FOURIER-JACOBI COEFFICIENTS OF SIEGEL CUSP
FORMS (Analytic, geometric and $p$-adic aspects of automorphic forms and $L$-functions). 数理解析研究所講究録
2021, 2197: 171-181

2021-08

http://hdl.handle.net/2433/265788



171

GROWTH OF PETERSSON INNER PRODUCTS OF FOURIER-JACOBI 
COEFFICIENTS OF SIEGEL CUSP FORMS 

BIPLABPAUL 

1. INTRODUCTION 

In this article we would like to describe some recent progress towards the generalized 

Ramanujan-Petersson conjecture (see subsection 2.4 for the statement of the conjecture) for 

the Petersson norm of Fourier-Jacobi coefficients of a Siegel cusp form. Next section is 

preliminary section on Siegel modular forms and Jacobi forms (of integral index) which 

mainly serves the purpose of fixing the notations and we state the precise conjecture at 

the end of this section. Section 3 is the main part of the article and is divided into three 

subsections. Besides proving the conjecture on average for Siegel cusp forms of arbitrary 

degree, subsection 3.1 discusses proof of the conjecture for the Saito-Kurokawa lifts and for 

the Duke-Imamoglu-Ikeda lifts. In subsection 3.2 we describe Omega results and lower 

bounds for the Petersson norm of these Fourier-Jacobi coefficients. Some related results 

for the Petersson scalar products of Fourier-Jacobi coefficients of two distinct Siegel cusp 

forms are discussed in the last subsection. Some of the results in this subsection are condi

tional. We end this subsection as well as the article by stating some open questions in this 

theory. 

There are certain applications of these results in the arithmetic theory of Fourier co

efficients of Siegel cusp forms. But we do not discuss any applications of our results in 

this article. Some of these applications are under preparation and the details will appear 

elsewhere. 

2. PRELIMINARIES 

2.1. Siegel modular forms. For any positive integer n 2'. 1, we denote the Siegel modular 

group of degree n by r n which is defined as follows: 

r n := { M := ( ~ ~) E M2n(Z) I Mt JnM = Jn}, 

2010 Mathematics Subject Classification. 11F46, llFSO. 
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where Jn := (-~n ; ) . The Siegel upper half-space of degree n will be denoted by 1ln 

and is defined by 

1ln := { Z E Mn(C) I zt = Z, 'J(Z) > 0 (positive definite)}. 

Note that 1{1 = 1l and r 1 = SL2(Z). The natural action of r non 1ln is given by 

r n X 1ln -+ 1ln 

(')'=(~ ~),z) M ')'Z:=(AZ+B)(CZ+D)-1 . 

Definition 1. A holomorphic Junction F : 1ln -+ C is said to be a Siegel modular form of weight 

k and of degree n for r n if 

(1) F('YZ) = det(CZ + D)kF(Z)forall ')' E rn and Z E 1ln· 

(2) when n = l, the function Fis bounded in any domain {Z E 1l1 I 'J(Z) > c} for any 

C > 0. 

By Mk(r n) we denote the space of all Siegel modular forms of weight k for r n· Any 

FE Mk(r n) has a Fourier expansion 

F(Z) := L a(T)e21ritr(TZ)' 

where En := {T = (tij)nxn I rt = T, tii, 2tij E z, T ::>- O}. Write Sk(r n) for the space of 

Siegel cusp forms of weight k for r n which is defined by 

For further details on the basic facts of Siegel modular forms we refer to [l, 8]. 

2.2. Jacobi forms. Let H1,n(lR) be the real Heisenberg group of characteristic (1, n), that is, 

H1,n(JR) := lR2n X JR = {[X, 1,;] IX E JR2n, I\; E lR} 

with the group structure: 

[X1, 1,;1] * [X2, K2] := [X1 + X2, K1 + K2 + X1JnX~] 

for any [Xi, 1,;i] E H1,n(lR) (i = 1, 2). By G'[, := Spn(lR) ~ H1,n(lR) we denote the Jacobi 

group of characteristic (1, n) and the group law is given by: for 9i := (Mi, [Xi, Kil) E G[, 

(i=l,2), 

9192 := (M1M2, [X1M2 + X2, K1 + K2 + X1M2JnX~]). 

The group G[, acts on 1ln X en as follows: 

( (~ ~) ,[X,!i]) o(T,z) := ((AT+B)(CT+D)-1,(z+.>.r+µ)(CT+D)- 1), 
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where X = (>., µ) E lRn x lRn. Let us put r;{ := r n t>< H 1,n(Z). With these notations we 

ready to define Jacobi forms. 

Definition 2. Let m ~ 0, k be integers. A holomorphic function <p : 1in x en --+ e is said to be a 

Jacobi form of degree n, index m and weight k if it satisfies the following conditions: 

(1) foranyry := ( (~ ~), [(>.,µ),I'£]) Er;{ we have 

<f>('yo(r,z)) = exp(21rim((Cr+D)-1C[(z+>.r+µ)t]-r[>.t]-2>.zt)) 

x det(Cr + Dl<f>(r, z). 

Here for matrices X of size m x r and A of size m x m we write A[ X] for xt AX. 

(2) the function <p has a Fourier expansion of the form 

with aq,(T, r) = 0 unless 4mT - rtr ~ 0. Here IJ1n is given by 

The function <p is called a Jacobi cusp form if aq,(T, r) = 0 unless 4mT - rtr > 0. 

The complex vector space of Jacobi cusp forms of degree n, weight k and index m is 

denoted by Jt';;(r;{). 
Let</>, 7/J E Jt';;(r;{). Then the Petersson inner product of <p and 7/J is defined by 

where r = u + iv E 1in, z = x + iy E en. It is known that the Petersson inner product 

defines a hermitian inner product on Jt';;(r;{). For basic facts on Jacobi forms we refer to 

[3, 22]. 

2.3. Fourier-Jacobi expansion of Siegel modular forms. Let Z = (~ :,) E 1in, where 

TE 1in-l, Z E Mn-1,1(<C) and 7 1 E 1{. Then for any FE Sk(r n) one has 

00 

F(Z) =: L <f>m(r,z)e21rimr'. 
m=l 

This is expansion is referred to as Fourier-Jacobi expansion of F. It is known that <f>m is a 

Jacobi cusp form of weight k, index m and of degree n - l. 
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Observations: When n = 1: Fourier expansion of F and Fourier-Jacobi expansion of F 

coincide and cl>m is the m-th Fourier coefficient of F. In this case, by famous Ramanujan

Petersson conjecture (which is a theorem by Deligne's work), one knows 

l4>ml 2 «F,c mk-l+c for any E > 0. 

2.4. Generalizations of Ramanujan-Petersson conjecture. There are three conjectures in 

literature which can be viewed as generalizations of the Ramanujan-Petersson conjecture 

in the theory of Siegel modular form. 

(1) Conjecture for Hecke eigenvalues: When F E Sk(r n) with (k > n 2: 2) is a Hecke 

eigenform with Hecke eigenvalues >-.F(m) for any positive integer m. For any E > 0, 

one expects 

for all r 2: 1. This conjecture is originally stated in terms of Satake parameters and 

this equivalent form can be found in [18]. 

(2) Conjecture for Fourier coefficients: Let F E Sk(r n) be a Siegel cusp form with 

Fourier coefficients a(T). Then for any E > 0 we expect 

This conjecture is due to H. L. Resnikoff and R. L. Saldana [20, Conjecture IV]. 

(3) Conjecture for Fourier-Jacobi coefficients: Let FE Sk(r n) be a cusp form with the 

Fourier-Jacobi coefficient 4>m form 2: 1. Then for any E > 0 we expect 

This conjecture was made by W. Kohnen in [10, p.134] for degree n = 2 and in [11, 

p.718] for higher degrees. 

The main aim of the lecture was to report on some recent progress in the direction of the 

Conjecture 3 for Fourier-Jacobi coefficients and its related questions. We shall not discuss 

other two conjectures in this note. 

3. RESULTS: OLD AND NEW 

3.1. Results towards generalized Ramanujan-Petersson conjecture. Let F, G E Sk(r n) 

be two Siegel cusp forms with the Fourier-Jacobi coefficients cl>m and 'l/Jm respectively. A 

variant of classical Hecke's argument shows (see [12, 14, 21]) that 

(1) 

Recently, W. Kohnen and J. Sengupta [13] showed that Conjecture 3 is true on average 

when degree n = 2. More precisely: 
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Theorem 1 ([13], particular case). Let F E Sk(r2) be a cusp form with Fourier-Jacobi coefficients 

<Pm(m 2: 1). Then 

L II <Pm 11 2 «F Nk. 
m~N 

Remark 2. The result of W. Kohnen and J. Sengupta is for cusp forms on the subgroup 

r2,o(M) := { (~ ~) E r21 C = OmodM}. 

To keep the exposition uniform we stated the theorem only for the group r 2 . 

The proof of Theorem. 1 is elementary and the main idea is to use Parseval' s formula and 

clever choice of parameters. The proof works in a similar way as that of elliptic modular 

forms. In a joint work with B. Kumar [16], we generalized their method to show that the 

average Ram.anujan-Petersson conjecture for Fourier-Jacobi coefficients is true for arbitrary 

degree. 

Theorem 3. [16] Let FE Sk(r n) with the Fourier-Jacobi coefficients { <Pm}mEN• Then 

L II <Pm 11 2 «F Nk. 
m~N 

In the above mentioned article [13], W. Kohnen and J. Sengupta also proved Conjec

ture 3 for an Hecke eigenform. FE Sk(r2) lying in the Maass subspace. 

Theorem 4. [13] Let F E Sk(r2) be a Hecke eigenform of even weight k lying in the Maass 

subspace. Then 

One of the main ingredients to prove this theorem. was a result of W. Kohnen and N.P. 

Skoruppa [12] which states 

II <Pm 11 2 = >.(m) II </J1 11 2, 

where >.(m) is the mth Hecke eigenvalue of F. By the Saito-Kurokawa conjecture (which 

is a theorem. due to the works of H. Maass, A N. Andrianov and D. Zagier; see [31), 

one knows that there exists a normalized Hecke eigenform. f(z) = ~m21 a1(m)e21rimz E 

S2k-2(r1) such that the following holds: 

(2) ~ >.(m) = ((s - k + l)((s - k + 2) . L( J) (~( ) ) 
~ m 8 ((2s - 2k + 4) 8 ' 8 » 1 · 
m=l 

Here L(s, f) := ~m21 a1(m)m-s is the Hecke £-function attached to f. Exploring the 

above relations and using Deligne bound la1(m)I «e mk-3/2+e (for any E > 0), one can 

drive the result. 

In fact, more careful analysis will lead to the following theorem.. 
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Theorem 5. [16] Let k be a positive even integer and F E Sk(r2) be a non-zero cusp form lying 
in the Maass subspace and having <Pm (m 2: 1) as the Fourier-Jacobi coefficients. Then there is an 
absolute positive constant c such that 

2 kl (y'Iogm) 
II c/Jm II «F m - exp cl 1 . 

og ogm 

Further, B. Kumar and the author proved a strong version of Conjecture 3 for Duke

Imamoglu-Ikeda lifts (see T. Ikeda [6] for the details about this lift). Precisely: 

Theorem 6. [16] Let n, k be even positive integers such that n 2'. 4 and k > n+ l. Let F E Sk (I' n) 
be a Hecke eigenform which is a Duke-Imamoglu-Ikeda lift and having Fourier-Jacobi coefficients 

c/Jm (m 2: 1). Then 

The proof makes use of the following explicit relation due to H. Katsurada and H. 

Kawamura [7]. 

Theorem 7. [7, Main theorem] Let n, k E 2N be such that k > n +land F E Sk(r n) be a 

cuspidal Hecke eigenform which is a Duke-Imamoglu-Ikeda lift of a normalized Hecke eigenform 

f E S2k-n (r 1). Then we have 
00 

(3) ((2s-2k+2n) L 11 c/Jm 11 2 m-s = II c/J1 11 2 ((s-k+l)((s-k+n)L(s,J) (R(s) » 1). 
m=l 

Here ( ( s) denotes the Riemann zeta function. 

Remark 8. So Jar we know that Conjecture 3 is true on average for arbitrary degree and the con
jecture is true for the lifts, that is, the Saito-Kurokawa lifts and the Duke-Imamogle-Ikeda lifts. But 
our knowledge towards Conjecture 3 for non-lifts is limited. To the best of author's knowledge, the 
best known unconditional result in this direction is 

II c/Jm 11 2 «F,e mk- 4~~1 +e (E > 0) 

see [9, 11]. Hence the conjecture is widely open in general. 

3.2. Omega results and lower bounds. It seems to be natural to ask the following: 

Question: Is the conjectural bound II c/Jm 11 2 «F mk-l+e (E > 0) optimal, that is, does 

there exist any Omega result? 

The main aim of this subsection is to discuss some results which answer this question. 

Consider the Dirichlet series: 

D(s,F) 
00 II c/Jm 11 2 

.- ~ ~~ for R(s) » 1. 
L......, ms 
m=l 
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Hecke bound (1) implies that the series D( s, F) converges absolutely in R( s) > k + 1. It is 

known (see W. Kohnen and N. P. Skoruppa [12] for n = 2 and T. Yamazaki [21] ( also see A. 

Krieg [14]) for arbitrary n 2: 2) that the function D(s, F) can be analytically continued to 

whole complex plane as a meromorphic function and D(s, F) has a simple pole at s = k. 

Hence the following bound is not possible: 

II cf>m 11 2 «F mk-c, 

for any a> 1. 

In fact, using analytic properties of D(s, F) with a classical theorem. of Landau (see, for 

example, [17, Theorem.1.7]), W. Kohnen [11] showed the following theorem.. 

Theorem 9. [11] Let F E Sk(r n) be a non-zero cusp form. Then there is an explicit constant 

cp > 0 depending on F such that both the inequalities 

(c/>m, c/>m) 2: Cp mk-l and (c/>m, c/>m) < cp mk-l 

hold for infinitely many m 2: 1. 

In particular, we have 

limsup II 4>;:i_f > 0. 
m➔oo m 

We recall from. the theory of elliptic modular form. (that is, for n = 1) that R. A. Rankin [19] 

proved 

1. lc/>ml 2 
1m sup~ = oo. 
m--+oo m 

The analogue of Rankin's result is not true in general for arbitrary degree n 2: 2. In fact, 

when F E Sk(r n) (n, k E 2N with k > n + 1 and n 2: 4) is a Hekce eigenform. which is a 

Duke-Im.am.oglu-Ikeda lift, Theorem. 6 gives 

limsup II 4>;:i_f < oo. 
m➔oo m 

On the contrary, when n = 2 and F is a Saito-Kurokawa lift, one has the following. 

Theorem 10. [16] Let F E Sk(r2) be a non-zero cusp form lying in the Maass subspace. Then 
there are positive constants c (absolute), c1 (depending on F) and infinitely many m 2: 1 such that 

2 k 1 ( ✓logm) II cf>m II 2: c1 m - exp c1 l . 
og ogm 

The proof uses a recent result of S. Gun, the author and J. Sengupta [5] about Hecke 

eigenvalues of the Saito-Kurokawa lifts, Kohnen-Skoruppa relation 

II c/>m 11 2 = >.(m) II c/>1 11 2 

and an idea of R. A. Rankin. 
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For an arbitrary non-zero cusp form., the trivial lower bound for the Petersson norm. of 

the Fourier-Jacobi coefficient is II cpm II 2: 0 for all m 2: 1. Further, there are non-zero cusp 

forms F E Sk(r2 ) such that the first Fourier-Jacobi coefficient cp1 = 0. But this is not the 

case for lifts, that is, for the Saito-Kurokawa lifts and for the Duke-Im.am.oglu-Ikeda lifts. 

Exploring the explicit relations (2) and (3) one can deduce the following result. 

Theorem 11. [16] Let k 2'. 2 be even and FE Sk(r2) be a non-zero cusp form lying in the Maass 

subspace and having Fourier-Jacobi coefficients cpm, Then there exist positive constants c2 , c3 such 
that 

2 k l ( logm ) 11 cpm II 2: c2 m - exp -c3 1 1 • 
og ogm 

When n 2'. 4 is even with k > n + 1 and F E Sk(r n) is a Hecke eigenform which is a Duke
Imamoglu-Ikeda lift. Then 

II cpm 11 2 2: C5 mk-l 

for some positive constant c5 depending on F. 

3.3. Some related results and open questions. S. Gun and N. Kumar [4] generalized The

orem. 9 and proved similar results for arithmetic progressions. 

Theorem 12. [4] Let FE Sk(r n), n > 1 be a non-zero cusp form with Fourier-Jacobi coefficients 
cpm, Then for any q > 1, a E N with (a, q) = 1, there exist a positive constant CF,q and infinitely 

many m = a mod q such that 

Theorem 13. [4] Let FE Sk(r n), n > 1 be a non-zero cusp form with Fourier-Jacobi coefficients 
cj)m, Then for any q > 1, there are positive constant cF,q and b, c E N with (be, q) = 1 such that 

II cpm 11 2 > QCF,q mk-l 

holds for infinitely many m = b mod q and 

II cpm 11 2 < QCF,q mk-l 

holds for infinitely many m = c mod q. 

The proof of Theorem. 12 and Theorem. 13 combines ideas from. [11] and from. S. Bocherer, 

J. H. Bruinier and W. Kohnen [2]. For further details see the article of S. Gun and N. Ku

mar. In a recent work with B. Kumar, the author further generalizes the above results and 

proves the following. 

Theorem 14. [15] Let F, GE Sk(r n) with the Fourier-Jacobi coefficients { cpm}mEN and { 7Pm}mEN 
respectively and the Petersson inner products (cpm, Wm) are real for all m E N. Then we have the 
following. 
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(1) If (F, G) -1- 0, then there is a non-zero constant cp,a such that (c/Jm, 'lf;m) > cp,amk-l for 
infinitely many m EN and (c/Jm, 'lj;m) < cp,amk-l for infinitely many m EN. 

(2) If (F, G) = 0 and (c/Jmo, 'lf;m0 ) -I- 0 for some ma E N, then the sequence { (c/Jm, 'lf;m) }mEN 
changes sign infinitely often. 

Theorem 15. [15] Let p E N be a prime, a E N with (a, p) = 1 and F, G E Sk(r n) be non-zero 

cusp forms with Fourier-Jacobi coefficients { c/Jm}mEN and { 'lf;m}mEN respectively. Further assume 

that there are no real zeros of L ( s, x) in the region ( 0, 1) for any even non-trivial Dirichlet character 

x and (c/Jm, 'lf;m) E lR for all m E N. Then one can define a constant cF,G,p depending on F, G and 

p. If cF,G,p -1- 0, then both the inequalities 

(c/Jm, 'lf;m) > PCF,G,pmk-l and (c/Jm, 'lf;m) < PCF,G,pmk-l 

hold for infinitely many m with m = ±a mod p. 

In particular, Theorem 14 implies that if (F, G) -1- 0 then I (c/Jm, 'lf;m) I > lcF,almk-l for 

infinitely many m. But it does not seem to be the case when (F, G) = 0. In fact, if F, G E 

Sk(r2) (fork even) are Hecke eigenforms lying in the Maass subspace and (F, G) = 0 then 

(c/Jm, 'lj;m) = 0 for all m ;::::: 1 (see [12, Theorem 21). Further, there are examples of Hecke 

eigenforms F, GE Sk(r2) with Flies in the Maass subspace and G lies in the orthogonal 

complement of Maass subspace such that 

for any E > 0 and this upper bound is optimal (see [161). 

Open question 1. Find an optimal upper bound for l(c/Jm, 'lf;m)I when (F, G) = 0 and both 

F, G lie in the orthogonal complement of the Maass subspace. Note that, for arbitrary 

degree, using Cauchy-Schwarz inequality one has 

when one assumes Conjecture 3. But in view of above discussions it is not clear whether 

this bound is optimal when (F, G) = 0. 

Open question 2. Is it true that there exist infinitely many m = a mod p such that both 

the inequalities in Theorem 15 are true? Removing the hypothesis "there are no real zeros 

of L(s, x) in the region (0, 1) for any even non-trivial Dirichlet character x" is another 

question. 

Open question 3. As mentioned in Remark 8, Conjecture 3 is widely open in general. 
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