ENDOSCOPIC CONGRUENCES AND ADJOINT \＄L\＄－VALUES FOR GSp（4） （Analytic，geometric and \＄p\＄－adic aspects of automorphic forms and \＄LS－functions）

AUTHOR（S）：

OCHIAI，TADASHI

[^0]
ISSUE DATE：

2021－08
URL：
http：／／hdl．handle．net／2433／265778
RIGHT：

ENDOSCOPIC CONGRUENCES AND ADJOINT L-VALUES FOR GSp(4)

TADASHI OCHIAI

Contents

1. Congruence for GL_{2} over \mathbb{Q} by Hida and related results 1
2. Our results 4

References 8

In this article, we present the result of [LO18] on the congruence between cuspidal automorphic representations of GSp_{4}, which is a joint article with Francesco Lemma.

1. Congruence for GL_{2} over \mathbb{Q} by Hida and related results

In this section, we recall a result by Hida on the relation between the existence of nontrivial congruence for a given eigen cuspform f and the special value of adjoint L-function associated to f, which is a prototype of the work [LO18].

Let $f=\sum_{n=1}^{\infty} a_{n}(f) q^{n} \in S_{k}\left(\Gamma_{1}(M)\right)$ be a primitive cuspform, with $k \geq 2$ and we set $\mathbb{Q}_{f}:=\mathbb{Q}\left(\left\{a_{n}(f)\right\}_{n \geq 1}\right)$ and $r:=\left[\mathbb{Q}_{f}: \mathbb{Q}\right]$.
Definition 1.1. We denote by $L(s, f, \mathrm{Ad})$ the adjoint L-function defined by the Euler product

$$
L(s, f, \mathrm{Ad})=\prod_{\ell \nmid M}\left(1-\frac{\alpha_{\ell}}{\beta_{\ell}} \ell^{-s}\right)^{-1}\left(1-\frac{\beta_{\ell}}{\alpha_{\ell}} \ell^{-s}\right)^{-1}\left(1-\ell^{-s}\right)^{-1} \times(\text { bad Euler factors })
$$

which is absolutely convergent for $\operatorname{Re}(s)>1$. The L-function $L(s, f, \mathrm{Ad})$ is holomorphically continued to the whole \mathbb{C}-plane and does not vanish at $s=1$.

We also set

$$
Z(s, f, \mathrm{Ad})=\prod_{\sigma: \mathbb{Q}_{f} \rightarrow \overline{\mathbb{Q}}} L\left(s,{ }^{\sigma} f, \mathrm{Ad}\right)
$$

By the comparison theorem between the de Rham cohomology and the Betti cohomology, we have the Eichler-Shimura isomorphism as follows:

$$
\mathrm{ES}: S_{k}\left(\Gamma_{1}(N) ; \mathbb{C}\right) \xrightarrow{\sim} H_{\mathrm{par}}^{1}\left(\Gamma_{1}(N) ; \operatorname{Sym}^{k-2}\left(\mathbb{R}^{\oplus 2}\right)\right)
$$

where the symbol "par" means imposing local triviality at all parabolic subgroups of $\Gamma_{1}(N)$.
On the de Rham side, we define a \mathbb{C}-subvector space $S_{f} \subset S_{k}\left(\Gamma_{1}(N) ; \mathbb{C}\right)$ by

$$
S_{f}:=\underset{\sigma: \mathbb{Q}_{f} \rightarrow \overline{\mathbb{Q}}}{\oplus} \mathbb{C} f^{\sigma}
$$

On the Betti side, we define an \mathbb{R}-subvector space $W_{f} \subset H_{\mathrm{par}}^{1}\left(\Gamma_{1}(N) ; \operatorname{Sym}^{k-2}\left(\mathbb{R}^{\oplus 2}\right)\right)$ by

$$
W_{f}:=\operatorname{ES}\left(S_{f}\right)
$$

Note that W_{f} is an \mathbb{R}-vector space of dimension $2 r$.
We define a \mathbb{Z}-module L_{f} by

$$
L_{f}:=H_{\mathrm{par}}^{1}\left(\Gamma_{1}(N) ; \operatorname{Sym}^{k-2}\left(\mathbb{Z}^{\oplus 2}\right)\right) \cap W_{f}
$$

which is an intersection inside $H_{\mathrm{par}}^{1}\left(\Gamma_{1}(N) ; \operatorname{Sym}^{k-2}\left(\mathbb{R}^{\oplus 2}\right)\right)$ and $L_{f} \cong \mathbb{Z}^{2 r}$ is a lattice of W_{f}.
Definition 1.2. Let $\delta_{1}, \ldots, \delta_{2 r}$ be an \mathbb{R}-basis of S_{f} given by $\delta_{i}:=f^{\sigma_{i}}(i=1, \ldots, r)$ for $\sigma_{1}, \ldots \sigma_{r}: \mathbb{Q}_{f} \rightarrow \overline{\mathbb{Q}}$ and $\delta_{r+i}:=\sqrt{-1} \delta_{i}(i=1, \ldots, r)$. Choose (non-canonically) a \mathbb{Z}-basis $\beta_{1}, \ldots, \beta_{2 r}$ of L_{f}. Note that $\beta_{1}, \ldots, \beta_{2 r}$ is also an \mathbb{R}-basis of W_{f}.

We define a complex period $u_{f}=u_{f}\left(\beta_{1}, \ldots, \beta_{2 r} ; \delta_{1}, \ldots \delta_{2 r}\right) \in \mathbb{R}^{\times} / \mathbb{Z}^{\times}$by

$$
u_{f}=u_{f}\left(\beta_{1}, \ldots, \beta_{2 r} ; \delta_{1}, \ldots \delta_{2 r}\right):=\operatorname{det}\left(\left.\mathrm{ES}\right|_{S_{f}}\right)
$$

Put

$$
C(f):=\left(2^{-(k+1)}(k-1)!N \operatorname{Cond}\left(\psi_{f}\right) \varphi\left(\frac{N}{\operatorname{Cond}\left(\psi_{f}\right)}\right)\right)^{r} \times \frac{Z(1, f, \mathrm{Ad})}{\pi^{(k+1) r} u_{f}}
$$

where ψ_{f} is the Neben character of f. It is verified that $C(f)^{2} \in \mathbb{Z}$ in [Hi81a].
Theorem 1.3 (Hida [Hi81a]). Let $f \in S_{k}\left(\Gamma_{1}(M)\right)$ be a primitive cuspform, with $k \geq 2$ and with trivial Nebentypus. Let p be a prime such that $p \geq k-1$ and $p \nmid 6 M$. Then

$$
p \mid C(f)^{2} \Rightarrow \exists a \text { normalized eigen cuspform } g \in S_{k}\left(\Gamma_{1}(M)\right)
$$

such that
(i) $\forall \sigma \in \operatorname{Aut}(\overline{\mathbb{Q}}), g \neq f^{\sigma}$,
(ii) $f \equiv g \bmod \mathfrak{p}$ for some prime \mathfrak{p} of $\overline{\mathbb{Q}}$ over p.

Remark 1.4. Ghate published a variant of the above theorem for each prime \mathfrak{p} of $\overline{\mathbb{Q}}$ over p which insists that

$$
\mathfrak{p} \mid c(f) \Rightarrow \exists a \text { normalized eigen cuspform } g \in S_{k}\left(\Gamma_{1}(M)\right) \text { such that } f \equiv g \bmod \mathfrak{p}
$$

Definition 1.5. (1) Let

$$
\begin{aligned}
&\langle,\rangle: H_{\mathrm{par}}^{1}\left(\Gamma_{1}(N) ; \operatorname{Sym}^{k-2}\left(\mathbb{R}^{\oplus 2}\right)\right) \times H_{\mathrm{par}}^{1}\left(\Gamma_{1}(N) ; \operatorname{Sym}^{k-2}\left(\mathbb{R}^{\oplus 2}\right)\right) \\
& \longrightarrow H_{\mathrm{par}}^{2}\left(\Gamma_{1}(N) ; \mathbb{R}\right) \cong \mathbb{R}
\end{aligned}
$$

be the non-degenerate pairing induced by the $\Gamma_{1}(N)$-equivariant pairing

$$
\operatorname{Sym}^{k-2}\left(\mathbb{R}^{\oplus 2}\right) \times \operatorname{Sym}^{k-2}\left(\mathbb{R}^{\oplus 2}\right) \rightarrow \mathbb{R}: \quad t\binom{u}{v} \cdot\binom{x}{y} \mapsto \operatorname{det}\left(\begin{array}{ll}
u & x \\
v & y
\end{array}\right)
$$

(2) We define the discriminant $d(f)$ by

$$
d(f):=\operatorname{disc}\left(\langle,\rangle \mid W_{f}\right)=\operatorname{det}\left(\left\langle\delta_{i}, \delta_{j}\right\rangle\right)_{1 \leq i, j \leq 2 r}
$$

The strategy of the proof by Hida is summarized as follows:

Existence of $\bmod p$ congruence $f \equiv g$

$$
\text { Step A } p \mid \text { the cohomological discriminant } d(f) \stackrel{\text { Step } B}{\rightleftharpoons} p \mid \text { Adjoint } L \text {-value }
$$

We will explain two main steps of the proof (Step A and Step B).

Step A

We define a \mathbb{Z}-module M_{f} by

$$
M_{f}:=\operatorname{Image}\left[H_{\mathrm{par}}^{1}\left(\Gamma_{1}(N) ; \operatorname{Sym}^{k-2}\left(\mathbb{Z}^{\oplus 2}\right)\right) \hookrightarrow H_{\mathrm{par}}^{1}\left(\Gamma_{1}(N) ; \operatorname{Sym}^{k-2}\left(\mathbb{R}^{\oplus 2}\right)\right) \rightarrow W_{f}\right]
$$

which is a lattice of W_{f} such that $L_{f} \subset M_{f}$. It is known that $d(f)=\#\left(M_{f} / L_{f}\right)$ and we see that
$p \mid d(f) \Leftrightarrow L_{f} \otimes_{\mathbb{Z}} \mathbb{Z}_{p}$ is not a direct summand as a module over a p-adic Hecke algebra, $\Rightarrow L_{f} \otimes_{\mathbb{Z}} \mathbb{Z} /(p) \cong L_{g} \otimes_{\mathbb{Z}} \mathbb{Z} /(p)$ as a module over a $\bmod p$ Hecke algebra.

Step B

Consider the Petersson inner product

$$
(, \quad): S_{k}\left(\Gamma_{1}(N) ; \mathbb{C}\right) \times S_{k}\left(\Gamma_{1}(N) ; \mathbb{C}\right) \longrightarrow \mathbb{C} .
$$

The Peterson inner product (,) on $S_{k}\left(\Gamma_{1}(N) ; \mathbb{C}\right)$ is compatible with the pairing \langle, on $H_{\mathrm{par}}^{1}\left(\Gamma_{1}(N) ; \operatorname{Sym}^{k-2}\left(\mathbb{R}^{\oplus 2}\right)\right)$ by Eichler-Sihmura isomorphism

$$
\mathrm{ES}: S_{k}\left(\Gamma_{1}(N) ; \mathbb{C}\right) \xrightarrow{\sim} H_{\mathrm{par}}^{1}\left(\Gamma_{1}(N) ; \operatorname{Sym}^{k-2}\left(\mathbb{R}^{\oplus 2}\right)\right) .
$$

Simura proves the following formula

$$
(f, f)=2^{-2 k}(k-1)!N \operatorname{Cond}\left(\psi_{f}\right) \varphi\left(\frac{N}{\operatorname{Cond}\left(\psi_{f}\right)}\right) \frac{L(1, f, \mathrm{Ad})}{\pi^{k+1}}
$$

which relates the divisibility of $C(f)$ by p with the divisibility of $d(f)$ by p.
Remark 1.6. We ask ourselves if the converse of Theorem 1.3 is true. " \Leftarrow " of Step A in the proof of Hida becomes " \Leftrightarrow " if the module $H_{\mathrm{par}}^{1}\left(\Gamma_{1}(N) ; \operatorname{Sym}^{k-2}\left(\mathbb{Z}_{p}^{\oplus 2}\right)\right)$ is free over the p-adic Hecke algebra. This freeness (and thus " \Leftarrow " of Step A) holds true if f is ordinary by Hida (Invent. 64/1981). Ribet (Invent. 71/1983) proves " \Leftarrow " of Step A if $p \geq k$.

Some historical remarks

We list some of results after Hida on the congruence primes for the $G L(n)$ case.

- $G L(2)$ over imaginary quadratic fields by Urban [U95]
- $G L(2)$ over totally real fields by Ghate [Gh02] / Dimitrov [Di05]
- $G L(2)$ over number fields by Namikawa [N15]
- $G L(n)$ over number fields by Balasubramanyan-Raghram [BaR17]

Remarks 1.7. Our result for GSp_{4} and its proof which will be presented in the next section has a similar flavor as [BaR17]. But, we have an advantage that all constants are explicit in our main theorem (In [BaR17], there appears constants which is not made explicit). See Remark 2.5 and some comments at the end of the next section.

2. OUR RESUlTS

Now we present the main result of [LO18]. First, we fix the setting of this article.

Setting

We set $G=\mathrm{GSp}_{4}, \mathbb{A}=\mathbb{R} \times \mathbb{A}_{\text {fin }}$ the ring of adèles of \mathbb{Q}.
We consider $\pi=\underset{\ell}{\otimes^{\prime}} \pi_{\ell}$: cuspidal automorphic representation of $G(\mathbb{A})$ and we assume the following conditions in the rest of the paper:
(a) The central character of π is trivial.
(b) The representation π is globally generic.
(c) The paramodular conductor N of π is square-free.
(d) $\exists k \geq \exists k^{\prime} \geq 0$ such that $H^{3}\left(\mathfrak{g}, K_{\infty}, V_{k, k^{\prime}}(\mathbb{C}) \otimes \pi_{\infty}\right) \neq 0$
where $V_{k, k^{\prime}}$ is the algebraic representation of G of highest weight k, k^{\prime}.
(e) The representation π is endoscopic.

Remarks 2.1. In order to use it later in the proof, we remark that the endoscopic assumption (e) above is translated into the situation where there exist elliptic cuspforms f_{i} of weight k_{i} and level $N_{i}(i=1,2)$ such that

- $k_{1}=k+k^{\prime}+4, k_{2}=k-k^{\prime}+2$
- $N_{1} N_{2}=N$
- $\rho_{\pi} \cong \rho_{f_{1}} \oplus \rho_{f_{2}}$
where ρ_{π} (resp. $\rho_{f_{1}}, \rho_{f_{2}}$) is the p-adic Galois representation of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ associated to π (resp. f_{1}, f_{2})

We define $\mathbb{Q}_{\pi_{\text {fin }}}$ to be the rationality Number field of $\pi_{\text {fin }}$ in the sense of Clozel-Waldspurger (see [Wa85] for example) and we set $r:=\left[\mathbb{Q}_{\pi_{\text {fin }}}: \mathbb{Q}\right]$.

Definition 2.2. We denote by $L(s, \pi, \mathrm{Ad})$ the adjoint L-function defined by the Euler product $L(s, \pi, \operatorname{Ad})=\prod_{\ell \nmid M} \operatorname{det}\left(\operatorname{Id}-\operatorname{Ad}\left(\widehat{t_{\ell}}\right) \ell^{-s} ; \mathfrak{s p}_{4}(\mathbb{C})\right) \times($ bad Euler factors $)$
where $\widehat{t}_{\ell} \in{ }^{L} \mathrm{GSp}_{4}=\operatorname{GSpin}_{5}(\mathbb{C})$ is defined by using Satake-parameters of π at ℓ. Since $\mathfrak{s p}_{4}(\mathbb{C})$ is of dimension 10, the Euler product above is of degree 10. The function $L(s, \pi, \mathrm{Ad})$ is absolutely convergent for $\operatorname{Re}(s)>1$ and is holomorphically continued to the whole \mathbb{C}, non-vanishing at $s=1$.

We also set

$$
Z(s, \pi, \mathrm{Ad})=\prod_{\sigma: \mathbb{Q}_{\pi_{\mathrm{fin}}} \rightarrow \overline{\mathbb{Q}}} L\left(s,{ }^{\sigma} \pi, \mathrm{Ad}\right)
$$

Let $K_{N} \subset G\left(\mathbb{A}_{\text {fin }}\right)$ be the subgroup of paramodular level $N, K(3) \subset G\left(\mathbb{A}_{\text {fin }}\right)$ the congruence subgroup of full level $3, K_{N}(3) \subset G\left(\mathbb{A}_{\text {fin }}\right)$ the intersection $K_{N} \cap K(3)$. For an open subgroup $K \subset G\left(\mathbb{A}_{\mathrm{fin}}\right)$, we denote by S_{K} the Shimura variety of level K.

We give some sets of "bad primes"

- $S_{N, 3}=\left\{p\right.$ primes, $\left.p \mid \# K_{N} / K_{N}(3)\right\}$
- $S_{\text {weight }}=\left\{p\right.$ primes, $\left.p<k+k^{\prime}+3\right\}$
- $S_{\text {tors }}=\left\{p\right.$ primes, $\left.p \mid \# H_{!}^{3}\left(S_{K_{N}(3)}, V_{k, k^{\prime}}(\mathbb{Z})\right)_{\text {tors }}\right\}$
- $S_{\text {tors }}^{\prime}=\left\{p\right.$ primes,$\left.p \mid \# H_{c}^{4}\left(S_{K_{N}(3)}, V_{k, k^{\prime}}(\mathbb{Z})\right)_{\text {tors }}\right\}$
- $S_{\text {tors }}^{\prime \prime}=\left\{p\right.$ primes, $\left.p \mid \#\left(H^{3}\left(S_{K_{N}(3)}, V_{k, k^{\prime}}(\mathbb{Z})\right) / H_{!}^{3}\left(S_{K_{N}(3)}, V_{k, k^{\prime}}(\mathbb{Z})\right)\right)_{\text {tors }}\right\}$

By the comparison theorem between the de Rham cohomology and the Betti cohomology for S_{K}, we have the Eichler-Shimura isomorphism as follows:

$$
\left.\mathrm{ES}\right|_{S_{\pi}}: S_{\pi} \xrightarrow{\sim} W_{\pi}
$$

where we set $S_{\pi}:=\underset{\sigma: \mathbb{Q}_{\pi_{\mathrm{fin}}} \rightarrow \overline{\mathbb{Q}}}{ } \sigma^{\sigma^{K}}$ and W_{π} is an \mathbb{R}-subspace of $H_{!}^{3}\left(S_{K_{N}(3)}, V_{k, k^{\prime}}(\mathbb{R})\right)^{K(3)}$. The \mathbb{R}-vector spaces S_{π} and W_{π} are of dimension $2 r$.

In order to define a period invariant as a determinant of $\left.\mathrm{ES}\right|_{S_{\pi}}: S_{\pi}$, we will give a basis on each of S_{π} and W_{π}.

Definition 2.3. (1) Let $\varphi=\underset{v \leq \infty}{\otimes} \varphi_{v} \in \pi^{K_{N}}$ be the element whose Whittaker function is normalized as:
$W_{\varphi_{\ell}}(1)=1$ for any prime $\ell \nmid N$,
$W_{\varphi_{\ell}}\left(\operatorname{diag}\left(\ell^{-1}, 1, \ell^{2}, \ell\right)\right)=1$ for any prime $\ell \mid N$,

$$
\begin{aligned}
W_{\varphi_{\infty}}(1)= & e^{-2 \pi} \int_{c_{1}-\sqrt{-1} \infty}^{c_{1}+\sqrt{-1} \infty} \frac{d s_{1}}{2 \pi \sqrt{-1}} \int_{c_{2}-\sqrt{-1} \infty}^{c_{2}+\sqrt{-1} \infty} \frac{d s_{2}}{2 \pi \sqrt{-1}} \\
& \times\left(4 \pi^{3}\right)^{\left(-s_{1}+k+4\right) / 2}(4 \pi)^{\left(-s_{2}-k^{\prime}-1\right) / 2} \\
& \times \Gamma\left(\frac{s_{1}+s_{2}-2 k^{\prime}-1}{2}\right) \Gamma\left(\frac{s_{1}+s_{2}+1}{2}\right) \Gamma\left(\frac{s_{1}}{2}\right) \Gamma\left(\frac{s_{2}}{2}\right) \\
& \left(c_{1}, c_{2} \in \mathbb{R} \text { with } c_{1}+c_{2}+1>0 \text { and } c_{1}>0>c_{2}\right) .
\end{aligned}
$$

Put $\delta_{i}:=\varphi^{\sigma_{i}}(1 \leq i \leq r)$ for $\sigma_{1}, \ldots \sigma_{r}: \mathbb{Q}_{\pi_{\mathrm{fin}}} \rightarrow \overline{\mathbb{Q}}$ and we set $\delta_{r+i}:=\sqrt{-1} \delta_{i}$ $(1 \leq i \leq r)$. Then $\delta_{1}, \ldots, \delta_{2 r}$ is an \mathbb{R}-basis of S_{π}.
(2) Let us assume that $p \notin S_{\text {tors }}$. We define

$$
L_{\pi}:=H_{!}^{3}\left(S_{K_{N}(3)}, V_{k, k^{\prime}}\left(\mathbb{Z}_{(p)}\right)\right)^{K(3)} \cap W_{\pi}
$$

(an intersection inside $\left.H_{!}^{3}\left(S_{K_{N}(3)}, V_{k, k^{\prime}}(\mathbb{R})\right)^{K(3)}\right)$.
Note that we have $L_{\pi} \cong \mathbb{Z}_{(p)}^{2 r}$ and L_{π} is a lattice of W_{π}. We choose (non-canonically) a $\mathbb{Z}_{(p)}$-basis $\beta_{1}, \ldots, \beta_{2 r}$ of L_{π}. Then $\beta_{1}, \ldots, \beta_{2 r}$ is also an \mathbb{R}-basis of W_{π}.
(3) We define a complex period $u_{\pi}=u_{\pi}\left(\beta_{1}, \ldots, \beta_{2 r} ; \delta_{1}, \ldots \delta_{2 r}\right) \in \mathbb{R}^{\times} / \mathbb{Z}_{(p)}^{\times}$by

$$
u_{\pi}=u_{\pi}\left(\beta_{1}, \ldots, \beta_{2 r} ; \delta_{1}, \ldots \delta_{2 r}\right):=\operatorname{det}\left(\left.\mathrm{ES}\right|_{S_{\pi}}\right) .
$$

Put

$$
C(\pi):=\left(\frac{C_{\infty} C_{k, k^{\prime}} C_{N} \pi^{3}}{2}\right)^{r} \times \frac{Z(1, \pi, \mathrm{Ad})}{u_{\pi}}
$$

where

$$
\begin{aligned}
& C_{\infty}=2^{k+k^{\prime}+5}\left(k+k^{\prime}+5\right)^{-1} \pi^{3 k+k^{\prime}+12} \\
& C_{k, k^{\prime}}=(-1)^{k+k^{\prime}} 3^{-3} 5^{-k}\left(k+k^{\prime}+4\right)!\left(k+k^{\prime}+5\right)! \\
& C_{N}=\prod_{\ell \mid N}\left(\ell+\ell^{-1}\right)^{-1}\left(\ell^{2}+1\right)^{-1}
\end{aligned}
$$

In the proof of our result, we can check that $C(\pi)^{2} \in \mathbb{Z}_{(p)}$.
Theorem 2.4 (Lemma-O). Let π be a cuspidal automorphic representation of $\mathrm{GSp}_{4}(\mathbb{A})$ satisfying the conditions (a) to (e). Assume that $p \notin S_{N, 3} \cup S_{\text {weight }} \cup S_{\text {tors }} \cup S_{\text {tors }}^{\prime} \cup S_{\text {tors }}^{\prime \prime \prime}$. Assume further the following conditions

- Mod p Galois representations $\bar{\rho}_{f_{1}}, \bar{\rho}_{f_{2}}$ of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ is irreducible.
- For any prime \mathfrak{p} above p in $\overline{\mathbb{Q}}, \mathfrak{p}$ does not divide $c\left(f_{1}\right)$ nor $c\left(f_{2}\right)$.
- The prime p divides $C(\pi)^{2}$.

Then there exists a stable cuspidal automorphic representation π^{\prime} of $\mathrm{GSp}_{4}(\mathbb{A})$ with the same weight and the level as π such that
(i) $\forall \sigma \in \operatorname{Aut}(\overline{\mathbb{Q}}), \pi^{\prime} \neq \sigma$,
(ii) $\pi \equiv \pi^{\prime} \bmod \mathfrak{P}$ for some prime \mathfrak{P} of $\overline{\mathbb{Q}}$ over p.

The strategy of the proof is summarized as follows:
Existence of $\bmod p$ congruence $\pi \equiv \pi^{\prime}$

$$
\stackrel{\text { Step A }}{\rightleftharpoons} p \mid \text { the cohomological discriminant } d(\pi) \stackrel{\text { Step B }}{\Longleftrightarrow} p \mid \text { Adjoint } L \text {-value }
$$

Step A is similar to the argument of Hida but more complicated. In general, the automorphic contributions on the Betti cohomology of higher dimensional Simura varieties are much more complicated and not completely understood. However, the space $H^{3}\left(S_{K_{N}(3)}, V_{k, k^{\prime}}(\mathbb{C})\right)$ is well-understood (Vogan-Zuckerman [VZ84] + Taylar (Invent. 1993)) fortunately. In any case, Wwe need some combinatorial arguments using our assumptions to prove that π^{\prime} is stable (see [LO18] for the detail).

Step B is due to a formula of Chen-Ichino

$$
\langle\varphi, \varphi\rangle=2^{2} C_{\infty} \frac{L(1, \pi, \mathrm{Ad})}{\zeta(2) \zeta(4)}
$$

See their preprint [CI19] for the proof.

Remarks 2.5. One of the most important advantages of our work is that $C_{k, k^{\prime}}$ and C_{∞} is totally explicit. For example, in Balasubramanyan-Raghram (2017) for GL(n), the analogues of $C_{k, k^{\prime}}$ and C_{∞} were non-zero numbers which depends only on the weight but we could not make them explicit.

We end this article with some comments on the history of our research behind the determination of $C_{k, k^{\prime}}$ and C_{∞}.
(1) The constant $C_{k, k^{\prime}}$ was much more complicated in an earlier version of our paper. (The actual simplified version was conjectured by Namikawa and proved with help of Yasuda)
(2) The constant C_{∞} was not explicit in the original paper by Ichino (2007) and it has become explicit in the updated article by Ichino-Chen [CI19].
As for the constant $C_{k, k^{\prime}}$, we previously defined

$$
\begin{align*}
& C_{k, k^{\prime}}=\frac{(-1)^{k+k^{\prime}}\left(k+k^{\prime}\right)!\left(k+k^{\prime}+4\right)!}{3!^{2}} \sum_{r=0}^{4} \sum_{i=0}^{k+k^{\prime}} \sum_{\substack{0 \leq u, u^{\prime} \leq r \\
0 \leq i u}} \tag{1}\\
&(-1)^{r+u+u^{\prime}} a_{r}\binom{r}{u}\binom{r}{u^{\prime}} r_{i, u, r}^{k, k^{\prime}} r_{i-u+u^{\prime}, u^{\prime}, r}^{k, k^{\prime}} s_{i, u}^{k, k^{\prime}} t_{i, u, r}^{k, k^{\prime}}
\end{align*}
$$

where

$$
\begin{aligned}
& r_{i, u, r}^{k, k^{\prime}}=\frac{\left(k+k^{\prime}+u-i\right)!\left(k+k^{\prime}+4-i\right)!(i+r-u)!}{(i-u)!\left(k+k^{\prime}-i\right)!\left(k+k^{\prime}+4-i-r+u\right)} \\
& s_{i, u}^{k, k^{\prime}}=\frac{(i-u)!}{\left(k+k^{\prime}-i+u\right)!}, t_{i, u, r}^{k, k^{\prime}}=\frac{\left(k+k^{\prime}+4+u-r-i\right)!}{(i+r-u)!} \\
& a_{0}=-1, a_{1}=-\frac{1}{4}, a_{2}=\frac{1}{72}, a_{3}=-\frac{1}{72}, a_{4}=-\frac{1}{576}
\end{aligned}
$$

We refer to the updated version [LO18] for the proof of the equality between the version (1) and the following simplified presentation of $C_{k, k^{\prime}}$:

$$
\begin{equation*}
C_{k, k^{\prime}}=(-1)^{k+k^{\prime}} 3^{-3} 5^{-k}\left(k+k^{\prime}+4\right)!\left(k+k^{\prime}+5\right)! \tag{2}
\end{equation*}
$$

but we remark that one of the most important the keys is the following formula (cf. §16 of the book "Calculus of finite differences" by C. Jordan (1965)):

$$
\sum_{a=0}^{l}(-1)^{a}\binom{l}{a}(b-a)_{m}=\binom{m}{l} l!(b)_{m-l}
$$

where $(x)_{n}$ is the Pochhammer symbol defined as follows:

$$
(x)_{n}=x(x+1)(x+2) \cdots(x+n-1)=\frac{(x+n-1)!}{(x-1)!}
$$

References

[BaR17] B. Balasubramanyam, A. Raghuram, Special values of adjoint L-functions and congruences for automorphic forms on $G L(n)$ over a number field, Amer. Journ. of Math 139, No.3, (2017), 641-679.
[CI19] S. Chen, A. Ichino, On Petersson norms of generic cusp forms and special values of adjoint L functions for GSp_{4}, preprint, arXiv:1902.06429 [math.NT].
[Di05] M. Dimitrov, Galois representations modulo p and cohomology of Hilbert modular varieties, Ann. Sci. Ecole Norm. Sup. (4) 38 (2005), no. 4, 505-551.
[Gh02] E. Ghate, Adjoint L-values and primes of congruence for Hilbert modular forms, Compositio Math. 132 (2002), no. 3, 243-281.
[Hi81a] H. Hida, Congruence of cusp forms and special values of their zeta functions, Invent. Math. 63, (1981), no. 2, 225-261.
[Hi81b] H. Hida, On congruence divisors of cusp forms as factors of the special values of their zeta functions, Invent. Math. 64 (1981), no. 2, 221-262.
[I08] A. Ichino, On critical values for adjoint L-functions for GSp(4), preprint, (2008), available at https://www.math.kyoto-u.ac.jp/~ichino/ad.pdf.
[L05] G. Laumon, Fonctions zêtas des variétés de Siegel de dimension 3, in Formes Automorphes (II): le cas du groupe GSp(4), Astérisque No. 302, (2005), 1-66.
[LO18] F. Lemma and T. Ochiai. Endoscopic congruences modulo adjoint L-values for GSp_{4}. arXiv:1806.02135 [math.NT]
[MT02] F. Mokrane, P. Polo, J. Tilouine, Cohomology of Siegel varieties, Astérisque 280, (2002), 1-135.
[N15] K. Namikawa, On a congruence prime criterion for cusp forms on $G L_{2}$ over number fields, J. reine angew. Math. 707, (2015), 149-207.
[Ri83] K. A. Ribet, Mod p Hecke operators and congruences between modular forms, Invent. Math. 71 (1983), no. 1, 193-205.
[RoS07] B. Roberts, R. Schmidt, Local newforms for GSp(4), Lecture Notes in Mathematics, 1918. Springer, Berlin, 2007. viii +307 pp.
[U95] E. Urban, Formes automorphes cuspidales pour GL_{2} sur un corps quadratique imaginaire. Valeurs spéciales de fonctions L et congruences, Compositio Math. 99 (1995), no. 3, 283-324.
[Wa85] J.-L. Waldspurger, Quelques propriétés arithmétiques de certaines formes automorphes sur GL(2), Compositio Math. 54, no. 2, (1985), 121-171.
[VZ84] D. Vogan, G. Zuckerman, Unitary representations with nonzero cohomology, Compositio Math. 53 (1984), no. 1, 51-90.

Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, JAPAN

E-mail address: ochiai@math.sci.osaka-u.ac.jp

[^0]: CITATION：
 OCHIAI，TADASHI．ENDOSCOPIC CONGRUENCES AND ADJOINT \＄L\＄－VALUES FOR GSp（4）（Analytic，geometric and \＄p\＄－ adic aspects of automorphic forms and \＄L\＄－functions）．数理解析研究所講究録 2021，2197：95－103

