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Abstract 

We consider an N x N system of semiclassical differential oper
ators with N Schrodinger operators in the diagonal part and small 
interactions of order h", where h is a semiclassical parameter and v is 
a constant larger than one. We study the absence of resonance near 
a non-trapping energy for each Schrodinger operators. The width of 
resonances is estimated from below by M h log( 1 / h) and the coefficient 
M can be taken propotional to v - 1. 

1 Introduction 

We are interested in the resonance free domain for the semiclassical N x N 
matrix Schrodinger operator 

P(h) = Pa(h) + hvW, Pa(h) = diag(Pi (h), P2(h), ... , PN(h)) (1.1) 

where 

is the semiclassical Schrodinger operator, and v 2 1. Here W = W(x, hDx) 
is a symmetric N x N-matrix valued first-order semiclassical differential op
erator. Such an operator appears in the Born-Oppenheimer approximation 
of molecules, after reduction to an effective Hamiltonian (see e.g. [KMSW]). 
For each semiclassical Schrodinger operator Pj(h) (j = I, 2, ... , N) with C00 

potential ½(x), it is well known that there are no resonances with imagi
nary part of order hlog(l/h) around an energy level Ea satisfying the non
trapping condition (see [Mal, SjZw]). We recall that an energy Ea is said 
to be non-trapping if for all compact KC p_;1(Ea) there exists TK > 0 such 
that 

(1.2) 
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where Pj(x,~) = 1~1 2 + ½(x) is the classical Hamiltonian corresponding to 
Pj(h). Here HPi = 2~ · Ox - (o½)(x) · or;, denotes the Hamiltonian vector 
field, and exp(tHPi )(x, ~) the corresponding Hamiltonian flow. It is well
known that (see [GeMa]) the non-trapping condition (1.2) is equivalent to 
the existence of an escape function Gj(x,~) in a neighborhood of P;1(Eo), 
that is, a function Gj E C00 (IR2n; IR) satisfying 

(1.3) 

for some 8, r:: > 0. 

Assume that (1.3) holds for j = 1, · · · , N. It follows from the Martinez' 
result that for all integer M there are no resonances with imaginary part 
of order hlog(l/h) for the non perturbed operator Po(h) (see also [SjZw]). 
The aim of this note is to study the stability of this resonance free domain 
under the perturbation hvW. Recall that the real part and the negative 
imaginary part of a resonance respectively give the frequency and the expo
nential decay rate of the associate resonant state. In particular, resonance 
close to the real axis give information about the long term behavior of the 
solution of the wave equation (o; + P(h)) u = 0. Thus, it is of interest to 
study semiclassical resonance free regions. On the other hand, it is well 
known that the scattering phase ( or the spectral shift function, see (2.5)) 
has a meromorphic extension and its poles are the resonances. Using this 
facts, we will deduce an asymptotic expansion of the spectral shift func
tion with remainder depending on the resonance free region from our main 
results (Corollary 2.2 and Theorem 2.1). 

2 Main Result 

Let 1-lN be the space of Hermitian N x N matrices endowed with the norm 

II · IINxN, where for A E 1-lN, IIAIINxN := SUP{vEJR.N;lvl::;I} IAvl. Here, we 
recall some basic notions of semiclassical and mirolocal analysis, referring to 
the books [DiSj, Iv, Ma2, Zw] for more details. Let sm(IR2n; 1-lN) (m E N) 
be the space of symbols a E C00 (IR2n; 1-lN) satisfying the inequality 

on whole (x, ~) E IR2n for any multiindices a, /3 E Nn with N = {0, 1, 2, ... }, 
(~) = (1 + 1~1 2 ) 112 . The h-pseudodifferential operator corresponding to a 
symbol a E sm(IR2n;1-lN) denoted aw(x,hD) is defined on Sobolev space 
Hm(IRn; <CN) by 

aw(x, hD)u(x) := l J" f ei(x-y)-f;,/ha (X + y, ~) u(y)dyd~ (2.1) 
(21rh)n }]R_2n 2 



150

for u = u(x) E Hm(IRn; <CN). 

We study the absence of resonances in the semiclassical limit h -+ 0+ in 
a neighborhood of an energy Eo ER For that, let us introduce the following 
assumptions : 

(Al) For j = l, ... ,N, ½(x) is a real-valued smooth function on lRn, satis
fying following conditions: 

1. It extends to a holomorphic function in an angular complex domain 
near infinity sn, where S is given by 

S = {z E <C; IIm zl < (tan0o)IRe zl, IRe zl > Ro} 

for some constants O < 0o < n: /2, Ro > 0. 

2. It admits a limit different from Eo as x-+ oo in sn. 

(A2) For any j E {1, • • • , N} there exists Gj E C00 (1R2n; lR) such that (1.3) 
holds. 

(A3) W = ww(x, hDx) is a symmetric N x N-matrix valued first-order 
semiclassical differential operator, where W(x, ~) = (ai,J(x )~ + bi,J(x)) \5ci,J5cN. 
We assume that x r-+ ai,j ( x), bi,j ( x) are bounded with all their derivatives, 
and extends to a bounded analytic function on sn. 

Under the above assumptions, P(h) is self-adjoint with domain H 2 (1Rn; <CN), 
and the resonances of P(h) can be defined, e.g., as the values E E (C_ = 
{Imz < O} such that the equation P(h)u = Eu has a non trivial outgoing 
solution u, that is, a non identically vanishing solution such that, for some 
small positive (probably h-dependent constant) c > 0, the function u o (e is 
in L2 (1R; <CN) where (e(x) = x + ic(o(x) with (o E C 00 (1R) satisfies (o(x) = 0 
for lxl :S Ro and (o(x) = x for lxl ~ 2Ro (see, e.g., [AgCo, DyZw, ReSi]). 
Equivalently, the resonances are the eigenvalues of the operator Pe(h) = 
UE:P(h)UE:-l acting on L 2 (1Rn; <CN), where UE:u = l(;(x)ln/2 u o ((e 0 IN) (see, 
e.g., [HeMa]). Note that there is no essential spectrum in some complex 
neighborhood (depending only on c) of Eo due to the assumption that the 
limit of½ is not equal to Eo for any j = l, 2, ... , N. We denote by Res(P(h)) 
the set of these resonances. 

Theorem 2.1 Under the assumptions (Al-3), there exists a positive con
stant M ( independent of v and h) such that 

Res(P(h)) n {z E <C_; lz - Eol < M(v - l)hlog(l/h)} = 0 (2.2) 

holds for v > l and for h small enough. 
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Corollary 2.2 Fix v 2". 1. Assume (Al), (A3), and suppose that there exists 
an escape function GE C00 (IR2n; IR) ( independent of j) such that (1.3) holds 
for all Pj, j = 1, · · · , N. Then for any M > 0, there exists ho(M) > 0 such 
that for O < h < ho(M) we have 

Res(P(h)) n {z E <C_; lz - Eol < Mhlog(l/h)} = 0. (2.3) 

2.1 Cornrnents and applications 

Here, as in [Di] and [DyG] we give an asymptotic expansion of the spectral 
shift function with remainder depending on the resonance free regions given 
in Corollary 2.2 and Theorem 2.1. The proofs are quite similar to those of 
[Di] and [DyG]. For this reason we omit the details. 

First let us recall the notion of the spactral shift function ( SSF for short). 
Let ½,oo be the limit as lxl tends to infinity of the potential Vj(x), and put 

P 00 (h) = diag(Pi,00 (h), P2,00 (h), ... , PN,oo(h)), 

where Pj,oo(h) = -h2b..+ ½,oo• We assume that there exists 8 > n such that 
for all a E Nn there exists Ca > 0 such that 

L 1a~ai,j(x)I + 1a~bi,j(x)I + 1a~(Vj(x) - ½,oo)I s: Ca(x)-<l-lal_ (2.4) 
15_i,j5_N 

Inequality (2.4) enables us to define the SSF, s(,\, h) E D'(IR), related to 
operators P(h) and P 00 (h) following the general theory (see [DyZw] and the 
references given there) by the equality 

tr[f(P(h)) - f(P00 (h))] = -(s'(·; h), f(·)) =ls(,\; h)f'(,\)d,\, (2.5) 

for any f E C0 (IR). In the scalar case N = 1, it is well known that s'(,\; h) 
has a complete asymptotic expansion in powers of h near a non-trapping 
energy Eo. Under the assumption of Corollary 2.2, this result has been 
generalized in [ADF] for P(h) with N > l. As indicated above, we will 
improve and generalize this result as a consequence of Corollary 2.2. 

Formulas relating the scattering resonances and the SSF was considered 
by many authors. In [Me], Melrose has studied how the location of reso
nances is reflected in the asymptotic behavior at high energies of spectral 
shift function in obstacle scattering through the trace formula (2.5). A more 
general local trace formula relating the derivative of the SSF and the reso
nances has been established in [Sj] (see also [BP]). The case of a system of 
h-pseudodifferential operator was treated in [Ne]. In particular, under the 
conditions (Al) ,(A2) and (2.4), it follows from Theorem 4.1 in [Ne] and 
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Theorem in [BP] (see also [Di]) that if Eo ff_ {Vi,00 , • • • , VN,oo} then there 
exist a simply connected complex (h-independent ) neighborhood n of Ea, 
a holomorphic function g on n and a small positive constant ho such that 
for all >.EI:= lR n n and all h E]0, ho] we have 

1 " Imw 
s'(>., h) = Img(>., h) - ; ~ I>. - wl2 + L 8(>.-w), 

wERes(P(h))n!1 wEinRes(P(h)) 
lmw<O 

(2.6) 

(2.7) 

Combining this with Theorem 2.1 (resp. Corallary 2.2), we obtain 

1 1 " Imw s (>., h) = Img(>., h) - ; ~ I>._ wl 2 
wERes(P(h))n!1 
lmw<(h log(h) 

with ( = M(v - 1) (resp. ( > 0 arbitrary). 

(2.8) 

Now let 0 E Co(]--b, -b[;JR) be equal to one on]- 2b, 2b[, and let :h0 
be its semi classical Fourier transform. Let f E C0 (JR) be equal to one near 
Ea. Assuming (Al), (A2), (A3) and (2.4), it follows from (2.7), (2.8) and 
the fact that 0' = 0 on ] - 2b , 2b [ that 

Fh0 * fs'(>., h) = f(>.)s'(>., h) + O(hfc-1). (2.9) 

On the other hand, it follows from Theorem 2.6 in [ADF] (see also [DiSj] 
and [Iv]) that Fh0*fs'(>.; h) has a complete asymptotic expansion in powers 
of h near >. = Ea provided that Ea satisfies (1.3) and C » 1. Combining 
this with (2.9), we obtain : 

Theorem 2.3 Fix Ea ff_ {Vi,00 , Vi,00 , • • • , VN,oo}, and assume (Al-3), (2.4), 
and (2.9). There exits r, > 0 (independent of v and h) such that s'(·,h) has 
an asymptotic expansion of the form 

s'(>.,h) = (21rh)-n (Lr'2j(>.)h2i +O(h2~)), ash \.0, 
j?_O 

(2.10) 

uniformly for>. E]Eo - r,, Ea+ r,[. Here ( is any arbitrary integer if (A2) 
holds with G1 = · · · = GN, and ( = M(v - 1), v > l for the general case 
where M is given in Theorem 2.1. The coefficients r'2j ( >.) can be computed 
explicitly. In particular 

N 

'Yo(>.)= Wn L r ((>. - Vk(x)):;- 2 
- (>. - vk,oo):;- 2 )dx, 

2 })Rn 
k=l 

(2.11) 

where Wn is the volume of the unit sphere §n-l and>.+:= max (>., 0). 
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In general, the conclusion in the above theorem is of interest only when vis 
small enough. If G1 = · · · = GN, (2.10) was proved in [ADF]. 

3 Proof of Theorem 2.1 and Corollary 2.2 

Throughout this section we fix Ea E JR, and we assume (Al-3). Let (o(x), Uc 
and Pc be the function and the operators as introduced above. For simplicity 
of the notations we ignore the dependence of the operators P(h), Po(h), Pj(h), 
etc on hand we denote it P, Po, Pj, etc. 

For M > 0 ( to be fixed later), we denote 

(3.1) 

and 
- - - - - 1 
PE: := Po,c + hvWE: = UPE:u- (3.2) 

where E = Mhlog(l/h) and Gj = Gj -(o(x). r Notice that, by assumption 
(Al)-(2), the operator Pj(h) tends to -h2!}. + Const. when lxl tends to 
infinity. Thus, we may assume that Gj (x, ~) = x · ~ for lxl large enough. 
Combining this with the fact that (o(x) for lxl > 2Ro, we deduce that Gj E 

C0 (JR2n; JR). This implies that the operator e-cG'j' /his well defined as an h
pseudodifferential one in an exotic class S8 (JR2n) for some 8 > 0 (see chapter 

7 and chapter 12 in [DiSj]). In particular, e±cG'j' /h is a bounded linear 
operator from L2 (JRn) into L2 (JRn). Hence that U and fj- 1 are bounded 
from L2(1Rn; <CN) into L2 (JRn; <CN). 

Let us now prove Theorem 2.1 and Corollary 2.2. Under the non
trapping condition (1.3), it follows from [SjZw] that (Po,c - Eo)-1 is well 
defined, and there exists co > 0 (independent of M and h) such that 

Therefore, for EE Bh(M) = {z E (C_; lz - Eol < c1E} with c1 < fa-, the 
operator (Po,c - E) is invertible and 

Po -E < -. II ( - )-111 co 
,c £(£2) - 2E 

(3.3) 

Let Wj,k,c(x, hDx) = e-cG'j' /hUE:wj,k(x, hDx)Uc-lecG't /h be the (j, k)-element 
of the operator WE:. A standard result on h-pseudodifferential calculus yields 

11 71) · (x hD )II < C- eMIIGk-Gjlloo log(l/h) J,k,E: , X £(H2--t£2) - J,k 

(3.4) 
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On the other hand, for ..\. « -1, standard elliptic estimates and the 
above inequality yield 

hv llw (R - E)-111 € 0,€ £(£2) 

hv-1-y;,M 
< C hv-y;,M + C ---
- 3 4 log(l/h)' 

uniformly for EE Bh(M). Therefore, if v - 1 - ,,,,M 2: 0 then 

hv llwc: (Po,c: - E)-1 11£(£2) = o(l). 

Combining this with the obvious equality 

(3.5) 

we deduce that (i\-E) is invertible for EE Bh(M), and hence that (P6 -E) 
is bijective, since ('Pc: - E) = U(Pc: - E)tJ- 1 and U, t)-l are bounded. This 
ends the proof of Theorem 2.1. 

To prove Corollary 2.2, assume that Gj = Gk holds for all j, k E {1, · · · , N}. 
Since Gj - ck = Gj - Gk, it follows that ,,,, = 0. Therefore, from (3.5) we 
deduce that for all M > 0 and all v 2: 1, we have 

hv llwc: (Po,c: - E)-111£(£2) = o(l), (3.7) 

uniformly for E E Bh(M). Now, as in the proof of Theorem 2.1, Corollary 
2.2 follows from (3.6) and (3.7). 
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