TITLE：

SOLUTIONS FOR A FRACTIONAL－ ORDER DIFFERENTIAL EQUATION WITH BOUNDARY CONDITIONS （Study on Nonlinear Analysis and Convex Analysis）

AUTHOR（S）：
WATANABE，TOSHIKAZU

CITATION：
 WATANABE，TOSHIKAZU．SOLUTIONS FOR A FRACTIONAL－ORDER DIFFERENTIAL EQUATION WITH BOUNDARY
 CONDITIONS（Study on Nonlinear Analysis and Convex Analysis）．数理解析研究所講究録 2021，2194：178－182

ISSUE DATE：

2021－08
URL：
http：／／hdl．handle．net／2433／265734
RIGHT：

SOLUTIONS FOR A FRACTIONAL-ORDER DIFFERENTIAL EQUATION WITH BOUNDARY CONDITIONS

MEIJI UNIVERSITY
TOSHIKAZU WATANABE

1. Introduction

In [5], the authors considered the fractional-order boundary value problem, we consider existence and uniqueness of solutions of the fractional-order boundary value problem

$$
\left\{\begin{array}{l}
D_{0+}^{\alpha} u(t)=f(t, u(t)), \quad 0<t<1 \tag{1.1}\\
u(0)=u^{\prime}(0)=u^{\prime \prime}(1)=u^{\prime \prime \prime}(1)=0
\end{array}\right.
$$

Inspiring the result of Ma and Silva [4], we consider the problem (1.2). The problem (1.1) is the case that $g \equiv 0$ of the problem (1.2). Due to the restriction of g, results in [5] cannot deal with the problem (1.3). where $3<\alpha \leq 4, f$ is a continuous function of $[0,1] \times \mathbb{R}$ into \mathbb{R}, g is a function of \mathbb{R} into itself and D_{0+}^{α} denotes the Riemann-Liouville fractional derivative of order α which is defined in Section 2. A function $u \in C[0,1]$, where $C[0,1]$ is the set of all continuous functions of $[0,1]$ into \mathbb{R}, is called a solution of the problem (1.1) if $D_{0+}^{\alpha} u \in C[0,1]$ and u satisfies (1.1).

$$
\left\{\begin{array}{l}
D_{0+}^{\alpha} u(t)=f(t, u(t)), \quad 0<t<1 \tag{1.2}\\
u(0)=u^{\prime}(0)=u^{\prime \prime}(1)=0, u^{\prime \prime \prime}(1)=g(u(1))
\end{array}\right.
$$

A function $u \in C[0,1]$, where $C[0,1]$ is the set of all continuous functions of $[0,1]$ into \mathbb{R}, is called a solution of the problem (1.2) if $D_{0+}^{\alpha} u \in C[0,1]$ and u satisfies (1.2).

When $\alpha=4$, the problem (1.1) is the boundary value problems for cantilever beam equations and the problem (1.2) is the following fourth-order boundary value problem

$$
\left\{\begin{array}{l}
u^{\prime \prime \prime \prime}(t)=f(t, u(t)), \quad 0<t<1 \tag{1.3}\\
u(0)=u^{\prime}(0)=u^{\prime \prime}(1)=0, u^{\prime \prime \prime}(1)=g(u(1))
\end{array}\right.
$$

In the problem (1.3), since $u^{\prime \prime}$ represents the shear force at $t=1$, the sonditions $u^{\prime \prime}(1)=0, u^{\prime \prime \prime}(1)=g(u(1))$ means that the vertical force is equal to, which denotes a relation, possibly nonlinear, between the vertical force and the displacement u. Furthermore, since $u^{\prime \prime}(1)=0$ indicates that there is no bending moment at $t=1$, the beam is resting on the bearing g. Existence and iterative schemes to solve the problem (1.3) were studied by Ma and da Silva [4]. The purpose of this article is to follow the results of the fractional-order problems (1.1) and (1.2).

2. Preliminaries

In this section, we introduce preliminary facts. Especially, we construct the Green function $G(s, t)$ for the boundary value problems (1.1) and (1.2), and we discuss some properties of the function.

We start with the definition of the Riemann-Liouville fractional integral and fractional derivative. Let $\alpha>0$ and u be a continuous function of $[0,1]$ into \mathbb{R}. The Riemann-Liouville fractional integral of order α of u, denoted $I_{0+}^{\alpha} u$, is defined by

$$
I_{0+}^{\alpha} u(t)=\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} u(s) d s
$$

for $0 \leq t \leq 1$. The Riemann-Liouville fractional derivative of order α of u, denoted $D_{0+}^{\alpha} u$, is defined by

$$
D_{0+}^{\alpha} u(t)=\frac{1}{\Gamma(n-\alpha)} \frac{d^{n}}{d t^{n}} \int_{0}^{t}(t-s)^{n-\alpha-1} u(s) d s
$$

for $0 \leq t \leq 1$, where n denotes a positive integer such that $n-1<\alpha \leq n$. For $\alpha \geq 0$ and $\beta>-1$, we have

$$
D_{0+}^{\alpha} t^{\beta}=\frac{\Gamma(\beta+1)}{\Gamma(\beta-\alpha+1)} t^{\beta-\alpha}
$$

see [3]. For the case of (1.2), let h be a continuous mapping of $[0,1]$ into \mathbb{R}. Let $3<\alpha \leq 4$. Then the unique solution of the boundary value problem is

$$
u(t)=\int_{0}^{1} G(t, s) h(s) d s
$$

where

$$
\begin{align*}
& G(t, s) \tag{2.1}\\
& =\left\{\begin{array}{rr}
\frac{1}{\Gamma(\alpha)}\left((t-s)^{\alpha-1}+t^{\alpha-1}(1-s)^{\alpha-4}(4 s-\alpha s-1)+(\alpha-1) t^{\alpha-2}(1-s)^{\alpha-4} s\right) \\
\frac{1}{\Gamma(\alpha)}\left(t^{\alpha-1}(1-s)^{\alpha-4}(4 s-\alpha s-1)+(\alpha-1) t^{\alpha-2}(1-s)^{\alpha-4} s\right) \\
& (0 \leq t \leq s<1),
\end{array}\right.
\end{align*}
$$

see [5]. Also for the case of (1.2)

$$
\left\{\begin{array}{l}
D_{0+}^{\alpha} u(t)=h(t), \quad 0<t<1 \\
u(0)=u^{\prime}(0)=u^{\prime \prime}(1)=0, u^{\prime \prime \prime}(1)=\gamma
\end{array}\right.
$$

if and only if u is a solution of the integral equation

$$
\begin{equation*}
u(t)=\int_{0}^{1} G(t, s) h(s) d s+\frac{\gamma t^{\alpha-1}}{(\alpha-1)(\alpha-2)}-\frac{\gamma t^{\alpha-2}}{(\alpha-2)(\alpha-3)} \tag{2.2}
\end{equation*}
$$

for $0 \leq t \leq 1$, where $G(t, s)$ is defined by (2.1); see [6].

3. Main results

In this section, we consider the boundary value problems (1.1) and (1.2). By the Banach fixed point theorem, we obtain a sufficient condition for uniqueness and existence of solutions of the problems.

Theorem 1. Let $3<\alpha \leq 4$. Let f be a continuous function of $[0,1] \times \mathbb{R}$ into \mathbb{R}. Let g be a Lipschitz continuous function of \mathbb{R} into itself with a nonnegative constant L. Assume that there exists a nonnegative constant λ with

$$
\lambda \Lambda+\frac{2 L}{(\alpha-1)(\alpha-2)(\alpha-3)}<1
$$

such that for any $0 \leq t \leq 1$ and $u_{1}, u_{2} \in \mathbb{R}$,

$$
\left|f\left(t, u_{1}\right)-f\left(t, u_{2}\right)\right| \leq \lambda\left|u_{1}-u_{2}\right|,
$$

where Λ is the constant

$$
\Lambda=\sup _{0 \leq t \leq 1} \int_{0}^{1}|G(t, s)| d s
$$

Then the boundary value problem (1.2) has a unique solution.
Proof. See [6, Theorem 1].
For the case that $g=0$ in Theorem 1, we have the following; see [5, Theorem 3.1].

Corollary 2. Let $3<\alpha \leq 4$. Let f be a continuous mapping of $[0,1] \times \mathbb{R}$ into \mathbb{R}. Assume that there exists $\lambda \in\left[0, \frac{1}{\Lambda}\right)$ such that for any $u, v \in[0, \infty)$ and $t \in[0,1]$,

$$
|f(t, u)-f(t, v)| \leq \lambda|u-v|
$$

where

$$
\Lambda=\sup _{0 \leq t \leq 1} \int_{0}^{1}|G(t, s)| d s
$$

and G is the function given by (2.1). Then the boundary value problem represented by (1.1) has a unique solution.

For the case that $\alpha=4$ in Theorem 1, we have the following; see Theorem 1 in [4].

Corollary 3. Let f be a continuous function of $[0,1] \times \mathbb{R}$ into \mathbb{R} with bounded partial derivative with respect to the second variable. Let g be a Lipschitz continuous function of \mathbb{R} into itself with a nonnegative constant L. Let

$$
\lambda=\max _{(t, u) \in[0,1] \times \mathbb{R}}\left|\frac{\partial f}{\partial u}(t, u)\right| .
$$

If

$$
\frac{\lambda}{8}+\frac{L}{3}<1,
$$

then the boundary value problem (1.3) has a unique solution.

Proof. By the mean value theorem, we have for any $0 \leq t \leq 1$ and $u_{1}, u_{2} \in \mathbb{R}$,

$$
\left|f\left(t, u_{1}\right)-f\left(t, u_{2}\right)\right| \leq \lambda\left|u_{1}-u_{2}\right|
$$

In the case that $\alpha=4$, the function $G(t, s)$ reduces to

$$
G(t, s)= \begin{cases}\frac{1}{6} s^{2}(3 t-s) & (s<t) \\ \frac{1}{6} t^{2}(3 s-t) & (t \leq s)\end{cases}
$$

Since

$$
\Lambda=\sup _{0 \leq t \leq 1} \int_{0}^{1}|G(t, s)| d s=\frac{1}{8}
$$

we obtain the conclusion by Theorem 1 .
Remark 4. Let $3<\alpha \leq 4$. Since the function $G(t, s)$ satisfies

$$
\begin{equation*}
\int_{0}^{1}|G(t, s)| d s \leq \frac{1}{\Gamma(\alpha)}\left(\frac{1}{\alpha}+\frac{\alpha}{\alpha-3}\right) \tag{3.1}
\end{equation*}
$$

for all $0 \leq t \leq 1, \sup _{0 \leq t \leq 1} \int_{0}^{1}|G(t, s)| d s$ is finite. The function $G(t, s)$ satisfies

$$
l(t, s) \leq G(t, s) \leq m(t, s)
$$

for $0 \leq t \leq 1$ and $0 \leq s<1$. where

$$
l(t, s)= \begin{cases}\frac{1}{\Gamma(\alpha)} t^{\alpha-2}(1-s)^{\alpha-4}(2 s+s t-t) & (s<t) \\ \frac{\alpha-2}{\Gamma(\alpha)} t^{\alpha-2}(1-s)^{\alpha-4} s & (t \leq s)\end{cases}
$$

and

$$
m(t, s)= \begin{cases}\frac{\alpha-1}{\Gamma(\alpha)} t^{\alpha-2}(1-s)^{\alpha-4} s & (s<t) \\ \frac{3}{\Gamma(\alpha)} t^{\alpha-2}(1-s)^{\alpha-4} s & (t \leq s)\end{cases}
$$

see [6].
To conclude the paper, we present an example demonstrating an application of Theorem 1.

Example 5. Let us consider the boundary value problem

$$
\left\{\begin{array}{l}
D_{0+}^{3.1} u(t)=\frac{3}{\left(54 e^{t}+1\right)(1+|u(t)| \mid}, \quad 0<t<1 \tag{3.2}\\
u(0)=u^{\prime}(0)=u^{\prime \prime}(1)=0, u^{\prime \prime \prime}(1)=g(u(1))
\end{array}\right.
$$

where

$$
g(t)=\frac{1}{100} \sin t
$$

By (3.1), the constant Λ in Theorem 1 satisfies

$$
\Lambda \leq \frac{1}{\Gamma(\alpha)}\left(\frac{1}{\alpha}+\frac{\alpha}{\alpha-3}\right)=14.2530 \cdots<15
$$

Moreover we have, for any $0 \leq t \leq 1$ and $u_{1}, u_{2} \in \mathbb{R}$,

$$
\left|f\left(t, u_{1}\right)-f\left(t, u_{2}\right)\right| \leq \frac{3}{55}\left|u_{1}-u_{2}\right|
$$

5 where

$$
f(t, u)=\frac{3}{\left(54 e^{t}+1\right)(1+|u|)}
$$

for $0 \leq t \leq 1$ and $u \in \mathbb{R}$; see Section 4 in [2]. Since the constants $\lambda=\frac{3}{55}$ and $L=\frac{1}{100}$ in Theorem 1, we have

$$
\lambda \Lambda+\frac{2 L}{(\alpha-1)(\alpha-2)(\alpha-3)} \leq \frac{3}{55} \times 15+\frac{2 \times \frac{1}{100}}{2.1 \times 1.1 \times 0.1}=0 . \dot{9} 0476 \dot{1}<1
$$

It follows from Theorem 1 that the problem (3.2) has a unique solution.
Example 6. We also consider the following.

$$
\left\{\begin{array}{l}
D_{0+}^{3.1} u(t)=\frac{1}{50 e^{t} t\left(1+u^{2}\right)}, \quad 0<t<1 \tag{3.3}\\
u(0)=u^{\prime}(0)=u^{\prime \prime}(1)=0, u^{\prime \prime \prime}(1)=g(u(1))
\end{array}\right.
$$

where

$$
g(t)=\frac{1}{100} \sin t
$$

For any $0 \leq t \leq 1$ and $u_{1}, u_{2} \in \mathbb{R}$,

$$
\left|f\left(t, u_{1}\right)-f\left(t, u_{2}\right)\right| \leq \frac{3}{50}\left|u_{1}-u_{2}\right|
$$

where

$$
f(t, u)=\frac{3}{50 e^{t}\left(1+u^{2}\right)}
$$

for $0 \leq t \leq 1$ and $u \in \mathbb{R}$. In this case we also have

$$
\lambda \Lambda+\frac{2 L}{(\alpha-1)(\alpha-2)(\alpha-3)} \leq \frac{3}{50} \times 15+\frac{2 \times \frac{1}{100}}{2.1 \times 1.1 \times 0.1} \approx 0.9866<1
$$

References
[1] Z. Bai and H. Lü, Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl. 311, No. 2 (2005), 495-505.
[2] M. Benchohra, N. Hamidi and J. Henderson, Fractional differential equations with antiperiodic boundary condition, Numer. Funct. Anal. Optim. 34, No. 4 (2013), 404?-414.
[3] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, In North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam, 2006.
[4] T. F. Ma and J. da Silva, Iterative solutions for a beam equation with nonlinear boundary conditions of third order, Appl. Math. Comput. 159, No. 1 (2004), 11?-18.
[5] M. Toyoda and T. Watanabe, Note on solutions of boundary value problems involving a fractional differential equation, Linear Nonlinear Anal. 3, No. 3 (2017), 449?-455.
[6] M. Toyoda and T. Watanabe, Solutions for a fractional-order differential equation with boundary conditions of third order, International Journal of Applied Mathematics Volume 33 No. 3 (2020), 403-412.
(Toshikazu Watanabe) Meiji University
Email address: wa-toshi@mti.biglobe.ne.jp

