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Abstract 

We consider identical duals of two pairs of minimization (primal) problems and 
maximization (dual) problems from a view point of gap function. The identical dual 
means that both optimum points of a primal problem and its dual one are identical. 
An identity 

n-1 

(Cl) L)(xk-1 - Xk)µk + Xk(µk - µk+1)] + (xn-1 - Xn)µn + Xnµn = xoµ1 
k=l 

is called complementary [I 7]. The complementary identity leads to a gap function. 
We show that the complementary identity and the gap function play a fundamental 
part in analyzing an identical duality between primal and dual. 

1 Identical Dual 1 

As a pair of primal problem and dual problem, we taken-variable optimization problems: 

n-1 

minimize L [(xk-1 - xk)2 + x%] + (xn-1 - Xn) 2 + x;. 
k=l 

subject to (i) x E Rn, (ii) x0 = c 

n-1 

Maximize 2cµ 1 - L [µ% + (µk - µk+1) 2] - µ;, - µ;, 
k=l 

subject to (i) Jt E Rn. 

First we present an identity, which plays a fundamental role in analyzing the pair. Let 
x = { xk}~, µ = {µk}f be any two sequences of real number with x0 = c. Then an identity 

n-1 

L[(xk-1 - Xk)µk + Xk(µk - µk+1)] + (xn-1 - Xn)µn + Xnµn 
k=l 
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holds true. This identity is called complementary. Furthermore the complementary iden­
tity implies that 

n n-1 

L [(xk-1 - xk) 2 + x%] + L [µ% + (µk - µk+1)2] + 2µ';, - 2cµ1 
k=l k=l 

n-1 

= L [(xk-1 - Xk - µk) 2 + (xk - µk + µk+d] + (xn-1 - Xn - µn) 2 + (xn - µn)2. 
k=l 

This is an identity on RnxRn, which is called quadratic. 
Now we define three functions f, g: Rn-+ R1, h: RnxRn-+ R 1 by 

n 

k=l 
n-1 

g(µ) = 2cµ1 - L [µ% + (µk - µk+d] - 2µ';, 
k=l 

n-1 

h(x,µ) = L [(xk-1 - Xk - µk) 2 + (xk - µk + µk+1)2] + (xn-1 - Xn - µn) 2 + (xn - µn)2. 
k=l 

They are called primal, dual and gap functions, respectively. Then (QI1) is summarized 
as follows. 

Lemma 1 It holds that 

(QI1 ) J(x) - g(µ) = h(x, µ). 

We consider a linear system of 2n-equation on 2n-variable (x, µ): 

C - X1 = µ1, X1 = µ1 - µ2 

(EC1) Xk-1 - Xk = µk, Xk = µk - µk+l 2 ~ k ~ n - 1 

Lemma 2 It holds that 

(i) h(x, µ) :::::: 0 V(x, µ) E RnxRn 

(ii) h(x,µ) = 0 {==} (x,µ) satisfies (EC1). 

Corollary 1 It holds that 

(i) f(x):::::: g(µ) \:/(x, µ) E RnxRn 

(ii) f(x) = g(µ) {==} (x, µ) satisfies (EC1). 

Definition 1 We say that that (P1) and (D1) are dual to each other and (EC1) is an 
equality condition (EC) if Corollary 1 (i), (ii) hold. Then we say that one is dual of the 
other. This definition applies for any triplet such as {(P1), (D1), (EC1)}. 
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From Corollary 1, it turns out that both are dual to each other, and (EC1) is an 
equality condition. 

Lemma 3 (EC1) has a unique solution: 

X = (x1, X2, ... ' Xk, ... , Xn-1, Xn) 
C 

---(F2n-l, F2n-3, • • •, F2n-2k+l, • • •, F3, F1), 
F2n+l 

µ = (µ1, µ2, · · ·, µk, · · ·, µn-1, µn) 
C 

---(F2n, F2n-2, ... , F2n-2k, ... , F4, F2)­
F2n+1 

(1) 

(2) 

Here { Fn} is the Fibonacci sequence. This is defined as the solution to the second-order 
linear difference equation 

Xn+2 - Xn+l - Xn = 0, X1 = 1, Xo = 0. (3) 

n -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 
Fn -1 1 0 1 1 2 3 5 8 13 21 34 55 89 

Table 1 Fibonacci sequence { Fn} 

Proof. From (EC1), we have a pair of linear systems of n-variable on n-equation: 

c= 3x1 - X2 C = 2µ1 - µ2 

X1 = 3X2 - X3 µ1 = 3µ2 - µ3 
(EQ1) 

Xn-2 = 3xn-1 - Xn µn-2 = 3µn-1 - µn 

Xn-1 = 2xn µn-1 = 3µn. 

The left system has a solution x in (1), while the right has a solution µ in (2). □ 

Theorem 1 The primal (P1 ) has a minimum value m = c(c - i:1 ) 

The dual (D1) has a maximum value M = cµi 
F2n 2 
~c at a path 
r2n+l 

F2n 2 --c at a path 
F2n+1 
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Let x = {xk}0, µ = {µk}1 be any two sequences of real number with x0 = c. Then a 
complementary identity 

n-1 

2)(xk-l - Xk)µk + Xk(µk - µk+1)] + (xn-1 - Xn)µn + Xnµn 
k=l 

holds true. 
Let us define two sequences y 

through 

• • •, Y2n-2 = Xn-1, Y2n-1 = Xn-1 - Xn, Y2n = Xn 

... ' 

, respectively. Then an identity 

holds under a constraint - a linear system of 4n-variables (y, v) on 2n-equations - : 

c= Y1 + Y2 V1 = V2 + V3 

Y2 = Y3 + Y4 V3 = V4 + V5 

(CY") 

Y2n-4 = Y2n-3 + Y2n-2 V2n-3 = V2n-2 + V2n-l 

Y2n-2 = Y2n-l + Y2n V2n-l = V2n• 

(4) 

An equality (Ci) with constraint (CY") is called a 2n-variable conditional complementarity. 
This is simply written as (Ci) under (CY"). 

Now let y = {Ydin, v = {vk}in satisfy (Ci"). Then an elementary inequality with 
equality 

2xy < x2 + y2 on R2 ; x = y (5) 

yields 

2n 

2cv1 < ~)y~ + v~). 
k=l 

Thus we have an inequality 

2n 2n 

2cv1 - I: v~ < I: yr 
k=l k=l 
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The sign of equality holds iff 

Hence we have a pair of conditional optimization problems: 

minimize Yi + Y~ + · · · + Y~n-I + Y~n 

subject to (1) Y1 + Y2 = c 

(2) y3 + Y4 = Y2 

(n - 1) Y2n-3 + Y2n-2 = Y2n-4 

(n) Y2n-I + Y2n = Y2n-2 

(n + 1) y E R2n 

Maximize 2cLl1 - (Lli +LI~+···+ Ll~n-I + Ll~n) 

subject to [1] Ll2+L13 = Ll1 

[2] Ll4 + Ll5 = Ll3 

[n - 1] Ll2n-2 + Ll2n-l = Ll2n-3 

[n] Ll2n = Ll2n-l 

[n+ 1] LIE R2n. 

(6) 

Let (AC1) be an augmentation of the system (Ct) with the additional equality condition 

(EC1): 

C = YI+ Y2 Ll1 = Ll2 + Ll3 

Y2 = Y3 + Y4 Ll3 = Ll4 + Ll5 

(AC1) Y2n-4 = Y2n-3 + Y2n-2 Ll2n-3 = Ll2n-2 + Ll2n-l 

Y2n-2 = Y2n-1 + Y2n Ll2n-l = Ll2n 

Yk = Llk 1:::; k:::; 2n. 

The linear system (AC1) is of 4n-variables on 4n-equations. Let (y, LI) satisfy (AC1). Then 
both sides become a common value with five expressions: 

Yi+Y~+-··+Y~n 

CY1 

(5V1) 2cL11 - (Lli +LI~+···+ Ll~n) 

Lli+Ll~+-··+Ll~n 
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The system (AC1) has indeed a unique common solution: 

F, 
Theorem 2 The primal (P1 ) has a minimum value m = D 2n c2 at a path 

r2n+l 

iJ = (iJ1, Y2, · · ·, Yk, · · ·, Y2n-1, Y2n) 

The dual (D1) has a maximum value M = F2n c2 at a path 
F2n+I 

Both optimal solutions {point and value) are identical: 

x = µ*, m = M. 

Further both are Fibonacci. 

Thus Fibonacci Identical Duality (FID) holds between (P1) and (D1) [15-17]. 

We remark that the 2n-variable pair is a transliteration from n-variable one (P1), 

(D1). 

2 Identical Dual 2 

Next we consider the following pair 

n-1 
· · · " [( )2 2] ( )2 Fm+l 2 mm1m1ze L...., Xk-1 - Xk + xk + Xn-1 - Xn + y-xn 

k=l m 

subject to (i) x E Rn, (ii) x0 = c 

n-1 

Maximize 2cµ 1 - L [µ% + (µk - µk+1)2] - µ; - :m µ; 
k~ m+l 

subject to (i) µ E Rn, 
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where {Fn} is the Fibonacci sequence. The identity (C1) is enhanced to 

(Cm) cµ1 = ~[(xk-1 - Xk)µk + Xk(µk - µk+1)] + (xn-l - Xn)µn + ✓ F;+l Xn✓ :m µn 
k=l m m+l 

where m ~ 1. This identity is called Pm-complementary. 
Furthermore the complementary identity implies that 

This is an identity on RnxRn, which is called quadratic. 
Now we define three functions f, g: Rn -t R1, h: RnxRn -t R 1 by 

n-l 

f(x) = L[(xk-1-xk)2+x%] +(xn-1-xn)2+F;+lx; 
k=l m 

n-l 

g(µ) 2cµ1 - L [µ% + (µk - µk+1)2] - µ; - :m µ; 
k=l m+l 

n-l 
h(x,µ) 

They are called primal, dual and gap functions, respectively. Then (Qim) is summarized 
as follows. 

Lemma 4 It holds that 

(Qim) J(x) - g(µ) = h(x, µ). 

We consider a linear system of 2n-equation on 2n-variable (x, µ): 

Xk-l - Xk = µk, Xk = µk - µk+l 2 :S k '.S n - 1 

Fm+l ----y;;:- Xn = µn • 
m 
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Lemma 5 It holds that 

(i) h(x, µ) ;:::: 0 V(x, µ) E RnxRn 

(ii) h(x,µ) = 0 {==} (x,µ) satisfies (ECm)-

Corollary 2 It holds that 

(i) f(x);:::: g(µ) V(x, µ) E RnxRn 

(ii) f(x) = g(µ) {==} (x, µ) satisfies (ECm)-

From Corollary 2, it turns out that (Pm) and (Dm) are dual to each other, and (ECm) 
is an equality condition. The equality condition (ECm) is a linear system of 2n-equations 
on 2n-variables (x, µ). 

Lemma 6 Let ( x, µ) satisfy (ECm). Then both sides become a common value with five 
expressions: 

The primal (Pm) has a minimum value 

m = f(x) = c(c-x1) 

at x, while the dual (Dm) has a maximum value 

n-1 

M = g(µ) = L [µ~ + (µk - µk+i) 2] + µ~ + :m µ~ = cµ1 
~1 ~1 

atµ. 

Lemma 7 (ECm) has indeed a unique solution: 

X = (x1, X2, ... , Xk, ... , Xn-1, Xn) 
C 

-D--(Fm+2n-2, Fm+2n-4, • • •, Fm+2n-2k, • • •, Fm+2, Fm), 
rm+2n 

(7) 

µ = (µ1, µ2, · · ·, µk, · · ·, µn-1, µn) 
C 

-r,,--(Fm+2n-1, Fm+2n-3, • • •, Fm+2n-2k+l, • • •, Fm+3, Fm+1)- (8) 
rm+2n 

Proof. From (ECm), we have a pair of linear systems of n-variable on n-equation: 

C= 3X1 - X2 C = 2µ1 - µ2 

X1 = 3X2 - X3 µ1 = 3µ2 - µ3 

(EQm) 
Xn-2 = 3Xn-1 - Xn µn-2 = 3µn-1 - µn 

Fm+2 Fm+3 
Xn-1 = ~Xn µn-1 = --µn. 

m Fm+l 
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The left system has a solution x in (7), while the right has a solution µ in (8). 

Let us define two sequences y = {yk}in, l/ = {vk}in from X = {xk}o, µ 
through 

· · ·, Y2n-2 = Xn-l, Y2n-l = Xn-l - Xn, Y2n = Xn 

... ' 

, respectively. Then an identity 

holds under a constraint - a linear system of 4n-variables (y, 11) on 2n-equations - : 

c= YI+ Y2 1/1 = 1/2 + 1/3 

Y2 = Y3 +Y4 l/3 = l/4 + l/5 

(CYV) 

Y2n-4 = Y2n-3 + Y2n-2 ll2n-3 = !l2n-2 + ll2n-l 

Y2n-2 = Y2n-l + Y2n ll2n-l = ll2n• 

□ 

(9) 

An equality (C;',,) with constraint (CYv) is called a 2n-variable conditional complementar­
ity. This is simply written as (C;',,) under (CYv). 

Now let y = {ydin, 11 = {vdin satisfy (CYv). Then the elementary inequality with 
equality yields 

Thus we have an inequality 

The sign of equality holds iff 

(10) 

We remark that an equivalence 

~ v ~Y2n 
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yields the last equality. 
Hence we have a pair of conditional optimization problems: 

· · · 2 2 2 Fm+l 2 
mm1m1ze Y1 + Y2 + · · · + Y2n-l + Fm Y2n 

subject to (1) Y1 + Y2 = c 

(2) y3 + Y4 = Y2 

(n - 1) Y2n-3 + Y2n-2 = Y2n-4 

(n) Y2n-1 + Y2n = Y2n-2 

(n + 1) y E R2n 

Maximize 2cv1 - (v~ + v? + · · · + v?n-l + FFm v?n) 
m+l 

subject to [1] v2 + v3 = v1 

[2] V4 + V5 = V3 

[n - 1] V2n-2 + V2n-l = V2n-3 

[n] V2n = V2n-l 

[n+ 1] v E R2n. 

Let (ACm) be an augmentation of the system (C~) with the additional equality condition 
(ECm): 

c= Y1 + Y2 V1 = V2 + V3 

Y2 = Y3 +y4 V3 = V4 + V5 

(ACm) Y2n-4 = Y2n-3 + Y2n-2 V2n-3 = V2n-2 + V2n-I 

Y2n-2 = Y2n-l + Y2n V2n-l = V2n 

Yk = Vk 1 ::; k ::; 2n - 1, Fm+1Y2n = FmV2n· 

The linear system (ACm) is of 4n-variables on 4n-equations. Let (y, v) satisfy (ACm). 
The system (ACm) has indeed a unique solution: 

Y = (Yi, Y2, · · ·, Yk, · · ·, Y2n-2, Y2n-I, Y2n) 

C 
---(Fm+2n-1, Fm+2n-2, • • •, Fm+2n-k, • • •, Fm+2, Fm+l, Fm), 
Fm+2n 

V = (v1, V2, · · ·, Vk, · · ·, V2n-2, V2n-l, V2n) 

C 
-F--(Fm+2n-1, Fm+2n-2, • • •, Fm+2n-k, • • •, Fm+2, Fm+l, Fm+1). 

m+2n 
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Note that only the last elements are different, as underlined. However, in Case m = 1, 
both solutions are identical: 

We note that F2 = F1 = 1. 

h h l (p ) h l Fm+2n-l 2 h T eorem 3 T e prima m as a minimum va ue m = F c at a pat 
m+2n 

Y = (Yi, Y2, · · ·, Yk, · · ·, Y2n-2, Y2n-l, Y2n) 
C 

-D--(Fm+2n-l, Fm+2n-2, • • •, Fm+2n-k, • • •, Fm+2, Fm+l, Fm), 
rm+2n 

( ) Fm+2n-l 2 The dual Dm has a maximum value M = ---c at a path 
Fm+2n 

Both optimal solutions (point and value) are identical except for the last element: 

Yk = vZ l :::; k :::; 2n - 1, m = M. 

Further both are Fibonacci: 

Fm+2n-k 
Yk = vZ = ---- c l :::; k :::; 2n - 1, 

Fm+2n 

Thus Fibonacci Identical 1 Duality (FID) holds between (Pm) and (Dm) [15-17]. 
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