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Identical Duals

— Gap Function —

Seiichi Iwamoto
Professor emeritus, Kyushu University

Yutaka Kimura
Department of Management Science and Engineering
Faculty of Systems Science and Technology
Akita Prefectural University

Abstract

We consider identical duals of two pairs of minimization (primal) problems and
maximization (dual) problems from a view point of gap function. The identical dual
means that both optimum points of a primal problem and its dual one are identical.
An identity

n—1
€D > l@ro1 — @)tk + k(i — k1)) + (Tno1 = Tn)ptn + Tnjtn = T
k=1

is called complementary [17]. The complementary identity leads to a gap function.
We show that the complementary identity and the gap function play a fundamental
part in analyzing an identical duality between primal and dual.

1 Identical Dual 1

As a pair of primal problem and dual problem, we take n-variable optimization problems:
n—1

minimize Z [(ho1 — zp)® + 27 + (Tpo1 — 20)* + 22
k=1

subject to (i) x € R", (ii) xp=c¢

n—1
Maximize 2cpu; — Z [/1,2 + (e — /tk+1)2} — 2=
D k=1
(D) subject to (i) u€ R™

First we present an identity, which plays a fundamental role in analyzing the pair. Let
x = {xg}g, = {p}} be any two sequences of real number with zq = ¢. Then an identity

n—1

(C1) e =Y [(@wr1 — 2k + 2k — pre1)] + (Tno1 — T i + Tnfin
k=1



holds true. This identity is called complementary. Furthermore the complementary iden-
tity implies that

n n—1
> @ror —a) + 23] + Y [+ (i — prgn)’] + 28 — 20
QL) =

x>
—_

This is an identity on R"xR"™, which is called quadratic.
Now we define three functions f, g : R* — R', h: R"xR" — R' by

n

f@) = [ — 2)” + 7]

k=1
n—1
g(m) = 2em — > (i + (e — pn)?] — 202
k=1
n—1
h(z,p) = [(iﬂk—1 — Ty — ,Uk)Q + (T) — o + ,Uk+1)2] + (Tpo1 — 2y — ,Un)2 + (2, — /ln)2~
k=1

They are called primal, dual and gap functions, respectively. Then (QI,) is summarized
as follows.

Lemma 1 It holds that

QL) f(x) —g(n) = h(z, p).

We consider a linear system of 2n-equation on 2n-variable (z, u):

C— Ty = M1, T1 = M1 — M2
(ECy)  wpv—ak = oy, Tp = pp —pey1 2<k<n—1
Tp1— Ty = fn, Tp = fln.
Lemma 2 [t holds that
(i) h(x,u) >0 Y(z, u) € R"xR"
(ii) h(z,p) = 0 <= (z,pn) satisfies (ECy).

Corollary 1 [t holds that
(i) f(z) =g(p) V(z,pn) € R"xXR"
(i) f(z) = g(n) <= (w.p) satisfies (ECy).

Definition 1 We say that that (P;) and (D) are dual to each other and (EC,) is an
equality condition (EC) if Corollary 1 (i), (ii) hold. Then we say that one is dual of the
other. This definition applies for any triplet such as {(P;), (D1), (ECy)}.

[(xkfl — Tk — /J/k)Q + (l‘k — Mk + /l‘k+1)2} + (xnfl — Tp — /l‘n)Q + (:L"n - ,un)QA

o7



From Corollary 1, it turns out that both are dual to each other, and (EC;) is an

equality condition.

Lemma 3 (EC;) has a unique solution:

Tr = (33'1, T2y «ovy Thy «vvy Tp_1, .Z‘n)
C
= (F2n—la FZn—Ba "'7F2n—2k+17 sy F37 F1)7
F2n+1
n= (,ula M2y oey MRy oey M1, un)
C
= (F2n7 F2n727 "'7F2n72k7 "'7F4a FQ)
F2n+1

(2)

Here {F,,} is the Fibonacci sequence. This is defined as the solution to the second-order

linear difference equation

Tpt2 — Tptp1 — Tp = Oa Iy = 17 Lo = 0.
n |- -2 -1 012 3 45 6 7 8 9 10 11
il -1 1 0 1 1 2 3 5 8 13 21 34 55 §9

Table 1 Fibonacci sequence {F,}

Proof.  From (ECj), we have a pair of linear systems of n-variable on n-equation:

(3)

c = 3r; — X c = 201 — s
T1 = 3x2 — T3 M1 = 32 — 3
(EQ,) ' :
Tp—2 = 3In,1 — Tp Hn—2 = 3#7171 — Hn
Tpoy = 2Ty Hn—1 = 3,un
The left system has a solution x in (1), while the right has a solution p in (2). ad
Theorem 1 The primal (P1) has a minimum value m = c¢(c — &) = ———c* at a path
2n+1
&= (&1, Toy o0y Thy «vny Tpo1, Tn)
c
= Fi(Fmth Fons, oo, Fopopy1, ..., F3, Fy).
n+1
The dual (Dy) has a mazimum value M = cuf = 7 ¢ at a path
2n+1
W= (/“LL S (N Sy :u‘:z)
c
- (F2n7 F2n727 "'5F2n72k7 "'7F47 F2)

F2n+1



Let @ = {zx}g, 1 = {p}7 be any two sequences of real number with xy = ¢. Then a
complementary identity

n—1
(C1) e = Z[(%q — @) + T — 1)) + (T = n) i + Tnpin
k=1

holds true.
Let us define two sequences y = {y;}3", v = {vp}3" from z = {x}0, p = {1}
through

Y1 =C—T1, Y2 =21, Y3 =T1 — T2, Y4 = T2, Y5 = T2 — X3

coy Yon—2 = Tp—1, Yon—1 = Tp—1 — Tn, Yon = Tn

vy = M1, Vo = [y — M2, V3 = 2, V4 = [a — 3, V5 = HU3

y Von—2 = Up—1 — Hny Von—1 = Un, Von = HUn

, respectively. Then an identity

2n
(CY) o = Zykz/k
k=1

holds under a constraint — a linear system of 4n-variables (y, v) on 2n-equations — :

C= Y1 +Y vy =l + U3
Y2 = Y3+ Y V3 = Vg + Vs

(G
Yon-a = Yon-3 T Yon 2 Vop—3 = Vop 2+ Vop1

Yon—2 = Yon—1 + Yon Vap—1 = Vop.

An equality (C7) with constraint (C¥”) is called a 2n-variable conditional complementarity.
This is simply written as (C;) under (C¥).

Now let y = {yp}3", v = {w}3" satisfy (C}”). Then an elementary inequality with
equality

2oy < 2249y on R*; 2=y (5)

yields

2n
20 <) (Ur+13).
k=1

Thus we have an inequality

2n 2n
2cvy — g 1/13 < g y,%.
k=1 k=1

99
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The sign of equality holds iff
(EC)) w =1 1<k<2n. (6)
Hence we have a pair of conditional optimization problems:
minimize y; +y; + -+ Y31 + Yz
subject to (1) y1+ys = ¢
(2) ys+ys = v

(TL - ]‘) Yon—3 + Yon—2 = Yop—4
(n) Yon—1+ Yon = Yon-2
(n+1) yeR™

Maximize 2cvy — (Vi +v5 +---+va, 4 +153,)
subject to [1] o +r3 =1

2] m+rvs =13

[77, — 1] Vop—92 + Vop—1 = Vop_3
[n} Von = Van—1

n+1] veRr™

Let (ACy) be an augmentation of the system (CY”) with the additional equality condition
(ECl):

C =Y +Y vy = Ve + 13
Yo Y3+ Ya Vs

V4—|—l/5

(ACy) Yon—a = Yon-3 T Yon—2 Vop—3 = Vop—2 + Vop—1

Yon—2 = Y2n—1 1+ Yon Vop—1 = Van
Y = v 1<k <2n.

The linear system (ACy) is of 4n-variables on 4n-equations. Let (y, v) satisfy (AC;). Then
both sides become a common value with five expressions:

Vit Yttt
= Ch
(5Vy) =2 — Wi+ vid+UE)
=Vi+uvs+-+ua,

= Cly.



The system (AC;) has indeed a unique common solution:

y:(y17 Y2, vovs Yky -y Yon—1, an)
c
= I3 (F2n-, FZn—la '-'7F2n—k+17 ~~'7F27 Fl)a
2n+1
V:(Vla Voy wovy Vgy «ovy Vop—1, VQTL)
c
= F (F2n~, F2n717 "'7F27’Lfk‘+17 "'7F27 Fl)
2n+1
Fyy
Theorem 2 The primal (Py) has a minimum value m = "2 at a path
2n+1
g:(:gb yQa RN yka ey g2n717 yAQH)
c
= F (F2n7 F2n717 "'7F2n7k+17 ceey F27 Fl)
2n+1
F:
The dual (D1) has a mazimum value M = —2"—¢* at a path
2n+1
v =V, Vs, o, VE e, Va4 Vs
c
- I3 (FZny Fanb "~aF2nfk+17 ey F27 Fl)
2n+1

Both optimal solutions (point and value) are identical:
r=pu", m= M.
Further both are Fibonacci.
Thus Fibonacci Identical Duality (FID) holds between (P1) and (D) [15-17].
We remark that the 2n-variable pair is a transliteration from n-variable one (Py),

(D1).

2 Identical Dual 2

Next we consider the following pair

n—1
minimize Z [(xk_l —z)? + fﬁ] 4 (Tt — 2a)? + F;ﬂ 2
(P, "
subject to (i) x € R", (i) xg=c
n—1 F
Maximize 2cu; — Z [Ni + (uy — Nk+1)2} — = 2
(D) "

subject to (i) p€ R",
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where {F),} is the Fibonacci sequence. The identity (C;) is enhanced to

n—1
F, E,
(C) e = E [(wh—1 — @) e + 2 — presr)] + (Tno1 — @0 ) + FH T\l Hn
k=1 m m+

where m > 1. This identity is called F,,-complementary.
Furthermore the complementary identity implies that

1

.
F
(@1 = 2p)® + 23] + (201 — 20)° + ;7“ ;
k=1 m
n—1 F
+ Z [+ (e — pn)?] + i, r ml i — 2cp
_ m+
QL)
= (w1 = 2 — ) + (2 — i + pg)?
=1

e (e

This is an identity on R"x R"™, which is called quadratic.
Now we define three functions f, g : R* — R!, h: R"xR" — R! by

Fn
@) = (@1 = 2a)® + 23] + (@01 —2a)* + F+_1 z2
k=1 -
n—1 ”
() = 2eu =Y [+ (o = pasn)?] — iy = =41
Fm 1
k=1 i
n—1
h(z,p) = [(Ik L — @ — )+ (T — A )’
k=1

et e

They are called primal, dual and gap functions, respectively. Then (QI,,) is summarized
as follows.

Lemma 4 It holds that
QL) f(z) —g(n) = h(z,p).

We consider a linear system of 2n-equation on 2n-variable (z, p):
C— X1 = 1, L1 = M1 — M2
(ECh)  @py — T = ey @k = pgp — pop1 2<k<n-—1

Fm+1
F,

Tp—1 — Tpn = Hn, Tn = [n-
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Lemma 5 [t holds that
(i) h(z,p) >0 VY(z, u) € R"XR"
(i) R(x,p) = 0<= (x,u) satisfies (EC,,).

Corollary 2 [t holds that
(1) f@)=9(n) Y(z, p) € R"xR"
(i) f(z) = g(p) < (z, 1) satisfies (ECp,).
From Corollary 2, it turns out that (P,,) and (D,,) are dual to each other, and (EC,,)

is an equality condition. The equality condition (EC,,) is a linear system of 2n-equations
on 2n-variables (x, ).

Lemma 6 Let (x,p) satisfy (EC,,). Then both sides become a common value with five
eTPressions:

f(x) = clc—mz1) = g(p)

(5V) .
2 2 2, Fm o
= [ + (e — pr1)?] + o + T M = ch
1 m+1
The primal (P,,) has a minimum value
m = f(z) = c(c — )
at x, while the dual (D,,) has a mazimum value
n—1 F
M = g(p) = {/ti (e = )’ | + 4+ i = e
k=1 m+1
at (.
Lemma 7 (EC,,) has indeed a unique solution:
r = (1'17 T2y ooy Thy ooy Tp-1, 'rn)
c
= ﬁ(FeranQa Fm+2n—47 ey Fm+2n72ka R} Fm+2> Fm)7 (7)
m-+2n
no= (/'le M2y ovoy MRy ey Hn—1, Mn)
c
= ﬁ(Fm+2nfly Fm+2n737 ey Fm+2n72k+17 HRIY Fm+3a Ferl)- (8)
m—+2n

Proof.  From (EC,,), we have a pair of linear systems of n-variable on n-equation:

c = 31 — T2 c = 2U1 — s
T = 3Ty — T3 M = 3o — 3
E : :
( Qm) Tp—2 = 3In71 — Tn Hn—2 = 3,“/7171 — Hn
e _ Fm+2x _ Fm+3
n—1 Fm n Hn—1 Fm+1 n-
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The left system has a solution x in (7), while the right has a solution x in (8). ad

Let us define two sequences y = {yx}3", v = {v}?" from z = {x.}0, p = {px}}
through

Y =C— Ty, Yo =21, Y3 =1 — T2, Yas = T2, Ys = T2 — T3

coy Yon—2 = Tp—1, Yon—1 = Tp—1 — Tn, Yon = Tn

= M1, Vo = 1 — 2, V3 = fig, V4 = [la — |43, V5 = H3

y Von—2 = fn—1 — Hn, Von—1 = Hn, Von = Hn

, respectively. Then an identity

2n—1
(Cr) an = Z Yo [ m“
=1 m+1

holds under a constraint — a linear system of 4dn-variables (y, ) on 2n-equations —

C= 1Y +Y vy =1l + 13
Y2 Y3 + Ya V3

vy + vs
(C")
Yon—a = Yon-3 T Yon—2 Vop—3 = Vop—2 + Vop—1

Yon—2 = Yon—1 + Yon Vop—1 = Von.

An equality (Cz,) with constraint (C¥) is called a 2n-variable conditional complementar-
ity. This is simply written as (C%,) under (C¥”).

Now let y = {yx}1", v = {}3" satisty (C¥). Then the elementary inequality with
equality yields

2n—1

Foit E,
2ev1 < N (U VR) + T Y Ve
1 i ¥ Fm ? Fm+1 °

Thus we have an inequality

2n—1 2n—1

2cvy — Z Vi —

The sign of equality holds iff

(ECh) we = v 1<k<2n—1, Fni1Yon = Flon. (10)

We remark that an equivalence

Fm+1 m+1 o
Yon Vop < y2n = Von
Fm m+1




yields the last equality.
Hence we have a pair of conditional optimization problems:

Frta
;Z*’ Yin
m

minimize 2 +y3 + - +ya, | +

subject to (1) y1+y2 = ¢
(2) ys+ys =y

(n—1) Yon-3+ Yon-2 = Yonu
() Yon—1+ Yon = Yon—2
(n+1) yeR™

Fr,
Maximize 2cv; — (V% NN I SRRV S —1/2271)
EnJrl
subject to [1] o +rv3 =1
[2] Vy + Vs = U3
(D7)
n—1] vap 2+ von1 = Va3
[n] Vop = Vop—1
n+1] veRr™
Let (AC,,) be an augmentation of the system (C¥”) with the additional equality condition
(ECp):
c =Y+ Yo vy = Vy+ 13
Y2 = Y3t Ys Vg = V4 + Vs

(Acm) Yon—a4 = Y2n-3 + Yon—2 Vop—3 = Vop—o + Vop_1
Yon—2 = Yon—1 1 Yon Von—1 = Vop

Y = Vg ]_SkSQ’I’L—L Fm+ly2n:FmV2n-

The linear system (AC,,) is of 4n-variables on 4n-equations. Let (y, v) satisfy (AC,,).
The system (AC,,) has indeed a unique solution:

Y= Y2, -5 Yks -5 Y2n-2, Yon-1, Y2n)
= %(FW+Q7L—17 Fm+2n—27 ~~'7Fm+2n—k7 ceey Fm+2a Fm+1: &)a
m+2n
v= (v, Vo, ..., Vi, ..., Von—a, Von_1, Van)
= L(Fm+2n717 Fm+2n727 ~-~7Fm+2nfk7 sy Fm+2: Fm+1a M)

Fm+2n



Note that only the last elements are different, as underlined. However, in Case m = 1,
both solutions are identical:

Y=Y, Y20 -~ Yk» -+ Y22, Y2n-1, Y2n)
=V:(V17 Vo, oy Vgy «ovy Vop—2, Vop—1, Vzn)
c
- Iz (F2n7 Fanla '~'7F2n7k+17 "'>F37 F27 ﬂ)
2n+1

We note that [y, = F; = 1.

Fr
+2n—1

Theorem 3 The primal (P,,) has a minimum value m = at a path
Fm+2n
9=, 25 -y Goo s Yon—2s Yon—1, Yon)
c
= = Um+2n-1, m+2n—2; - b m2n—ky > m+2 m+1 m)-
F(F21F22 Frton—k Foio, Fn)
m+2n
F,
. +2n-1
The dual (D,,) has a mazimum value M = —=""=c* at a path
Fm+2n
* * * * * * *
Vi= (V1 V3, s Ve ey Vinogs Vago1, Vi)
c
= F—(Feranl? Fm+2n72a sy Fm+2nfk7 R Fm+27 Fm+17 Ferl)-
m+2n

Both optimal solutions (point and value) are identical except for the last element:
e =v; 1<k<2n—-1, m = M.

Further both are Fibonacci:

~ En+2nfk ~ Fm * Fm+1
U =V, = ————c¢c 1<k<2n—-1, s = C, Uy, = c
Fm+2n ' " Fm+2n ’ " Fm+2n
F, _
m = M = —mtn-l 2
Fm+2n

Thus Fibonacci Identical * Duality (FID) holds between (P,,) and (D,,) [15-17].
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