TITLE：

Identical Duals：Gap Function （Study on Nonlinear Analysis and Convex Analysis）

AUTHOR（S）：
Iwamoto，Seiichi；Kimura，Yutaka

CITATION：

Iwamoto，Seiichi ．．．［et al］．Identical Duals ：Gap Function（Study on Nonlinear Analysis and Convex Analysis）．数理解析研究所講究録 2021，2194：56－67

ISSUE DATE：

2021－08
URL：
http：／／hdl．handle．net／2433／265722
RIGHT：

Identical Duals

\author{

- Gap Function -
}

Seiichi Iwamoto
Professor emeritus, Kyushu University

Yutaka Kimura
Department of Management Science and Engineering
Faculty of Systems Science and Technology
Akita Prefectural University

Abstract

We consider identical duals of two pairs of minimization (primal) problems and maximization (dual) problems from a view point of gap function. The identical dual means that both optimum points of a primal problem and its dual one are identical. An identity

(CI) $\sum_{k=1}^{n-1}\left[\left(x_{k-1}-x_{k}\right) \mu_{k}+x_{k}\left(\mu_{k}-\mu_{k+1}\right)\right]+\left(x_{n-1}-x_{n}\right) \mu_{n}+x_{n} \mu_{n}=x_{0} \mu_{1}$
is called complementary [17]. The complementary identity leads to a gap function. We show that the complementary identity and the gap function play a fundamental part in analyzing an identical duality between primal and dual.

1 Identical Dual 1

As a pair of primal problem and dual problem, we take n-variable optimization problems:

$$
\begin{align*}
& \text { minimize } \sum_{k=1}^{n-1}\left[\left(x_{k-1}-x_{k}\right)^{2}+x_{k}^{2}\right]+\left(x_{n-1}-x_{n}\right)^{2}+x_{n}^{2} \tag{1}\\
& \text { subject to } \quad \text { (i) } x \in R^{n}, \quad \text { (ii) } x_{0}=c
\end{align*}
$$

$$
\begin{align*}
& \text { Maximize } 2 c \mu_{1}-\sum_{k=1}^{n-1}\left[\mu_{k}^{2}+\left(\mu_{k}-\mu_{k+1}\right)^{2}\right]-\mu_{n}^{2}-\mu_{n}^{2} \tag{1}\\
& \text { subject to (i) } \quad \mu \in R^{n}
\end{align*}
$$

First we present an identity, which plays a fundamental role in analyzing the pair. Let $x=\left\{x_{k}\right\}_{0}^{n}, \mu=\left\{\mu_{k}\right\}_{1}^{n}$ be any two sequences of real number with $x_{0}=c$. Then an identity

$$
\left(\mathrm{C}_{1}\right) \quad c \mu_{1}=\sum_{k=1}^{n-1}\left[\left(x_{k-1}-x_{k}\right) \mu_{k}+x_{k}\left(\mu_{k}-\mu_{k+1}\right)\right]+\left(x_{n-1}-x_{n}\right) \mu_{n}+x_{n} \mu_{n}
$$

holds true. This identity is called complementary. Furthermore the complementary identity implies that
$\left(\mathrm{QI}_{1}\right)$

$$
\begin{aligned}
& \sum_{k=1}^{n}\left[\left(x_{k-1}-x_{k}\right)^{2}+x_{k}^{2}\right]+\sum_{k=1}^{n-1}\left[\mu_{k}^{2}+\left(\mu_{k}-\mu_{k+1}\right)^{2}\right]+2 \mu_{n}^{2}-2 c \mu_{1} \\
= & \sum_{k=1}^{n-1}\left[\left(x_{k-1}-x_{k}-\mu_{k}\right)^{2}+\left(x_{k}-\mu_{k}+\mu_{k+1}\right)^{2}\right]+\left(x_{n-1}-x_{n}-\mu_{n}\right)^{2}+\left(x_{n}-\mu_{n}\right)^{2} .
\end{aligned}
$$

This is an identity on $R^{n} \times R^{n}$, which is called quadratic.
Now we define three functions $f, g: R^{n} \rightarrow R^{1}, h: R^{n} \times R^{n} \rightarrow R^{1}$ by

$$
\begin{aligned}
f(x) & =\sum_{k=1}^{n}\left[\left(x_{k-1}-x_{k}\right)^{2}+x_{k}^{2}\right] \\
g(\mu) & =2 c \mu_{1}-\sum_{k=1}^{n-1}\left[\mu_{k}^{2}+\left(\mu_{k}-\mu_{k+1}\right)^{2}\right]-2 \mu_{n}^{2} \\
h(x, \mu) & =\sum_{k=1}^{n-1}\left[\left(x_{k-1}-x_{k}-\mu_{k}\right)^{2}+\left(x_{k}-\mu_{k}+\mu_{k+1}\right)^{2}\right]+\left(x_{n-1}-x_{n}-\mu_{n}\right)^{2}+\left(x_{n}-\mu_{n}\right)^{2} .
\end{aligned}
$$

They are called primal, dual and gap functions, respectively. Then $\left(\mathrm{QI}_{1}\right)$ is summarized as follows.

Lemma 1 It holds that

$$
\left(\mathrm{QI}_{1}\right) \quad f(x)-g(\mu)=h(x, \mu)
$$

We consider a linear system of $2 n$-equation on $2 n$-variable (x, μ) :

$$
\begin{aligned}
c-x_{1}=\mu_{1}, & x_{1}=\mu_{1}-\mu_{2} \\
\left(\mathrm{EC}_{1}\right) \quad & x_{k-1}-x_{k}=\mu_{k}, \\
& x_{k}=\mu_{k}-\mu_{k+1} \quad 2 \leq k \leq n-1 \\
x_{n-1}-x_{n}=\mu_{n}, & x_{n}=\mu_{n} .
\end{aligned}
$$

Lemma 2 It holds that
(i) $\quad h(x, \mu) \geq 0 \quad \forall(x, \mu) \in R^{n} \times R^{n}$
(ii) $h(x, \mu)=0 \Longleftrightarrow(x, \mu)$ satisfies $\left(\mathrm{EC}_{1}\right)$.

Corollary 1 It holds that
(i) $f(x) \geq g(\mu) \quad \forall(x, \mu) \in R^{n} \times R^{n}$
(ii) $f(x)=g(\mu) \Longleftrightarrow(x, \mu)$ satisfies $\left(\mathrm{EC}_{1}\right)$.

Definition 1 We say that that $\left(\mathrm{P}_{1}\right)$ and $\left(\mathrm{D}_{1}\right)$ are dual to each other and $\left(\mathrm{EC}_{1}\right)$ is an equality condition (EC) if Corollary 1 (i), (ii) hold. Then we say that one is dual of the other. This definition applies for any triplet such as $\left\{\left(\mathrm{P}_{1}\right),\left(\mathrm{D}_{1}\right),\left(\mathrm{EC}_{1}\right)\right\}$.

From Corollary 1, it turns out that both are dual to each other, and $\left(\mathrm{EC}_{1}\right)$ is an equality condition.

Lemma $3\left(\mathrm{EC}_{1}\right)$ has a unique solution:

$$
\begin{gather*}
x=\left(x_{1}, x_{2}, \ldots, x_{k}, \ldots, x_{n-1}, x_{n}\right) \\
=\frac{c}{F_{2 n+1}}\left(F_{2 n-1}, F_{2 n-3}, \ldots, F_{2 n-2 k+1}, \ldots, F_{3}, F_{1}\right), \tag{1}\\
\quad \mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{k}, \ldots, \mu_{n-1}, \mu_{n}\right) \\
=\frac{c}{F_{2 n+1}}\left(F_{2 n}, F_{2 n-2}, \ldots, F_{2 n-2 k}, \ldots, F_{4}, F_{2}\right) . \tag{2}
\end{gather*}
$$

Here $\left\{F_{n}\right\}$ is the Fibonacci sequence. This is defined as the solution to the second-order linear difference equation

n	...	-2	-1	0	1	2	3	4	5	6	7	8	9	10	11
F_{n}	\ldots	-1	1	0	1	1	2	3	5	8	13	21	34	55	89

Table 1 Fibonacci sequence $\left\{F_{n}\right\}$
Proof. From $\left(\mathrm{EC}_{1}\right)$, we have a pair of linear systems of n-variable on n-equation:

$$
\begin{array}{rlrl}
c & =3 x_{1}-x_{2} & c & =2 \mu_{1}-\mu_{2} \\
x_{1} & =3 x_{2}-x_{3} & \mu_{1} & =3 \mu_{2}-\mu_{3} \\
& \vdots & & \vdots \tag{1}\\
x_{n-2} & =3 x_{n-1}-x_{n} & \mu_{n-2} & =3 \mu_{n-1}-\mu_{n} \\
x_{n-1} & =2 x_{n} & \mu_{n-1} & =3 \mu_{n} .
\end{array}
$$

The left system has a solution x in (1), while the right has a solution μ in (2).

Theorem 1 The primal $\left(\mathrm{P}_{1}\right)$ has a minimum value $m=c\left(c-\hat{x}_{1}\right)=\frac{F_{2 n}}{F_{2 n+1}} c^{2}$ at a path

$$
\begin{gathered}
\hat{x}=\left(\hat{x}_{1}, \hat{x}_{2}, \ldots, \hat{x}_{k}, \ldots, \hat{x}_{n-1}, \hat{x}_{n}\right) \\
=\frac{c}{F_{2 n+1}}\left(F_{2 n-1}, F_{2 n-3}, \ldots, F_{2 n-2 k+1}, \ldots, F_{3}, F_{1}\right) .
\end{gathered}
$$

The dual $\left(\mathrm{D}_{1}\right)$ has a maximum value $M=c \mu_{1}^{*}=\frac{F_{2 n}}{F_{2 n+1}} c^{2}$ at a path

$$
\begin{gathered}
\mu^{*}=\left(\mu_{1}^{*}, \mu_{2}^{*}, \ldots, \mu_{k}^{*}, \ldots, \mu_{n-1}^{*}, \mu_{n}^{*}\right) \\
=\frac{c}{F_{2 n+1}}\left(F_{2 n}, F_{2 n-2}, \ldots, F_{2 n-2 k}, \ldots, F_{4}, F_{2}\right) .
\end{gathered}
$$

Let $x=\left\{x_{k}\right\}_{0}^{n}, \mu=\left\{\mu_{k}\right\}_{1}^{n}$ be any two sequences of real number with $x_{0}=c$. Then a complementary identity

$$
\left(\mathrm{C}_{1}\right) \quad c \mu_{1}=\sum_{k=1}^{n-1}\left[\left(x_{k-1}-x_{k}\right) \mu_{k}+x_{k}\left(\mu_{k}-\mu_{k+1}\right)\right]+\left(x_{n-1}-x_{n}\right) \mu_{n}+x_{n} \mu_{n}
$$

holds true.
Let us define two sequences $y=\left\{y_{k}\right\}_{1}^{2 n}, \nu=\left\{\nu_{k}\right\}_{1}^{2 n}$ from $x=\left\{x_{k}\right\}_{0}^{n}, \mu=\left\{\mu_{k}\right\}_{1}^{n}$ through

$$
\begin{align*}
y_{1}= & c-x_{1}, y_{2}=x_{1}, y_{3}=x_{1}-x_{2}, y_{4}=x_{2}, y_{5}=x_{2}-x_{3} \\
& \ldots, y_{2 n-2}=x_{n-1}, y_{2 n-1}=x_{n-1}-x_{n}, y_{2 n}=x_{n} \tag{4}\\
\nu_{1}= & \mu_{1}, \nu_{2}=\mu_{1}-\mu_{2}, \nu_{3}=\mu_{2}, \nu_{4}=\mu_{2}-\mu_{3}, \nu_{5}=\mu_{3} \\
& \ldots, \nu_{2 n-2}=\mu_{n-1}-\mu_{n}, \quad \nu_{2 n-1}=\mu_{n}, \nu_{2 n}=\mu_{n}
\end{align*}
$$

, respectively. Then an identity

$$
\left(\mathrm{C}_{1}^{*}\right) \quad c \nu_{1}=\sum_{k=1}^{2 n} y_{k} \nu_{k}
$$

holds under a constraint - a linear system of $4 n$-variables (y, ν) on $2 n$-equations - :

$$
\begin{array}{rlrl}
c=y_{1}+y_{2} & \nu_{1} & =\nu_{2}+\nu_{3} \\
y_{2}=y_{3}+y_{4} & \nu_{3} & =\nu_{4}+\nu_{5} \\
\left(\mathrm{C}^{y \nu}\right) & \vdots & \vdots \\
y_{2 n-4}=y_{2 n-3}+y_{2 n-2} & \nu_{2 n-3}=\nu_{2 n-2}+\nu_{2 n-1} \\
y_{2 n-2}=y_{2 n-1}+y_{2 n} & \nu_{2 n-1}=\nu_{2 n} .
\end{array}
$$

An equality $\left(\mathrm{C}_{1}^{*}\right)$ with constraint ($\mathrm{C}^{y \nu}$) is called a $2 n$-variable conditional complementarity. This is simply written as $\left(\mathrm{C}_{1}^{*}\right)$ under $\left(\mathrm{C}^{y \nu}\right)$.

Now let $y=\left\{y_{k}\right\}_{1}^{2 n}, \nu=\left\{\nu_{k}\right\}_{1}^{2 n}$ satisfy $\left(\mathrm{C}_{1}^{y \nu}\right)$. Then an elementary inequality with equality

$$
\begin{equation*}
2 x y \leq x^{2}+y^{2} \quad \text { on } R^{2} ; x=y \tag{5}
\end{equation*}
$$

yields

$$
2 c \nu_{1} \leq \sum_{k=1}^{2 n}\left(y_{k}^{2}+\nu_{k}^{2}\right)
$$

Thus we have an inequality

$$
2 c \nu_{1}-\sum_{k=1}^{2 n} \nu_{k}^{2} \leq \sum_{k=1}^{2 n} y_{k}^{2}
$$

The sign of equality holds iff

$$
\begin{equation*}
\left(\mathrm{EC}_{1}\right) \quad y_{k}=\nu_{k} \quad 1 \leq k \leq 2 n \tag{6}
\end{equation*}
$$

Hence we have a pair of conditional optimization problems:

$$
\begin{gathered}
\operatorname{minimize} y_{1}^{2}+y_{2}^{2}+\cdots+y_{2 n-1}^{2}+y_{2 n}^{2} \\
\text { subject to } \\
\text { (1) } y_{1}+y_{2}=c \\
\text { (2) } y_{3}+y_{4}=y_{2}
\end{gathered}
$$

(P_{1}^{*})

$$
\begin{aligned}
& (n-1) y_{2 n-3}+y_{2 n-2}=y_{2 n-4} \\
& (n) y_{2 n-1}+y_{2 n}=y_{2 n-2} \\
& (n+1) \quad y \in R^{2 n}
\end{aligned}
$$

$$
\text { Maximize } 2 c \nu_{1}-\left(\nu_{1}^{2}+\nu_{2}^{2}+\cdots+\nu_{2 n-1}^{2}+\nu_{2 n}^{2}\right)
$$

$$
\text { subject to }[1] \quad \nu_{2}+\nu_{3}=\nu_{1}
$$

$$
[2] \quad \nu_{4}+\nu_{5}=\nu_{3}
$$

$$
\begin{align*}
{[n-1] } & \nu_{2 n-2}+\nu_{2 n-1}=\nu_{2 n-3} \tag{1}\\
{[n] } & \nu_{2 n}=\nu_{2 n-1} \\
{[n+1] } & \nu \in R^{2 n} .
\end{align*}
$$

Let $\left(\mathrm{AC}_{1}\right)$ be an augmentation of the system $\left(\mathrm{C}_{1}^{y \nu}\right)$ with the additional equality condition $\left(\mathrm{EC}_{1}\right)$:

\[

\]

The linear system $\left(\mathrm{AC}_{1}\right)$ is of $4 n$-variables on $4 n$-equations. Let (y, ν) satisfy $\left(\mathrm{AC}_{1}\right)$. Then both sides become a common value with five expressions:

$$
\begin{aligned}
& y_{1}^{2}+y_{2}^{2}+\cdots+y_{2 n}^{2} \\
= & c y_{1} \\
\left(5 \mathrm{~V}_{1}\right)= & 2 c \nu_{1}-\left(\nu_{1}^{2}+\nu_{2}^{2}+\cdots+\nu_{2 n}^{2}\right) \\
= & \nu_{1}^{2}+\nu_{2}^{2}+\cdots+\nu_{2 n}^{2} \\
= & c \nu_{1} .
\end{aligned}
$$

The system $\left(\mathrm{AC}_{1}\right)$ has indeed a unique common solution:

$$
\begin{gathered}
y=\left(y_{1}, y_{2}, \ldots, y_{k}, \ldots, y_{2 n-1}, y_{2 n}\right) \\
=\frac{c}{F_{2 n+1}}\left(F_{2 n}, F_{2 n-1}, \ldots, F_{2 n-k+1}, \ldots, F_{2}, F_{1}\right), \\
\quad \nu=\left(\nu_{1}, \nu_{2}, \ldots, \nu_{k}, \ldots, \nu_{2 n-1}, \nu_{2 n}\right) \\
=\frac{c}{F_{2 n+1}}\left(F_{2 n}, F_{2 n-1}, \ldots, F_{2 n-k+1}, \ldots, F_{2}, F_{1}\right) .
\end{gathered}
$$

Theorem 2 The primal $\left(\mathrm{P}_{1}\right)$ has a minimum value $m=\frac{F_{2 n}}{F_{2 n+1}} c^{2}$ at a path

$$
\begin{gathered}
\hat{y}=\left(\hat{y}_{1}, \hat{y}_{2}, \ldots, \hat{y}_{k}, \ldots, \hat{y}_{2 n-1}, \hat{y}_{2 n}\right) \\
=\frac{c}{F_{2 n+1}}\left(F_{2 n}, F_{2 n-1}, \ldots, F_{2 n-k+1}, \ldots, F_{2}, F_{1}\right) .
\end{gathered}
$$

The dual $\left(\mathrm{D}_{1}\right)$ has a maximum value $M=\frac{F_{2 n}}{F_{2 n+1}} c^{2}$ at a path

$$
\begin{gathered}
\nu^{*}=\left(\nu_{1}^{*}, \nu_{2}^{*}, \ldots, \nu_{k}^{*}, \ldots, \nu_{2 n-1}^{*}, \nu_{2 n}^{*}\right) \\
=\frac{c}{F_{2 n+1}}\left(F_{2 n}, F_{2 n-1}, \ldots, F_{2 n-k+1}, \ldots, F_{2}, F_{1}\right) .
\end{gathered}
$$

Both optimal solutions (point and value) are identical:

$$
\hat{x}=\mu^{*}, \quad m=M .
$$

Further both are Fibonacci.
Thus Fibonacci Identical Duality (FID) holds between $\left(\mathrm{P}_{1}\right)$ and $\left(\mathrm{D}_{1}\right)$ [15-17].
We remark that the $2 n$-variable pair is a transliteration from n-variable one $\left(\mathrm{P}_{1}\right)$, $\left(\mathrm{D}_{1}\right)$.

2 Identical Dual 2

Next we consider the following pair

$$
\begin{align*}
& \text { minimize } \sum_{k=1}^{n-1}\left[\left(x_{k-1}-x_{k}\right)^{2}+x_{k}^{2}\right]+\left(x_{n-1}-x_{n}\right)^{2}+\frac{F_{m+1}}{F_{m}} x_{n}^{2} \\
& \left(\mathrm{P}_{m}\right) \quad \text { subject to } \quad \text { (i) } x \in R^{n}, \quad \text { (ii) } x_{0}=c \\
& \\
& \text { Maximize } 2 c \mu_{1}-\sum_{k=1}^{n-1}\left[\mu_{k}^{2}+\left(\mu_{k}-\mu_{k+1}\right)^{2}\right]-\mu_{n}^{2}-\frac{F_{m}}{F_{m+1}} \mu_{n}^{2} \tag{m}\\
& \left(\mathrm{D}_{m}\right) \quad \text { subject to }
\end{align*}
$$

where $\left\{F_{n}\right\}$ is the Fibonacci sequence. The identity $\left(\mathrm{C}_{1}\right)$ is enhanced to
$\left(\mathrm{C}_{m}\right) c \mu_{1}=\sum_{k=1}^{n-1}\left[\left(x_{k-1}-x_{k}\right) \mu_{k}+x_{k}\left(\mu_{k}-\mu_{k+1}\right)\right]+\left(x_{n-1}-x_{n}\right) \mu_{n}+\sqrt{\frac{F_{m+1}}{F_{m}}} x_{n} \sqrt{\frac{F_{m}}{F_{m+1}}} \mu_{n}$
where $m \geq 1$. This identity is called F_{m}-complementary.
Furthermore the complementary identity implies that

$$
\begin{gathered}
\sum_{k=1}^{n-1}\left[\left(x_{k-1}-x_{k}\right)^{2}+x_{k}^{2}\right]+\left(x_{n-1}-x_{n}\right)^{2}+\frac{F_{m+1}}{F_{m}} x_{n}^{2} \\
\quad+\sum_{k=1}^{n-1}\left[\mu_{k}^{2}+\left(\mu_{k}-\mu_{k+1}\right)^{2}\right]+\mu_{n}^{2}+\frac{F_{m}}{F_{m+1}} \mu_{n}^{2}-2 c \mu_{1} \\
\left(\mathrm{QI}_{m}\right) \quad \\
=\sum_{k=1}^{n-1}\left[\left(x_{k-1}-x_{k}-\mu_{k}\right)^{2}+\left(x_{k}-\mu_{k}+\mu_{k+1}\right)^{2}\right] \\
\quad+\left(x_{n-1}-x_{n}-\mu_{n}\right)^{2}+\left(\sqrt{\frac{F_{m+1}}{F_{m}}} x_{n}-\sqrt{\frac{F_{m}}{F_{m+1}}} \mu_{n}\right)^{2} .
\end{gathered}
$$

This is an identity on $R^{n} \times R^{n}$, which is called quadratic.
Now we define three functions $f, g: R^{n} \rightarrow R^{1}, h: R^{n} \times R^{n} \rightarrow R^{1}$ by

$$
\begin{aligned}
f(x)= & \sum_{k=1}^{n-1}\left[\left(x_{k-1}-x_{k}\right)^{2}+x_{k}^{2}\right]+\left(x_{n-1}-x_{n}\right)^{2}+\frac{F_{m+1}}{F_{m}} x_{n}^{2} \\
g(\mu)= & 2 c \mu_{1}-\sum_{k=1}^{n-1}\left[\mu_{k}^{2}+\left(\mu_{k}-\mu_{k+1}\right)^{2}\right]-\mu_{n}^{2}-\frac{F_{m}}{F_{m+1}} \mu_{n}^{2} \\
h(x, \mu)= & \sum_{k=1}^{n-1}\left[\left(x_{k-1}-x_{k}-\mu_{k}\right)^{2}+\left(x_{k}-\mu_{k}+\mu_{k+1}\right)^{2}\right] \\
& \quad+\left(x_{n-1}-x_{n}-\mu_{n}\right)^{2}+\left(\sqrt{\frac{F_{m+1}}{F_{m}}} x_{n}-\sqrt{\frac{F_{m}}{F_{m+1}}} \mu_{n}\right)^{2} .
\end{aligned}
$$

They are called primal, dual and gap functions, respectively. Then $\left(\mathrm{QI}_{m}\right)$ is summarized as follows.
Lemma 4 It holds that

$$
\left(\mathrm{QI}_{m}\right) \quad f(x)-g(\mu)=h(x, \mu)
$$

We consider a linear system of $2 n$-equation on $2 n$-variable (x, μ) :

$$
\begin{aligned}
c-x_{1} & =\mu_{1}, \quad x_{1}=\mu_{1}-\mu_{2} \\
\left(\mathrm{EC}_{m}\right) \quad x_{k-1}-x_{k} & =\mu_{k}, \quad x_{k}=\mu_{k}-\mu_{k+1} \quad 2 \leq k \leq n-1 \\
x_{n-1}-x_{n} & =\mu_{n}, \quad \frac{F_{m+1}}{F_{m}} x_{n}=\mu_{n} .
\end{aligned}
$$

Lemma 5 It holds that
(i) $\quad h(x, \mu) \geq 0 \quad \forall(x, \mu) \in R^{n} \times R^{n}$
(ii) $h(x, \mu)=0 \Longleftrightarrow(x, \mu)$ satisfies $\left(\mathrm{EC}_{m}\right)$.

Corollary 2 It holds that
(i) $\quad f(x) \geq g(\mu) \quad \forall(x, \mu) \in R^{n} \times R^{n}$
(ii) $f(x)=g(\mu) \Longleftrightarrow(x, \mu)$ satisfies $\left(\mathrm{EC}_{m}\right)$.

From Corollary 2, it turns out that $\left(\mathrm{P}_{m}\right)$ and $\left(\mathrm{D}_{m}\right)$ are dual to each other, and $\left(\mathrm{EC}_{m}\right)$ is an equality condition. The equality condition $\left(\mathrm{EC}_{m}\right)$ is a linear system of $2 n$-equations on $2 n$-variables (x, μ).

Lemma 6 Let (x, μ) satisfy $\left(\mathrm{EC}_{m}\right)$. Then both sides become a common value with five expressions:

$$
\begin{aligned}
& f(x)=c\left(c-x_{1}\right)=g(\mu) \\
= & \sum_{k=1}^{n-1}\left[\mu_{k}^{2}+\left(\mu_{k}-\mu_{k+1}\right)^{2}\right]+\mu_{n}^{2}+\frac{F_{m}}{F_{m+1}} \mu_{n}^{2}=c \mu_{1}
\end{aligned}
$$

The primal $\left(\mathrm{P}_{m}\right)$ has a minimum value

$$
m=f(x)=c\left(c-x_{1}\right)
$$

at x, while the dual $\left(\mathrm{D}_{m}\right)$ has a maximum value

$$
M=g(\mu)=\sum_{k=1}^{n-1}\left[\mu_{k}^{2}+\left(\mu_{k}-\mu_{k+1}\right)^{2}\right]+\mu_{n}^{2}+\frac{F_{m}}{F_{m+1}} \mu_{n}^{2}=c \mu_{1}
$$

at μ.
Lemma $7\left(\mathrm{EC}_{m}\right)$ has indeed a unique solution:

$$
\begin{align*}
& x=\left(x_{1}, x_{2}, \ldots, x_{k}, \ldots, x_{n-1}, x_{n}\right) \\
= & \frac{c}{F_{m+2 n}}\left(F_{m+2 n-2}, F_{m+2 n-4}, \ldots, F_{m+2 n-2 k}, \ldots, F_{m+2}, F_{m}\right), \tag{7}\\
& \quad \mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{k}, \ldots, \mu_{n-1}, \mu_{n}\right) \\
= & \frac{c}{F_{m+2 n}}\left(F_{m+2 n-1}, F_{m+2 n-3}, \ldots, F_{m+2 n-2 k+1}, \ldots, F_{m+3}, F_{m+1}\right) . \tag{8}
\end{align*}
$$

Proof. From (EC_{m}), we have a pair of linear systems of n-variable on n-equation:

$$
\begin{array}{rlrl}
c & =3 x_{1}-x_{2} & c & =2 \mu_{1}-\mu_{2} \\
x_{1} & =3 x_{2}-x_{3} & \mu_{1} & =3 \mu_{2}-\mu_{3} \\
\left(\mathrm{EQ}_{m}\right) & & \vdots & \\
x_{n-2} & =3 x_{n-1}-x_{n} & \mu_{n-2} & =3 \mu_{n-1}-\mu_{n} \\
x_{n-1} & =\frac{F_{m+2}}{F_{m}} x_{n} & \mu_{n-1} & =\frac{F_{m+3}}{F_{m+1}} \mu_{n} .
\end{array}
$$

The left system has a solution x in (7), while the right has a solution μ in (8).
Let us define two sequences $y=\left\{y_{k}\right\}_{1}^{2 n}, \nu=\left\{\nu_{k}\right\}_{1}^{2 n}$ from $x=\left\{x_{k}\right\}_{0}^{n}, \mu=\left\{\mu_{k}\right\}_{1}^{n}$ through

$$
\begin{gather*}
y_{1}=c-x_{1}, y_{2}=x_{1}, y_{3}=x_{1}-x_{2}, y_{4}=x_{2}, y_{5}=x_{2}-x_{3} \\
\quad \ldots, y_{2 n-2}=x_{n-1}, y_{2 n-1}=x_{n-1}-x_{n}, y_{2 n}=x_{n} \tag{9}\\
\nu_{1}=\mu_{1}, \nu_{2}=\mu_{1}-\mu_{2}, \nu_{3}=\mu_{2}, \nu_{4}=\mu_{2}-\mu_{3}, \nu_{5}=\mu_{3} \\
\quad \ldots, \nu_{2 n-2}=\mu_{n-1}-\mu_{n}, \nu_{2 n-1}=\mu_{n}, \nu_{2 n}=\mu_{n}
\end{gather*}
$$

, respectively. Then an identity

$$
\left(\mathrm{C}_{m}^{*}\right) \quad c \nu_{1}=\sum_{k=1}^{2 n-1} y_{k} \nu_{k}+\sqrt{\frac{F_{m+1}}{F_{m}}} y_{2 n} \sqrt{\frac{F_{m}}{F_{m+1}}} \nu_{2 n}
$$

holds under a constraint - a linear system of $4 n$-variables (y, ν) on $2 n$-equations - :

$$
\begin{array}{ccc}
c=y_{1}+y_{2} & \nu_{1}=\nu_{2}+\nu_{3} \\
y_{2}=y_{3}+y_{4} & \nu_{3}=\nu_{4}+\nu_{5} \\
\vdots & \vdots & \vdots \\
\left(\mathrm{C}^{y \nu}\right) & & \nu_{2 n-3}=\nu_{2 n-2}+\nu_{2 n-1} \\
y_{2 n-4}=y_{2 n-3}+y_{2 n-2} & \nu_{2 n-1}=\nu_{2 n} .
\end{array}
$$

An equality (C_{m}^{*}) with constraint $\left(\mathrm{C}^{y \nu}\right)$ is called a $2 n$-variable conditional complementar$i t y$. This is simply written as $\left(\mathrm{C}_{m}^{*}\right)$ under $\left(\mathrm{C}^{y \nu}\right)$.

Now let $y=\left\{y_{k}\right\}_{1}^{2 n}, \nu=\left\{\nu_{k}\right\}_{1}^{2 n}$ satisfy $\left(\mathrm{C}^{y \nu}\right)$. Then the elementary inequality with equality yields

$$
2 c \nu_{1} \leq \sum_{k=1}^{2 n-1}\left(y_{k}^{2}+\nu_{k}^{2}\right)+\frac{F_{m+1}}{F_{m}} y_{2 n}^{2}+\frac{F_{m}}{F_{m+1}} \nu_{2 n}^{2}
$$

Thus we have an inequality

$$
2 c \nu_{1}-\sum_{k=1}^{2 n-1} \nu_{k}^{2}-\frac{F_{m}}{F_{m+1}} \nu_{2 n}^{2} \leq \sum_{k=1}^{2 n-1} y_{k}^{2}+\frac{F_{m+1}}{F_{m}} y_{2 n}^{2} .
$$

The sign of equality holds iff

$$
\begin{equation*}
\left(\mathrm{EC}_{m}\right) \quad y_{k}=\nu_{k} 1 \leq k \leq 2 n-1, \quad F_{m+1} y_{2 n}=F_{m} \nu_{2 n} \tag{10}
\end{equation*}
$$

We remark that an equivalence

$$
\sqrt{\frac{F_{m+1}}{F_{m}}} y_{2 n}=\sqrt{\frac{F_{m}}{F_{m+1}}} \nu_{2 n} \Longleftrightarrow \frac{F_{m+1}}{F_{m}} y_{2 n}=\nu_{2 n}
$$

yields the last equality.
Hence we have a pair of conditional optimization problems:

$$
\begin{aligned}
& \text { minimize } y_{1}^{2}+y_{2}^{2}+\cdots+y_{2 n-1}^{2}+\frac{F_{m+1}}{F_{m}} y_{2 n}^{2} \\
& \text { subject to (1) } y_{1}+y_{2}=c \\
& \text { (2) } y_{3}+y_{4}=y_{2} \\
& \text { (} \mathrm{P}_{m}^{*} \text {) } \\
& (n-1) y_{2 n-3}+y_{2 n-2}=y_{2 n-4} \\
& \text { (n) } y_{2 n-1}+y_{2 n}=y_{2 n-2} \\
& (n+1) \quad y \in R^{2 n} \\
& \text { Maximize } 2 c \nu_{1}-\left(\nu_{1}^{2}+\nu_{2}^{2}+\cdots+\nu_{2 n-1}^{2}+\frac{F_{m}}{F_{m+1}} \nu_{2 n}^{2}\right) \\
& \text { subject to [1] } \nu_{2}+\nu_{3}=\nu_{1} \\
& \text { [2] } \nu_{4}+\nu_{5}=\nu_{3} \\
& \left(\mathrm{D}_{m}^{*}\right) \\
& {[n-1] \quad \nu_{2 n-2}+\nu_{2 n-1}=\nu_{2 n-3}} \\
& {[n] \quad \nu_{2 n}=\nu_{2 n-1}} \\
& {[n+1] \quad \nu \in R^{2 n} \text {. }}
\end{aligned}
$$

Let $\left(\mathrm{AC}_{m}\right)$ be an augmentation of the system $\left(\mathrm{C}_{m}^{y \nu}\right)$ with the additional equality condition $\left(\mathrm{EC}_{m}\right)$:

$$
\begin{array}{ccc}
c=y_{1}+y_{2} & \nu_{1}=\nu_{2}+\nu_{3} \\
y_{2}=y_{3}+y_{4} & \nu_{3}=\nu_{4}+\nu_{5} \\
\vdots & \vdots \\
\left(\mathrm{AC}_{m}\right) & & \vdots \\
y_{2 n-4} & =y_{2 n-3}+y_{2 n-2} & \nu_{2 n-3}=\nu_{2 n-2}+\nu_{2 n-1} \\
y_{2 n-2}=y_{2 n-1}+y_{2 n} & \nu_{2 n-1}=\nu_{2 n} \\
y_{k}=\nu_{k} 1 \leq k \leq 2 n-1, & F_{m+1} y_{2 n}=F_{m} \nu_{2 n} .
\end{array}
$$

The linear system $\left(\mathrm{AC}_{m}\right)$ is of $4 n$-variables on $4 n$-equations. Let (y, ν) satisfy $\left(\mathrm{AC}_{m}\right)$.
The system $\left(\mathrm{AC}_{m}\right)$ has indeed a unique solution:

$$
\begin{aligned}
& y=\left(y_{1}, y_{2}, \ldots, y_{k}, \ldots, y_{2 n-2}, y_{2 n-1}, y_{2 n}\right) \\
& =\frac{c}{F_{m+2 n}}\left(F_{m+2 n-1}, F_{m+2 n-2}, \ldots, F_{m+2 n-k}, \ldots, F_{m+2}, F_{m+1}, \underline{F_{m}}\right), \\
& \nu=\left(\nu_{1}, \nu_{2}, \ldots, \nu_{k}, \ldots, \nu_{2 n-2}, \nu_{2 n-1}, \nu_{2 n}\right) \\
& =\frac{c}{F_{m+2 n}}\left(F_{m+2 n-1}, F_{m+2 n-2}, \ldots, F_{m+2 n-k}, \ldots, F_{m+2}, F_{m+1}, \underline{F_{m+1}}\right) .
\end{aligned}
$$

Note that only the last elements are different, as underlined. However, in Case $m=1$, both solutions are identical:

$$
\begin{gathered}
y=\left(y_{1}, y_{2}, \ldots, y_{k}, \ldots, y_{2 n-2}, y_{2 n-1}, y_{2 n}\right) \\
=\nu=\left(\nu_{1}, \nu_{2}, \ldots, \nu_{k}, \ldots, \nu_{2 n-2}, \nu_{2 n-1}, \nu_{2 n}\right) \\
=\frac{c}{F_{2 n+1}}\left(F_{2 n}, F_{2 n-1}, \ldots, F_{2 n-k+1}, \ldots, F_{3}, F_{2}, \underline{F_{1}}\right) .
\end{gathered}
$$

We note that $F_{2}=F_{1}=1$.
Theorem 3 The primal $\left(\mathrm{P}_{m}\right)$ has a minimum value $m=\frac{F_{m+2 n-1}}{F_{m+2 n}} c^{2}$ at a path

$$
\begin{aligned}
& \hat{y}=\left(\hat{y}_{1}, \hat{y}_{2}, \ldots, \hat{y}_{k}, \ldots, \hat{y}_{2 n-2}, \hat{y}_{2 n-1}, \hat{y}_{2 n}\right) \\
& =\frac{c}{F_{m+2 n}}\left(F_{m+2 n-1}, F_{m+2 n-2}, \ldots, F_{m+2 n-k}, \ldots, F_{m+2}, F_{m+1}, \underline{F_{m}}\right) .
\end{aligned}
$$

The dual $\left(\mathrm{D}_{m}\right)$ has a maximum value $M=\frac{F_{m+2 n-1}}{F_{m+2 n}} c^{2}$ at a path

$$
\begin{gathered}
\nu^{*}=\left(\nu_{1}^{*}, \nu_{2}^{*}, \ldots, \nu_{k}^{*}, \ldots, \nu_{2 n-2}^{*}, \nu_{2 n-1}^{*}, \nu_{2 n}^{*}\right) \\
=\frac{c}{F_{m+2 n}}\left(F_{m+2 n-1}, F_{m+2 n-2}, \ldots, F_{m+2 n-k}, \ldots, F_{m+2}, F_{m+1}, \underline{F_{m+1}}\right) .
\end{gathered}
$$

Both optimal solutions (point and value) are identical except for the last element:

$$
\hat{y}_{k}=\nu_{k}^{*} \quad 1 \leq k \leq 2 n-1, \quad m=M .
$$

Further both are Fibonacci:

$$
\begin{gathered}
\hat{y}_{k}=\nu_{k}^{*}=\frac{F_{m+2 n-k}}{F_{m+2 n}} c 1 \leq k \leq 2 n-1, \quad \hat{y}_{2 n}=\frac{F_{m}}{F_{m+2 n}} c, \nu_{2 n}^{*}=\frac{F_{m+1}}{F_{m+2 n}} c \\
m=M=\frac{F_{m+2 n-1}}{F_{m+2 n}} c^{2} .
\end{gathered}
$$

Thus Fibonacci Identical ${ }^{1}$ Duality (FID) holds between $\left(\mathrm{P}_{m}\right)$ and $\left(\mathrm{D}_{m}\right)[15-17]$.

References

[1] E.F. Beckenbach and R.E. Bellman, Inequalities, Springer-Verlag, Ergebnisse 30, 1961.
[2] R.E. Bellman, Dynamic Programming, Princeton Univ. Press, NJ, 1957.
[3] R.E. Bellman, Introduction to the Mathematical Theory of Control Processes, Vol.I, Linear Equations and Quadratic Criteria, Academic Press, NY, 1967.

[^0][4] R.E. Bellman, Methods of Nonlinear Analysis, Vol.I, Nonlinear Processes, Academic Press, NY, 1969.
[5] R.E. Bellman, Introduction to the Mathematical Theory of Control Processes, Vol.II, Nonlinear Processes, Academic Press, NY, 1971.
[6] R.E. Bellman, Methods of Nonlinear Analysis, Vol.II, Nonlinear Processes, Academic Press, NY, 1972.
[7] R.E. Bellman, Introduction to Matrix Analysis, McGraw-Hill, New York, NY, 1970 (Second Edition is a SIAM edition 1997).
[8] R.E Bellman, Eye of the Hurricane: an Autobiography, World Scientific, Singapore, 1984.
[9] R.E. Bellman and Wm. Karush, On a new functional transform in analysis : the maximum transform, Bull. Amer. Math. Soc. 67(1961), 501-503.
[10] R.E. Bellman and Wm. Karush, Mathematical programming and the maximum transform, J. SIAM Appl. Math. 10(1962), 550-567.
[11] R.E. Bellman and Wm. Karush, On the maximum transform and semigruops of transformations, Bull. Amer. Math. Soc. 68(1962), 516-518.
[12] R.E. Bellman and Wm. Karush, Functional equations in the theory of dynamic programming-XII : an application of the maximum transform, J. Math. Anal. Appl. 6(1963), 155-157.
[13] R.E. Bellman and Wm. Karush, On the maximum transform, J. Math. Anal. Appl. 6(1963), 57-74.
[14] S. Iwamoto, Theory of Dynamic Program, Kyushu Univ. Press, Fukuoka, 1987 (in Japanese).
[15] S. Iwamoto, Mathematics for Optimization II Bellman Equation, Chisen Shokan, Tokyo, 2013 (in Japanese).
[16] S. Iwamoto and Y. Kimura, Semi-Fibonacci programming - odd-variable - , RIMS Kokyuroku, Vol.2158, pp.30-37, 2020.
[17] S. Iwamoto, Y. Kimura and T. Fujita, On complementary duals - both fixed points - , Bull. Kyushu Inst. Tech, Pure Appl. Math., No.67, pp.1-28, 2020.
[18] E.S. Lee, Quasilinearization and Invariant Imbedding, Academic Press, New York, 1968.
[19] R.T. Rockafeller, Conjugate Duality and Optimization, SIAM, Philadelphia, 1974.
[20] M. Sniedovich, Dynamic Programming: foundations and principles, 2nd ed., CRC Press 2010.

[^0]: ${ }^{1}$ Identical means identical except for the last element.

