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Seiberg-Witten Floer homotopy and contact structures

Nobuo lida and Masaki Taniguchi
School of Mathematical Sciences, The University of Tokyo
Institute of Physical and Chemical Research, iTHEMS

1 Backgrounds

We develop homotopy theoretical aspects of Seiberg-Witten theory and give two kinds of
applications to low dimensional topology. This paper is a survey of [IMT21].

1.1 Several open questions to low dimensional topology
In [IMT21], we consider the following two problems:
(i) sliceness problem of knots in general 4-manifolds, and
(ii) giving constraints on Betti numbers of symplectic caps.
We mainly review background of (i) in this subsection. For (ii), see Subsection 1.4.

Definition 1.1. A knot K in S® is smoothly (resp. topologically) slice if K bounds a
smooth (resp. locally flat) properly embedded 2-disk in D*.

It is known that a topologically slice but not smoothly slice knot provides an exotic
R*. Thus sliceness is closely related to smooth structures of 4-manifolds. Also, the
concordance relation Ky ~ Ky is defined as the sliceness of K 1#(—?2), where K means
the mirror image and — K is K with the opposite sign. The quotient set

C := { all oriented knots }/ ~ :concordance

is called the knot concordance group and it admits an abelian group structure via the
connected sum. The group C has been studied via various techniques. There are several
effective tools to study the subgroup

T := {topologically slice knots } C C

in various theories including Heegaard Floer theory [0S03, MO07, OS08, OS11, Hom14,
HW16, OSS17, HM17, DHST19, AKS20], Khovanov homology [Ras10] and gauge theory
[KM13, DS19, KM19]. For example, there are several studies finding Z>-subgroups or
summands in 7 in Heegaard Floer theory [OSS17, KP18, Hom19, AKS20].

Instead of D*, we consider sliceness for general 4-manifolds with S®-boundary. Let X
be a closed, oriented, connected, smooth 4-manifold and K a knot in S3



Figure 1: Slice disk in X \ int D*

Definition 1.2. [MMSW19, Definition 6.2] K is smoothly (resp. topologically) H-slice in
X if K bounds a properly embedded smooth (resp. locally flat) null-homologous disc D
in X°= X —Int B4

In 4-dimensional topology, the following quantity is important:
b*(X) := dim (a maximal positive definite subspace of the intersection form of X).
The following are known typical obstructions to H-sliceness:

(i) obstructions to topological H-sliceness : signature and Rochlin type theorem [Gil81,
KR20, MMP20a, Rob65]

(ii) obstructions to smooth H-sliceness in definite 4-manifolds(b™ = 0) : Heegaard Floer
7-invariant[OS03], Rasmussen invariant[Ras10], Thurston-Bennequin number[Pla04],
other Heegaard Floer and gauge theoretic obstructions [KM13, MMSW19)

(ili) obstructions to smooth H-sliceness in indefinite 4-manifolds(b™ > 0): generalized
Thurston-Bennequin inequality [MRO06], 10/8-type constraints [MMP20a], an ob-
struction from Bauer-Furuta invariant [MMP20a]

It is proved in [Schneiderman’10] that, for a knot K in S%, there exists N > 0 such
that K is smoothly H-slice in #yS? x S2. Thus H-sliceness depends on 4-manifolds.
Also, recently, in [MMP20b], the existence of an exotic pair (X, X”) of closed 4-manifolds
admitting smoothly H-slice knot K in X but not in X’ is proved. As above, H-sliceness is
also related to smooth structures of 4-manifolds. As a main result, we give an obstruction
to H-sliceness in a certain class of 4-manifolds including a certain class of symplectic
4-manifolds. Our main tool is the author’s invariant [lid19] defined via Seiberg-Witten
theory.

1.2 Spin° structures and Dirac operators

In this subsection, we introduce Spin® structures and Dirac operators as preliminaries of
Seiberg-Witten theory. For more details, see [KMO07]. Spin® structures give a nice 1st order
elliptic operator called the Dirac operator. Dirac operators originate in Dirac’s approach
to give a physical description of electrons based on the theory of special relativity and
quantum mechanics.
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Definition 1.3. A Spin® structure on a Riemannian 4-manifold (X, g) is a pair
s=(S=85T"e S5 ,p: A'T*X ® C — Hom(S, S)),

where ST and S~ are hermite vector bundles with rank 2 called positive and negative
spinor bundles and p is a bundle map called the Clifford multiplication. Relations

p(e)p(e?) + ple)ple’) = —2g(e’, €7)

and . ‘ . ‘
/)(e“/\.../\e“ﬁ):/)(e“)...p(e“v)’ 71<<Zk

are imposed for any local orthonormal frame e°, ¢!, €2, e®. The bundles S* and S~ are —1
and +1 eigenspaces for
ple" Net AePne?) S — S

respectively.

Two Spin® structures (S, p) and (57, p') are isomorphic if there exists unitary isomor-
phism S — S’ which interwines with Clifford multiplications.

Definition 1.4. A unitary connection V4 = A on S is called a Spin® structure if it
satisfies

Vi (p(W)@) = p(ViW)® + p(W) Vi@
for any vector fields V, W and any section P of S.

Let us denote by A(s) the space of Spin® connections. This is an affine space modeled
on the space of imaginary valued 1-forms €2}

Definition 1.5. The Dirac operator is given by
3
Da=poVa=Y ple)V2 :T(S)—T(S).
i=0

The operator D, is decomposed as

0 D
Da= {DI OA}

with respect to the decomposition S = ST @& S, where
D} :T(ST) = T(57) and Dy : I(S7) — ['(S™).

The operators Dj are first order elliptic operators. Although a spin structure does not
always exist on 4-manifolds, a spin® structure exists on any 4-manifold. Let us write

Spin§ := {all spin® structures}/isomorphism.

There is a free transitive action of H?(X;Z) on Spin% for any closed 4-manifolds. Thus
there a one to one correspondence (non-canonical) between [H?(X;Z) and Spin§-.



1.3 Seiberg-Witten theory

In this subsection, we review Seiberg-Witten theory. For more details, see [KMOT].
Seiberg-Witten theory has been an effective tool in the studies of 3 and 4-manifolds.
A typical example of such studies is finding an exotic pair of 4-manifolds. This theory is
based on a non-linear PDE called the Seiberg-Witten equation.

Let X be a closed oriented 4-manifold. For simplicity we assume b;(X) = 0. Fix a
Riemannian metric and a Spin® structure s on X.

Definition 1.6. The Seiberg- Witten equation is a non-linear 1-st order PDE for a pair
(A, @) € A(s) x T'(ST) defined by

{yw@—@@m

1
Di® =0, W)

where Flye is the curvature 2-form of the U(1) connection induced from A on the U(1)
bundle det ST, + in F:{i means the self dual component with respect to the Hodge star
operator * : Q% — 0%, and (®P*), is the traceless part of dP* : ST — S+,

Roughly speaking, the Seiberg-Witten invariant of (X, s) is obtained by counting the
number of points in the quotient space

M(X,s) := { all solutions (A, @) to (1)}/Gx,
where
Gx = Map(X,U(1))
and the action of u € Gx on (A, @) is given by

u- (A ®) = (A —utdu,ud).

However, in general, the moduli space M(X,s) may have quotient singularities. The
quantity b*(X) control the existence of singularities. When b+ > 0, for a generic pertur-
bation, M(X,s) is an orientable compact smooth manifold of dimension

d(s) = i(C?(SWX] = 2x(X) = 30(X)) = 2(ST)[X].

Fix an orientation of a line
A(s) == A" (H°(X;R) @ H'(X;R) @ HT(X;R)).
Then an orientation of M(X,s) is induced from it. Then the Seiberg-Witten invariant is

defined to be

SW(X,s) = / Uz,
M(X,s)

where U is a cohomology class coming from an isomorphism

H*((A(s) x (T(S*)\ {0}))/Gx : Z) = H*(CP™;Z) 2 Z[U].
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When bt(X) > 1, SW(X,s) is independent on the choces of perturbations. Thus
SW(X,s) is an invariant of (X, s). This construction gives a map

SWy : Spin§ — Z.
The map SW gives a strong tool to study smooth structures of 4-manifolds.

Example 1.7. When X = 3CP2#20CP2, SWx = 0. But for X’ = K3#CP2, SWx: # 0.
Since X and X’ have the same intersection form, by Freedman theory [Fre82], X and X'
are homeomorphic. Thus we can conclude that X and X’ give an exotic pair.

In 2004, Bauer-Furuta [BF04] introduced a refinement of the Seiberg-Witten invariant:

BFx : Spin§ — lim [(R™M @ C"™ M)t (RM & CY)]qr.
b (m,g?zm”“““[( )" ( )7l
The invariant BFx is defined by using a method called finite dimensional approximation
of the Seiberg-Witten equation.

It is proved in [BF04] that BFx recovers SWx when we fix an orientation of A, for
any s.

The following example gives a pair of 4-manifolds detected by the Bauer-Furuta in-
variant but not by the Seiberg-Witten invariant.

Example 1.8. When X = 6CP?#39C P2, BFy = constant. But, when X’ = K3# K3#CPF?2,

then we still have nontrivial result B1'x, # constant. Since X and X’ have the same in-
tersection form, by Freedman theory [Fre82], X and X’ are homeomorphic. Thus X and
X' give an exotic pair.

1.4 Symplectic and contact structures

In order to obtain obstruction to H-sliceness of knots, we use symplectic fillings and
find a solution to Seiberg-Witten equation. For more details on contact structures in
3-dimension and symplectic structures in 4-dimension , see [0S04, GS99].

Symplectic structures are structure on even dimensional manifolds and originate from
the classical mechanics. Let X be an even dimensional oriented manifold. Denote its
dimension by 2n.

Definition 1.9. A 2-form w on X is called a symplectic form if it is a closed form and
w" > 0.

Liouville vector fields and contact type hypersurfaces serve as convenient tools to con-
duct cut-and-paste operation respecting symplectic strutures. Contact type hypersurfaces
are also typical examples of contact manifolds. First we give the definition of the contact
structure.

Definition 1.10. Let Y be an oriented odd dimensional manifold. Denote its dimension
by 2n + 1. A codimension 1 distribution & C TY is called a contact structure if there
exists a 1-form 6 on Y such that

Ker 6 = ¢ and 6 A (d)™ > 0.



0 is called a contact 1-form. The following is a natural situation in which contact
structures appear.

Definition 1.11. A vector field v defined on a symplectic manifold (X,w) is called a
Liouville vector field if
Low=uw

holds. A codimension 1 submanifold Y C X is called a contact type hypersurface if there
exists a Liouville vector field defined near Y and transverse to Y. Then 0 := 1,w is a
contact form on Y.

Let (Yo, &), (Y1,&) be contact manifolds with the same dimensions.

Definition 1.12. A cobordism equipped with a symplectic structure (W,w) from Yj to
Y] is called a strong symplectic cobordsim if there exists a Liouville vector field v defined
near collor neighborhoods on W such that

1. v is transverse to W
2. v is inward on Y{ and outward on Y7, and
3. fori=0,1, & = Ker (t,w) on Y.

The contact manifold (Y, &) is called the concave boundary of (W w) and (Y1,&)
called the conver boundary of (W, w).

Definition 1.13. A symplectic cobordism (W, w) is called a symplectic filling of (Y1,&;)
when Yy is empty and called a symplectic cap of (Yo, &) when Y] is empty.

If (Wo,wo) = (Y. &) — (Y1,&) and (Wi, wi) @ (Y1, &) — (Ya, &) are strong symplectic
cobordisms, we can glue two symplectic structures and construct another strong symplec-
tic cobordism (Wo U Wi, woUwy) @ (Yo, &) — (Y2,&). An important remark is that there
is asymmetry between convex and concave boundaries.

Definition 1.14. A contact structure on a closed manifold is called symplectically fillable
if it has a symplectic filling.

In this paper, we focus on dimension 3 and 4. It is shown by Etnyre-Honda [EH02]
independently that any closed contact 3-manifold has a symplectic cap. On the other
hand, a closed contact manifold does not have a symplectic filling in general. For example,
it is proved in [Lis98] that —%(2,3,5) does not admit any symplectic fillings. There are
several known constraints on the topology of symplectic fillings of a contact 3-manifold
(Y, €), but not much is known about the topology of symplectic caps.

We give a topological constraint on symplectic caps for certain spherical 3-manifolds.

We will also use a knot invariant coming from contact geometry called mazimal Thurston—
Bennequin invariant. Let Y be an oriented homology 3-sphere and £ a contact structure.

Definition 1.15. A Legendrian knot K is a knot in (Y,&) such that T,K C &, for any
peE K.

A Legendrian knot has a diagramatic representation called a front projection. A Leg-
endrian knot K admits a framing coming from &|, which is called the contact framing.
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Definition 1.16. For any knot K C 5%, maximal Thurston-Bennequin invariant for K
is defined to be

TB(K) := tact framing) — (Seifert frami
(K) egendrian 12X KE(S%M){ (contact framing) — (Seifert framing) },

where &4 is the standard contact structure on S°.

One can check that TB(K) is a Z-valued isotopy invariant of knots. The impor-
tant property of T'B(K) is following Thurston-Bennequin type inequality proved by
Plamenevskaya [Pla04]:

TB(K) <27(K) — 1,
where 7(K') is a concordance invariant called the tau-invariant introduced in [OS03].
Since the tau invariant gives a lower bound for the smooth 4-ball genus, T'B(K) obstructs

H-sliceness in D* and, also in negative definite 4-manifold with S3-boundary satisfying
by = 0.

1.5 Seiberg-Witten theory and symplectic/contact structures

Taubes’s non-vanishing result of the Seiberg-Witten invariant for symplectic manifolds is
one of the most fundamental results in the relation between Seiberg-Witten theory and
symplectic/contact structures. Before stating this result, note that a symplectic structure
determines a canonical Spin® structure. We explain it in the case of dimension 4. Let
(X,w) be a symplectic 4-manifold. There exits a compatible almost complex structure .J
unique up to homotopy. A Riemannien metric on X is determined by

97 = w('v ‘])

The triple (w, J, gs) consist so-called almost Kéhler structure.
Then
S+ — A0,0 o) AO,Q

S= =AM
p=+/2Symb(d + 0*) : T*X — Hom(S*, S7)
gives a Spin® structure on X. Here Symb(d + 9*) is the principal symbol of
5 A . 0,0 0,2 0,1
040" :Qy QY = Q.
This construction gives a well-defined isomorphism class of Spin© structure. We denote it
by s,.

Theorem 1.17 ([Tau94)). Let (X,w) be a closed symplectic J-manifold with b*(X) > 2.
Then
SWi(s,,) = £1.

Actually, we can give a solution under a certain perturbation: Fix (w, J, ¢gs) as before.
Define (Ag, @) € A(s,,) x I'(ST) as follows.

Do = (1,0) € QY @ Q% = T(SH).



Note that the virtual dimension is
d(s,) = ex(5%) = 0
since @y is a nowhere-vanishing section of S*. The map

As.,) = QR & A"?)
A V49

is well defined since a Spin‘ connection is unitary. Since this is a iQ}-affine map, there
exists unique Ay € A(s,,) such that Q'(iR) part of V 4,®¢ is zero. Then we can check
that

D} @y = 0.

See for example [HT99]. Obviously, (Ag, @y) is a solution to

1 . 1 .
ép(FX) — (2 )0 = Eﬂ(F:{O) — (Po®g)o-
Thus (Ag, @) is a solution to the Seiberg-Witten equation perturbed by 3p~'(Fj ) —
(DgP})o. Furthermore, we can show that for a large constant r, (Ag, 7®g) is the unique
solution to the perturbed equation

$O(FL) — (29%)0 = 3p(F4) — r(®e®p)o
Dt — 0.

and actually contributes to £1 to the Seiberg-Witten invariant (i.e. transversality is
automatically satisfied. See Lemma 3.11 of [KM97]).

Inspired by Taubes’s work on Seiberg-Witten theory on symplectic manifolds, Kronheimer-
Mrowka ([KM97]) constructed an integer valued invariant (defined up to sign) for 4-
manifold with contact boundary. Note that an oriented 2-plane field ¢ on a oriented 3-
manifold Y defines a Spin® structure s as follows: Let W be a compact oriented 4-manifold
with non-empty boundary and & = Ker 6 be a contact structure on the boundary. Fix a
complex structure J on £. Then

1
g =00+ §d9(-,J-)
is a Riemannian metric on 0W. Consider a manifold
C =R x oW

equipped with a conical metric
Jo = dt2 + t2gl
and symplectic structure
1
Wy = §d(ﬁ29)

These define an almost Kéhler structure on €' and in turn determines a Spin® structure
50. Let
W+ =W Ug C
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Figure 2: Conical-end 4-manifold

be a 4-manifold with a conical end obtained by gluing W and C' along boundaries and
Spin“(W, &) be the set of isomorphis class of pairs (s, h) where s is a Spin® structure on W+
and h : sy — 50 is an isomorphism. This is a H?(W,9W;Z) torsor. Kronheimer-Mrowka
defnied an invariant
KMy : Spin(W, &) — Z

up to overall sign. This is constructed from the perturbed Seiberg-Witten equation on
W,

Using Bauer-Furuta’s method of finite dimensional approximation, the first author
[lid19] defined a refinement of Kronheimer-Mrowka’s invariant

BF(W,&,8) € 1o/ £ 1
for 5 € Spin“(W, ) when b3(W) = 0. Here
d(s) = (e(ST, @), [W,0W])

is the relative Euler number relative to the section @ on C' defined from the almost Kahler
structure. The first author proved that the mapping degree of BF(W, &, s) is equal to
Kronheimer-Mrowka’s invariant when d(s) = 0.

Using the connected sum formula below, we can prove a certain non-vanishing result.

Theorem 1.18 ([1id19]). Let (W, sw) be an oriented Spin® compact 4-manifold whose
boundary is a contact 3-manifold (Y, &) with bs(W) = 0, sy |y = s¢ and let (X,sx) be a
closed Spin® J-manifold with by(X) = 0. Then, we have

U(WH#X, & swHsx) = VW, & sw) ABF(X,sx) (2)
in the stable homotopy group up to sign. Here we forget the S* action of BF(X,sx).

Since lida’s invariant is +Id up to sign and stable homotopy for any weak symplectic
filling with b3 = 0 [[id19, Corollary 4.3], thus by Theorem 1.18, we obtain the following
non-vanishing results.

Theorem 1.19 ([lid19]). Let (W,w) be a weak symplectic filling of a contact 3-manifold
(Y, &) with by(W) = 0. We consider a closed sympectic 4-manifold (X1, w) with by (X;) =0
and by (X;) = 3mod 4. Then, one has

\II(VV#Xh 5w#5#5w1) 7é 0.



2 Statements of results

2.1 Obstructions to H-sliceness

Using tecniques in contact/ symplectic topology and a certain adjunction type inequal-
ity for Iida’s invariant, we prove the following non-H-sliceness results for symplectic 4-
manifolds.

Theorem 2.1 ([IMT21]). For a knot K C S® satisfying TB(K) > 0, K is not smoothly
H-slice in any closed symplectic 4-manifold X with by = 0 and b* = 3mod 4.

A sequence of closed symplectic 4-manifolds with b; = 0 and ™ = 3mod 4 is given by
elliptic surfaces { £(2n) }nez.,. Let T'(p, ¢) be the (p, ¢)-torus knot. As a consequence, we
can prove the following result:

Corollary 2.2. The Whitehead doubles {Wh (Ty9n_1)} of torus knots are not smoothly
H-slice in K3.

Proof. Tt is proven in [EHO1] that

TB(T(p,q) =pq—p—qifpq>0.
It is not difficult to sce the following fact using front projection of Legendrian knots:
Lemma 2.3. For any knot K in S® satisfying TB(K) > 0, one has TB(Whg (K)) > 0.
Thus {Whg (To2n—1)} and K3 satisfy assumptions of Theorem 2.1. O
Moreover, our sequence {Whg (Ty9:_1)} is interesting in the following sense:

(i) {Wh{ (To2n—1)} bounds topologically disk in D*, hence topologically disk in K3
([Fre82]),

(ii) Wh{ (Tpzn—1) is smoothly slice in K3 ([MMP20b]), and
(iii) {Wh{ (Tozn—1)} are linearly independent in the knot concordance group C ([HK12]).

Let us give a sketch of proof. The main gauge theoretic ingredient is the following
vanishing result:

Theorem 2.4 ([IMT21)). Let (W,s) be an oriented Spin® compact 4-manifold whose
boundary is a contact 3-manifold (Y, &) with b3(W) =0 and s|y = s.

If a non-torsion homology class in Ho(W,0W;Z) is realized by a smoothly embedded
2-sphere whose self-intersection number is non-negative, then

(W, € s) = 0.

This is a special case of the adjunction inequality given in [IMT21]. The proof of
Theorem 2.4 is a standard neck stretching argument as in the original proof of Kronheimer-
Mrowka’s adjunction inequality [KM94].
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Figure 3: Neck stretching argument in the proof of Theorem 2.4

[SN~——"1

Sketch of proof of Theorem 2.1. A tubular neighborhood of a H-slice disk in X \ int D* is
diffeomorphic to the trace Wy(K) of 0-surgery along the mirror image of K. We consider
the trace Wy(K) of 0-surgery along K, which admits a symplectic filling structure by the
assumption TB(K) > 0. We take a symplectic cobordism W from 9(Wy(K')) to a some
contact rational homology 3-sphere (Y, ). Set

Z = (VV()(K) U(?WO(K) W)#X
Then by the non-vanishing result Theorem 1.19, one has
V(Z,&52) # 0.

where Z is the Spin® structure induced by the symplectic structures on X, W, and Wy (K).
On the other hand,

S := (core of Wy(K))U K x I U (core of Wy(K))
gives a smoothly embedded 2-sphere in Z such that
e S-S=0and
e S is not a torsion in Hy(Z,07).

Thus, by Theorem 2.4, we see
U(Z,&,57) =0.

This gives a contradiction. ]

2.2 Topology of symplectic caps

We give a constraint of topology of symplectic caps. In particular, we give a constraint
on b,

Let X be a compact 4-manifold with connected boundary Y. The proof uses vanishing
results of ¥, which follows from the following geometric setting.

Definition 2.5 ([IMT21]). We say X has a geometrically isolated 2-handle if there is a
2-handle h in a handle decomposition of X such that i does not intersect any 1-handles
in that handle decompositon, and the core of A is not a torsion in Ho(X;Z).



Any 4-manifolds obtained obtained as 2-handle surgery have geometrically isolated
2-handle.
Our result on symplectic caps is as follows.

Theorem 2.6 ([IMT21]). The following results hold:

(i) The contact 3-manifold (S3, Exq) does not admit any positive definite symplectic cap
having a geometrically isolated 2-handle such that by = 0 and bj > 2.

(ii) The contact 3-manifold 3(2,3,5) with the unique tight contact structure does not
admit any positive definite symplectic cap having a geometrically isolated 2-handle
such that by = 0 and by > 2, and there is no 2-torsion on its homology.

Remark 2.7. We have three remarks:
1. Since CP?\ int D* gives a symplectic cap of (52, &xq), by (X) > 1 is necessary.

2. We can recover the result by using Theorem 2.6(i) that any positive definite geomet-
rically simply connected closed 4-manifold with b5 > 1 does not admit a symplectic
structure proved in [HL19, Theorem 1.1], [Yas19, Corollary 1.6].

3. The proof uses classification results for intersection forms of negative definite 4-
manifolds bounded by S* and (2, 3,5) proven by Donaldson [Don83] and Scaduto
[Scal§].

Since there are few studies of topology of symplectic caps, Theorem 2.6 gives an inter-
esting constraint.

Let us give a sketch of proof of Theorem 2.6. First, we prove the following constraint
coming from Bauer-Furuta type invariants:

Theorem 2.8 ([IMT21]). Let (Y,£) be a contact 3-manifold with a symplectic filling that
has by = 0. If by (Y) =0 and Y admits a positive scalar curvature metric, then (Y,§) does
not have positive definite symplectic cap X with by = 0 and b > 2 having a geometrically
isolated 2-handle and a Spin® structure sx such that
—ci(sx) + ba(X)
8
where §(Y, s) is Froyshov invariant of (Y,s) with the convention §(X(2,3,5)) = 1.

Sketch of proof of Theorem 2.8. Let W be a symplectic filling of (Y, €). We consider
Z = (X UW)#(—X).

We use the relative Bauer-Furuta invariant ([Man03, Khal5]) BF for the 4-manifold Z
with boundary Y. Note that X UW admits a symplectic structure. The assumptions for
X imply

= o(Y, s¢),

BF_X(E)() = id.

Since X U W has a symplectic structure, the Spin® structure s, obtained by the con-
nected sum of the Spin® structure coming from the symplectic structure on X U W and
5y satisfies

BFz(Ez) 7é 0.
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By sliding a geometrically isolated 2-handle on X to the corresponding geometrically
isolated 2-handle of — X, we again find an embedded 2-sphere with self intersection number
0. The standard neck stretching argument shows

BFy(s) =0.
for all Spin® structure s. This gives a contradiction. O

Sketch of proof of Theorem 2.6. Using Theorem 2.8 and Donaldson’s theorem A [Don83]
or a classification result of intersection forms of negative definite 4-manifolds bounded by
¥(2,3,5) [Scal8], we can obtain a contradiction.

|

3 Open problems

Theorem 2.8 suggests the following conjecture:

Conjecture 3.1 ([IMT21]). A contact manifold (Y,&), where Y is an L-space and & is
symplectically fillable, does not have a simply connected positive definite symplectic cap
with b5 > 1.

As a related question, for lens spaces, we have:
Question 3.2. Can we prove an anlogue of Theorem 2.6 for lens spaces?

In the proof of Theorem 2.6, the classification of negative definite lattices of 4-manifolds
bounding a given 3-manifold is important. Thus we relate Question 3.2 with the follwoing
problem:

Question 3.3. Classify all isomorphism classes of negative definite lattices of 4-manifolds
bounding the lens space L(p, q).

This problem is related to Z(L(p,q)) defined in [CP18].
We did not consider general 3-manifolds in Theorem 2.1. However, the generalized
Thurston-Bennequin inequality is still true for general 3-manifolds [MRO06].

Question 3.4. Can we prove Theorem 2.1 for general contact 3-manifolds?

Also, we have another direction to prove the generalized Thurston-Bennequin in-
equality given in [MRO6] for Baur-Furuta type invariant. Originally, the generalized
Thurston-Bennequin inequality is proved when Kronheimer-Mrowka’s invariant [KM97]
is non-trivial. Since Iida’s invariant refines Kronheimer-Mrowka’s invariant, it is natural
to ask:

Question 3.5. Can we prove the generalized Thurston-Bennequin inequality for Tida’s
invariant?

In [IT20], the relative version of Iida’s invariant [[id19]

U(Y,€): S = B SWEF(-Y, )



is defined for any contact rational homology 3-sphere (Y, €), where SW F (Y, s¢) is Manolescu’s
Seiberg-Witten-Floer stable homotopy type given in [Man03] and x is a rational number
determined by (Y;€). The invariant U(Y,¢) is called Seiberg-Witten Floer homotopy con-
tact invariant. On this invariant, we have the following conjecture:

Conjecture 3.6 ([IT20]). The invariant U(Y, ) : S® — £* SWF(-Y, s) recovers Kronheimer-
Mrowka-Ozvéth-Szabd ([KMOS07])’s contact invariant

where HM,(—Y) is the monopole Floer homology of Y.

See table 1 for relations between several ”Seiberg-Witten type” invariants.
Also, there are not many calculations of ¥ (Y, €). For example, the following is open:

Conjecture 3.7. For any overtwisted contact structure, the invariant ¥ given in [IT20]
vanishes.

We list related invariants as follows:

Counting Finite dimensional approximation
closed 4-manifolds SW-invariant € Z BF-invariant
BF(X):(R™&C")" — (R’"’ &) (C”’)Jr
4-manifolds with KM-invariant € Z/{£1} Iida’s invariant
contact boundary W(W,€) : (RM)* — (RM)*
closed 3-manifolds monopole Floer homology group SW Floer homotopy type
"HM.(Y)” SWE(Y)
4-manifolds with relative SW invariant relative BF invariant
boundary "h(X) € HML(0X)” BF(X):(R™&C")" — SWF(0X)
contact 3-manifolds contact invariant homotopy contact invariant
P(Y,€) € HMo(-Y) T(Y,€) : (RM)T — SWF(-Y)

Table 1: Invariants

Also, it is natural to ask:
Question 3.8. Is there a contact rational homology 3-sphere (Y, ) such that

(1) Floer homotopy contact invariant (Y, &) : S — * SWEF(-Y,s¢)([IT20]) does not
vanish, but

(2) Kronheimer-Mrowka-Ozvéth-Szabé ([KMOS07])’s contact invariant (Y, €) € HM(=Y)
vanishes?

Since the double branched cover of transverse links admits a natural contact structure,
it is interesting to ask:

Question 3.9. Can we define an invariant of transverse links from W(Y, &) : SO —
X SWE(-Y,s¢)?
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