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Seiberg-Witten Floer homotopy and contact structures 

Nobuo Iida and Masaki Taniguchi 
School of Mathematical Sciences, The University of Tokyo 

Institute of Physical and Chemical Research, iTHEMS 

1 Backgrounds 

We develop homotopy theoretical aspects of Seiberg-Witten theory and give two kinds of 
applications to low dimensional topology. This paper is a survey of [IMT21]. 

1.1 Several open questions to low dimensional topology 

In [IMT21], we consider the following two problems: 

(i) sliceness problem of knots in general 4-manifolds, and 

(ii) giving constraints on Betti numbers of symplectic caps. 

We mainly review background of (i) in this subsection. For (ii), see Subsection 1.4. 

Definition 1.1. A knot K in S 3 is smoothly (resp. topologically) slice if K bounds a 
smooth (resp. locally flat) properly embedded 2-disk in D4 . 

It is known that a topologically slice but not smoothly slice knot provides an exotic 
JR4 . Thus sliceness is closely related to smooth structures of 4-manifolds. Also, the 
concordance relation K 1 ~ K 2 is defined as the sliceness of K 1#(-K2 ), where K means 
the mirror image and - K is K with the opposite sign. The quotient set 

C := { all oriented knots } / ~ :concordance 

is called the knot concordance group and it admits an abelian group structure via the 
connected sum. The group C has been studied via various techniques. There are several 
effective tools to study the subgroup 

T := { topologically slice knots } C C 

in various theories including Heegaard Floer theory [0803, MO07, 0808, 0811, Hom14, 
HW16, 08817, HMl 7, DHST19, AKS20], Khovanov homology [RaslO] and gauge theory 
[KM13, DS19, KM19]. For example, there are several studies finding Z00-subgroups or 
summands in Tin Heegaard Floer theory [08817, KP18, Hom 19, AKS20]. 

Instead of D4, we consider sliceness for general 4-manifolds with S3-boundary. Let X 
be a closed, oriented, connected, smooth 4-manifold and Ka knot in S3 
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D 

Figure 1: Slice disk in X \ int D4 

Definition 1.2. [MMSW19, Definition 6.2] K is smoothly (resp. topologically) H-slice in 
X if K bounds a properly embedded smooth (resp. locally flat) null-homologous disc D 
in X 0 = X - Int B4 . 

In 4-dimensional topology, the following quantity is important: 

b+(x) := dim (a maximal positive definite subspace of the intersection form of X). 

The following are known typical obstructions to H-sliceness: 

(i) obstructions to topological H-sliceness : signature and Rochlin type theorem [Gil81, 
KR20, MMP20a, Rob65] 

(ii) obstructions to smooth H-sliceness in definite 4-manifolds(b+ = 0) : Heegaard Floer 
T-invariant[OS03], Rasmussen invariant[RaslO], Thurston-Bennequin number[Pla04], 
other Heegaard Floer and gauge theoretic obstructions [KM13, MMSW19] 

(iii) obstructions to smooth H-sliceness in indefinite 4-manifolds(b+ > 0): generalized 
Thurston-Bennequin inequality [MR06], 10/8-type constraints [MMP20a], an ob­
struction from Bauer-Furuta invariant [MMP20a] 

It is proved in [Schneiderman'lO] that, for a knot K in S3 , there exists N > 0 such 
that K is smoothly H-slice in #NS2 x S2 • Thus H-sliceness depends on 4-manifolds. 
Also, recently, in [MMP20b], the existence of an exotic pair (X, X') of closed 4-manifolds 
admitting smoothly H-slice knot Kin X but not in X' is proved. As above, H-sliceness is 
also related to smooth structures of 4-manifolds. As a main result, we give an obstruction 
to H-sliceness in a certain class of 4-manifolds including a certain class of symplectic 
4-manifolds. Our main tool is the author's invariant [Iid19] defined via Seiberg-Witten 
theory. 

1.2 Spine structures and Dirac operators 

In this subsection, we introduce Spine structures and Dirac operators as preliminaries of 
Seiberg-Witten theory. For more details, see [KM07]. Spine structures give a nice 1st order 
elliptic operator called the Dirac operator. Dirac operators originate in Dirac's approach 
to give a physical description of electrons based on the theory of special relativity and 
quantum mechanics. 
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Definition 1.3. A Spine structure on a Riemannian 4-manifold (X, g) is a pair 

,s = (S = s+ EB s-,p: A*T*X 181 (C---+ Hom(S, S)), 

where s+ and s- are hermite vector bundles with rank 2 called positive and negative 
spinor bundles and p is a bundle map called the Clifford multiplication. Relations 

and 
p( i 1 /\ • • • /\ eik) = p( i 1 ) " " " p( ik), i1 < " " " < ik 

are imposed for any local orthonormal frame e0 , e1 , e2 , e3 . The bundles s+ and s- are -1 
and + 1 eigenspaces for 

respectively. 

Two Spine structures (S, p) and (S', p') are isomorphic if there exists unitary isomor­
phism S ---+ S' which interwines with Clifford multiplications. 

Definition 1.4. A unitary connection VA = A on S is called a Spine structure if it 
satisfies 

V◊(p(W)<I>) = p(V◊W)<I> + p(W)V◊<I> 
for any vector fields V, W and any section <I> of S. 

Let us denote by A(,s) the space of Spine connections. This is an affine space modeled 
on the space of imaginary valued 1-forms in}. 

Definition 1.5. The Dirac operator is given by 

3 

DA =po v A= L p(ei)'v~ : r(S)---+ r(S). 
i=O 

The operator D A is decomposed as 

DA = [Ji ~A] 
with respect to the decomposition S = s+ EB s-, where 

The operators D! are first order elliptic operators. Although a spin structure does not 
always exist on 4-manifolds, a spine structure exists on any 4-manifold. Let us write 

Spin',;c := { all spine structures} /isomorphism. 

There is a free transitive action of H 2 (X; Z) on Spin',;c for any closed 4-manifolds. Thus 
there a one to one correspondence (non-canonical) between H 2 (X; Z) and Spin',;c. 
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1.3 Seiberg-Witten theory 

In this subsection, we review Seiberg-Witten theory. For more details, see [KM07]. 
Seiberg-Witten theory has been an effective tool in the studies of 3 and 4-manifolds. 
A typical example of such studies is finding an exotic pair of 4-manifolds. This theory is 
based on a non-linear PDE called the Seiberg-Witten equation. 

Let X be a closed oriented 4-manifold. For simplicity we assume b1(X) = 0. Fix a 
Riemannian metric and a Spine structure E on X. 

Definition 1.6. The Seiberg- Witten equation is a non-linear 1-st order PDE for a pair 
(A, <I?) E A(s) x f(S+) defined by 

{ 
½ p( F1,) = ( <l?<I?* )o 
D!<I? = 0, 

(1) 

where FA, is the curvature 2-form of the U(l) connection induced from A on the U(l) 
bundle det s+, + in F1, means the self dual component with respect to the Hodge star 
operator * : 03(- --t 03(-, and ( <1?<1?*) 0 is the traceless part of <l?<I?* : s+ --t s+. 

Roughly speaking, the Seiberg-Witten invariant of (X,s) is obtained by counting the 
number of points in the quotient space 

M(X,s) := { all solutions (A, <I?) to (1)}/9x, 

where 
9x := Map(X, U(l)) 

and the action of u E 9x on (A, <I?) is given by 

u · (A, <I?):= (A- u-1du, u<I?). 

However, in general, the moduli space M(X,s) may have quotient singularities. The 
quantity b+(X) control the existence of singularities. When b+ > 0, for a generic pertur­
bation, M(X,s) is an orientable compact smooth manifold of dimension 

Fix an orientation of a line 

Then an orientation of M(X,s) is induced from it. Then the Seiberg-Witten invariant is 
defined to be 

SW(X,s) := 1 u½d(s), 
M(X,s) 

where U is a cohomology class coming from an isomorphism 
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When b+(X) > 1, SW(X, .s) is independent on the choces of perturbations. Thus 
SW(X,.s) is an invariant of (X,.s). This construction gives a map 

SW x : Spin~ -+ Z. 

The map SW gives a strong tool to study smooth structures of 4-manifolds. 

Example 1.7. When X = 3CP2#20CP2, SWx = 0. But for X' = K3#CP2 , SWx, =/- 0. 
Since X and X' have the same intersection form, by Freedman theory [Fre82], X and X' 
are homeomorphic. Thus we can conclude that X and X' give an exotic pair. 

In 2004, Bauer-Furuta [BF04] introduced a refinement of the Seiberg-Witten invariant: 

The invariant BFx is defined by using a method called finite dimensional approximation 
of the Seiberg-Witten equation. 

It is proved in [BF04] that BFx recovers SWx when we fix an orientation of As for 
any .s. 

The following example gives a pair of 4-manifolds detected by the Bauer-Furuta in­
variant but not by the Seiberg-Witten invariant. 

Example 1.8. WhenX = 6CP2#39CP2 , BFx =constant.But, whenX' = K3#K3#CP2 , 

then we still have nontrivial result BFx, =/- constant. Since X and X' have the same in­
tersection form, by Freedman theory [Fre82], X and X' are homeomorphic. Thus X and 
X' give an exotic pair. 

1.4 Symplectic and contact structures 

In order to obtain obstruction to H-sliceness of knots, we use symplectic fillings and 
find a solution to Seiberg-Witten equation. For more details on contact structures in 
3-dimension and symplectic structures in 4-dimension , see [OS04, GS99]. 

Symplectic structures are structure on even dimensional manifolds and originate from 
the classical mechanics. Let X be an even dimensional oriented manifold. Denote its 
dimension by 2n. 

Definition 1.9. A 2-form w on X is called a symplectic form if it is a closed form and 
wn > 0. 

Liouville vector fields and contact type hypersurfaces serve as convenient tools to con­
duct cut-and-paste operation respecting symplectic strutures. Contact type hypersurfaces 
are also typical examples of contact manifolds. First we give the definition of the contact 
structure. 

Definition 1.10. Let Y be an oriented odd dimensional manifold. Denote its dimension 
by 2n + 1. A codimension 1 distribution ~ C TY is called a contact structure if there 
exists a 1-form 0 on Y such that 

Ker 0 = ~ and 0 A ( d0f > 0. 
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0 is called a contact 1-forrn. The following is a natural situation in which contact 
structures appear. 

Definition 1. 11. A vector field v defined on a syrnplectic manifold (X, w) is called a 
Liouville vector field if 

.Cvw=w 

holds. A codirnension 1 subrnanifold Y C X is called a contact type hypersurface if there 
exists a Liouville vector field defined near Y and transverse to Y. Then 0 := lvW is a 
contact form on Y. 

Let (Yo, fo), (Yi, 6) be contact manifolds with the same dimensions. 

Definition 1.12. A cobordisrn equipped with a syrnplectic structure (W, w) from Yo to 
Yi is called a strong symplectic cobordsim if there exists a Liouville vector field v defined 
near collor neighborhoods on aw such that 

l. V is transverse to 8W 

2. vis inward on Y0 and outward on Yi, and 

3. for i = 0, 1, ti = Ker (lvw) on Y;. 

The contact manifold (Yo, fo) is called the concave boundary of (W, w) and (Yi, 6) 
called the convex boundary of (W, w). 

Definition 1.13. A syrnplectic cobordisrn (W,w) is called a symplectic filling of (Yi,6) 
when Yo is empty and called a symplectic cap of (Yo, fo) when Yi is empty. 

If (Wo, wo) : (Yo, fo) ---+ (Yi, 6) and (Wi, wi) : (Yi, 6) ---+ (Y2, 6) are strong syrnplectic 
cobordisrns, we can glue two syrnplectic structures and construct another strong syrnplec­
tic cobordisrn (Wo U Wi, w0 U wi) : (Yo, fo) ---+ (Y2, 6)- An important remark is that there 
is asymmetry between convex and concave boundaries. 

Definition 1.14. A contact structure on a closed manifold is called symplectically fillable 
if it has a syrnplectic filling. 

In this paper, we focus on dimension 3 and 4. It is shown by Etnyre-Honda [EH02] 
independently that any closed contact 3-rnanifold has a syrnplectic cap. On the other 
hand, a closed contact manifold does not have a syrnplectic filling in general. For example, 
it is proved in [Lis98] that -2:;(2, 3, 5) does not admit any syrnplectic fillings. There are 
several known constraints on the topology of syrnplectic fillings of a contact 3-rnanifold 
(Y, t), but not much is known about the topology of syrnplectic caps. 

We give a topological constraint on syrnplectic caps for certain spherical 3-rnanifolds. 
We will also use a knot invariant corning from contact geometry called maximal Thurston­

Bennequin invariant. Let Y be an oriented homology 3-sphere and ta contact structure. 

Definition 1.15. A Legendrian knot K is a knot in (Y, t) such that TPK C tP for any 
pE K. 

A Legendrian knot has a diagrarnatic representation called a front projection. A Leg­
endrian knot K admits a framing corning from tlK, which is called the contact framing. 
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Definition 1.16. For any knot K c S 3 , maximal Thurston-Bennequin invariant for K 
is defined to be 

TB(K) := max { (contact framing) - (Seifert framing) }, 
\fLegendrian rep of KE(S3 ,(;std) 

where ~std is the standard contact structure on S3 . 

One can check that T B(K) is a Z-valued isotopy invariant of knots. The impor­
tant property of TB ( K) is following Thurston-Bennequin type inequality proved by 
Plamenevskaya [Pla04]: 

TB(K) ~ 2T(K) - 1, 

where T(K) is a concordance invariant called the tau-invariant introduced in [OS03]. 
Since the tau invariant gives a lower bound for the smooth 4-ball genus, TB(K) obstructs 
H-sliceness in D4 and, also in negative definite 4-manifold with S3-boundary satisfying 
b1 = 0. 

1.5 Seiberg-Witten theory and symplectic/contact structures 

Taubes's non-vanishing result of the Seiberg-Witten invariant for symplectic manifolds is 
one of the most fundamental results in the relation between Seiberg-Witten theory and 
symplectic/contact structures. Before stating this result, note that a symplectic structure 
determines a canonical Spine structure. We explain it in the case of dimension 4. Let 
(X, w) be a symplectic 4-manifold. There exits a compatible almost complex structure J 
unique up to homotopy. A Riemannien metric on X is determined by 

The triple ( w, J, g J) consist so-called almost Kahler structure. 
Then 

{
s+ = Ao,o EB Ao,2 

s- = Ao,1 

p = v'2 Symb(8 + 8*) : T* X--+ Hom(S+, s-) 

gives a Spine structure on X. Here Symb(8 + 8*) is the principal symbol of 

8 + 8* : D~o EB 0~2 --+ 0~1 . 

This construction gives a well-defined isomorphism class of Spine structure. We denote it 
by -Sw-

Theorem 1.17 ([Tau94]). Let (X,w) be a closed symplectic 4-manifold with b+(X) ~ 2. 
Then 

SWx(sw) = ±1. 

Actually, we can give a solution under a certain perturbation: Fix (w, J, 9J) as before. 
Define (Ao, <I>0) E A(sw) x r(S+) as follows. 

<I>o = (1, 0) E 0~0 EB 0~2 = f(S+). 
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Note that the virtual dimension is 

since cI> 0 is a nowhere-vanishing section of s+. The map 

A(sw) --+ n1 ( iIBc EB A 0•2 ) 

AH v' A<t>o 

is well defined since a Spine connection is unitary. Since this is a iS13c-affine map, there 
exists unique A0 E A(sw) such that S1 1 ( iIBc) part of v' Ao <t>0 is zero. Then we can check 
that 

D!0 cI>o = 0. 
See for example [HT99]. Obviously, (Ao, <t>0) is a solution to 

~p(F,t) - (<t><t>*)o = ~p(F,t0 ) - (<t>o<t>~)o, 

Thus (A0,<t>0) is a solution to the Seiberg-Witten equation perturbed by ½P-1(F,t0 ) -

(<t>0 <t>0)0 . Furthermore, we can show that for a large constant r, (A0,r<t>0) is the unique 
solution to the perturbed equation 

{ ½p(F,t) - (<t><t>*)o = ½p(F,t0 ) - r(<t>o<t>a)o 

D!<t> =0. 

and actually contributes to ±1 to the Seiberg-Witten invariant (i.e. transversality is 
automatically satisfied. See Lemma 3.11 of [KM97]). 

Inspired by Taubes's work on Seiberg-Witten theory on symplectic manifolds, Kronheimer­
Mrowka ([KM97]) constructed an integer valued invariant (defined up to sign) for 4-
manifold with contact boundary. Note that an oriented 2-plane field l on a oriented 3-
manifold Y defines a Spine structure St as follows: Let W be a compact oriented 4-manifold 
with non-empty boundary and l = Ker 0 be a contact structure on the boundary. Fix a 
complex structure J on l. Then 

is a Riemannian metric on oW. Consider a manifold 

C=JR:.t xaw 
equipped with a conical metric 

and symplectic structure 
1 2 

w0 = 2d(t 0). 

These define an almost Kahler structure on C and in turn determines a Spine structure 
so. Let 

w+ = WUawC 
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Figure 2: Conical-end 4-manifold 

be a 4-manifold with a conical end obtained by gluing W and C along boundaries and 
Spine(W, ~) be the set of isomorphis class of pairs (,s, h) where ,sis a Spine structure on w+ 
and h: slw--+ ,s-0 is an isomorphism. This is a H 2 (W, 8W; Z) torsor. Kronheimer-Mrowka 
defnied an invariant 

K Mx,e : Spine(W, ~) --+ Z 

up to overall sign. This is constructed from the perturbed Seiberg-Witten equation on 
w+. 

Using Bauer-Furuta's method of finite dimensional approximation, the first author 
[Iid19] defined a refinement of Kronheimer-Mrowka's invariant 

BF(W, ~, .s) E 7fd(s)/ ± 1 

for .s E Spine(W, ~) when b3 (W) = 0. Here 

d(,s) = (e(s+, <T:>0 ), [W, 8W]) 

is the relative Euler number relative to the section <T:>0 on C defined from the almost Kahler 
structure. The first author proved that the mapping degree of BF(W, ~' ,s) is equal to 
Kronheimer-Mrowka's invariant when d(,s) = 0. 

Using the connected sum formula below, we can prove a certain non-vanishing result. 

Theorem 1.18 ( [Iid19]). Let (W, -Sw) be an oriented Spine compact 4-manifold whose 
boundary is a contact 3-manifold (Y,~) with b3 (W) = 0, swlY = ,s~ and let (X,.sx) be a 
closed Spine 4-manifold with b1 ( X) = 0. Then, we have 

(2) 

in the stable homotopy group up to sign. Here we forget the S1 action of BF(X,sx). 

Since lida's invariant is ±Id up to sign and stable homotopy for any weak symplectic 
filling with b3 = 0 [Iid19, Corollary 4.3], thus by Theorem 1.18, we obtain the following 
non-vanishing results. 

Theorem 1.19 ([Iid19]). Let (W,w) be a weak symplectic filling of a contact 3-manifold 
(Y, ~) with b3 (W) = 0. We consider a closed sympectic 4-manifold (X1 , w1 ) with b1(Xi) = 0 
and b!(Xi) = 3mod4. Then, one has 

1J!(W#X1,.Sw#-S#-Sw,) =/- 0. 
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2 Statements of results 

2.1 Obstructions to H-sliceness 

Using tecniques in contact/ symplectic topology and a certain adjunction type inequal­
ity for lida's invariant, we prove the following non-H-sliceness results for symplectic 4-
manifolds. 

Theorem 2.1 ([IMT21]). For a knot Kc S 3 satisfying TB(K) > 0, K is not smoothly 
H-slice in any closed symplectic 4-manifold X with b1 = 0 and b+ = 3 mod 4. 

A sequence of closed symplectic 4-manifolds with b1 = 0 and b+ = 3 mod 4 is given by 
elliptic surfaces { E(2n )}nEZ>o. Let T(p, q) be the (p, q)-torus knot. As a consequence, we 
can prove the following result: 

Corollary 2.2. The Whitehead doubles {Wht(T2,2n_1 )} of torus knots are not smoothly 
H-slice in K3. 

Proof. It is proven in [EHOl] that 

T B(T(p, q)) = pq - p - q if p, q > 0. 

It is not difficult to see the following fact using front projection of Legendrian knots: 

Lemma 2.3. For any knot Kin S 3 satisfying TB(K) > 0, one has TB(Wht(K)) > 0. 

Thus {Wht(T2,2n_1 )} and K3 satisfy assumptions of Theorem 2.1. D 

Moreover, our sequence {Wht(T2,2n_1 )} is interesting in the following sense: 

(i) {Wht(T2 ,2n_ 1)} bounds topologically disk in D4, hence topologically disk in K3 
([Fre82]), 

(ii) Wht(T2 ,2n_1 ) is smoothly slice in K3 ([MMP20b]), and 

(iii) {Wht(T2 ,2n_ 1 )} are linearly independent in the knot concordance group C ([HK12]). 

Let us give a sketch of proof. The main gauge theoretic ingredient is the following 
vanishing result: 

Theorem 2.4 ([IMT21]). Let (W,s) be an oriented Spine compact 4-manifold whose 
boundary is a contact 3-manifold (Y, ~) with b3 (W) = 0 and sly= ,sE· 

If a non-torsion homology class in H2 (W, 8W; Z) is realized by a smoothly embedded 
2-sphere whose self-intersection number is non-negative, then 

This is a special case of the adjunction inequality given in [IMT21]. The proof of 
Theorem 2.4 is a standard neck stretching argument as in the original proof of Kronheimer­
Mrowka's adjunction inequality [KM94]. 
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Figure 3: Neck stretching argument in the proof of Theorem 2.4 

Sketch of proof of Theorem 2.1. A tubular neighborhood of a H-slice disk in X \ int D4 is 
diffeomorphic to the trace W0 (K) of 0-surgery along the mirror image of K. We consider 
the trace W0(K) of 0-surgery along K, which admits a symplectic filling structure by the 
assumption TB(K) > 0. We take a symplectic cobordism W from 8(W0 (K)) to a some 
contact rational homology 3-sphere (Y, f). Set 

Z := (Wa(K) Uawo(K) W)#X. 

Then by the non-vanishing result Theorem 1.19, one has 

where Z is the Spine structure induced by the symplectic structures on X, W, and W0(K). 
On the other hand, 

S := (core of W0 (K)) UK x I U (core of W0 (K)) 

gives a smoothly embedded 2-sphere in Z such that 

• S • S = 0 and 

• Sis not a torsion in H 2 (Z, 8Z). 

Thus, by Theorem 2.4, we see 
W(Z,f,sz) = 0. 

This gives a contradiction. 

2.2 Topology of symplectic caps 

□ 

We give a constraint of topology of symplectic caps. In particular, we give a constraint 
on b+. 

Let X be a compact 4-manifold with connected boundary Y. The proof uses vanishing 
results of W, which follows from the following geometric setting. 

Definition 2.5 ([IMT21]). We say X has a geometrically isolated 2-handle if there is a 
2-handle h in a handle decomposition of X such that h does not intersect any 1-handles 
in that handle decompositon, and the core of his not a torsion in H 2 (X; Z). 
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Any 4-manifolds obtained obtained as 2-handle surgery have geometrically isolated 
2-handle. 

Our result on symplectic caps is as follows. 

Theorem 2.6 ([IMT21]). The following results hold: 

(i) The contact 3-manifold (S3 , lstd) does not admit any positive definite symplectic cap 
having a geometrically isolated 2-handle such that b1 = 0 and bt 2'. 2. 

(ii) The contact 3-manifold ~(2, 3, 5) with the unique tight contact structure does not 
admit any positive definite symplectic cap having a geometrically isolated 2-handle 
such that b1 = 0 and bt 2'. 2, and there is no 2-torsion on its homology. 

Remark 2.7. We have three remarks: 

1. Since CP2 \ int D4 gives a symplectic cap of (S3 , lstd), bt(X) > l is necessary. 

2. We can recover the result by using Theorem 2.6(i) that any positive definite geomet­
rically simply connected closed 4-manifold with bt > l does not admit a symplectic 
structure proved in [HL19, Theorem 1. 1], [Yas19, Corollary 1.6]. 

3. The proof uses classification results for intersection forms of negative definite 4-
manifolds bounded by S3 and ~(2, 3, 5) proven by Donaldson [Don83] and Scaduto 
[Sca18]. 

Since there are few studies of topology of symplectic caps, Theorem 2.6 gives an inter­
esting constraint. 

Let us give a sketch of proof of Theorem 2.6. First, we prove the following constraint 
coming from Bauer-Furuta type invariants: 

Theorem 2.8 ([IMT21]). Let (Y,() be a contact 3-manifold with a symplecticfilling that 
has b1 = 0. If b1(Y) = 0 and Y admits a positive scalar curvature metric, then (Y, () does 
not have positive definite symplectic cap X with b1 = 0 and bt 2'. 2 having a geometrically 
isolated 2-handle and a Spine structure s x such that 

-cr(sx) + b2(X) = J(Y ) 
8 ,s€ ' 

where b(Y,s) is Frf,'Jyshov invariant of (Y,s) with the convention <5(~(2, 3, 5)) = 1. 

Sketch of proof of Theorem 2.8. Let W be a symplectic filling of (Y, (). We consider 

Z :=(XU W)#(-X). 

We use the relative Bauer-Furuta invariant ([Man03, Kha15]) BF for the 4-manifold Z 
with boundary Y. Note that XU W admits a symplectic structure. The assumptions for 
X imply 

BF_x(sx) = id. 

Since XU W has a symplectic structure, the Spine structure Sz obtained by the con­
nected sum of the Spine structure coming from the symplectic structure on X U W and 
sx satisfies 

BFz(sz) =/= 0. 
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By sliding a geometrically isolated 2-handle on X to the corresponding geometrically 
isolated 2-handle of -X, we again find an embedded 2-sphere with self intersection number 
0. The standard neck stretching argument shows 

BFz(s) = 0. 

for all Spine structures. This gives a contradiction. □ 

Sketch of proof of Theorem 2.6. Using Theorem 2.8 and Donaldson's theorem A [Don83] 
or a classification result of intersection forms of negative definite 4-manifolds bounded by 
~(2, 3, 5) [Sca18], we can obtain a contradiction. 

□ 

3 Open problems 

Theorem 2.8 suggests the following conjecture: 

Conjecture 3.1 ([IMT21]). A contact manifold (Y, ~), where Y is an £-space and~ is 
symplectically fillable, does not have a simply connected positive definite symplectic cap 
with bt > l. 

As a related question, for lens spaces, we have: 

Question 3.2. Can we prove an anlogue of Theorem 2.6 for lens spaces? 

In the proof of Theorem 2.6, the classification of negative definite lattices of 4-manifolds 
bounding a given 3-manifold is important. Thus we relate Question 3.2 with the follwoing 
problem: 

Question 3.3. Classify all isomorphism classes of negative definite lattices of 4-manifolds 
bounding the lens space L(p, q). 

This problem is related to I(L(p, q)) defined in [CP18]. 
We did not consider general 3-manifolds in Theorem 2.1. However, the generalized 

Thurston-Bennequin inequality is still true for general 3-manifolds [MR06]. 

Question 3.4. Can we prove Theorem 2.1 for general contact 3-manifolds? 

Also, we have another direction to prove the generalized Thurston-Bennequin in­
equality given in [MR06] for Baur-Furuta type invariant. Originally, the generalized 
Thurston-Bennequin inequality is proved when Kronheimer-Mrowka's invariant [KM97] 
is non-trivial. Since Iida's invariant refines Kronheimer-Mrowka's invariant, it is natural 
to ask: 

Question 3.5. Can we prove the generalized Thurston-Bennequin inequality for Iida's 
invariant? 

In [IT20], the relative version of Iida's invariant [Iid19] 
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is defined for any contact rational homology 3-sphere (Y, (), where SW F(Y, ,s~) is Manolescu's 
Seiberg-Witten-Floer stable homotopy type given in [Man03] and * is a rational number 
determined by (Y, (). The invariant \JI (Y, () is called Seiberg- Witten Floer homotopy con­
tact invariant. On this invariant, we have the following conjecture: 

Conjecture 3.6 ([IT20]). The invariant \JJ(Y, () : s0 -+ ~• SW F(-Y, ,s) recovers Kronheimer­
Mrowka-Ozvath-Szab6 ([KMOS07]) 's contact invariant 

(3) 

where HM .( -Y) is the monopole Floer homology of Y. 

See table 1 for relations between several "Seiberg-Witten type" invariants. 
Also, there are not many calculations of \JJ(Y, (). For example, the following is open: 

Conjecture 3. 7. For any overtwisted contact structure, the invariant \JI given in [IT20] 
vanishes. 

We list related invariants as follows: 

Counting Finite dimensional approximation 
closed 4-manifolds SW-invariant E Z BF-invariant 

BF(X): (Ilr E9 en)+ ➔ (llr' E9 icn')+ 
4-manifolds with KM-invariant E Z/{±1} Iida's invariant 

contact boundary '11(W, E) : (!RM)+ ➔ (!RM')+ 
closed 3-manifolds monopole Floer homology group SW Floer homotopy type 

"HM.(Y)" SWF(Y) 
4-manifolds with relative SW invariant relative BF invariant 
boundary ",j,(X) E HM.(8X)" BF(X): (!RmEBICn)+ ➔ BWF(8X) 

contact 3-manifolds contact invariant homotopy contact invariant 
,j,(Y,() E HM.(-Y) '11(Y,E): (!RM)+ ➔ SWF(-Y) 

Table 1: Invariants 

Also, it is natural to ask: 

Question 3.8. Is there a contact rational homology 3-sphere (Y, () such that 

(1) Floer homotopy contact invariant \JJ(Y,(): s0 -+ ~• SWF(-Y,.s~)([IT20]) does not 
vanish, but 

(2) Kronheimer-Mrowka-Ozvath-Szab6 ([KMOS07])'s contact invariant 1,b(Y, () E HM .(-Y) 
vanishes? 

Since the double branched cover of transverse links admits a natural contact structure, 
it is interesting to ask: 

Question 3.9. Can we define an invariant of transverse links from \JJ(Y, () : s0 -+ 
~• SWF(-Y,s~)? 
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