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NOTE ON SOLUTIONS OF BOUNDARY VALUE PROBLEMS
FOR FRACTIONAL ORDER BEAM EQUATIONS

TOSHIKAZU WATANABE
SCHOOL OF INTERDISCIPLINARY MATHEMATICAL SCIENCES,
MELJI UNIVERSITY

1. INTRODUCTION

Throughout this paper, we denote by R the set of all real numbers. In [19], we
consider the boundary value problem for fractional order differential equation

) Dg, D, u(t) = f(tu(t), Dy u(t)) = 0.t € [0,1]

( >_Avu( ) B D0+u( ) CD0+U( ) Da
where D, is the Riemann-Liouville derivative of order a with respect to t, 1 <
a,8 <2, A, B, C, D are constants, and f is a continuous function of [0,1] x R x R
into R. In this paper we propose the following differential equation (1.2) of order
a, 3 < a < 4 with the two point boundary condition involving the form (1.1). For
simplicity, we consider the cases of A= B =C =D =0.

Dy u(t) = f(t u(t), D§y *u(t), Doy D§;*u(t), Doy Doy Dg *u(t)),
(1.2) 0<t<l,

u(0) = u(1) = 0, Doy Dy *u(0) = Doy D§u(1) =0,
where Dg, is the Riemann-Liouville fractional derivative and f is a function of

[0,1] x RxR xR xR into R. Let a > 0. The Riemann-Liouville fractional integral
of order a of u, denoted I, u, is defined by

t
I§, u(t) = ﬁ/{) (t — )% Lu(s)ds,

provided the right-hand side exists. The Riemann-Liouville fractional derivative of
order « of a function u of (0,00) into R is given by

1 d" i n—a—1
m%/o (t— S) u(s)ds,

where n = [a] + 1 ([a] denotes the integer part of «) and I'(«r) denotes the gamma
function; see [11, 18]. Note that for o > 3 > 0, we have

F(B + ]-) tﬂ—a.
rg—-—a+1)

Dgyu(t) =

D&ﬁ:
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A function v € C[0,1] is called a solution of problem (1.2) if D§, u € C[0,1],
Dé“;?’u € L'[o,1], Dé";Qu € L'[0,1], D¥ 'y € L'0,1], u satisfies the boundary
conditions and equality in (1.2) a.e. on [0, 1].

Many researchers have considered the differential equation (1.2) with « = 4; see
[1, 2, 9, 10, 14, 15, 21, 22, 23, 25, 26]. Equation (1.2) with o = 4 can be used to
model the deformations of an elastic beam; see [21, 22] and the references therein.
The boundary conditions in (1.2) with respect to normal derivative ensures that
both endpoints are simply supported. Meanwhile, fractional differential equations
have been of interest recently; see [3, 5, 6, 7, 8, 11, 12, 17, 18, 19, 24]. In particular,
for higher order boundary problems, see [17, 19, 20, 24]. However, to the best of
our knowledge, there are no results for the boundary value problem represented by
(1.2) for 3 < a < 4, which we consider in the present paper. We use the several
methods to prove the existence and uniqueness of solutions. Moreover we consider
the properties of Green function given by (1.2).

2. LEMMAS

For a continuous mapping h of [0, 1] into R, we consider the following fractional
differential boundary problems defined by

(2.1) { D u(t) =h(t), 0<t<l,
u(0) = u(1) = 0, Doy Dg- Su(0) = D0+D8‘;3u(1) =0,

where 3 < o« < 4. In this section, we show the unique solution to the boundary
value problem represented by (2.1). A mapping u of [0, 1] into R is a solution of
that boundary value problem if u is continuous on [0, 1] and u satisfies (2.1). The
following lemma can be found in [6]; see [11] also. We denoted by C(0,1) the set
of all continuous mappings of (0,1) into R and by L(0,1) the set of all Lebesgue
integrable mappings of [0, 1] into R.

Lemma 2.1. Let o > 0. If u(t) € C(0,1) N L(0,1) satisfying D§, u(t) € C(0,1) N
L(0,1), then there exist constants Cq,Ca,...,C, € R such that

I8, Dg u(t) = u(t) + Crt ™t 4+ Cot* 2 4 - Cpt™™™,

where n = [a] + 1 and I§, u is the Riemann-Liouwville fractional integral of order o
of a function u defined by

1 t a=ly(s)ds
m/o(t—s) (s)ds.

I§ u(t) =
Using Lemma 2.1, we obtain the following.

Lemma 2.2. Let h be a continuous mapping of [0,1] into R. Let 3 < o < 4. Then
the unique solution of the boundary value problem represented by (2.1) is

1
t):/o G(t,s)h(s)ds
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where
(2.2)
ﬁ (=5t =1 =5t = (1= 5)* 27 4 (1 = 5)t°7?)
Gt 5) (0 gls <t<1)

S (L (1) e — (L )

(0<t<s<1).

Remark 2.3. If o« = 4, then

Glt.s) = {3 (A D@ - =) (0<s <t <),
o= Tt —s)(2s—s2—tY))(0<t<s<).
<

Lemma 2.4. Let 3 < « 4. The function G(t,s) in Lemma 2.2 satisfies the
following conditions:

(i) m < G(t,s) < M, where
st =) (1 —t) = (t=s)(t—s)) if (s < 1),
S |oidf (<),

A (t—s8)2+ (1—s)(2t —t2—s%) if (s < 1),
Cla=t)@2s—12 =) if (t<s).

(ii) If s an?tjatisfyogtg 3_2‘/5, orlth% andt—\/f(l—t)gsgt,
then G(t,s) > 0.

We consider the following.

/ G(t,s)h(s)ds = [-G(t, s)v(s)]é—{—/ G1(t, s)v(s)ds,
0 0

and

1

1 1
/t G(t,s)h(s)ds = [-G(t, s)v(s)], +/t G1(t, s)v(s)ds,

where v(s) = ftl h(s)ds and Gi(t,s) = %(t, s)

(2.3)
ﬁ (—(a=1D)(t—s5) 2+t 4 (a—1)(1 —s)* 223 —to73)
fo<s<t<l1
Gi(t,s) = -~
1(t, 5) ﬁt(x—l +(a—1)(1 - s)o2g03 _ o3
Ho<t<s<l1.
Moreover

/01 G(t,s)h(s)ds = /01 G1(t, s)v(s)ds.
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We also have

1 t
/ DEZ3G(t, 5)h(s)ds = / Go(t, 5)0(s)ds,

0

/D0+D0+Gts ds—/ths

ﬁ((t —5) — (1 —8)t*3) (0<s
—L (1 —s)te3 (0<t<s<1),
(2.5) Gs(t,s) = 3—(’57 s) = { : <1).

Remark 2.5. The function fo s)ds is continuous on [0, 1]. In fact, we have

a Qo a-1 o a—3
< < .

3. MAIN RESULT

Next we use the method of order reduction to transform (1.2) to a nonlinear
integral equation. To do this, let

Tlv(t) = Ig 3T21) / G1 t, 8

Tou(t /ths s)ds, Tsv(t) /ths

where Gi(t,s), Ga(t,s) and G3(t, s) are given by (2.3), (2.4) and (2.5). From the
above formulas, it follows that

D0+D0+D8;3T11}(t) = D0+D0+T2’l)(t) = D0+T3U(t) = —’U(lf).
Note that since
1 1
Tv(t) = / Gi(t,s)v(s)ds = / G(t,s)f(s)ds,
0 0
we have
T1U(0) = T11}(1) = 0.

Moreover by definition,

1 1
Tov(0) = /0 G2(0,8)ds = 0,Tov(l) = /0 Ga(1,s)ds = 0.

Boundary value problem (1.1) can be converted into a ternminal value problem

1
Dosv(t) = = f(t, Thv(t), Tov(t), Tsv(t), —v(t)),/0 v(s)ds = 0.
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From the above formulas, it follows that
Dosv(t) = f(t, Tyv(t), Tov(t), T3v(t), —v(t))
where
Do+ Tsv(t) = —v(t), Do+ Tov(t) = Tav(t), Dg;?’Tlv(t) = Tho(t).
Then we have the following lemma.

Lemma 3.1. Let 3 < a < 4. The boundary value problem (1.2) is equivalent to the
following integral equations forms;

ft (s, Thv(s), Tov(s), Tsv(s), —v(s))ds,
Tlv(t fo Gi(t,s)v(s)ds,
Tou(t) = [, Ga(t, s)v(s)ds,
Tsv(t) = fol Gs(t, s)v(s)ds,
where G1(t, s), Ga(t, s) and Gs(t,s) are given by (2.8), (2.4) and (2.5).
Lemma 3.2. G1(t,s), Ga(t,s) and Gs(t,s) satisfy the followings.
(1) —8 < 3s5+3s3—3t—4t?2—1 < G1(t,s) < 3t?—2524+3-45 <6, if 0 < s <t <1

—5 <33 — 452+ 2t -1 <Gy(t,s) <2 +3 -4t <3,if0<t<s<1.
(ii)) —1 < Ga(t,s) <0, —1 < Gs(t,s) < 1.

Next we define an operator A from C0, 1] into C[0,1] b

1
Av(t):/t f(s,Thv(s), Tov(s), Tsv(s), —v(s))ds

7

where v € C[0,1]. Then the solution of boundary value problem (1.2 ) is a fixed
point of mapping A. Also let

1
(Tho)(t / Gi(t,s) , (Tov)(t / Ga(t, s) s, (T5v)(t) :/ v(s)ds.
0
Then the existence of solution of the boundary value problem (1.2) is equivalent to
the existence of fixed point of A on C]0,1]. Take uo(t) =1 —t.
1

1 1
/t (Tiwo) (1)t < o), / (Tauo) (t)dt < (ﬁ - %) wo(t).

1
/ (Tyuo) (£)dt < 0.0276515u0.(a = 3.5,
t

t=1/6(8 —8/(—109 + 27V17)"/? + (=109 + 27V17)'/3) ~ 0.5474636625659386)

Moreover if oo = 4,
1
3
/ (T3Uo)(t)dt < 3—2’11,0 = 0.09375uy, (t = 1/4).
i

If o = 3, [ (Tyuo)(t)dt < Lug(t) = 0.16666Tug() (t = 0).

1 1 1



If o = 4, then we have

1 1
C = 20’ Cy = o
However if a = 4, calculate directly, then we can take
291 1 1
e — _— = — = . 4 — — U. 41
Ch 30720 > 120" Co oG 0.04536090 > 7 0.0416667,

3
Cs = 33 = 0.09375 > 0.0276515.

Now we have the following theorem, which is the version of [27, Theorem 1].

Theorem 3.3. Suppose that there exist four nonnegative constants M; (i =
1,2,3,4) with M1Cy + MaCo + M3C's + My < 1 such that

4
|f(t, w1, w2, w3, 24) — F(6 Y12, 93, 9a)| <> Mila; — yil @i, y; € R.
i=1
Then the boundary value problem (1.2) has a unique solution.

Next we consider the Banach contraction principal. Then, there exist constants

4 -1 1 1 1 —

I'a) \ala—2) 6 2a-2) 2 (a—1(a—2)
If a =4, then
1 5 2
Dl_Z’Dg_E’Dg_g'

Note that for o = 4, if we calculate directly, result is same. In this case we also
have the theorem, which is the version of [27, Theorem 3].

Theorem 3.4. Suppose that there exist four nonnegative constants M; (i =
1,2,3,4) with M1 Dy + M2Ds + MsDs + My < 1 such that
4
|f(ta T1, X2, T3, $4) - f(tu Y1, Y2, Y3, Z/4)| < Z Ml|xl - yilv Ti,Yi € R.
i=1
Then the boundary value problem (1.2) has a unique solution.

We also have the theorem, which is the version of [27, Theorem 3. In this
section, we consider the existence and uniqueness of solutions of the boundary value
problem represented by (1.2). It seems that there are few uniqueness results if the
norm of related linear operator is greater than 1. In fact, Theorems 3.3, conclude
that r(T) is less than 1, where r(T) is the spectral radius of linear operator T.
Note that r(T) = lim,_ s HT”H% By Theorem 3.3, since for any v € C0.1],

T™(t) < NMm™up(t), we have ||T”||% < M < 1, thus we have r(T) < 1.

Theorem 3.5. Suppose that there exist four nonnegative constants M; (i =
1,2,3,4) such that

4
|f(t,l‘1,1‘2,f173,934) - f(tay17y27y3ay4)| S Zlexz - yllal‘layz S ]Ra
i=1

193



194

and r(T) < 1. Then the boundary value problem (1.2) has a unique solution.

Finally we consider the method in [28]. In order to do this, we give several
lemmas. First put Hi(t,s) = D(()’_:?’G(t, s). Thus we have

(3.2)

Hl(t, 8) = {

ft—s)?—L(1-s)t2+ m(—u —8) 4 (1—-5)))if0<s<t <1,
—3(1 =)+ ey (1 —9)* '+ (1—s) if0<t<s< L.

Also put Ha(t,s) = D0+D8+_3G(t, s).

(3.3) Hy(t,s) = 45t -8 =st-Dif0<s<t<1,
: 5= |
i s—1if0<t<s<1
(3-4) Hyts) = {° T0Ss<t<],
: =l
’ 0if0<t<s<1.

Lemma 3.6. Hi(t,s) salisfies the following.

(i) —%s(l —15) < Hi(t,s) < %((t—s)z—i-(l—s)(s(l—5)+t(1—t))) if 0 <
s<t<1,
TA—s)t(1=3t) < Hy(t,s) < $(1—s)(s(1—s)+t(1—1) if0<t <s <1
(i) If0 <t <1-—+1—s<s, then Hi(t,s) > 0.

For u € C[0,1], put o(t) = f(t,u(t), Diy u(t), Diy *u(t), D§y 'u(t)). Then the
boundary value problem (1.2) becomes

{me) = ()
u(0) = u(1) = 0, Dy *u(0) = Dy u(l) = 0,

where

1 1
u(t):/o G(t, s)p(s)ds, Dg‘jgu(t):/o Hi(t,s)p(s)ds,

D&f?u(t) = /01 Hs(t, s)e(s)ds, Dg;lu(t) = /01 Hs(t, s)p(s)ds.
For ¢, we have the equation Ap = ¢, where A is a non-linear operator defined by
Ap(t) = f(t, up(t), vp(t), we(t), zp(t)),
with
ve(t) = D Pu(t), we(t) = DG 2ult), wp(t) = DGy tu(t).

Thus we have the following lemma.



Lemma 3.7. Let 3 < a < 4. The boundary problem (1.2) is equivalent to the
following integral equations forms;

@(t) J(tup(t), vp(t), we(t), T (1)),
vy (t fo Hy(t,s)p(s)ds
ww = fo Hs(t,s)o(s )cls7
w) = Jo Ha(t. s)o(s)ds,
where Hy(t,s), Ha(t,s) and Hs(t,s) are given by (5.2), (3.8) and (5.4).
By (3.2) and Lemma 3.6, there exists E, Fa, F3 and E4 such that

El—sup/Gts|dsE2—sup/|H1ts|ds

te[0,1] te[0,1]

Es = sup / |Ho(t, s)|ds, E4 = sup / |Hs(t, s)|ds.
te[0,1] tel0,1] /O

In this case following theorem holds. It is a version of [28].

Theorem 3.8. Suppose that there exist four nonnegative constants M; (i =
1,2, 3,4) with M E1 + MsoFEs + MsEs + MyE, < 1 such that

4
|f(t, w1, w2, w3, 24) — (6 Y1, y2, 93 9a)| < > Mila; — yil @i, y; € R.
=1

Then the boundary value problem (1.2) has a unique solution.

For the case that o = 4, we have the following; see Dang and Ngo [28].

Corollary 3.9. Let f be a continuous function of [0,1] x R x R x R into R. Let
g be a Lipschitz continuous function of R into itself with a nonnegative constant L.
Assume that there exists nonnegative constants My, Ms, M3 and My with

1 1 5
—M M M M. 1
120 1+6 2+ 3+ My <

such that

4
[t w1, w2, w3, 24) — (6 Y1, y2, 93 9a)| <> Mila; — yil @i, y; € R.
=1

Then the boundary value problem represented by (1.2) has a unique solution.
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