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CONVERGENCE OF SOME ITERATIVE METHODS FOR MONOTONE 
INCLUSION, VARIATIONAL INEQUALITY AND FIXED POINT 

PROBLEMS 

JONG SOO JUNG 

DEPARTMENT OF MATHEMATICS, DONG-A UNIVERSITY 

ABSTRACT. In this paper, we introduce two iterative methods (one implicit method and 
one explicit method) for finding a common element of the zero point set of a set-valued 
maximal monotone operator, the solution set of the variational inequality problem for a 
continuous monotone mapping, and the fixed point set of a continuous pseudocontractive 
mapping in a Hilbert space. Then we establish strong convergence of the proposed iterative 
methods to a common point of three sets, which is a solution of a certain variational 
inequality. Further, we find the minimum-norm element in common set of three sets. The 
main theorems develop and complement some well-known results in the literature. 

1. INTRODUCTION 

Let H be a real Hilbert space with inner product (·, ·) and induced norm II · II- Let C 
be a nonempty closed convex subset of H and let T: C---+ C be a self-mapping on C. We 
denote by Fix(T) the set of fixed points of S. 

The monotone inclusion problem plays an essential role in the theory of nonlinear analysis 
and optimization. Let B : H ---+ 2H be a maximal monotone operator. The monotone 
inclusion problem consists of finding a zero element of B, that is, a solution of the inclusion 
problem: 

(1.1) 0 E Bx. 

The solution set of the problem (1.1) is denoted by B-10. A classical method for solving 
the problem is proximal point algorithm, proposed by Martinet [9] and generalized by 
Rockafellar [10]. In some concrete cases including variational inequalities, the monotone 
inclusion problem requires to find a zero of the sum of two monotone operator. That is, in 
the case of F =A+ B, where A and Bare monotone operators, the problem is reduced to 
as follows: 

find z E C such that O E (A+ B)z. 
The solution set of this problem is denoted by (A+ B)-10. 

Let A : C ---+ H be a nonlinear mapping. The variational inequality problem is to find a 
u E C such that 

(1.2) (v - u,Au) 2". 0, Vv EC. 

This problem is called Hartmann-Stampacchia variational inequality ([12]). We denote the 
set of solutions of the variational inequality problem (1.2) by VI(C, A). As we also know, 
variational inequality theory has emerged as an important tool in studying a wide class 
of numerous problem in physics, optimization, variational inequalities, minimax problem, 
Nash equilibrium problem in noncooperative games and others. 

1991 Mathematics Subject Classification. Primary 47J20 Secondary 47H05, 47H09, 47H10, 47J05, 47J22, 
47J25. 
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A fixed point problem is to find a fixed point z of a nonlinear mapping T with property: 

(1.3) z EC, Tz = z. 

In order to study the variational inequality problem (1.2) coupled with the fixed point 
problem (1.3), many researchers have invented some iterative methods for finding an element 
of V I(C, A) n Fix(T), where A and T are nonlinear mappings. For instance, in case that 
A : C --+ H is an inverse-strongly monotone mapping and T : C --+ C is a nonexpansive 
mapping, see [4, 5] and the references therein, and in case that A : C --+ H is a continuous 
monotone mapping and T : C --+ C is a continuous pseudocontractive mapping, see [3, 15, 
19]. 

In 2016, Jung [7] proposed an iterative method based on Yamada's hybrid steepest de­
scent method [17] for finding an element of Fix(T) n VI( C, A) n B-10, where T : C --+ C 
is a continuous pseudocontractive mapping, A : C --+ H is continuous monotone mapping, 
and B : H --+ 2H is a maximal monotone operator. 

Some iterative methods for finding an element of Fix(T)n(A+B)- 10 have been provided 
by several authors. For instance, in case that T : C --+ C is a nonexpansive mapping, 
A : C --+ H is an inverse-strongly monotone mapping andand B : H --+ 2H is a maximal 
monotone operator, see [14]. 

In this paper, as a continuation of study in this direction, we introduce new implicit and 
explicit iterative methods for finding a common element of the set n := Fix(T)nV I(C, A)n 
B-10, where T : C --+ C is a continuous pseudocontractive mapping, A : C --+ H is a 
continuous monotone mapping and B : H --+ 2H is a maximal monotone operator. Then we 
establish strong convergence of the sequences generated by the proposed iterative methods 
to a common point of three sets, which is a solution of a certain variational inequality. As 
a direct consequence, we find the unique minimum-norm element of n. The main theorems 
develop and complement some well-known results in the literature. 

2. PRELIMINARIES AND LEMMAS 

Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. We 
write Xn ----'- x to indicate that the sequence {xn} converges weakly to x. Xn --+ x implies 
that {xn} converges strongly to x. 

A mapping A of C into H is called monotone if 

(x - y, Ax - Ay) 2 0, Vx, y E C. 

A mapping A of C into H is called a-inverse-strongly monotone (see [4]) if there exists a 
positive real number a such that 

(x - y, Ax - Ay) 2 all Ax - Ayll 2 , Vx, y E C. 

Clearly, the class of monotone mappings includes the class of a-inverse-strongly monotone 
mappings. 

A mapping T of C into H is said to be pseudocontractive if 

IITx - Tyll 2 :S: llx - Yll 2 + ll(J - T)x - (I - T)yll 2 , Vx, YE C, 

and T is said to be k-strictly pseudocontractive (see [2]) if there exists a constant k E [O, 1) 
such that 

IITx -Tyll 2 :S: llx -yll 2 + kll(J -T)x - (I -T)yll 2 , Vx, y EC, 

where I is the identity mapping. Note that the class of k-strictly pseudocontractive map­
pings includes the class of nonexpansive mappings as a subclass. That is, T is nonexpansive 
(i.e., IITx - Tyll :S: llx - YII, Vx, y E C) if and only if T is 0-strictly pseudocontractive. 
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Clearly, the class of pseudocontractive mappings includes the class of strictly pseudocon­
tractive mappings and the class of nonexpansive mappings as a subclass. Moreover, this 
inclusion is strict (see Example 5.7.1 and Example 5.7.2 in [1]). 

Let B be a mapping of H into 2H. The effective domain of B is denoted by dom(B), 
that is, dom(B) = {x E H: Bx=/= 0}. A set-valued mapping Bis said to be a monotone 
operator on H if (x-y,u-v) 2'. 0 for all x, y E dom(B), u E Bx, and v E By. A monotone 
operator B on H is said to be maximal if its graph is not properly contained in the graph of 
any other monotone operator on H. For a maximal monotone operator Bon Hand>.> 0, 
we may define a single-valued operator Jf = (I+ >.B)-1 : H ➔ dom(B), which is called 
the resolvent of B. 

Let B be a maximal monotone operator on Hand let B-10 = {x EH: 0 E Bx}. It is 
well-known that B-10 = Fix(Jf) for all>.> 0 is closed and convex and the resolvent Jf 
is firmly nonexpansive, that is, 

IIJfx - Jfvll 2 ::::: (x - Y, Jfx - Jfy), \:/x, YEH, 

and that the resolvent identity 

Jfx=J{;(~x+ (1-~)Jfx) 

holds for all >., µ > 0 and x EH. 
In a real Hilbert space H, the following hold: 

llx - vll 2 = llxll 2 + llvll 2 - 2(x, v), 

and 

llax + ,Bvll 2 = allxll 2 + ,Bllvll 2 - a,Bllx - vll 2 ::::: allxll 2 + ,Bllvll 2 , 

for all x, y EH and a, ,BE (0, 1) with a+ ,B = l. 
We recall that 

(i) a mapping V : C ➔ H is said to be l-Lipschitzian if there exists a constant l 2'. 0 
such that 

IIVx - Vvll::::: lllx -vii, \:/x, YE C; 
(ii) a mapping G : C ➔ H is said to be ry-strongly monotone if there exists a constant 

TJ > 0 such that 

(Gx - Gy, x - y) 2'. TJllx -vii 2, \:/x, y EC. 

We need the following lemmas for the proof of our main results. 

Lemma 2.1 ([1]). In a real Hilbert space H, the following inequality holds: 

llx + Yll 2 ::::: llxll 2 + 2(y, x + y), \:/x, y EH. 

Lemma 2.2 ([13]). Let {xn} and {zn} be bounded sequences in a real Banach space E, and 
let bn} be a sequence in [O, 1] which satisfies the following condition: 

0 < lim inf rn ::::: lim sup ,'n < l. 
n➔oo n➔oo 

Suppose that Xn+l = rnXn + (l - rn)Zn for all n 2'. 1 and 

limsup(llzn+l - Znll - llxn+l - Xnll)::::: 0. 
n--+oo 

Then limn--+oo llzn - Xnll = 0. 

Lemma 2.3 ([16]). Let { sn} be a sequence of nonnegative real numbers satisfying 

Sn+l ::::: (1 - ~n)sn + ~n<Sn, \:Jn 2'. 1, 

where { ~n} and {<Sn} satisfy the following conditions: 

(i) {~n} C [O, 1] and :E~=l ~n = oo; 
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(ii) limsupn➔oo Dn :::; 0 or L~=l ~nl6nl < CXJ. 

Then Iimn➔oo Sn = 0. 

The following lemmas are Lemma 2.3 and Lemma 2.4 of Zegeye [18], respectively. 

Lemma 2.4 ([18]). Let C be a closed convex subset of a real Hilbert space H. Let A: C--+ H 
be a continuous monotone mapping. Then, for v > 0 and x E H, there exists z E C such 
that 

1 
(y - z, Az) + -(y - z, z - x) 2 0, Vy EC. 

V 

For v > 0 and x EH, define Av: H--+ C by 

Avx = { z EC: (y - z, Az) + ~(y - z, z - x) 2 0, Vy EC}· 

Then the following hold: 

(i) Av is single-valued; 
(ii) Av is firmly nonexpansive, that is, 

IIAvx - AvYll 2 :::; (x - Y, Avx - Avy), Vx, Y E H; 

(iii) Fix(Av) = VI(C, A); 
(iv) VI(C,A) is a closed convex subset of C. 

Lemma 2.5 ([18]). Let C be a closed convex subset of a real Hilbert space H. LetT: C--+ H 
be a continuous pseudocontractive mapping. Then, for r > 0 and x EH, there exists z E C 
such that 

1 
(y - z, Tz) - -(y - z, (1 + r)z - x) :::; 0, Vy EC. 

r 
Farr> 0 and x EH, define Tr: H--+ C by 

Trx = { z EC: (y - z, Tz) - ~(y - z, (1 + r)z - x):::; 0, Vy EC}· 

Then the following hold: 

(i) Tr is single-valued; 
(ii) Tr is firmly nonexpansive, that is, 

IITrX - TrYll 2 :::; (x - Y, Trx - Try), Vx, Y EH; 

(iii) Fix(Tr) = Fix(T); 
(iv) Fix(T) is a closed convex subset of C. 

The following lemma is a variant of a Minty lemma (see [9]). 

Lemma 2.6. Let C be a nonempty closed convex subset of a real Hilbert space H. Assume 
that the mapping G : C --+ H is monotone and weakly continuous along segments, that is, 
G ( x + ty) --+ G ( x) weakly as t --+ 0. Then the variational inequality 

x EC, (Gx,p- x) 2 0, Vp EC, 

is equivalent to the dual variational inequality 

x EC, (Gp,p-x) 2 0, Vp EC. 

The following lemmas can be easily proven (see [17]), and therefore, we omit their proof. 

Lemma 2.7. Let H be a real Hilbert space. Let V: H--+ H be an l-Lipschitzian mapping 
with a constant l 2 0, and let G : H --+ H be a 1,,-Lipschitzian and 77-strongly monotone 
mapping with constants 1,,, 77 > 0. Then for O:::; ')'l < µ77, 

((µG - ,,v)x - (µG - ,,v)y, X - y) 2 (µ77 - ,'l)llx - Yll 2 , Vx, y EH. 

That is, µG - ,,v is strongly monotone with constant µ77 - ')'l. 
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Lemma 2.8. Let H be a real Hilbert space H. Let G : H -+ H be a K,-Lipschitzian and 
'f)-strongly monotone mapping with constants "' > 0 and T/ > 0. Let O < µ < ~ and 
0 < t < 1. Then I - tµG : H -+ H is a contractive mapping with a constant l - fr, where 
T = l - Jl - µ(2TJ - µK,2). 

3. MAIN RESULTS 

Throughout the rest of this paper, we always assume the following: 

• His a real Hilbert space with the inner product (·, ·) and the induced norm II· II; 
• C is a nonempty closed convex of H; 
• B: H-+ 2H is a maximal monotone operator with dom(B) CC; 
• B-10 is the set of zero points of B, that is, B-10 = {z EH: 0 E Bz}; 
• Jf, : H-+ dom(B) is the resolvent of B for At E (0, oo), t E (0, 1), and liminft➔o At> 

O; 
• Jf : H-+ dom(B) is the resolvent of B for An E (0, oo) and liminfn--+oo An> 0; 
• G : C -+ C is a K,-Lipschitzian and 'f)-strongly monotone mapping with constants 

"', T/ > O; 
• V: C-+ C is an l-Lipschitzian mapping with constant l E [0, oo); 
• Constants µ > 0 and ry :::0: 0 satisfy 0 < µ < ~ and 0 :S: ryl < T, where T 

1 - J1 - µ(27) - µK,2); 
• A : C -+ H is a continuous monotone mapping; 
• VI( C, A) is the solution set of the variational inequality problem (1.2) for A; 
• T : C -+ C is a continuous pseudocontractive mapping with Fix(T) =J 0; 
• Av, : H -+ C is a mapping defined by 

Avx = { z E C : (y - z, Az) + f; (y - z, z - x) :::0: 0, Vy E C} 
for x EH and Vt E (0, oo), t E (0, 1), liminft➔o Vt > 0; 

• Avn : H -+ C is a mapping defined by 

Avnx = { z E C: (y - z, Az) + :n (y - z, z - x) :::0: 0, Vy E C} 

for X E H and Vn E (0, oo), lim infn--+oo Vn > 0; 
• Tr, : H -+ C is a mapping defined by 

Tr,x = { z E C : (Tz, y - z) - ~ (y - z, (1 + rt)z - x) :S: 0, Vy E C} 
for x EH and rt E (0, oo), t E (0, 1), and liminft➔o rt> 0; 

• Trn : H -+ C is a mapping defined by 

TrnX = { z EC: (Tz, y - z) - r~ (y - z, (1 + rn)z - x) :S: 0, Vy EC} 

for x EH and rn E (0,oo), and liminfn--+oorn > 0; 
• n := Fix(T) n VI(C, A) n B-10 =J 0. 

By Lemma 2.4 and Lemma 2.5, we note that Av,, Avn, Tr, and Trn are nonexpansive, 
VI(C, A)= Fix(Av,) = Fix(Avn) and Fix(Tr,) = Fix(Trn) = Fix(T). 

Now, we introduce the following iterative method that generates a net {xt} in an implicit 
way: 

(3.1) 

Fort E (0, 1), consider the following mapping Qt on C defined by 

Qtx = Tr,(tryVx + (I - tµG)Jf,Av,x), Vx EC. 
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Then, since Tr,, Jf, and A 11, are nonexpansive, for x, y E C, we have 

IIQtX - QtYII 

= IITr,(t')'VX + (I - tµG)Jf,Av,x) - (Tr,(t')'Vy + (I - tµG)Jf,Av,Y))II 

:S: IITr,(t')'VX + (I - tµG)Jf,Av,x) -Tr,(t')'Vy + (I - tµG)Jf,Av,Y)II 

:S: llt')'VX + (I - tµG)Jf,Av,x - (t')'Vy + (I - tµG)Jf,Av,Y)II 

:S: tlbVx - ')'Vyll + ll(J - tµG)Jf,Av,x - (I - tµG)Jf,Av,YII 

:S: t')'lllx - YII + (1- tT)llx - YII 

= (1- (T - ')'l)t)llx -yll-

Since O < 1 - ( T - ')'l)t < 1, Qt is a contractive mapping. By Banach contraction principle, 
Qt has a unique fixed point Xt E C, which uniquely solves the fixed point equation 

Xt = Tr,(t')'VXt + (I - tµG)Jf,Av,Xt), t E (0, 1). 

We summarize the basic property of {xt} and {yt}, where Yt = t')'Vxt+(I-tµG)Jf,A 11,xt. 

Proposition 3.1. Let the net {xt} be defined via (3.1) and let the net {yt} be defined by 
Yt = t')'VXt + (I - tµG)Jf,Av,Xt fort E (0, 1). Let Wt= Av,Xt fort E (0, 1). Then 

(1) {xt} and {yt} are bounded fort E (0, 1); 
(2) Xt defines a continuous path from (0, 1) into C and so does Yt provided rt, At, Vt : 

(0, 1) ➔ (0, oo) are continuous and 0 < a :S min{rt, At, Vt} fort E (0, 1); 
(3) limt--to IIAv,Xt - Jf,Av,xtll = limt--to llwt - Jf,wtll = 0; 
(4) limt--to llxt - Wtll = 0; 
(5) limt➔o llxt - Ytll = O; 
(6) limt--to llxt - Jf,Av,xtll = limt--to llxt - Jf,wtll = O; 
(7) limt--to llxt - Tr,Xt II = 0; 
(8) limt➔o IIYt - Tr,Ytll = 0. 

By using Proposition 3.1, we establish strong convergence of the path Xt, which guaran­
tees the existence of solutions of the variational inequality (3.2) below. 

Theorem 3.2. Let the net {xt} be defined by (3.1). Let rt, At, Vt : (0, 1) ➔ (0, oo) be 
continuous and 0 < a :S min{rt, At, vt} fort E (0, 1). Then Xt converges strongly, as 
t ➔ 0, to a point q E n, which is the unique solution of the variational inequality: 

(3.2) ((µG - ')'V)q,p - q) ?: 0, \:Ip E n. 

By taking V = 0, G = I, µ = 1 in Theorem 3.2, we obtain the following result. 

Corollary 3.3. Let the net { xt} be defined by 

Xt = Tr,((1- t)Jf,Av,Xt), t E (0, 1). 

Let rt, At, Vt : (0, 1) ➔ (0, oo) be continuous and 0 < a :S min{rt, At, Vt} fort E (0, 1). 
Then Xt converges strongly, as t ➔ 0, to q, which solves the following minimum-norm 
problem : find q E n such that 

llqll = min llxll-
xE!1 

Now, we propose a new iterative algorithm which generates a sequence {xn} in an explicit 
way: for an arbitrarily chosen x 0 E C, 

(3.3) n?: 0, Xn+l = /3nXn + (1- /3n)Trn(O'.n')'VXn + (I - O:nµG)JtAvnXn), 

where {an} and {/3n} are two sequences in (0, 1), and {rn}, Pn}, {vn} C (0, oo), and 
establish strong convergence of this sequence to a common element of n. 
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Theorem 3.4. Let the sequence { xn} be generated iteratively by the explicit algorithm (3.3). 
Let {an}, {,Bn} C (0, 1) and {rn}, {>..n}, {vn} C (0, oo) satisfy the following conditions: 

(Cl) limn➔oo an = O; 
(C2) ~;::"=1 an= oo; 
(C3) 0 < liminfn➔oo,Bn :S limsupn➔oo,Bn < 1; 
(C4) 0 < a :S rn < oo and limn➔oo lrn+l - rnl = O; 
(C5) 0 < a :S An < 00 and limn➔oo IAn+1 - Anl = O; 
(C6) 0 < a :S Vn < 00 and limn➔oo lvn+l - µnl = 0. 

Then { xn} converges strongly to a point q E n, which is the unique solution of the varia­
tional inequality (3.2). 

By taking V = 0 , G =I,µ= l in Theorem 3.4, we obtain the following result. 

Corollary 3.5. Let the sequence {xn} be generated by 

Xn+i = ,BnXn + (l - ,Bn)Trn((l - an)J:3,,ArnXn), n 2'. 0. 

Let {an}, {,Bn} C (0, 1) and {rn}, {>..n}, {vn} C (0, oo) satisfy the conditions (Cl), (C2), 
(C3), (C4), (C5) and (C6) in Theorem 3.4, Then {xn} converges strongly to a point q En, 
which is the minimum-norm element of n. 

If in Theorem 3.4, we take T = I, identity mapping on C, then we obtain the following 
result. 

Corollary 3.6. Suppose that n1 = VI( C, A) n B-10 =/= 0. Let the sequence { xn} be 
generated by 

Xn+l = ,BnXn + (l - ,Bn)(an,VXn + (J - anµG)Jf,. AvnXn), n 2'. 0. 

Let {an}, {,Bn} C (0, 1) and Pn}, {vn} C (0, oo) satisfy the conditions (Cl), (C2), (C3), 
(C5) and (C6) in Theorem 3.4, Then {xn} converges strongly to a point q E n1 , which is 
the unique solution of the following variational inequality: 

((µG - 1V)q,p - q) 2: 0, \::Ip E n1. 

If in Theorem 3.4, we have C = H, then we have the following corollary. 

Corollary 3.7. Suppose that n2 = Fix(T) n A-10 n B-10 =/= 0. Let T : H --+ H be 
a continuous pseudocontractive mapping and let A : H --+ H be a continuous monotone 
mapping. Let the sequence {xn} be generated by 

Xn+i = ,BnXn + (l - ,Bn)Trn(an,VXn + (J - anµG)Jf,. AvnXn), n 2'. 0. 

Let {an}, {,Bn} C (0,1) and {rn},{An},{vn} C (O,oo) satisfy the conditions (Cl), (C2), 
(C3), (C4), (C5) and (C6) in Theorem 3.4. Then {xn} converges strongly to a point q E n2, 
which is the unique solution of the following variational inequality: 

Proof. Since D(A) 
Theorem 3.4. 

((µG - 1V)q,p - q) 2: 0, \::Ip E n2. 

H, we note that VI(H, A) = A-1o. So the result follows from 

□ 

Remark 3.8. 1) It is worth pointing out that implicit and explicit iterative algorithms 
are new ones different from those announced by several authors; see, for instance, 
[6, 7, 14] and the references therein. In particular, we use the variable parameters 
rt, At, Vt and rn, An, Vn in comparison with the corresponding iterative algorithms 
in [6, 7, 14] and the references therein. 
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2) We know that Fix(T) n VI(C, A) n B-10 c Fix(T) n (A+ B)-10 (see [7]). Thus, 
as results for finding a common element of the fixed point set of continuous pseudo­
contractive mapping more general than nonexpansive mapping and strictly pseudo­
contractive mapping and the zero point set of sum of maximal monotone operator 
and continuous monotone mapping more general than a-inverse strongly monotone 
mapping, Theorem 3.2 and Theorem 3.4 are new results, which develop and improve 
the corresponding results in [6, 11, 14] and the references therein. 

3) Corollary 3.3 and Corollary 3.5 are also new results for finding a minimum norm 
point of Fix(T) n VI(C, A) n B-10, where T is a continuous pseudocontractive 
mapping, A is a continuous monotone mapping and B is a maximal monotone 
operator. 

4) By taking V = 0, G = I and µ = l in Corollary 3.6 and Corollary 3.7, we can 
obtain new results for finding the minimum-norm point of VI(C,A) n B-10 and 
Fix(T) n A-10 n B-10, respectively. 

5) As applications in [14], by using Theorem 3.2 and Theorem 3.4, we can propose 
implicit and explicit iterative algorithms for the equilibrium problems coupled with 
fixed point problem for continuous pseudocontractive mapping. 
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