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Approximate Optimality Conditions in Fractional 
Semi-Infinite Multiobjective Optimization1 

Do Sang Kim 

Department of Applied Mathematics 
Pukyong National University, Busan 48513, Korea 

E-mail: dskim@pknu.ac.kr 

Abstract. This paper provides some new results on weak approximate so­
lutions in fractional multiobjective optimization problems. Specifically, we es­
tablish necessary optimality conditions of Fritz-John type for a local weakly 
E-efficient solution in fuzzy form and, by using limiting constraint qualification, 
we provide necessary optimality conditions of Karush-Kuhn-Tucker type for a 
weakly E-quasi-efficient solution. To this purpose advanced tools of variational 
analysis and generalized differentiation are used. 

1 Introduction 
In this paper, we are interested in a fractional semi-infinite multiobjective opti­
mization problem, which admires the following mathematical form: 

(FSMP) m1n 
IR"' + 
s.t 

( P1(x) Pm(x)) 
f(x): = q1(x)' ... , qm(x) 

x E F: = {x ES I 9t(x) ~ 0, t ET}, 

where Pk, qk, k E M = {1, ... , m} and 9t, t E T (possibly infinite index set) 
are locally Lipschitz on ~n, S is a nonempty closed subset of ~n, and ~n is the 
Euclidean space of dimension n. For the sake of convenience, we assume further 
that qk(x) > 0, k = 1, ... ,m for all x ES, and that Pk(x) ~ 0, k = 1, ... ,m for 
the reference point x E S. 

Recently, optimization programming problems with fractional objective func­
tions have been investigated intensively by many researchers (see e.g. [1, 2, 7, 9] 
and references therein). However, to the best of our knowledge, there are not so 
many papers dealing with approximate solutions to such class of optimization 
problems. Moreover, in classical approach, establishing optimality conditions 
in a fractional optimization problem requires concavity\convexity assumptions. 
However, its objective function is generally not a convex one. Hence using the 
extremal principle and other advanced techniques of a variational analysis and 
generalized differentiation to establish optimality conditions seems to be suitable 
for nonconvex\nonsmooth fractional multiobjective optimization problems. 

1 This paper is based on the manuscript "Approximate necessary optimality in fractional 
semi-infinite multiobjective optimization" written by T. Shitkovskaya, Z. Hong, D.S. Kim and 
G.R. Piao, which was accepted to J. Nonlinear Convex Anal. 
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We investigate necessary optimality conditions of Karush-Kuhn-Tucker (KKT) 
type for local weakly E-efficient (in fuzzy form) and weakly E-quasi-efficient solu­
tions of a fractional semi-infinite multiobjective optimization problem. Finally, 
we provide some remark about further research. 

2 Preliminaries 

Let us recall some notations and preliminary results which will be used through­
out this paper; see e.g., [4, 10]. 

The nonnegative orthant of llln is defined by lll+: = { (x1, ... , Xn) E llln I Xi ~ 

0, i = 1, ... , n}. The bracket (·, ·) stands for inner product of given vectors in 
llln. The interior, and the closure of Sare denoted, respectively, by intS, clS. 
In this setting, the polar cone of a set S C llln is defined by 

S 0 : = {x* E llln I (x*,x) ~ 0, \:/x ES}. (2.1) 

Given a multifuction G: llln =t lllm with values G(x) C lllm in the collection 
of all the subsets of lllm (and similarly, of course, in infinite dimensions). The 
limiting construction 

Li~sxupG(x): = { y E lllm I ::l Xk-+ x, Yk-+ y 

with Yk E G(xk) for all k EN: = {1, 2, ... } } 

is known as the Painleve-Kuratowski upper/outer limit of G at x. 
A set F C llln is called closed around x E F if there is a neighborhood U of 

x such that F n cl U is closed. F is said to be locally closed if F is closed around 
x for every x E F. We assume that sets under consideration are locally closed. 

Given x E F, define the collection of Frechet/regular normal cone to F at x 
by 

(2.2) 

where x .£+ x means that x-+ x with x E F. If x eJ_ F, we put N(x; F): = 0. 
The Mordukhovich/limiting normal cone N(x; F) to Fat x E F C llln is ob­

tained from regular normal cones by taking the sequential Painleve-Kurotowski 
upper limits as 

N(x; F) := LimsupN(x; F). 
x~x 

If x eJ_ F, we put N(x; F): = 0. 

(2.3) 
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For an extended real-valued function cp: !Rn ---+ IR: = [-oo, oo] its domain is 
defined by 

domcp: = {x E !Rn I cp(x) < oo}, 

and its epigraph is defined by 

epicp: = {(x,µ) E !Rn X IR Iµ~ cp(x)}. 

Let cp: !Rn ---+ lR be finite at x E dom cp. Then the collection of basic subgradients, 
or the (basic/Mordukhovich/limiting) subdifferential, of cp at x is defined by 

8cp(x): = {v E !Rn I (v,-1) E N((x,cp(x));epicp)}. (2.4) 

Considering the indicator function J ( -; F) defined by 

J(-· F) = { 0, if x E F, 
' +oo, otherwise, 

we have a relation between the Mordukhovich normal cone and the limiting 
subdifferential of the indicator function as follows [8, Proposition 1.19]: 

N(x; F) = ao(x; F), \:/x E F. (2.5) 

The generalized Fermat's rule is formulated as follows [8, Proposition 1.30]: 

Let cp: !Rn ---+ lR be finite at x. If x is a local minimizer of cp, then 

0 E 8cp(x) and O E 8cp(x). (2.6) 

For establishing optimality conditions, the following lemmas which are re­
lated to the Mordukhovich/limiting subdifferential calculus are very useful. 

Lemma 2.1 /8, Corollary 2.21 and Theorem 4.l0{ii)J 

{i) Let </Ji: !Rn ---+ JR, i = 1, 2, ... , m, m ~ 2 be lower semicontinuous around 
x E !Rn, and let all but one of these functions be Lipschitz continuous 
around x. Then 
8(cp1 + <p2 + ... + c/Jm)(x) C 8cp1(x) + 8</J2(x) + ... + 8</Jm(x). 

{ii) Let </Ji: !Rn ---+ JR, i = 1, 2, ... , m, m ~ 2 be lower semicontinuous around x 
for i E Imax(x) and be upper semicontinuous at x for i rt Imax(x), suppose 
that each </Ji, i = 1, ... , m, is Lipschitz continuous around x. Then we have 
the inclusion 

8(maxcpi)(x)cu{a(_ I:_ Ai(pi)(x) I (>..1,---,>..m)EA(x)}, 
iEimax(x) 

where the equality holds and the maximum functions are lower regular at 
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x if each c/Ji is lower regular at this point and sets Imax(x) and A(x) are 
defined as follows: 

Imax(x): = {i E {1, ... , m} I c/Ji(x) = (maxc/Ji)(x)}, 
m 

i=l 

Lemma 2.2 /8, Corollary 4.8/ Let c/Ji: ~n --+ lR for i = l, 2 be Lipschitz con­
tinuous around x with cp2 (x) =/- 0. Then we have 

Linear space for semi-infinite programming is denoted by 

~r) := {µ = (µt)tET I µt ~ 0 for all t E T 

but only finitely many µt =/- O}, 

and set of active multipliers at x E S is defined by 

A(x) := {µ E ~r) I µtgt(x) = 0, Vt E T}. 

(2.7) 

(2.8) 

Finally, we recall some version of Ekeland Variational Principle which origi­
nally was given in [5]. 

Lemma 2.3 (Ekeland Variational Principle) /8, Theorem 2.12] Letcp: ~n--+ 

lR be a lower semicontinuous function bounded from below, E > 0 and xo E ~n 

be given such that cp(xo) ~ inf cp(x) + E. Then for every>. > 0, there is x E ~n 

such that llx - xoll ~ >., cp(x) ~ cp(xo), and 
E 

cp(x) < cp(x) + :xllx - xii whenever x =/- x. 

3 Optimality Conditions 

In this section we establish approximate necessary conditions for fractional semi­
infinite multiobjective optimization problems. 

Definition 3.1 Let Ebe in ~+\{0}. A feasible point x E Fis said to be a local 

weakly E-efficient solution for (FSMP), if there exists a neighborhood U of x and 
there is no other x E U n F such that 
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Definition 3.2 Let E be in IR+\ {0}. A feasible point x E F is said to be a 

weakly E-quasi-efficient solution for (FSMP), if there exists no other x E F such 
that 

First, we provide a Fritz-John type approximate necessary optimality con­
dition for a local weakly E-efficient solution of (FSMP) with the help of a real­
valued function '1/J described in [6]. The following theorem was motivated by 
Chuong and Kim [2]. 

Theorem 3.1 Let x be a local weakly E-efficient solution of (FSMP). Then for 
any v > 0, there exist Xv E F and fJk ~ 0, k E M and µt ~ 0, t E T(µ) with 
L fJk + L µt = 1, such that llxv - xii ~ v and 

kEM tET(µ) 

0 E L Ak (apk(xv) - Pk((:v)) aqk(xv)) + L µt8gt(Xv) 
kEM qk v tET(µ) 

maxkEM{ Ek} ( ) + -----JIB+ N Xvi S , 
V 

[Pk(xv) Pk(x) ] 
fJk -( -) - -(_)+Ek - '1/J(xv) = 0, k EM, 

qk Xv qk X 

µt[gt(Xv) - '1/J(xv)] = 0, t ET(µ), 

with >.k = _p__(k )' k EM, and 
qk Xv 

{ Pk(x) Pk(x) } 
'1/J(x): = max -(-) - -(_) + Ek,9t(x) , 

kEM,tET(µ) qk X qk X 

(3.9) 

Remark 3.1 Intheorem3.1, ifxv satisfiesN(xv;F) C LJ [ I: µt8gt(Xv)]+ 
µEA(xv) tET 

N(xv; S), then there existµ E A(xv) defined by in (2.8) and fJ E IR+'\{0} with 

L fJk = 1, such that conditions (3.9) can be changed to KKT type conditions 
kEM 
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as follows: 

with Ak = ___p__(k )' k EM, and 
qk Xv 

kEM, 

. {Pk(x) Pk(x) } 
the function 'lj;(x): = max -(-) - -(_)+Ek , x E !Rn. 

kEM qk X qk X 

(3.10) 

It should be mentioned again that functions 'lj; for approximate necessary 
optimality conditions of Fritz-John type and KKT type are slightly different. 

Definition 3.3 /1} Let x E F. We say that the limiting constraint qualification 

(LCQ) is satisfied at x if! 

N(x; F) c LJ [ L µt89t(x)] + N(x; S). 
µEA(x) tET 

(3.11) 

The forthcoming theorem presents necessary condition of (KKT) type for 
weakly E-quasi-efficient solutions for (FSMP). 

Theorem 3.2 Let the (LCQ) be satisfied at x E F. If x is a weakly E-quasi­

efficient solution of (FSMP), then there exist (3 E IR+ \ {O} with I: f3k = l and 
kEM 

µ E A(x) defined (2.8) such that 

o E L >.k (aPk(x) - Pk((:)) aqk(x)) + L µta9t(x) 
kEM qk tET 

+ L f3kEklBl + N(x; S), 
kEM 

f3k 
where Ak = -(-)' k EM. 

qk X 

Further Research 

(3.12) 

Sufficient conditions for weakly E-quasi-efficient solutions for (FSMP) can be 
derived with the help of generalized convex functions introduced in [2] and 
assumption on stationary point of denominator. Duality relations between the 
primal and Wolfe type dual problems will be discussed in our further research. 



20

References 

[1] T. D. Chuong, Nondifferentiable fractional semi-infinite multiobjective op­
timization problems, Oper. Res. Lett 44(22) (2016), 260-266. 

[2] T.D. Chuong and D.S. Kim, Approximate solutions of multiobjective opti­
mization problems, Positivity 20(1) (2016), 187-207. 

[3] T. D. Chuong and D.S. Kim, A class of nonsmooth fractional multiobjective 
optimization problems, Ann. Oper. Res. 244 (2016), 367-383. 

[4] A. Dhara and J. Dutta, Optimality Conditions in Convex Optimization, A 
Finite-Dimensional View, CRC Press, 2012. 

[5] I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974) 
324-353. 

[6] C. Gutierrez, B. Jimenez and V. Novo, E-Pareto optimality conditions for 
convex multiobjective programming via max function, Numer. Funct. Anal. 
Optim. 27 (2006), 57-70. 

[7] J.C. Liu, K. Yokoyama, E-Optimality and duality for multiobjective frac­
tional programming, Comput. Math. Appl. 37 (8) (1999), 119-128. 

[8] B. S. Mordukhovich, Variational Analysis and Applications, Springer 
Monographs in Mathematics, (2018) 

[9] S. Nobakhtian, Optimality and duality for nonsmooth multiobjective frac­
tional programming with mixed constraints, J. Global Optim. 41 (2008) 
103-115. 

[10] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 
NJ, (1970) 




