TITLE：

On \＄tilde\｛D\}\$-separable polynomials in skew polynomial rings of derivation type （Algebraic system，Logic，Language and Related Areas in Computer Sciences II）

AUTHOR（S）：

YAMANAKA，SATOSHI

CITATION：
 YAMANAKA，SATOSHI．On \＄tilde\｛D\}\$-separable polynomials in skew polynomial rings of derivation type (Algebraic system，Logic，Language and Related Areas in Computer Sciences II）．数理解析研究所講究録 2021，2188：163－169

ISSUE DATE：

2021－07
URL：
http：／／hdl．handle．net／2433／265631
RIGHT：

On \tilde{D}-separable polynomials in skew polynomial rings of derivation type

SATOSHI YAMANAKA
Department of Integrated Science and Technology
National Institute of Technology, Tsuyama College
yamanaka@tsuyama.kosen-ac.jp

Abstract

The notion of $(\tilde{\rho}, \tilde{D})$-separable polynomials in skew polynomial rings was introduced by S. Ikehata, and X. Lou gave a characterization of $\tilde{\rho}$-separable polynomials in skew polynomial rings of automorphism type. In this paper, we shall give a new characterization of \tilde{D}-separable polynomials in skew polynomial rings of derivation type.

1 Introduction and Preliminaries

Let A / B be a ring extension with common identity. A / B is said to be separable if the A - A-homomorphism of $A \otimes_{B} A$ onto A defined by $z \otimes w \mapsto z w(z, w \in A)$ splits. It is well known that A / B is separable if and only if there exists $\sum_{i} z_{i} \otimes w_{i} \in\left(A \otimes_{B} A\right)^{A}$ such that $\sum_{i} z_{i} w_{i}=1$, where $\left(A \otimes_{B} A\right)^{A}=\left\{\theta \in A \otimes_{B} A \mid u \theta=\theta u(\forall u \in A)\right\}$.

Throughout this paper, let B be an associative ring with identity element 1, and D a derivation of B. By $B[X, D]$ we denote the skew polynomial ring in which the multiplication is given by $\alpha X=X \alpha+D(\alpha)$ for any $\alpha \in B$. Moreover, by $B[X ; D]_{(0)}$, we denote the set of all monic polynomials f in $B[X ; D]$ such that $f B[X ; D]=B[X ; D] f$. From now on, let $f=\sum_{i=0}^{m} X^{i} a_{i} \in B[X ; D]_{(0)}(m \geq$ $\left.1, a_{m}=1\right), A=B[X ; D] / f B[X ; D]$, and $x=X+f B[X ; D]$. As was shown in [3, Lemma 1.6], we see that f is in $B[X ; D]_{(0)}$ iff $a_{i} \in B^{D}(0 \leq i \leq m-1)$ and

$$
\begin{equation*}
a_{i} \alpha=\sum_{j=i}^{m}\binom{j}{i} D^{j-i}(\alpha) a_{j} \quad(\forall \alpha \in B, 0 \leq i \leq m-1) . \tag{1.1}
\end{equation*}
$$

Since $f \in B^{D}[X]$, there is a derivation \tilde{D} of A which is naturally induced by D (that is, \tilde{D} is defined by $\left.\tilde{D}\left(\sum_{j=0}^{m-1} x^{j} c_{j}\right)=\sum_{j=0}^{m-1} x^{j} D\left(c_{j}\right) \quad\left(c_{j} \in B\right)\right)$. Now we consider the following A - A-homomorphisms:

$$
\left\{\begin{array}{l}
\mu: A \otimes_{B} A \rightarrow A, \quad \mu(z \otimes w)=z w \\
\xi: A \otimes_{B} A \rightarrow A \otimes_{B} A, \quad \xi(z \otimes w)=\tilde{D}(z) \otimes \tilde{\rho}(w)+z \otimes \tilde{D}(w) \quad(z, w \in A)
\end{array}\right.
$$

We say that f is a separable polynomial in $B[X ; D]$ if A is a separable extension of B, namely, there exists an A - A-homomorphism $\nu: A \rightarrow A \otimes_{B} A$ such that $\mu \nu=1_{A}$ (the identity map of A). Moreover, f is called a \tilde{D}-separable polynomial in $B[X ; D]$
if there exists an A - A-homomorphism $\nu: A \rightarrow A \otimes_{B} A$ such that $\mu \nu=1_{A}$ and $\xi \nu=\nu \tilde{D}$. The notion of \tilde{D}-separable polynomials was introduced by S. Ikehata (cf. [3]). By [7, Theorem 2.1] and [3, Theorem 2.1], the following lemma is already known.

Lemma 1.1. Let $f=\sum_{i=0}^{m} X^{i} a_{i}\left(m \geq 1, a_{m}=1\right)$ be in $B[X ; D]_{(0)}$. The following are equivalent.
(1) f is \tilde{D}-separable in $B[X ; D]$.
(2) f is separable in $C\left(B^{D}\right)[X]$, where $C\left(B^{D}\right)$ is the center of $B^{D}=\{b \in B \mid D(b)=$ $0\}$.
(3) $\delta(f)$ is invertible in $C\left(B^{D}\right)$, where $\delta(f)$ is the discriminant of f.

In this paper, we shall characterize \tilde{D}-separable polynomials in $B[X ; D]$. In section 2 , we define a D-matrix over B, and we shall mention briefly on it. In section 3 , we shall give a new characterization of \tilde{D}-separable polynomial by making use of the trace map. Moreover, we shall show the "distance" between separability and \tilde{D}-separability.

$2 D$-matrix

In this section, let $B^{D}=\{b \in B \mid D(b)=0\}$, and $C\left(B^{D}\right)$ the center of B^{D}. For any $b \in B, I_{b}$ will represent the inner derivation effected by b (i.e. $I_{b}(\alpha)=\alpha b-b \alpha$ for any $\alpha \in B$). In [12], X. Lou defined the ρ-matrix, and he characterized $\tilde{\rho}$-separable polynomials in $B[X ; \rho]$ by making use of it. In constant, we shall define the D-matrix as follows:

Definition 2.1. (1) An element b in B is called a D-element if $I_{b}(B) \subset D(B)$ and $B^{D} \subset \operatorname{Ker} I_{b}$, where $\operatorname{Ker} I_{b}$ is the kernel of I_{b}.
(2) A matrix P over B is called a D-matrix if every entry of P is a D-element.

Remark 1. In Definition 2.1 (1), if a D-element b is in B^{D} then the condition $B^{D} \subset$ Ker I_{b} implies that $b \in C\left(B^{D}\right)$.

Lemma 2.2. Let b and c be D-elements in B.
(1) $b+c$ is also $a D$-element.
(2) If either b or c is in B^{D}, then bc is also a D-element.
(3) If $b \in B^{D}$ and b is invertible in B, then b^{-1} is also a D-element.

Proof. Let α and β be arbitrary elements in B and B^{D}, respectively. Assume that b and c are D-elements. Then there exist $b^{\prime}, c^{\prime} \in B$ such that

$$
\begin{equation*}
I_{b}(\alpha)=\alpha b-b \alpha=D\left(b^{\prime}\right), \quad I_{c}(\alpha)=\alpha c-c \alpha=D\left(c^{\prime}\right) \tag{2.1}
\end{equation*}
$$

Moreover, we see that $\beta b=b \beta$ and $\beta c=c \beta$.
(1) Since the equation (2.1), we have $I_{b+c}(\alpha)=\alpha(b+c)-(b+c) \alpha=(\alpha b-b \alpha)+$ $(\alpha c-c \alpha)=D\left(b^{\prime}\right)+D\left(c^{\prime}\right)=D\left(b^{\prime}+c^{\prime}\right)$. Therefore $I_{b+c}(B) \subset D(B)$. It is obvious that $\beta(b+c)-(b+c) \beta=0$, and hence $B^{D} \subset \operatorname{Ker} I_{b+c}$.
(2) Assume that b is in B^{D}. Note that $b c=c b$ and $I_{b}(\alpha c)=D\left(b^{\prime \prime}\right)$ for some $b^{\prime \prime} \in B$. So it follows from the equation (2.1) that $I_{b c}(\alpha)=\alpha b c-b c \alpha=\alpha c b-b \alpha c+$ $b \alpha c-b c \alpha=I_{b}(\alpha c)+b I_{c}(\alpha)=D\left(b^{\prime \prime}\right)+b D\left(c^{\prime}\right)=D\left(b^{\prime \prime}+b c^{\prime}\right)$. Thus $I_{b c}(B) \subset D(B)$. Clearly, we see that $\beta b c-b c \beta=0$. Therefore $B^{D} \subset \operatorname{Ker} I_{b c}$.
(3) Assume that $b \in B^{D}$ and b is invertible. Since $b b^{-1}=1$ and $b \in B^{D}$, we obtain

$$
0=D(1)=D\left(b b^{-1}\right)=b D\left(b^{-1}\right) .
$$

This implies that $b^{-1} \in B^{D}$. Since the equation (2.1), we have $b^{-1} \alpha-\alpha b^{-1}=$ $b^{-1} D\left(b^{\prime}\right) b^{-1}=D\left(b^{-1} b^{\prime} b^{-1}\right)$. Hence $I_{b^{-1}}(B) \subset D(B)$. In addition, $\beta b=b \beta$ means that $\beta b^{-1}=b^{-1} \beta$. Thus $B^{D} \subset \operatorname{Ker} I_{b^{-1}}$.

Lemma 2.3. Let P be a D-matrix over B^{D}.
(1) $\operatorname{det}(P)$ is a D-element in $C\left(B^{D}\right)$.
(2) If P is an invertible matrix, then the inverse matrix of P is also a D-matrix.
(3) Assume that $P=P^{T}$ (the transpose of P). If P has a left (or right) inverse matrix which is a D-matrix, then $\operatorname{det}(P)$ is invertible in $C\left(B^{D}\right)$.

Proof. Let $P=\left[p_{i j}\right]_{n \times n}$ be a D-matrix over B^{D} for some positive integer n. In particular, P is a matrix over $C\left(B^{D}\right)$ by Remark 1 .
(1) It is obvious by Lemma 2.2 (1) (2).
(2) Assume that P is an invertible matrix, and P^{*} be the cofactor matrix of P. It follow from Lemma $2.2(1)(2)$ that every entry of P^{*} is a D-element (i.e. P^{*} is a D-matrix). By Lemma 2.2 (3) and the assertion (1), moreover, $\operatorname{det}(P)^{-1}$ is also a D-element. Therefore $P^{-1}=\operatorname{det}(P)^{-1} P^{*}$ is a D-matrix.
(3) Assume that $P=P^{T}$ and there exists a D-matrix $Q=\left[q_{i j}\right]_{n \times n}$ such that $Q P=E$ (the identity matrix). Since $q_{i j}$ is a D-element and $p_{i j} \in B^{D}$, we have $q_{k \ell} p_{i j}=p_{i j} q_{k \ell}(1 \leq i, j, k, \ell \leq n)$. Then we see that $Q P=E$ iff $\sum_{j=1}^{n} q_{i j} p_{j k}=\delta_{i k}$ (the Kronecker's delta) iff $\sum_{j=1}^{n} p_{j k} q_{i j}=\delta_{i k}$ iff $P^{T} Q^{T}=E$ iff $P Q^{T}=E$. Hence $Q=Q^{T}$ is the inverse matrix of P. We put here $D(Q)=\left[D\left(q_{i j}\right)\right]_{n \times n}$. Since $p_{i j} \in B^{D}$, we obtain

$$
0=D\left(\delta_{i k}\right)=D\left(\sum_{j=1}^{n} q_{i j} p_{j k}\right)=\sum_{j=1}^{n} D\left(q_{i j} p_{j k}\right)=\sum_{j=1}^{n} D\left(q_{i j}\right) p_{j k} .
$$

This implies that $D(Q) P=O$ (the zero matrix), and hence $D(Q)=O$ (i.e. Q is a matrix over B^{D}. Therefore Q is a matrix over $C\left(B^{D}\right)$ by Remark 1 . Since P and Q are matrices over $C\left(B^{D}\right)$ such that $P Q=Q P=E$, we see that $\operatorname{det}(P)$ is invertible in $C\left(B^{D}\right)$.

$3 \tilde{D}$-separability in $B[X ; D]$

The conventions and notations employed in the preceding section will be used in this section. We shall use the following conventions:

- $A^{\tilde{D}}=\{z \in A \mid \tilde{D}(z)=0\}$.
- $C\left(A^{\tilde{D}}\right)$ is the center of $A^{\tilde{D}}$.
- $\pi_{i}: A \rightarrow A$ is the projection map defined by

$$
\pi_{i}\left(\sum_{j=0}^{m-1} x^{j} c_{j}\right)=c_{i} \quad\left(c_{i} \in B, 0 \leq i \leq m-1\right)
$$

- $\tau: A \rightarrow B$ is the trace map defined by

$$
\tau(z)=\sum_{i=0}^{m-1} \pi_{i}\left(x^{i} z\right) \quad(z \in A)
$$

- $T_{f}=\left[\tau\left(x^{i} x^{j}\right)\right]_{m \times m}$, where $m=\operatorname{deg} f$ (i.e. T_{f} is a $m \times m$ symmetric matrix whose $(i+1, j+1)$ element is $\left.\tau\left(x^{i} x^{j}\right)\right)$.
- $\delta(f)=\operatorname{det}\left(T_{f}\right)$ (the discriminant of f).

Remark 2. (1) Clearly, $\pi_{i}(0 \leq i \leq m-1)$ and τ are left $C\left(B^{D}\right)$ - right B homomorphisms.
(2) It is easy to see that

$$
C\left(A^{\tilde{D}}\right)=\left\{C\left(B^{D}\right)[X]+f B[X ; D]\right\} / f\left[B[X ; D] \cong C\left(B^{D}\right)[X] / f C\left(B^{D}\right)[X]\right.
$$

First we shall show the following.
Lemma 3.1. (1) Every $a_{i}(0 \leq i \leq m-1)$ is a D-element in $C\left(B^{D}\right)$.
(2) $T_{f}=\left[\tau\left(x^{i} x^{j}\right)\right]_{m \times m}$ is a D-matrix over $C\left(B^{D}\right)$.

Proof. (1) Since the equation (1.1), we have

$$
\begin{aligned}
a_{i} \alpha & =\alpha a_{i}+\sum_{j=i+1}^{m}\binom{j}{i} D^{j-i}(\alpha) a_{j} \\
& =\alpha a_{i}+D\left(\sum_{j=i+1}^{m}\binom{j}{i} D^{j-i-1}(\alpha) a_{j}\right) .
\end{aligned}
$$

This implies that $I_{a_{i}}(B) \subset D(B)$ and $B^{D} \subset \operatorname{Ker} I_{a_{i}}(0 \leq i \leq m-1)$. Hence every a_{i} is a D-element.
(2) It is easy to see that every $\tau\left(x^{i} x^{j}\right)(0 \leq i, j \leq m-1)$ is generated by a_{k} $(0 \leq k \leq m-1)$. Then, by Lemma 2.2 and the assertion (1), every $\tau\left(x^{i} x^{j}\right)$ is a D-element. Therefore T_{f} is a D-matrix.

So we shall show the following lemma which gives a new equivalent condition of \tilde{D}-separability.

Lemma 3.2. The following are equivalent.
(1) f is \tilde{D}-separable in $B[X ; D]$.
(2) T_{f} has a left (or right) inverse matrix which is a D-matrix.

Proof. $(1) \Longrightarrow(2)$ Let f be \tilde{D}-separable in $B[X ; D]$. So, by Lemma $1.1, \delta(f)=$ $\operatorname{det}\left(T_{f}\right)$ is invertible in $C\left(B^{D}\right)$, and hence T_{f} has an inverse matrix T_{f}^{-1}. Noting that T_{f} is a D-matrix, T_{f}^{-1} is also a D-matrix by Lemma 2.3 (2).
$(2) \Longrightarrow(1)$ Assume that T_{f} has a left inverse matrix which is a D-matrix. Then, by Lemma $2.3(3), \delta(f)=\operatorname{det}\left(T_{f}\right)$ is invertible in $C\left(B^{D}\right)$. Thus f is \tilde{D}-separable by Lemma 1.1.

The following theorem at some extent shows the "distance" between separability and \tilde{D}-separability in $B[X ; D]$.

Theorem 3.3. The following are equivalent.
(1) f is \tilde{D}-separable in $B[X ; D]$.
(2) f is separable in $B[X ; D]$ with a separable set $\left\{z_{i}, w_{i}\right\}$ of A / B such that $\sum_{i} z_{i} \tau\left(w_{i}\right)=1$.

Proof. (1) $\Longrightarrow(2)$ Let f be \tilde{D}-separable in $B[X ; D]$. So, by Lemma $1.1, f$ is separable in $C\left(B^{D}\right)[X]$. As was shown in [1, chapter III, Theorem 2.1], there exists separable system $\left\{z_{i}, w_{i}\right\}$ of $C\left(A^{\tilde{D}}\right) / C\left(B^{D}\right)$ such that $\sum_{i} z_{i} \tau\left(w_{i} u\right)=u$ for any $u \in C\left(A^{\tilde{D}}\right)$. So we can see that $\left\{z_{i}, w_{i}\right\}$ is still a separable system of A / B, and $\sum_{i} z_{i} \tau\left(w_{i}\right)=1$.
$(2) \Longrightarrow(1)$ Assume that f is separable in $B[X ; D]$ with a separable set $\left\{z_{i}, w_{i}\right\}$ of A / B such that $\sum_{i} z_{i} \tau\left(w_{i}\right)=1$. We put here $z_{i}=\sum_{j=0}^{m-1} x^{j} c_{i j}$ and $w_{i}=\sum_{k=0}^{m-1} d_{i k} x^{k}$. We obtain then

$$
\begin{aligned}
\sum_{i} z_{i} \otimes w_{i} & =\sum_{i}\left(\sum_{j=0}^{m-1} x^{j} c_{i j} \otimes \sum_{k=0}^{m-1} d_{i k} x^{k}\right) \\
& =\sum_{j=0}^{m-1} x^{j} \otimes\left(\sum_{k=0}^{m-1} \sum_{i} c_{i j} d_{i k} x^{k}\right) .
\end{aligned}
$$

We set $e_{j k}=\sum_{i} c_{i j} d_{i k}$ and $u_{j}=\sum_{k=0}^{m-1} e_{j k} x^{k}$. Clearly, $\left\{x^{j}, u_{j}\right\}$ is a still separable system of A / B such that $\sum_{j=0}^{m-1} x^{j} \tau\left(u_{j}\right)=1$. Let $\widehat{\tau}$ be a map from $A \otimes_{B} A$ to A defined by $\widehat{\tau}\left(r_{1} \otimes r_{2}\right)=r_{1} \tau\left(r_{2}\right)\left(r_{1}, r_{2} \in A\right)$. So we have

$$
\begin{aligned}
x^{\ell} & =x^{\ell} \sum_{j=0}^{m-1} x^{j} \tau\left(u_{j}\right) \\
& =\widehat{\tau}\left(x^{\ell} \sum_{j=0}^{m-1} x^{j} \otimes u_{j}\right) \\
& =\widehat{\tau}\left(\sum_{j=0}^{m-1} x^{j} \otimes u_{j} x^{\ell}\right) \\
& =\sum_{j=0}^{m-1} x^{j} \tau\left(\sum_{k=0}^{m-1} e_{j k} x^{k+\ell}\right) \\
& =\sum_{j=0}^{m-1} x^{j}\left(\sum_{k=0}^{m-1} e_{j k} \tau\left(x^{k+\ell}\right)\right)
\end{aligned}
$$

This implies that $\sum_{k=0}^{m-1} e_{j k} \tau\left(x^{k+\ell}\right)=\delta_{j \ell}$. By setting $P=\left[e_{j+1, k+1}\right]_{m \times m}$, we have $P T_{f}=E$. Noting that $\alpha \sum_{j=0}^{m-1} x^{j} \otimes u_{j}=\sum_{j=0}^{m-1} x^{j} \otimes u_{j} \alpha$ for any $\alpha \in B$, we obtain $\sum_{j=\ell}^{m-1}\binom{j}{\ell} D^{j-\ell}(\alpha) u_{j}=u_{j} \alpha$. This implies that $e_{j k}$ is a D-element, and hence P is a D-matrix. Therefore f is \tilde{D}-separable by Lemma 3.2.

References

[1] F.DeMeyer, Separable algebra over commutative rings, Lecture Notes in Mathematics, Vol.181, Springer-Verlag, Berlin-Heidelberg-New York.
[2] K. Hirata and K. Sugano, On semisimple extensions and separable extensions over noncommutative rings, J. Math. Soc. Japan 18 (1966), 360-373.
[3] S. Ikehata, On separable polynomials and Frobenius polynomials in skew polynomial rings, Math. J. Okayama Univ., 22 1980, 115-129.
[4] S. Ikehata, Azumaya algebras and skew polynomial rings, Math, J. Okayama Univ., 23 1981, 19-32.
[5] S. Ikehata, A note on separable polynomials in skew polynomial rings of derivation type, Math. J. Okayama Univ., 22 1980, 59-60.
[6] Y. Miyashita, On a skew polynomial ring, J. Math. Soc. Japan, 31 1979, no. 2, 317-330.
[7] T.Nagahara, On separable polynomials over a commutative rings II, Math. J. Okayama Univ., 15, (1972), 149-162.
[8] T. Nagahara, A note on separable polynomials in skew polynomial rings of atutomorphism type, Math. J. Okayama Univ., 22 1980, 73-76.
[9] K. Sugano, Separable extensions and Frobenius extensions, Osaka J. Math. 7 (1970), 29-40.
[10] S. Yamanaka and S. Ikehata, An alternative proof of Miyasita's theorem in a skew polynomial rings, Int. J. Algebra, 21 2012, 1011-1023
[11] S.Yamanaka, An alternative proof of Miyasita's theorem in a skew polynomial rings $I I$, Gulf J. Math., 5 (2017), 9-17.
[12] X.Lou, On $\tilde{\rho}$-separability in skew polynomial rings, Port. Math., Vol.51, Frac. 2 (1994), 235-241.

Advanced Science Course, Department of Integrated Science and Technology, National Institute of Technology, Tsuyama College. 624-1 Numa, Tsuyama city, Okayama, 708-8509, Japan

E-mail address : yamanaka@tsuyama.kosen-ac.jp

