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On Commutativity of Extractable Codes 

Yoshiyuki Kunimochi 
Faculty of Informatics, 

Shizuoka Institute of Science and Technology 

abstract Deletion and insertion are interesting and common operations which often appear 
in string rewriting systems. Extractable submonoids and insertable submonoids of free monoids 
generated by finite alphabets allow to perform deletion operations and insertion operations, re­
spectively. A submonoid N C A* is called extractable (resp. insertable) if x, uxv E N implies 
uv E N(resp. x, uv E N implies uxv E N). The code C is called extractable (resp. insertable) 
if the submonoid C* is extractable (resp. insertable)[7]. Both extractable and insertable codes 
are identical to well-known strong codes, which is deeply related to the identities of syntactic 
monoids of languages. This paper deals with the commutativity of extractable codes. 

After the preliminaries in the first section, we summarize the fundamental properties of codes 
above in the second section. In the last section, we deal with commutative extractable codes. At 
first the language operators S and Q, which make languages commutative, are introduced. We 
show that a commutative extractable code is finite. 

1 Preliminaries 

Let A be a finite nonempty set of letters, called an alphabet and let A* be the free monoid 
generated by A under the operation of catenation with the identity called the empty word, de­
noted by 1. We call an element of A* a word over A. The free semigroup A* \ { 1} generated 
by A is denoted by A+. The catenation of two words x and y is denoted by xy. The length I w I 
of a word w = a1 a2 ... an with a; E A is the number n of occurrences of letters in w. Clearly, 
111 = 0. 

A word u E A* is a preftx(resp. suffix) of a word w E A* if there is a word x E A* such 
that w = ux(resp. w = xu). A word u E A* is a factor of a word w E A* if there exist words 
x, y E A* such that w = xuy. Then a prefix (a suffix or a factor) u of w is called proper if 
w -=I- u. 

A subset of A* is called a language over A. A nonempty language C which is the set of free 
generators of some submonoid M of A* is called a code over A. Then C is called the base of M 
and coincides with the minimal set ( M \ 1) \ ( M \ 1) 2 of generators of M. A non empty language 
C is called a prefix (or suffix) code if u, uv E C (resp.u, vu E C) implies v = 1. C is called a 
bijix code if C is both a prefix code and a suffix code. The language An = { w E A* 11 w I = n} 
with n ~ 1 is called a full uniform code over A. A nonempty subset of An is called a uniform 
code over A. The symbols C and <;; are used for a subset and a proper subset respectively. 

A word x E A+ is primitive if x = rn for some r E A+ implies n = 1, where rn is the n-th 
n 

power of r, that is,rn = ~-

PROPOSITION 1.1 ([1] p.7) Each nonempty word w is a power w = rn of a unique primi­
tive word r. 
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Then r and n is called the root and the exponent of w, respectively. We sometimes write 
r=,/w. 

Two words u, v are called conjugate, denoted by u = v if there exist words x, y such that 
u = xy, v = yx. Then= is an equivalence relation and we call the =-class of w the conjugacy 
class of wand denote by cl(w). A language Lis called reflexive if Lis a union of conjugacy 
classes, i.e., uv E L {::::::::} vu E L. 

LEMMA 1.1 ([1] p.7) Two nonempty conjugate words have the same exponent and their 
roots are conjugate. 

LEMMA 1.2 ([4] p.7) Let u,v E A+. If uv 
primitive word rand some positive integers i, j. 

vu holds, then u ri for some 

LEMMA 1.3 ([4] p.6) Let u, v, w E A+. If uw = wv holds, then u = xy, w = (xy)kx, v = 
yx for some x, y E A* and some nonnegative integer k. 

Let N be a submonoid of a monoid M. N is right unitary (in M) if u, uv E N implies v E N. 
Left unitary is defined in a symmetric way. The submonoid N of M is biunitary if it is both left 
and right unitary. Especially when M = A*, a submonoid N of A* is right unitary (resp. left 
unitary, biunitary) if and only if the minimal set N0 = (N \ 1) \ (N \ 1)2 of generators of N, 
namely the base of N, is a prefix code (resp. a suffix code, a bifix code) ([1] p.46). 

Let L be a subset of a monoid M, the congruence PL = { ( u, v) I for all x, y E M, xuy E 

L {::::::::} xvy E L} on Mis called the principal congruence(or syntactic congruence) of L. We 
write u = v (PL) instead of (u, v) E PL. The monoid M/ PL is called the syntactic monoid of 
L, denoted by Syn( L). The morphism CT£ of M onto Syn( L) is called the syntactic morphism of 
L. In particular when M =A*, a language L c A* is regular if and only if Syn(L) is finite([l] 
p.46). 

2 Extractable Codes and Insertable Codes 

In this section we introduce insertable codes and extractable codes, which are extensions of 
well-known strong codes. 

DEFINITION 2.1 [3] A nonempty code CC A+ is called a strong code if 

(i) x, Y1Y2 E C ====} Y1XY2 E c+ 
(ii) x, Y1XY2 E c+ ====} Y1Y2 E C* 

Here extractable codes and insertable codes are defined below, as well as strong codes. 

DEFINITION 2.2 Let C be a nonempty code. Then, C is called an insertable ( or extractable) 
code if C satisfies the condition (i)( or (ii)). 

A strong code Care described as the base of the identity h = { w E A* I w = l(PL)} of 
the syntactic monoids Syn(L) of some language L. Moreover if C is finite, it is known that its 
structure is quite simple, i.e., it is a full uniform code. 
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PROPOSITION 2.1 [3] Let L c A*. Then C = (h \ 1) \ (h \ 1)2 is a strong code if it is not 
empty. Conversely, if C C A+ is a strong code, then there exists a language L C A* such that 
h=C*. 

PROPOSITION 2.2 [3] Let C be a finite strong code over A and B = alph( C), where 
alph( C) = { a E A I xay E C}. Then C = En for some positive integer n. 

EXAMPLE 2.1 ( 1) A singleton { w} with w E {a}+ is a strong code. { w} with w E 
A+ \ UaEA {a}+ is not a strong code but it is an extractable code. Therefore there exist fi­
nite extractable codes which are not full uniform codes. 
( 2) The conjugacy class cl ( ab) of ab is an extractable code but not a strong code. 
(3) { anbn In is an integer} is an (context-free) extractable code but not a strong code. 
( 4) a*b and ba* are (regular) insertable codes but not strong codes. 

Note that when C satisfies the condition (ii), we can easily check that the submonoid C* is 
extractable. If C* is extractable, then C* is biunitary(and thus free). Indeed, uv = l uv, u E C* 
implies v = lv E C* and uv = uvl, v E C* implies u = lu E C*. Then the minimal set 
C = ( C* \ 1) \ ( C* \ 1) 2 of generators of C* becomes a bifix code. Therefore both strong codes 
and extractable codes are necessarily bifix codes. Conversely If C is an extractable code, then 
M = C* forms an extractable submonoid of A*. 

Remark that an insertable submonoid M of A*, the minimal set of generators of M is not 
necessarily a code. For example, If C = { a2 , a3}, then the submonoid C* is insertable but its 
minimal set C of generators are not necessarily a code. 

Insertable Codes 

We show that if an insertable code C over A is finite, then C is necessarily a full uniform 
code over some nonempty alphabet B C A, as well as in case of a strong code. First of all, for 
a language L C A*, ins ( L) is defined by 

ins(L) = {x E A*l\fu EL, u = u 1u 2 ::::} u 1xu2 EL}. 

A language L such that L C ins(L) is called ins-closed. 

PROPOSITION 2.3 [5] Let L CA* be a finitely generated ins-closed language and K be its 
minimal set of generators. Then: 
(i) K contains a finite maximal prefix (suffix) code alph(L); 
(ii) K is a code over alph( L) then K = alph( Lt for some n 2: 1; 

COROLLARY 2.1 If C is a finite insertable code then C = alph( Ct for some n 2: 1. 

3 Stack and Queue Operations 

In this section, we introduce the language operators S and Q and investigate their properties. 
In this section, we denote the empty word by E instead of 1, the words over an alphabet A of 
shorterlengththann, {w EA* I lwl-:::: n} by A:s;n_ 
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DEFINITION 3.1 Let w = a0a1 • • • an-l (ai E A) be a word of length n over A. We denote 
an element (i, u) E Q = {O, 1, • • • , n} x A::c:;n by [i, u] and define the finite automaton M! = 

(Q, A, o~, [O, El, {[n, El}), where 

(THRU) o~([i, v], ai) = [i + 1, v], 
(PUSH) o~([i, u], E) = [i + 1, aiu], 
(POP) o~([i, au], a) = [i, u], 

for O :S Vi < n, Vv E A::c:;n and Vu E A<n. The stack operation S : A* -+ 2A* is defined by the 
language accepted by the finite automaton M! 

S(w) ~ {u E A*lo~([O,E],u) = [n,El} 

DEFINITION 3.2 Let w = a0a1 • • • an-l ( ai E A) be a word of length n over A. We denote 
a state (i, u) E Q = {O, 1, • • • , n} x A::c:;n by [i, u] and define the finite automaton M;j} 
(Q, A, o3, [O, El, {[n, El}), where 

(THRU) o3([i, v], ai) = [i + 1, v], 
(PUSH) o3([i, u], E) = [i + 1, uai], 
(POP) o3([i, au], a) = [i, u], 

for O :S Vi < n, Vv E A::c:;n and Vu E A<n. The queue operation Q : A* -+ 2A· is defined by 
the language accepted by the FA M;;} 

EXAMPLE 3.1 Let w = abcd, A= {a, b, c, d}, n = lwl = 4 and Q = {O, 1, 2, 3, 4} x A 9 . 

The transition of the finite automaton M! for dcab is depicted in Figure. I. Therefore cdba E 

S(w). 

o! [O, E] ---.:..+ [1, a] ---.:..+ [2, ba] ----=-+ [3, ba] ~ [4, ba] ~ [4, a] ~ [4, E] 

The transition of the finite automaton M;;} for cdab is depicted in Figure 2. Therefore cdab E 

Q(w). 

o~ [0, E] ---.:..+ [1, a] ---.:..+ [2, ab] ----=-+ [3, ab] ~ [4, ab] ~ [4, b] ~ [4, E] 

The operators S and Q are extended from words to languages in the natural way. The powers 
of these operators are also defined. And then we give some examples. 

DEFINITION 3.3 For a language Lover A, S(L) and Q(L) are defined by 

S(L) ~ UwEL S(w), Q(L) ~f UwEL Q(w). 

For a language L over A, the powers of the operators are defined by 
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PUSH PUSH 
cdba cdba cdba 

OUT IN OUT IN OUT IN 

~ 
====} 

~ 
====} 

~ 
THRU POP 

cd cdb cdba 
OUT IN OUT IN OUT 

====} 

~ 
====} 

~ 
====} 

Figure 1. A transition of FA M~ for w = cdba 

S0 (L) ~ L, 

sn(L) ~ S(sn-1(L)), 

soo(L) ~ Un20 sn(L), 

Qo(L) d:J L, 

Qn(L) ~ Q(Qn-l(L)) for n > 0. 

Qoo(L) ~ LJn20 Qn(L). 

THRU 
C dba 

OUT IN 

====} 

~ 
POP 

IN 

~ 

EXAMPLE 3.2 The followings are examples of the operators S and Q. 
(1) For any word w over A and any n ~ 0, sn(w) (resp.Qn(w)) is finite and a uniform code 

(each word is oflength lwl). 

(2) For any word w over a binary alphabet A = {0, 1}, S(w) = Q(w) = {ullula = 

lwlafora E A}, which is a uniform code and a commutative extractable code (but not nec­
essarily a strong code). 

PUSH PUSH THRU 
cdab cdab cdab C dab 

OUT IN 
====} 

OUT IN 
====} 

OUT IN 
====} 

OUT IN 

I I I I a I I I a I b I lalbl I I 

THRU POP POP 
cd ab cda b cdab 

OUT IN OUT IN OUT IN 

lalbl I I 
====} 

I b I I I I 
====} 

I I I 

Figure 2. A transition of FA M;} for w = cdab 
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(3) For the conjugacy class cl(w) of a word w over a binary alphabet, S(cl(w)) = S(w) = 

Q(cl(w)) = Q(w) 

(4) For the word 012 over a ternary alphabet {O, 1, 2}, S(012) = {012, 021, 102,120,210} 
and 201 (/. S(012). sn(012) = {012, 021, 102,120,210,201} for n 2". 2 or n = oo. 

( 5) Let L = ( 01) *. S ( L) is not regular but context-free. So the class of regular language is 
not closed under S. On the other hand, maybe Q(L) is generally context-sensitive. 

PROPOSITION 3.1 If a language L is regular, then S ( L) is context-free. 

Sketch of Proof) Let M be a finite automaton M = ( Q, A, b, q0 , F) without E-move. We can 
construct a PDA M' = (Q, A, AU {Z0}, b', q0 , Z0 , F), where A= {a I a EA} is a copy of A 
and the each rule in transition b' is one of the following forms: 

(q,a,X)-t (p,X),ifb(q,a) =p. 
(q, E, X) -t (p, aX) if b(q, a)= p. (PUSH) 
(q,a,a) -t (q,E) for'v'q E Q,'v'a EA. (POP) 
(q, E, Z0) -t (q, E) for 'v'q E F. (POP) 

Then S(L) = L(M') with empty-stack acceptance. 1 

PROPOSITION 3.2 Let w be a word over an alphabet A with IAI = m > 1. If n 2". 2(m -
1) - 1 or n = oo, sn ( w) = Qn ( w) is the set of all permutations of w and then is commutative. 

COROLLARY 3.1 Let L be a language over an alphabet A with IAI = m > 1. If n > 
2(m - 1) - 1 or n = oo, 

Sn(L) = Qn(L) = <I>- 1 <I>(L) 

is commutative, where <I> is the Parikh mapping. 

PROPOSITION 3.3 The language L = (012)+ is regular. S00 (L) = Q00 (L) = <1>- 1<I>(L) is 
not context-free. 

Proof) <1>-1<I>(L) n O*l *2* = {Oili2i Ii > O} is not context-free but context-sensitive. Since 
CFL n REG c:::: CFL, S00 (L) is not context-free. 

DEFINITION 3.4 Let m be a positive integer and N = {O, 1, 2, • • • }. Two elements a = 

(a1 , a2 , • • • , am) and b = (b1 , b2 , • • • , bm) in Nm are said to be incomparable if there does not 
exist c E Nm such that a + c = b or b + c = a. 

If nonempty subset H of Nm is said to be incomparable if any distinct two elements of H are 
incomparable. 

Fact An incompareble subset H of Nm is finite. 

PROPOSITION 3.4 A language Cover an alphabet A with IAI = m is a commutative ex­
tractable code if C = <1>- 1(H) for some incomparable subset 0 =/-Hof Nm, where <1>- 1 is the 
inverse image of Parikh mapping <I>. 

THEOREM 3.1 A commutative extractable code is finite, 

COROLLARY 3.2 If C is a commutative extractable code over A, There is some finite lan­
guage K = {w1 , w2 , • • • , wk} c A* such that C = S00 (K) = <I>- 1 <I>(K) 
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4 Conclusion 

We introduce the language operators Sand Q, which make languages commutative. We show 
that a commutative extractable code is finite. There are the followings questions: 

( 1) If a language L is regular, then is Q ( L) context-free or not ? 
(2) For words u and v in A* with <I> ( u) = <I> ( v), find the smallest integer n such that u E 

sn(v). Does this number n became a distance between u and v ? Does the similar question 
hold for Q? 
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