
RIGHT:

URL:

CITATION:

AUTHOR(S):

ISSUE DATE:

TITLE:

On Commutativity of Extractable
Codes (Algebraic system, Logic,
Language and Related Areas in
Computer Sciences II)

Kunimochi, Yoshiyuki

Kunimochi, Yoshiyuki. On Commutativity of Extractable Codes (Algebraic system, Logic, Language and Related Areas in
Computer Sciences II). 数理解析研究所講究録 2021, 2188: 22-28

2021-07

http://hdl.handle.net/2433/265611

22

On Commutativity of Extractable Codes

Yoshiyuki Kunimochi
Faculty of Informatics,

Shizuoka Institute of Science and Technology

abstract Deletion and insertion are interesting and common operations which often appear
in string rewriting systems. Extractable submonoids and insertable submonoids of free monoids
generated by finite alphabets allow to perform deletion operations and insertion operations, re­
spectively. A submonoid N C A* is called extractable (resp. insertable) if x, uxv E N implies
uv E N(resp. x, uv E N implies uxv E N). The code C is called extractable (resp. insertable)
if the submonoid C* is extractable (resp. insertable)[7]. Both extractable and insertable codes
are identical to well-known strong codes, which is deeply related to the identities of syntactic
monoids of languages. This paper deals with the commutativity of extractable codes.

After the preliminaries in the first section, we summarize the fundamental properties of codes
above in the second section. In the last section, we deal with commutative extractable codes. At
first the language operators S and Q, which make languages commutative, are introduced. We
show that a commutative extractable code is finite.

1 Preliminaries

Let A be a finite nonempty set of letters, called an alphabet and let A* be the free monoid
generated by A under the operation of catenation with the identity called the empty word, de­
noted by 1. We call an element of A* a word over A. The free semigroup A* \ { 1} generated
by A is denoted by A+. The catenation of two words x and y is denoted by xy. The length I w I
of a word w = a1 a2 ... an with a; E A is the number n of occurrences of letters in w. Clearly,
111 = 0.

A word u E A* is a preftx(resp. suffix) of a word w E A* if there is a word x E A* such
that w = ux(resp. w = xu). A word u E A* is a factor of a word w E A* if there exist words
x, y E A* such that w = xuy. Then a prefix (a suffix or a factor) u of w is called proper if
w -=I- u.

A subset of A* is called a language over A. A nonempty language C which is the set of free
generators of some submonoid M of A* is called a code over A. Then C is called the base of M
and coincides with the minimal set (M \ 1) \ (M \ 1) 2 of generators of M. A non empty language
C is called a prefix (or suffix) code if u, uv E C (resp.u, vu E C) implies v = 1. C is called a
bijix code if C is both a prefix code and a suffix code. The language An = { w E A* 11 w I = n}
with n ~ 1 is called a full uniform code over A. A nonempty subset of An is called a uniform
code over A. The symbols C and <;; are used for a subset and a proper subset respectively.

A word x E A+ is primitive if x = rn for some r E A+ implies n = 1, where rn is the n-th
n

power of r, that is,rn = ~-

PROPOSITION 1.1 ([1] p.7) Each nonempty word w is a power w = rn of a unique primi­
tive word r.

23

Then r and n is called the root and the exponent of w, respectively. We sometimes write
r=,/w.

Two words u, v are called conjugate, denoted by u = v if there exist words x, y such that
u = xy, v = yx. Then= is an equivalence relation and we call the =-class of w the conjugacy
class of wand denote by cl(w). A language Lis called reflexive if Lis a union of conjugacy
classes, i.e., uv E L {::::::::} vu E L.

LEMMA 1.1 ([1] p.7) Two nonempty conjugate words have the same exponent and their
roots are conjugate.

LEMMA 1.2 ([4] p.7) Let u,v E A+. If uv
primitive word rand some positive integers i, j.

vu holds, then u ri for some

LEMMA 1.3 ([4] p.6) Let u, v, w E A+. If uw = wv holds, then u = xy, w = (xy)kx, v =
yx for some x, y E A* and some nonnegative integer k.

Let N be a submonoid of a monoid M. N is right unitary (in M) if u, uv E N implies v E N.
Left unitary is defined in a symmetric way. The submonoid N of M is biunitary if it is both left
and right unitary. Especially when M = A*, a submonoid N of A* is right unitary (resp. left
unitary, biunitary) if and only if the minimal set N0 = (N \ 1) \ (N \ 1)2 of generators of N,
namely the base of N, is a prefix code (resp. a suffix code, a bifix code) ([1] p.46).

Let L be a subset of a monoid M, the congruence PL = { (u, v) I for all x, y E M, xuy E

L {::::::::} xvy E L} on Mis called the principal congruence(or syntactic congruence) of L. We
write u = v (PL) instead of (u, v) E PL. The monoid M/ PL is called the syntactic monoid of
L, denoted by Syn(L). The morphism CT£ of M onto Syn(L) is called the syntactic morphism of
L. In particular when M =A*, a language L c A* is regular if and only if Syn(L) is finite([l]
p.46).

2 Extractable Codes and Insertable Codes

In this section we introduce insertable codes and extractable codes, which are extensions of
well-known strong codes.

DEFINITION 2.1 [3] A nonempty code CC A+ is called a strong code if

(i) x, Y1Y2 E C ====} Y1XY2 E c+
(ii) x, Y1XY2 E c+ ====} Y1Y2 E C*

Here extractable codes and insertable codes are defined below, as well as strong codes.

DEFINITION 2.2 Let C be a nonempty code. Then, C is called an insertable (or extractable)
code if C satisfies the condition (i)(or (ii)).

A strong code Care described as the base of the identity h = { w E A* I w = l(PL)} of
the syntactic monoids Syn(L) of some language L. Moreover if C is finite, it is known that its
structure is quite simple, i.e., it is a full uniform code.

24

PROPOSITION 2.1 [3] Let L c A*. Then C = (h \ 1) \ (h \ 1)2 is a strong code if it is not
empty. Conversely, if C C A+ is a strong code, then there exists a language L C A* such that
h=C*.

PROPOSITION 2.2 [3] Let C be a finite strong code over A and B = alph(C), where
alph(C) = { a E A I xay E C}. Then C = En for some positive integer n.

EXAMPLE 2.1 (1) A singleton { w} with w E {a}+ is a strong code. { w} with w E
A+ \ UaEA {a}+ is not a strong code but it is an extractable code. Therefore there exist fi­
nite extractable codes which are not full uniform codes.
(2) The conjugacy class cl (ab) of ab is an extractable code but not a strong code.
(3) { anbn In is an integer} is an (context-free) extractable code but not a strong code.
(4) a*b and ba* are (regular) insertable codes but not strong codes.

Note that when C satisfies the condition (ii), we can easily check that the submonoid C* is
extractable. If C* is extractable, then C* is biunitary(and thus free). Indeed, uv = l uv, u E C*
implies v = lv E C* and uv = uvl, v E C* implies u = lu E C*. Then the minimal set
C = (C* \ 1) \ (C* \ 1) 2 of generators of C* becomes a bifix code. Therefore both strong codes
and extractable codes are necessarily bifix codes. Conversely If C is an extractable code, then
M = C* forms an extractable submonoid of A*.

Remark that an insertable submonoid M of A*, the minimal set of generators of M is not
necessarily a code. For example, If C = { a2 , a3}, then the submonoid C* is insertable but its
minimal set C of generators are not necessarily a code.

Insertable Codes

We show that if an insertable code C over A is finite, then C is necessarily a full uniform
code over some nonempty alphabet B C A, as well as in case of a strong code. First of all, for
a language L C A*, ins (L) is defined by

ins(L) = {x E A*l\fu EL, u = u 1u 2 ::::} u 1xu2 EL}.

A language L such that L C ins(L) is called ins-closed.

PROPOSITION 2.3 [5] Let L CA* be a finitely generated ins-closed language and K be its
minimal set of generators. Then:
(i) K contains a finite maximal prefix (suffix) code alph(L);
(ii) K is a code over alph(L) then K = alph(Lt for some n 2: 1;

COROLLARY 2.1 If C is a finite insertable code then C = alph(Ct for some n 2: 1.

3 Stack and Queue Operations

In this section, we introduce the language operators S and Q and investigate their properties.
In this section, we denote the empty word by E instead of 1, the words over an alphabet A of
shorterlengththann, {w EA* I lwl-:::: n} by A:s;n_

25

DEFINITION 3.1 Let w = a0a1 • • • an-l (ai E A) be a word of length n over A. We denote
an element (i, u) E Q = {O, 1, • • • , n} x A::c:;n by [i, u] and define the finite automaton M! =

(Q, A, o~, [O, El, {[n, El}), where

(THRU) o~([i, v], ai) = [i + 1, v],
(PUSH) o~([i, u], E) = [i + 1, aiu],
(POP) o~([i, au], a) = [i, u],

for O :S Vi < n, Vv E A::c:;n and Vu E A<n. The stack operation S : A* -+ 2A* is defined by the
language accepted by the finite automaton M!

S(w) ~ {u E A*lo~([O,E],u) = [n,El}

DEFINITION 3.2 Let w = a0a1 • • • an-l (ai E A) be a word of length n over A. We denote
a state (i, u) E Q = {O, 1, • • • , n} x A::c:;n by [i, u] and define the finite automaton M;j}
(Q, A, o3, [O, El, {[n, El}), where

(THRU) o3([i, v], ai) = [i + 1, v],
(PUSH) o3([i, u], E) = [i + 1, uai],
(POP) o3([i, au], a) = [i, u],

for O :S Vi < n, Vv E A::c:;n and Vu E A<n. The queue operation Q : A* -+ 2A· is defined by
the language accepted by the FA M;;}

EXAMPLE 3.1 Let w = abcd, A= {a, b, c, d}, n = lwl = 4 and Q = {O, 1, 2, 3, 4} x A 9 .

The transition of the finite automaton M! for dcab is depicted in Figure. I. Therefore cdba E

S(w).

o! [O, E] ---.:..+ [1, a] ---.:..+ [2, ba] ----=-+ [3, ba] ~ [4, ba] ~ [4, a] ~ [4, E]

The transition of the finite automaton M;;} for cdab is depicted in Figure 2. Therefore cdab E

Q(w).

o~ [0, E] ---.:..+ [1, a] ---.:..+ [2, ab] ----=-+ [3, ab] ~ [4, ab] ~ [4, b] ~ [4, E]

The operators S and Q are extended from words to languages in the natural way. The powers
of these operators are also defined. And then we give some examples.

DEFINITION 3.3 For a language Lover A, S(L) and Q(L) are defined by

S(L) ~ UwEL S(w), Q(L) ~f UwEL Q(w).

For a language L over A, the powers of the operators are defined by

26

PUSH PUSH
cdba cdba cdba

OUT IN OUT IN OUT IN

~
====}

~
====}

~
THRU POP

cd cdb cdba
OUT IN OUT IN OUT

====}

~
====}

~
====}

Figure 1. A transition of FA M~ for w = cdba

S0 (L) ~ L,

sn(L) ~ S(sn-1(L)),

soo(L) ~ Un20 sn(L),

Qo(L) d:J L,

Qn(L) ~ Q(Qn-l(L)) for n > 0.

Qoo(L) ~ LJn20 Qn(L).

THRU
C dba

OUT IN

====}

~
POP

IN

~

EXAMPLE 3.2 The followings are examples of the operators S and Q.
(1) For any word w over A and any n ~ 0, sn(w) (resp.Qn(w)) is finite and a uniform code

(each word is oflength lwl).

(2) For any word w over a binary alphabet A = {0, 1}, S(w) = Q(w) = {ullula =

lwlafora E A}, which is a uniform code and a commutative extractable code (but not nec­
essarily a strong code).

PUSH PUSH THRU
cdab cdab cdab C dab

OUT IN
====}

OUT IN
====}

OUT IN
====}

OUT IN

I I I I a I I I a I b I lalbl I I

THRU POP POP
cd ab cda b cdab

OUT IN OUT IN OUT IN

lalbl I I
====}

I b I I I I
====}

I I I

Figure 2. A transition of FA M;} for w = cdab

27

(3) For the conjugacy class cl(w) of a word w over a binary alphabet, S(cl(w)) = S(w) =

Q(cl(w)) = Q(w)

(4) For the word 012 over a ternary alphabet {O, 1, 2}, S(012) = {012, 021, 102,120,210}
and 201 (/. S(012). sn(012) = {012, 021, 102,120,210,201} for n 2". 2 or n = oo.

(5) Let L = (01) *. S (L) is not regular but context-free. So the class of regular language is
not closed under S. On the other hand, maybe Q(L) is generally context-sensitive.

PROPOSITION 3.1 If a language L is regular, then S (L) is context-free.

Sketch of Proof) Let M be a finite automaton M = (Q, A, b, q0 , F) without E-move. We can
construct a PDA M' = (Q, A, AU {Z0}, b', q0 , Z0 , F), where A= {a I a EA} is a copy of A
and the each rule in transition b' is one of the following forms:

(q,a,X)-t (p,X),ifb(q,a) =p.
(q, E, X) -t (p, aX) if b(q, a)= p. (PUSH)
(q,a,a) -t (q,E) for'v'q E Q,'v'a EA. (POP)
(q, E, Z0) -t (q, E) for 'v'q E F. (POP)

Then S(L) = L(M') with empty-stack acceptance. 1

PROPOSITION 3.2 Let w be a word over an alphabet A with IAI = m > 1. If n 2". 2(m -
1) - 1 or n = oo, sn (w) = Qn (w) is the set of all permutations of w and then is commutative.

COROLLARY 3.1 Let L be a language over an alphabet A with IAI = m > 1. If n >
2(m - 1) - 1 or n = oo,

Sn(L) = Qn(L) = <I>- 1 <I>(L)

is commutative, where <I> is the Parikh mapping.

PROPOSITION 3.3 The language L = (012)+ is regular. S00 (L) = Q00 (L) = <1>- 1<I>(L) is
not context-free.

Proof) <1>-1<I>(L) n O*l *2* = {Oili2i Ii > O} is not context-free but context-sensitive. Since
CFL n REG c:::: CFL, S00 (L) is not context-free.

DEFINITION 3.4 Let m be a positive integer and N = {O, 1, 2, • • • }. Two elements a =

(a1 , a2 , • • • , am) and b = (b1 , b2 , • • • , bm) in Nm are said to be incomparable if there does not
exist c E Nm such that a + c = b or b + c = a.

If nonempty subset H of Nm is said to be incomparable if any distinct two elements of H are
incomparable.

Fact An incompareble subset H of Nm is finite.

PROPOSITION 3.4 A language Cover an alphabet A with IAI = m is a commutative ex­
tractable code if C = <1>- 1(H) for some incomparable subset 0 =/-Hof Nm, where <1>- 1 is the
inverse image of Parikh mapping <I>.

THEOREM 3.1 A commutative extractable code is finite,

COROLLARY 3.2 If C is a commutative extractable code over A, There is some finite lan­
guage K = {w1 , w2 , • • • , wk} c A* such that C = S00 (K) = <I>- 1 <I>(K)

28

4 Conclusion

We introduce the language operators Sand Q, which make languages commutative. We show
that a commutative extractable code is finite. There are the followings questions:

(1) If a language L is regular, then is Q (L) context-free or not ?
(2) For words u and v in A* with <I> (u) = <I> (v), find the smallest integer n such that u E

sn(v). Does this number n became a distance between u and v ? Does the similar question
hold for Q?

References

[l] J. Berstel and D. Perrin. Theory of Codes. Pure and Applied Mathematics. Academic Press, 1985.
[2] A. de Luca and S. Varricchio. Finiteness and Regularity in Semigroups and Formal Languages.

Monographs on Theoretical Computer Science · An EATCS Series. Springer, July 1999.
[3] H.J.Shyr. Strong codes. Soochow J. of Math. and Nat. Sciences, 3:9-16, 1977.
[4] H.J.Shyr. Free monoids and Languages. Lecture Notes. Hon Min book Company, Taichung,

Taiwan, 1991.
[5] M. Ito, L. Kari, and G. Thierrin. Insertion and deletion closure of languages. Theoretical Computer

Science, 183:3-19, 1997.
[6] J.M.Howie. Fundamentals of Semi group Theory. London Mathematical Society Monographs New

Series 12. Oxford University Press, 1995.
[7] Y. Kunimochi. Some properties of extractable codes and insertable codes. International Journal

of Foundations of Computer Science, 27(3):327-342, 2016.
[8] G. Lallement. Semigroups and combinatorial applications. John Wiley & Sons, Inc., 1979.
[9] M. Lothaire. Combinatorics on Words, volume 17 of Encyclopedia of Mathematics and its Appli­

cations. Cambridge University Press, 1983.
[10] T. Moriya and I. Kataoka. Syntactic congruences of codes. IEICE TRANSACTIONS on Information

and Systems, E84-D(3):415-418, 2001.
[11] M.Petrich and G.Thierrin. The syntactic monoid of an infix code. Proceedings of the American

Mathematical Society, 109(4):865-873, 1990.
[12] G. Rozenberg and A. Salomaa. Handbook of Formal Languages, Vol.1 WORD, LANGUAGE,

GRAMMAR. Springer, 1997.
[13] G. Tanaka, Y. Kunimochi, and M. Katsura. Remarks on extractable submonoids. Technical Report

kokyuroku, RIMS, Kyoto University, 1655:106-110, 6 2009.
[14] S. Yu. A characterization of intercodes. International Journal of Computer Mathematics, 36(1-

2):39-45, 1990.
[15] S.-S. Yu. Languages and Codes. Tsang Hai Book Publishing Company, Taiwan, 2005.
[16] L. Zhang. Rational strong codes and structure of rational group languages. In Semigroup Forum,

volume 35, pages 181-193. Springer, 1986.

Faculty of Informatics,
Shizuoka Institute of Science and Technology
Toyosawa 2200-2, Fukuroi-shi, Shizuoka 437-8555,

JAPAN
Email: kunimochi.yoshiyuki@sist.ac.jp

