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On an inverse Robin eigenvalue problem appearing in 
thin coating problems 

Toshiaki Yachimura 
Institute for the Advanced Study of Human Biology (WPI-ASHBi), 

Kyoto University Institute for Advanced Study 

1 Introduction and problem setting 

Let n c ]Rn (n ;::: 2) be a bounded domain with boundary an of class C2 , and 'Y, rD be 
disjoint nonempty closed subsets of the boundary an such that an= rD U 'Y· Let h E C0 ('Y) 
and h > 0. In this paper, we consider the following Robin eigenvalue problem: 

{

-1::,.u = AU inn, 

U = 0 On rD, 
hu + avu = 0 on "(, 

(1.1) 

where vis the outward unit normal vector of an. We only consider the principal eigenvalue 
and eigenfunction of (1.1), and assume that the principal eigenfunction is positive and it is 
normalized by 

fniul2 dx = 1. 

Our aim in this paper is to study an inverse problem of the Robin eigenvalue problem. 
In particular, we consider the recovery of an unknown Robin coefficient h defined in the 
inaccessible part 'Y of the boundary an, given the principal eigenvalue >.(h) and the Neumann 
data avu(h)lrv on the accessible part rD. 

The inverse problem appears in thin coating problems [10, 20, 24]. Physically speaking, 
it is closely related to the problem that we determine a thin insulator coating for a heat 
conductor by measurements of the first eigenvalue and the Neumann data of an accessible 
part of the boundary. 

This inverse eigenvalue problem is considered by [3, 2]. They dealt with the Robin inverse 
eigenvalue problem when the support of the Robin coefficient is sufficiently small and gave 
a non-iterative algorithm for detecting the Robin coefficient from the measurements of an 
eigenvalue and a Neumann data of the accessible part of the boundary. 
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We remark that the setting of the inverse problem is similar to the detection problem of 
internal corrosion. Let us consider the following problem: 

{
-Em= 0 in 0, 

U = 0 on fD, 

hu + Bvu = 0 on r-
(1.2) 

The detection problem of internal corrosion is to recover of an unknown Robin coefficient h 
defined in the inaccessible part I of the boundary 80, given the Neumann data Bvu(h)lrn 
on the accessible part rD. Physically speaking, Neumann data Bvu(h)lrn is the current and 
the Robin coefficient h is the corrosion. There are many results for uniqueness, stability, and 
reconstruction algorithm for the inverse problem of (1.2). For the details about the inverse 
problem, see [13, 7, 1, 8, 6, 9, 5, 15, 4, 12, 22] and the references therein. 

In this paper, we prove the uniqueness of the inverse problem and establish the identifi­
cation by using a Neumann tracking type functional. Moreover, we show numerical results 
by using the gradient descent method. This paper is based on [21] and [25]. 

2 Uniqueness of the inverse eigenvalue problem 

In this section, we prove uniqueness of the inverse problem. 

Theorem 2.1. {21, Theorem 2} Let O c JR.n (n 2". 2) be a bounded domain with C2 boundary 
and r, rD be disjoint nonempty closed subsets of the boundary ao such that ao = rD u /­
Let (>-.(hj),uj) be a solution of the Robin eigenvalue problems (1.1), corresponding to the 
Robin coefficients hj, with hj E C0 (r) and hj > 0 for j = l, 2. If (>.(h1), 8vu1lrn) = 
(>.(h2), 8vu2lrn), then we have h1 = h2. 

Proof. Put w := u1 - u2. From the assumption (>.(h1), 8vu1lrn) = (>.(h2), 8vu2lrn), we have 

{

-flw = >.w 

w = 0 

Bvw = 0 

h1w + Bvw + (h1 - h2)u2 = 0 

in 0, 

on fD, 

on fD, 

on r-

By using Holmgren's unique continuation theorem (see [14]), we obtain w = 0 in 0. Hence 
(h1 -h2)u2 = 0 on r- Let us assume that there exists a point x 0 E I such that h1(x0 ) =/= h2(x0). 

Then by continuity of h1 and h2, there exists an open subset U C I such that h1 =/= h2 in U. 
Thus we have u 2 = 0 on U. Due to the boundary condition for u 2 , we also obtain Bvu2 = 0 
on U. Hence, 

{
-flu2 = >.u2 in 0, 

u2 = 0 on U, 

Bvu2 = 0 on U. 
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Applying Holmgren's theorem again, we obtain u2 = 0 in 0. However, this is in contradiction 
with u2 -=j. 0. Hence we have h1 = h2 . □ 

3 Neumann tracking type functional and its properties 

Let us introduce a Neumann tracking type functional in order to solve the inverse problem 
numerically. Let d be the admissible set of Robin coefficients, defined by 

We consider a Neumann tracking type functional F over the admissible set d defined by: 

(3.3) 

where (>., g) are the given spectral data. By Theorem 2.1, we can easily show that the 
functional (3.3) has a unique minimizer in d which is the solution of the inverse problem. 

Proposition 3.1. {21, Proposition 11} There exists a unique function h Ed of the functional 
(3.3) such that 

0 = F(h)::; F('!jJ) V'ljJ Ed. 

Moreover h is the solution of the inverse problem. 

Proof. Leth be the solution of the inverse problem. Then we obtain >.(h) =>.and 8,,,ulrv = g. 
Thus his a minimum for F with F(h) = 0. On the other hand, we assume that F(h) = 0. 
Then we can easily see that h is the solution of the inverse problem. 

Also let h be another minimum for F. Then >.(h) = >.(h) and 8,,,ulrv(h) = 8,,,ulrv(h). 
Thus by Theorem 2.1 we obtain h = h. □ 

By Proposition 3.1, we may consider the minimization problem for F to solve the inverse 
problem numerically. In order to compute the Frechet derivative of the functional F with 
respect to h, we need to prove the Frechet differentiability of the solution u(h) in (1.1) with 
respect to the Robin coefficient h. By a perturbation argument of the Fourier expansions with 
respect to the Robin eigenvalue problem (1.1) and the elliptic regularity theory for mixed 
boundary problem (see [17, Theorem 7.36.6, p.621]), we can prove the following eigenvalue 
estimate and Frechet differentiability for 'u(h) in H 2 (see [21, Theorem 4 and Corollary 9]): 

llu(h + l) - u(h) - u'(h)[l]IIH2(!1) 
lllllcir,y) ➔ 0 as lllllc,('y) ➔ 0, (3.4) 

l>-(h + l) - >.(h) - >-'I 
3/2 ➔ 0 as lllllc,('y) ➔ 0, 

lllllc,bl 
(3.5) 
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where u' ( h) [l;] is the solution of the following sensitivity problem: 

-!1u' - >..(h)u' = >..'u(h) in n, 
u' = 0 

hu' + avu' = -(u(h) 

L u(h)u' dx = 0. 

Here,>..' is given by>..'= 1 (u(h) 2 ds. By (3.4) and (3.5), we can easily compute the Frechet 

derivative of the functional F with respect to h. 

Theorem 3.2. /21, Theorem 12} The Frechet derivative of the functional F at the point 
h E d in the direction ( is 

F'(h)[(] = 1 { u(h)cp + (>..(h) - >..)u(h)2} ( ds, 

where cp is the solution of the following problem: 

-D..cp = >..(h)cp in !1, 

cp = Ovu(h) - g on rD, 
hep+ avcp = 0 on 1 , 

L u(h)cpdx = 0. 

Proof. By (3.4) and (3.5), we obtain 

F(h + () - F(h) 

(3.6) 

(3.7) 

= ~llavu(h + () - gll~2(rD) + ~l>..(h + () - >..1 2 - ~llavu(h) - gll~2(rD) - ~l>..(h) - >..1 2 

= ~llavu(h) + Ovu'(h)[(] + oQl(lbt,)) - gll:2(rD) 

11 I 3/2 12 111 112 11 12 + 2 >.(h) + >. + o(ll(llc,(,)) - >. - 2 Ovu(h) - g L2(rD) - 2 >.(h) - >. 

= r (avu(h) - g)avu'(h)[(] ds + >.'(>.(h) - >.) + o(ll(lbt,)). JrD 
Let us focus on the first term. By the Green's second identity we obtain 

0 = L ( ( -D..cp - >.(h )cp )u' - (-!1u' - >.(h)u' - >.'u(h) )cp) dx 

= L ( cpl:1u' - u' D..cp) dx. 
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By the divergence theorem we have 

O = { <p8,,,u' ds + 1(<p8,,,u' - u'B,,,<p) ds lrD , 
= { <p8,,,u' ds + 1 (1.p(-hu' - ~u(h)) + u'h<p) ds lrD , 
= { (8,,,u(h) - g)B,,,u' ds -1~u(h)<pds. lrD , 

Thus we obtain 

{ (8,,,u(h) - g)8,,,u' ds = 1~u(h)1.pds. lrD , 
Therefore, since >.' = j ~u(h) 2 ds, we have that the Frechet derivative F' of the functional 

Fis given by 

F'(h)[~] = j ~u(h)<pds + >.'(>.(h) - >.) 

= j { u(h)<p + (>.(h) - >.)u(h)2} ~ ds. □ 

By (3.6), the gradient descent direction of the functional Fis 

We use a gradient descent type algorithm to solve the minimization problem for the functional 
F. 

4 Reconstruction algorithm and numerical tests 

Let tol be a fixed tolerance level and Tk > 0 the step sizes at each iteration k. In all numerical 
experiments below, we keep Tk fixed. 

Algorithm 1 Reconstruction algorithm. 
Inputs: spectral data (>., g) and initial guess h0 • Set k = 0 and iterate: 

1: Compute the principal eigenfunction uk and eigenvalue Ak with Robin coefficient hk, 
solving Problem (1.1). 

2: Compute the solution 'Pk of the problem (3.7). 
3: Compute the descent direction 8k with the formula 

(4.8) 

4: Define hk+l = hk + Tk8k. 
5: If ll8kllc1e,) > tol, set k = k +land repeat. 
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In what follows, we consider the annular region D = B(0, 2) \ B(0, 1), with 1 = 8B(0, 1) 
and rD = 8B(0, 2). Also, the initial guess is h = 1 on,. We consider the reconstruction of 
the Robin coefficient 

xy x 2y 
h(x, y) = 1 + 2 - 5 

for (x, y) E 1 = 8B(0, 1), the interior part of the boundary of the annular region D. We 
present reconstruction from noiseless data (Figure 1), and noisy data: 2% (Figure 2). All 
the computations are done using FreeFem++ [11]. 

1.4 1.4 

I I I 

1.3 1.3 I I I 
I I I I 
I I I I I 

1.2 1.2 I I I I I 
I I I I 

I I I I I 
1.1 1.1 I I I I I 

I I I I I I 
1 I I I I I 

I I I I I 
I I I I I I 

0.9 0.9 I I I I I I 
I I I /\ I I I I 
I I I I I I I 

0.8 0.8 I I I 
J 

I I 
I I I I I I 

0.7 0.7 I I I I I I 

I I I I I I 
I I I I I I I 

0.6 0.6 
0 4 0 

Figure 1: Reconstruction from noiseless data. Figure 2: Reconstruction from 2% noisy data 
Iteration = 1000. Iteration = 1000. 

We can see that the algorithm performs well in case of no noise, while the quality of the 
reconstruction is bad for noise levels of 2%. This is because of the ill-posedness of the inverse 
problem. 

There are so many techniques to treat such an ill-posedness of inverse problems. One 
of the major techniques is Tikhonov regularization, see [16, 18, 14] and references therein. 
It is a technique that prevents the ill-posedness of inverse problems by adding a penalty of 
L2 in an objective functional. In our situation, we can consider a Tikhonov regularization 
functional Freg for the functional F defined by 

(4.9) 

where 7) > 0 is a regularization parameter. 
This technique is certainly useful, but we have to choose suitable regularization parameter 

7/ > 0 in (4.9). To avoid this difficulty, we use the early stopping method which is widely 
used in the field of machine learning, see [23, 19] and references therein. This method is a 
kind of regularization method that stops updating when the value of a functional no longer 
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decreases. The merit of this method is that we can use the functional F directly, and we do 
not need to choose a suitable regularization parameter T/ > 0. 

We show reconstruction from 2% noisy data when iteration number is 1000 (Figure 3), 
and 2% noisy data when iteration number is 40 (Figure 4). We can see that the early stopping 
method works well and prevent ill-posedness of the inverse problem of (1.1). 

1.4 1.4 

I I I 

1.3 I I I 
1.3 

I I I I I I 
I I I I I I I 

1.2 I I I I I I I 1.2 
I I I I I 

I I I I I I 
1.1 I I I I I I 1.1 

I I I I I I I 

l I I I I I I 
I I I I I I 
I I I I I I I 

0 .9 I I I I I 0.9 
I I /\ I I I I 
I I I I I I 

0.8 I I I J 
I I 0.8 

I I I I I I 

I \ 
I 

\ 
I 

I I 
I I 
I I 
I I 

\ I \ I 
\ I \ I 
\ I I I 
\ I \ I 

\ I 
I I 
I I 

I 

0.7 I I I I I I 
0.7 

I I I I I I 
I I I I I I I 

0.6 0.6 
0 4 0 4 

Figure 3: Reconstruction from 2% noisy data Figure 4: Reconstruction from 2% noisy data 
Iteration = 1000. Iteration = 40. 
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