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1 Introduction 

At least, until about 20 years ago, we had very difficult inverse problems that 
are important in many practical problems (fundamentals) as follows: 

1): Inverse source problem; that is in the Poisson equation 

6u= -p, 

from the observation of the potential u for the out side of the support p, look 
for the source p. 

2): The problem in the heat conduction; that is, from some heat u(x, t) 
observation at a time t, look for the initial heat u(x, 0). 

3): Real inversion formulas for the Laplace transform. 

These problems were indeed difficult in both mathematics and numerical 
realizations of the solutions and so, they are called ill-posed problems and very 
famous difficult problems. 

We were able to solve these problems in both senses of mathematics and 
numerical problems by using the theory of reproducing kernels applying the 
Tikhonov regularization. However, for the real inversion formula of the Laplace 
transform, we needed the great power of computers by H. Fujiwara. 

For any practical numerical analysis, the important problem is on the dis
cretization procedure for analytical inverse problem solutions. At this very 
important point, we will see that the theory of reproducing kernels is very good 
mathematics. These global theories were published in the book [23] and our 
method is applicable in some general problems in the viewpoint of practical 
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problems. Here, we state their essential parts. Here, we will state its theoritical 
parts and Professor T. Matsuura will give their numerical examples, by using 
computer graphics. 

In order to fix our background in this paper, following [18, 19, 21], we first 
recall a general theory for linear mappings in the framework of Hilbert spaces 
using the general theory of reproducing kernels. 

Let 1-l be a Hilbert (possibly finite-dimensional) space, and consider E to be 
an abstract set and h a Hilbert 1-l-valued function on E. Then, a very general 
linear transform from 1-l into the linear space F(E) comprising all the complex 
valued functions on E will be given by 

f(p) = (f, h(p))H, f E 1-l, (1) 

in the framework of Hilbert spaces. 
In general, a complex-valued function is called a positive definite quadratic 

form function on the set E, or shortly, positive definite function, when it satisfies 
the property that, for an arbitrary function X : E --+ C and for any finite subset 
F of E, 

I: X(p)X(q)k(p, q) ~ 0. 
p,qEF 

In order to investigate the linear mapping (1), we form a positive definite 
quadratic form function K(p, q) on Ex E defined by 

K(p, q) = (h(q), h(p))H on Ex E. (2) 

Then, the followings are fundamental ([18]): 

Proposition 1.1 (I) The range of the linear mapping (l) by 1-l is character
ized as the reproducing kernel Hilbert space HK(E) admitting the reproduc
ing kernel K(p, q) whose characterization is given by the two properties: 
(i) K(·, q) E HK(E) for any q EE and, (ii) for any f E HK(E) and for 
any p EE, (!(·), K(·.p))HK(E) = f(p). 

(II) In general, the inequality 

holds. Here, for any member f of HK(E) there exists a uniquely deter
mined f* E 1-l satisfying 

f(p) = (f*, h(p))H on E 

and 

(III) In general, the inversion formula in (1) in the form 

f H f* 

in (II) holds, by using the reproducing kernel Hilbert space HK(E). 

(3) 

(4) 
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The typical ill-posed problem (1) becomes a well-posed problem, because 
the image space of (1) is characterized as the reproducing kernel Hilbert space 
HK(E) with the isometric identity (3), which may be considered as a general
ization of the Pythagorean theorem. 

However, this viewpoint is a mathematical one and is not a numerical one 
and not easy to deal with analytical and numerical problems. 

2 Inversion Formulas 

Consider the inversion in (1) formally, however, this idea will be very important 
for the general inversions and for discretization method. 

Following the above general situation, let { Vj} be a complete orthonormal 
basis for 1-l. Then, for 

Hence, by setting 

Thus, define 

vj(P) = (vj, h(p)h-l, 

h(p) = ~)h(p),vj)Hvj = Lvj(p)vj. 
j 

h(p) = L vj(p)vj, 
j 

h(·) = L Vj(·)Vj
j 

(J,h(p))HK = L(J,vj)HKVj. 
j 

For simplicity, write as follows: 

Then, formally, we obtain: 

Proposition 2.1 Assume that for f E HK 

and for all p EE, 

Then, 
llfllHK :s:; II(!, h)HK 111-l• 

If { Fh(p); p E E} is complete in 1-l, then equality always holds. 
Furthermore, if: 
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Then, for f* in (II) and (III) 

In particular, note that the basic assumption (f, h)HK E 1l in Proposition 
2.1, is, in general, not valid and very delicate for many analytical problems and 
we need some delicate treatment for the inversion. 

In order to derive a general inversion formula that is widely applicable in 
analysis, assume that the both Hilbert spaces 1l and HK are given as 1l = 
L 2 (T, dm), HK C L 2 (E, dµ), on the sets T and E, respectively ( assume that 
for dm, dµ measurable sets T, E, they are the Hilbert spaces comprising dm, dµ
L2 integrable complex-valued functions, respectively.) Therefore, consider the 
integral transform 

f(p) = h, F(t)h(t,p)dm(t). (5) 

Here, h(t,p) is a function on T x E, h(·,p) E L 2 (T, dm), and FE L 2 (T, dm). 
The corresponding reproducing kernel for (2) is given by 

K(p, q) = h, h(t, q)h(t,p)dm(t) on Ex E. 

The norm of the reproducing kernel Hilbert space HK is represented as L2 (E, dµ). 
Under these situations: 

Proposition 2.2 Assume that an approximating sequece {EN }N=l of E satis
fies (a) E1 C E2 C · · · C · · ·, (b) u~=l EN= E, (c) JEN K(p,p)dµ(p) < 
oo, (N = 1, 2, ... ). 

Then, for f E HK satisfying JEN f(p)h(t,p)dµ(p) E L2(T, dm) for any N, 
the sequence 

{lN f(p)h(t,p)dµ(p)} :=1 (6) 

converges to F* in (4) in Proposition 1.1 in the sense of L 2 (T, dm) norm. 

Practically for many cases, the assumptions in Proposition 2.2, will be sat
isfied automatically, and so Proposition 2.2 may be applied in many cases. 
Proposition 2.2 will give a new viewpoint and method for the Fredholm inte
gral equation (5) of the first kind that is a fundamental integral equation. The 
method and solution has the following properties: 

1) The use of the naturally determined reproducing kernel Hilbert space 
HK which is determined by the integral kernel. 

2) The solution is given in the sense of 1l norm convergence. 
3) The solution (inverse) is given by f* in Proposition 1.1. 
4) For the ill-posed problem in (5), the solution is given as a well-posed 

solution. 



42

This viewpoint is, however, a mathematical and theoritical one. In practical 
and physical linear systems, the observation data will be a finite number of data 
containing error or noises, and so we will meet to various delicate problems 
numerically. 

The basic assumption here for the integral kernels is to belong to some 
Hilbert spaces. However, as a very typical integral transform, in the case of 
Fourier integral transform, the integral kernel does not belong to L2 (R) and, 
however, we can establish the isometric identity and inversion formula in the 
space L2 (R). 

We can develop some general integral transform theory containing the Fourier 
integral transform case that the integral kernel does not belong to any Hilbert 
space, based on the general concept of generalized reproducing kernels in [22, 14]. 

3 Best Approximations, as a connection 

For numerical treatments and practical constructions of the analytical solutions, 
we will need some approximate solutions and the Tikhonov regularizations. 

Let L be any bounded linear operator from a reproducing kernel Hilbert 
space HK into a Hilbert space 1-l. Then, the following problem is a classical 
and fundamental problem known as the best approximate mean square norm 
problem: For any member d of 1-l, we would like to find 

inf IILf - dllH-
fEHK 

It is clear that we are considering operator equations, generalized solutions and 
corresponding generalized inverses within the framework off E HK and d E 1-l, 
having in mind 

Lf =d. (7) 

However, this problem has a complicated structure, specially in the infinite 
dimension Hilbert spaces case, leading in fact to the consideration of generalized 
inverses (in the Moore-Penrose sense). Following the reproducing kernel theory, 
we can realize its complicated structure. Anyway, the problem turns to be 
well-posed within the reproducing kernels theory framework in the following 
proposition: 

Proposition 3.1 For any member d of 1-l, there exists a function J in HK 
satisfying 

(8) 

if and only if, for the reproducing kernel Hilbert space Hk admitting the kernel 
defined by k(p,q) = (L*LK(·,q),L*LK(·,p))HK 

(9) 

Furthermore, when there exists a function J satisfying ( 8), there exists a uniquely 
determined function that minimizes the norms in HK among the functions sat
isfying the equality, and its function f d is represented as follows: 
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f<l(P) = (L*d, L* LK(-,p))Hk on E. (10) 

Here, the adjoint operator L * of L, as we see, from 

(L*d)(p) = (L*d, K(·,p))HK = (d, LK(·,p))H 

is represented by known d, L, K(p, q), and 1{. From this Proposition 3.1, we see 
that the problem is well-established by the theory of reproducing kernels, that 
is the existence, uniqueness and representation of the solutions in the problem 
are well-formulated. In particular, note that the adjoint operator is represented 
in a good way; this fact will be very important. The extremal function f d is the 
Moore-Penrose generalized inverse Ltd of the equation L f = d. The criteria 
(9) is involved and so the Moore- Penrose generalized inverse f d is not good, 
when the data contain error or noises in some practical cases. 

4 The Tikhonov Regularization 

We shall consider some practical and more concrete representation in the ex
tremal functions involved in the Tikhonov regularization by using the theory of 
reproducing kernels. Recall that for compact operators the singular values and 
singular functions representations are popular and in a sense, the representation 
may be considered complicated. 

Furthermore, when d contains error or noises, error estimates are important. 
For this fundamental problem, we have the following results: 

At first, we need 

Proposition 4.1 Let L : HK --+ 1{ be a bounded linear operator, and define the 
inner product, with a small positive a: 

for Ji, h E HK. Then (HK, (-,-)HKJ is a reproducing kernel Hilbert space 
whose reproducing kernel is given by 

Here, Ka(P, q) is the solution Ka(P, q) of the functional equation 

(11) 

that is corresponding to the Fredholm integral equation of the second kind for 
many concrete cases. Here, 

Kp = K(·,p) for p EE. 
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Proposition 4.2 In the Tikhonov functional 

attains the minimum and the minimum is attained only at !d,a. E HK such that 

Furthermore, (f d,a.) (p) satisfies 

(12) 

This proposition means that in order to obtain good approximate solutions, 
we must take a sufficiently small o:, however, here we have restrictions for them, 
as we see, when d moves to d', by considering !d,a.(P) - fd,,a.(P) in connection 
with the relation of the difference lid - d'IIH• This fact is a very natural one, 
because we cannot obtain good solutions from the data containing errors. Here 
we wish to know how to take a small o: a priori and what is the bound for it. 
These problems are very important practically and delicate ones, and we have 
many methods. 

The basic idea may be given as follows. We examine for various o: tending to 
zero, the corresponding extremal functions. By examining the sequence of the 
approximate extremal functions, when it converges to some function numerically 
and after then when the sequence diverges numerically, it will give the bound 
for o: numerically. See (Fujiwara et al 2008; Fujiwara et al 2009; Fujiwara 2010). 

For this important problem and the method of L-curve, see (Lawson et al 
1972; Hansen 1992), for example. 

The Tikhonov regularization is very popular and widely applicable in numer
ical analysis for its practical power. The application of the theory of reproducing 
kernels will give more concrete representations of the extremal functions in the 
Tikhonov regularization. 

Indeed, we were able to give many good numerical solutions containing the 
typical difficult inverse problems in the Poisson equation and heat equation. 
We will refer to the most difficult problem in the real inversion formula of the 
Laplace transform. 

For an up-to-date information on the Laplace inversion formula and its ap
plications, see [15]. 

4.1 Real and Numerical Inversions of the Laplace Trans
form 

Consider the inversion formula of the Laplace transform 
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for some natural function spaces. 
On the positive real line R +, consider the norm 

for absolutely continuous functions F satisfying F(0) = 0. This space HK 
admits the reproducing kernel 

rmin(t,t') 
K(t, t') = lo ~e-l;dr (13) 

Then, 

(14) 

that is, (.CF)(p)p is a bounded linear operator from HK into L2 (R+, dp) 
L2 (R+). So, the following result holds: 

Proposition 4.3 For any g E L2 (R+) and for any a> 0, in the sense 

= a 1= IF~'.g(t)l2~etdt + ll(.CF~,9 )(p)p - 9IIL(R+) 

there exists a uniquely determined best approximate function F;, 9 and it is 
represented by 

F~,9 (t) = 1= g(~) (.CKa(·, t)) (~)~d~. (16) 

Here, Ka(·, t) is determined by the functional equation for Ka,t' = Ka(·, t'), Kt = 

K(·, t), 

We calculate the approximate inverse F;, 9 (t) by using (16). By taking the 
Laplace transform of (17) with respect to t, by changing the variables t and t' 

1 1 
(.CKa(·, t))(~) = ~(.CK(·, t))(~) - ~((.CKa,t)(p)p, (.C(.CK.)(p)p))(~))L2 (R+)• 

Here, 

for t:::; t' 
for t ?: t'. 

(18) 
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I I [ -t' -1 ] 1 (.CK(· t'))(p) = e-t Pe-t --- + --- + ---
' p(p+ 1) p(p+ 1)2 p(p+ 1)2 . 

f00 
e-qt' (.CK(·, t'))(p)dt' = ( l )2 • lo pqp+q+l 

Therefore, by setting as (.CKa(·, t))(~)~ = Ha(~, t), we obtain the Fredholm 
integral equation of the second kind: 

(19) 

which is corresponding to (11). By solving this integral equation, H. Fujiwara 
derived a very reasonable numerical inversion formula for the integral transform 
and he expanded very good algorithms for numerical and real inversion formulas 
of the Laplace transform. For more detailed references and comments for this 
equation, see (Fujiwara et al 2008; Fujiwara et al 2009; Fujiwara 2010). 

In particular, H. Fujiwara solved the integral equation (11) with 6000 points 
discretization with 600 digits precision based on the concept of infinite precision 
which is in turn based on multiple-precision arithmetic. Then, the regularization 
parameters were o: = 10-100 , 10-4oo surprisingly. For the integral equation, he 
used the DE formula by H. Takahashi and M. Mori, using double exponential 
transforms. H. Fujiwara was successful in deriving numerically the inversion for 
the Laplace transform of the distribution delta which was proposed by V. V. 
Kryzhniy as a difficult case. This fact will mean that the above results valid for 
very general functions approximated by the functions of the reproducing kernel 
Hilbert space HK(R+). 

We showed many Figures for the numerical experiments in the complete 
version [8] by Professor H. Fujiwara. For the heat conduction problem, by [13]. 

The general theory in this section was extended to the Hilbert space frame
work by using the generalized reproducing kernels in [22] with Professor Y. 
Sawano. 

5 The Aveiro Discretization Method 

Meanwhile, in general, the reproducing kernel Hilbert space HK has a compli
cated structure, and so we have to consider the approximate realization of the 
abstract Hilbert space HK by taking a finite number of points of E. A finite 
number of data will be lead to a discretization principle and practical method, 
because computers can deal with a finite number of data. 

By taking a finite number of points {pj }.i=l, we set 

(20) 
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Then, if the matrix A :=II ajj' II is positive definite, then, the corresponding 
norm in HA comprising the vectors x = (x1, x2, ... , Xn)T is determined by 

where A= A- 1 = llajj'II• 
When we approximate the reproducing kernel Hilbert space HK by the vector 

space HA, then from Proposition 4.1, the following is directly derived: 

Proposition 5.1 In the linear mapping 

f(p) = (f, h(p)hi, f E 1{ 

for 
{p1,P2, .. ,,Pn}, 

the minimum norm inverse f_,4.n satisfying 

is given by 

n n 

(4.n = L L f(pj)ajj' h (Pj' ), 
j=l j'=l 

(21) 

(22) 

(23) 

where ajj' are assumed the elements of the complex conjugate inverse of the 
positive definite Hermitian matrix An constituted by the elements 

Here, the positive definiteness of An is a basic assumption. 

The following proposition shows the convergence of the approximate inverses 
in Proposition 5.1. 

Proposition 5.2 Let {pj }~1 be a sequence of distinct points on E, that is the 
positive definiteness in Proposition 5.1 for any n and a uniqueness set for the 
reproducing kernel Hilbert space HK; that is, for any f E HK, if all f (Pj) = 0, 
then f = 0. Then, in the space 1{ 

lim f..4. = f*. 
n--+(X) n 

(24) 

From the result, we can obtain directly the ultimate realization of the repro
ducing kernel Hilbert spaces and the ultimate sampling theory: 

Proposition 5.3 (Ultimate realization of reproducing kernel Hilbert spaces). 
In the general situation and for a uniqueness set {Pj} of the set E satisfying the 
linearly independence in Proposition 5.1, 

n n 

llf llir = llf* llt = lim """' """' f (Pj )ajj' f (Pj' ). 
K n--+oo~ ~ 

(25) 
j=l j'=l 
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Proposition 5.4 (Ultimate sampling theory). In the general situation and 
for a uniqueness set {pj} of the set E satisfying the linearly independence in 
Proposition 5.1, 

f(p) = lim (fA , h(p))H = lim (~ ~ f(pj)ajj 1 h(Pj' ), h(p)) (26) 
n--+oo n n--+oo ~ ~ 

j=l j'=l 1i 

n n 

In Proposition 5.1, for any given finite number f (Pj ), j = 1, 2, ... , n, the result 
in Proposition 5.1 is valid. Meanwhile, Proposition 5.2 and Proposition 5.4 are 
valid when we consider the sequence f(pj), j = 1,2, ... , for any member f of 
HK- The sequence f(pj), j = 1, 2, ... , for any member f of HK is characterized 
by the convergence of (25) in Proposition 5.3. Then, any member f of HK is 
represented by (26) in terms of the sequence f(pj), j = 1,2, ... , in Proposition 
5.4. 

In the general setting in Proposition 5.1, assume that we observed the values 
f(pj) = aj,J = 1, 2, ... , n, for a finite number of points {pj}, then for the whole 
value f(p) of the set E, how can we consider it? 

One idea is to consider the function Ji (p): among the functions satisfying the 
conditions f (Pj) = CY.j, j = 1, 2, ... , n, we consider the minimum norm member 
fi(p) in HK(E). This function fi(p) is determined by the formula, 

n 

fi(p) = L CjK(p,pj) 
j=l 

where, the constants { Cj} are determined by the formula: 

n 

L CjK(pj',Pj) = CY.j',j' = 1, 2, ... , n. 
j=l 

(of course, we assume that IIK(pj',Pj)II is positive definite). 
For this problem, see, Mo, Y. and Qian, T. (2014) : Support vector machine 

adapted Tikhonov regularization method to solve Dirichlet problem ([16]), as 
a new numerical approarch by a usual computer system level, we use a special 
powerful computer system by H. Fujiwara. In particular, they can deal with 
errorness data. 

Meanwhile, by Proposition 1.4, we can consider the function h(p) defined 
by 
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in terms of (t in Proposition 3.1. This interpolation formula is depending on 
the linear system. 

For analytical problems, we need discretization and using a finite number 
of data in order to obtain approximate solutions by using computers, the typ
ical methods are finite element method and difference method, however, their 
practical algorithms will be complicated depending on case by case, depending 
on the domains and depending on the dimensions, however, the above meth
ods are essentially simple and uniform method in principle, called the Aveiro 
discretization method. However, the hard work part is to solve the linear simul
taneous equations, computer powers requested are increasing and so, in future, 
the above simple method may be expected to become a standard method. For 
the general information and numerical results, see (Castro et al 2014; Castro et 
al 2014). 

Many numerical experiments for the sampling theory by Proposition 5.4 were 
given by [9]. In particular: 

We showed a general sampling theorem and the concrete numerical exper
iments for the simplest and typical examples. We gave the sampling theorem 
in the Sobolev Hilbert spaces with numerical experimences. For the Sobolev 
Hilbert spaces, sampling theorems seem to be a new concept. 

For the typical Paley-Wiener spaces, the sampling points are automatically 
determined as the common sense, however, in our general sampling theorem, 
we can select the sampling points freely and so, case by case, following some a 
priori information of a considering function, we can take the effective sampling 
points. We showed these properties by the concrete examples, by many Figures. 

5.1 A Typical Example of the Aveiro Discretization Method 
With ODE 

Consider a prototype differential operator 

Ly:= ay" + /3y' + 'YY· (27) 

Here, consider a very general situation that the coefficients are arbitrary func
tions on their nature and on a general interval I. 

For some practical construction of some natural solution of 

Ly=g (28) 

for a very general function g on a general interval I, 

Proposition 5.5 (Castro et all 2014; Castro et al 2014) Let us fix a positive 
number h and take a finite number of points { tj }1=1 of I such that 

(a(tj), j3(tj), 'Y(tj))-/= 0 

for each j. Then, an optimal solution y-f; of the equation (28) is given by 

1 11r/h y-{;(t) = - F,;(f,)e-itt;df, 
2n -1r/h 
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in terms of the function Ff; E £ 2 ( -1r / h, +1r / h) in the sense that Ff; has the 
minimum norm in L2 (-1r /h, +1r/h) among the functions FE L2 (-1r /h, +1r /h) 
satisfying, for the characteristic function Xh(t) of the interval (-1r /h, +1r /h): 

for all t = tj and for the function space L2 ( -1r / h, +1r / h). 
The best extremal function Ff; is given by 

n 

Ff;(t) = L g(tj)ajj'(a(tj,)(-t2 ) + f3(tj,)(-it) +"((tj'))exp(itj,t). (30) 
j,j'=l 

Here, the matrix A = { ajj' }J,j'=l formed by the elements 

ajj' = Khh(tj, tj,) 

with 

J:__ r [a(t)(-e) + (3(t)(-it) + 'Y(t)] [a(t')(-e) + (3(t')(-it) + 'Y(t')] 
21r JR 
·Xh(t) exp(-i(t - t')t)dt (31) 

is positive definite and the ajj' are the elements of the inverse of A (the complex 
conjugate of A). 

Therefore, the optimal solution Yt of the equation (28) is given by 

Yt(t) = .tlg(tj)ajj' 2~[-a(tj,) /_: ee-i(t-ti,)(dt 
J,J = h 

+if3(tj,) /_: te-i(t-ti,)(dt+'Y(tj,) /_: e-i(t-tj,)(dt]. 
h h 

At first, we are considering approximate solutions of the differential equation 
(28) and at this point, we are considering the Paley-Wiener function spaces 
with parameter h as approximating function spaces; the function spaces are 
formed by analytic functions of the entire functions of exponential type that 
are decreasing to zero exponential order. Next, by using the Fourier inversion, 
the differential equation (28) may be transformed to (29). However, to solve 
the integral equation (29) is very difficult for the generality of the coefficient 
functions. So, we assume (29) is valid on some finite number of points tj. This 
assumption will be very reasonable for the discretization of the integral equation. 
By this assumption we can obtain an optimal approximate solutions in a very 
simple way. 

Here, we assume that equation (28) is valid on I and so, as some practical 
case we would like to consider the equation in (28) on I satisfying some boundary 
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conditions. In the present case, the boundary conditions are given as zero at 
infinity for I = R. 

However, our result gives the approximate general solutions satisfying bound
ary values. For example, for a finite interval (a, b), we consider t 1 = a and tn = b 
and a(t1) = /3(ti) = a(tn) = /3(tn) = 0. Then, we can obtain the approximate 
solution having the arbitrary given boundary values Yt(t1 ) and Yt(tn)- In ad
dition, by a simple modification we may give the general approximate solutions 
satisfying the corresponding boundary values. 

For a finite interval case I, following the boundary conditions, we can con
sider the corresponding reproducing kernels by the Sobolev Hilbert spaces. How
ever, the concrete representations of the reproducing kernels are involved de
pending on the boundary conditions. However, we can still consider them and 
we can use them. 

Of course, for a smaller h we can obtain a better approximate solution. 
For the representation (31) of the reproducing kernel Khh(t, t'), we can cal

culate it easily. 
The very surprising facts are: for variable coefficients linear differential equa

tions, we can represent their approximate solutions satisfying their boundary 
conditions without integrals. Approximate function spaces may be considered 
with the Paley-Wiener spaces and the Sobolev spaces. For many concrete ex
amples and numerical examples, see (Castro et al 2014; Castro et al 2014). We 
showed Figures of the numerical experiments. See also (Rocha 2014) for some 
applications to nonlinear partial differential equations. 

Acknowledgments 

This paper and the meeting were, of course, supported by the RIMS, Kyoto 
University. The author wishes to express his sincere thanks to Professor Takashi 
OHE for his great contributions to the author and to the meeting. 

References 

[1] N. Aronszajn, Theory of reproducing kernels. Trans. Amer. Math. Soc., 
68(1950), 337-404. 

[2] L. P. Castro, H. Fujiwara, S, Saitoh, Y. Sawano, A. Yamada and M. Ya
mada, Fundamental error estimates inequalities for the Tikhonov regular
ization using reproducing kernels. International Series of Numerical Math
ematics 161(2010), Inequalities and Applications 2010, Springer, Basel: 
87-101 

[3] L. P. Castro, H. Fujiwara, M. M. Rodrigues, S. Saitoh and V. K. Tuan, 
Aveiro Discretization Method in Mathematics: A New Discretization Prin
ciple, MATHEMATICS WITHOUT BOUNDARIES: SURVEYS IN PURE 



52

MATHEMATICS, Edited by Panos Pardalos and Themistocles M. Rassias 
37-92 Springer (2014). 

[4] L. P. Castro, H. Fujiwara, T. Qian and S. Saitoh, How to catch smoothing 
properties and analyticity of functions by computers? MATHEMATICS 
WITHOUT BOUNDARIES: SURVEYS IN INTERDISCIPLINARY RE
SEARCH, Edited by Panos Pardalos and Themistocles M. Rassias 101-116 
Springer (2014). 

[5] H. Fujiwara, Applications of reproducing kernel spaces to real inversions of 
the Laplace transform. RIMS Koukyuuroku 1618 (2008), 188-209. 

[6] H. Fujiwara, T. Matsuura, S. Saitoh and Y. Sawano, (2009) Numerical 
real inversion of the Laplace transform by using a high-accuracy numerical 
method. Further Progress in Analysis: 574-583 World Sci. Puhl., Hacken
sack, NJ (2009). 

[7] H. Fujiwara, (2010) Numerical real inversion of the Laplace transform by 
reproducing kernel and multiple-precision arithmetric. Progress in Analysis 
and its Applications, Proceedings of the 7th International ISAAC Congress: 
289-295 World Scientific (2010). 

[8] H. Fujiwara and N. Higashimori, Numerical inversion of the Laplace trans
form by using multiple-precision arithmetic. Libertas Mathematica (new 
series), 34(2014), No. 2, 5-21. 

[9] H. Fujiwara and S.Saitoh, The general sampling theory by using reproduc
ing kernels. CONTRIBUTIONS IN MATHEMATICS AND ENGINEER
ING In Honor of Constantin Caratheodory eds. Panos Pardalos and Th. 
M. Rassias, Springer (2010). 

[10] P. C. Hansen, Analysis of discrete ill-posed problems by means of the L
curve. SIAM REVIEW, 34 (1992), 561-580. 

[11] C. L. Lawson and R. J. Hanson, Solving least squares problems. Prentice
Hall, Englewood Cliffs. (1974). 

[12] A. N. Kolmogoroff, Stationary sequences in Hilbert's space. Bolletin 
Moskovskogo Gosudarstvenogo Universiteta, Matematika (1941) 2: 40pp. 
(in Russian) 

[13] T. Matsuura and S. Saitoh, Analytical and numerical inversion formulas 
in the Gaussian convolution by using the Paley-Wiener spaces. Applicable 
Analysis, 85 (2006), 901-915. 

[14] T. Matsuura and S. Saitoh, General integral transforms by the concept of 
generalized reproducing kernels, P. Dan et al (eds.), New Trends in Analy
sis and Interdisciplinary Applications. Trends in Mathematics, Birkhauser 
(2017), 379-386. 



53

[15] V. Mishra and D. Rani, Laplace transform inversion using Bernstein op
erational matrix of integration and its application to differential and 
integral equations, Proc. Indian Acad. Sci. (Math. Sci.) (2020) 130:60 
https://doi.org/10.1007 /s12044-020-0573-x. 

[16] Y. Mo and T. Qianm, Support vector machine adapted Tikhonov reg
ularization method to solve Dirichlet problem. Appl. Math. Comput. 
245(2014), 509-519. 

[17] E. M. Rocha, A reproducing kernel Hilbert discretization method for linear 
PDEs with nonlinear right-hand side. Libertas Mathematica (new series), 
34(2014), no. 2, 91-104. 

[18] S. Saitoh, Hilbert spaces induced by Hilbert space valued functions, Proc. 
Amer. Math. Soc., 89 (1983), 74-78. 

[19] S. Saitoh, Integral Transforms, Reproducing Kernels and their Applica
tions. Pitman Res. Notes in Math. Series 369 (1997), Addison Wesley Long
man, Harlow, CRC Press, Taylor & Francis Group, Boca Raton London, 
New York (in hard cover). 

[20] S. Saitoh, Various operators in Hilbert space induced by transforms. Inter
national J. of Applied Math. 1 (1999), 111-126. 

[21] S. Saitoh, Theory of reproducing kernels: Applications to approximate 
solutions of bounded linear operator equations on Hilbert spaces. Amer. 
Math. Soc. Transl. Ser. 2: 230 (2010), 107-137. 

[22] S. Saitoh and Y, Sawano, Generalized reproducing kernels and generalized 
delta functions, P. Dan et al (eds.), New Trends in Analysis and Interdisci
plinary Applications. Trends in Mathematics, Birkhauser (2017), 395-400. 

[23] S. Saitoh and Y. Sawano, Theory of Reproducing Kernels and Applications, 
Developments in Mathematics 44, Springer (2016). 




