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Mathematics of Image Reconstruction in Sparse-View CT and Interior CT

Hiroyuki Kudo
Faculty of Engineering, Information and Systems

University of Tsukuba, Japan

1. Introduction

Since 2000, it has been widely
recognized that radiation dose in
CT examinations increases cancer
risk. To overcome this drawback,
new designs of CT scanners called
sparse-view CT and interior CT
have been actively investigated in

CT community. As shown in Fig. (&) Sparse-View CT (b) Interior CT
(10-100 projection data)

1(a), the sparse-view CT refers to

CT in which the number of Fig. 1 Principles of sparse-view CT and interior CT.
projection data is reduced to decrease patient dose as well as to accelerate data
acquisition. As shown in Fig. 1(b), the interior CT refers to CT in which X-rays are
radiated only to a small region of interest (ROI) such as heart or breast to decrease
patient dose. A key in these scanners is how to reconstruct images with sufficient quality
from the limited projection data. In this paper, we introduce research activities on this
topic for unfamiliar readers based on my talk in RIMS workshop “Recent developments

on inverse problems for partial differential equations and their applications”.

2. Image Reconstruction in Sparse-View CT

This section is concerned with image reconstruction in the sparse-view CT using
Compressed Sensing (CS). It is well-known that the solution to image reconstruction in
the sparse-view CT is not unique such that the associated null-space of Radon transform
operator is rather complicated. Up to the middle of 2000, this problem had been tackled
with a variety of image reconstruction methods. However, the conclusion was that it is
impossible to reconstruct sufficient images from a small number of projection data. In
2006, however, Candes et al [1] and Donoho [2] discovered a new class of solution
methods for inverse problems called Compressed Sensing (CS). CS is a promising
technique, which is able to reconstruct high-quality images even from a variety of limited

projection data. Since then, many researches have demonstrated that CS is very



powerful for the image reconstruction in sparse-view CT. Here, we explain two CS-based
image reconstruction methods developed for the sparse-view CT. The first one is the
standard method all over the world called Total Variation (TV) regularization, which has
been already used in commercial CT scanners. The second one is our original CS called
second-generation CS which improves CS in terms of image quality.

(1) Total Variation (TV) Regularization [3]

We denote an image to be reconstructed by ¥, denote measured projection data by E,
and denote a system matrix relating ¥ and b by A.In the TV regularization approach,
image reconstruction is performed by minimizing the following cost function.

£@) = BliEllry + 4% - B[ o)

where the first term is TV norm of image, the second term is the least-squares data

fidelity term, and S is the hyper-parameter to control the strength of regularization.
(2) Second-Generation Compressed Sensing [4]

The major drawback of TV regularization is that smooth intensity changes and image
textures are lost when measurement condition is not very good, because it is based on
the mathematical model that the image is piecewise constant. To further improve image
quality, several improved regularization terms such as non-local TV and higher-order TV
have been proposed. Second-generation CS is one of them which we have developed
around 2015 [4]. In 2-nd generation CS, image reconstruction is performed by
minimizing the following cost function.

fG) = BIlE = MEl} + [z - B, )
where M is a non-linear smoothing filter. A key in this approach is the regularization

term (first term) in Eq. (2), which can be interpreted as follows. First, we sparsify the
image ¥ by computing a difference between the image % and the filtered (smoothed)
image MX. Then, we evaluate sparsity of the sparsified vector ¥ — MX by computing !
norm. The choice of non-linear filter has a significant effect on image quality. If we use
median filter, achieved image quality is similar to that by the TV regularization.
However, by using Non-Local Means (NLM) filter or bilateral filter having a strong power
in the preservation of smooth intensity changes and textures, image quality can be
significantly improved compared to the standard TV. We are using NLM filter.

Figure 2 shows example reconstructed images in the sparse-view CT. We used real

projection data of X-ray phase CT, where the sample object was a small piece of blended-

polymer material (PS-rich region and PMMA -rich region are mixed in a complicated way).

The image reconstruction was performed from only 23 projection data (less than 1/10 of
the ordinary scan case). We compared reconstructed images by Filtered BackProjection

(FBP) method, TV regularization, and 2-nd generation CS. It can be observed that CS
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succeeds in eliminating the streak artifact occurred in FBP method, and 2-nd generation
CS significantly outperforms the TV regularization in terms of preserving smooth

intensity changes.

FBP (552 projections) FBP (23 projections)
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Fig. 2 Reconstructed images from only 23 projection data in the X-ray phase CT. The sample

object was a small piece of blended-polymer material.

3. Image Reconstruction in Interior CT

This section is concerned with image reconstruction in the interior CT. For a long
time up to 2007, it had been believed that exact image reconstruction in the interior CT
is impossible, because Radon transform operator corresponding to the interior CT
possesses a complicated null space. Since 2007, however, several exact solution methods
have been discovered in CT community. To guarantee the solution uniqueness, some of
them use small a prior knowledge on the object, and others use small additional
measurement of projection data. Here, we explain the four existing exact approaches to
the interior CT reconstruction centered on our research activities.

We begin by describing the definition of image reconstruction in the interior CT. We
denote an object to be reconstructed by f(x,y) and denote measured parallel-beam
projection data by p(r,8). As shown in Fig. 1(b), let consider the imaging situation in
which it is enough to reconstruct f(x,y) on a small ROI S located inside the object. In

this case, we intuitively imagine that it is NOT necessary to measure p(r,8) which does



NOT pass through the ROI S, because these rays do NOT have information of ROI. So,
the interior CT refers to CT in which p(r,0) is measured only for a set of straight lines
passing through the ROI S and f(x,y) is reconstructed only on the small ROI S. In
1986, Natterer [5] proved that the solution to image reconstruction in the interior CT is
not unique. Since then, this problem had been an unsolved problem for a long time in CT
fields. Since 2007, novel exact approaches to this problem has been discovered. Here, I
briefly review four exact approaches. The existing exact approaches can be classified as
follows.

(1) Method 1: Using a Priori Knowledge inside ROI [6],[7]

Ye et al [6] and Kudo et al [7] discovered the following uniqueness result. If f(x,y)
is known on an arbitrary small region B (having non-zero measure) located inside the
ROI S as a priori knowledge, f(x,y) is uniquely determined over the whole ROI S.

(2) Method 2: Using Piecewise Constancy over the Whole ROI [8]

In 2009, Yu and Wang [8] discovered the following uniqueness result. If it is known
that f(x,y) is piecewise constant over the whole ROI S, f(x,y) is uniquely determined
over the ROI S.

(3) Method 3: Using Piecewise Constancy over a Small Region inside ROI [9]

The major drawback of Yu and Wang’s approach is that the a priori knowledge that
f(x,y) 1s piecewise constant over the whole ROI S is not correct for actual CT images
having smooth intensity changes and textures. Consequently, there is a danger that this
approach eliminates the smooth intensity changes and textures (as shown in Fig. 3). To
overcome this drawback, Kudo [9] relaxed the necessary a priors knowledge as follows.
If it is known that f(x,y) is piecewise constant on an arbitrary small region B (having
non-zero measure) located inside the ROI S, f(x,y) is uniquely determined over the
whole ROI S.

(4) Method 4: Using Minimum Additional Complete Projection Data [10]

All the previous exact approaches to the interior CT reconstruction, r.e. Method 1,
Method 2, and Method 3, use a priori knowledge on the object to guarantee the solution
uniqueness. In 2018, Kudo [10] discovered the following new approach, which is based
on measuring additional minimum complete projection data covering the whole object
(not ROI only). His result is summarized as follows. If we measure complete non-
truncated projection data p(r,8) (covering the whole object) over an arbitrary small
angular range (having non-zero measure) 6 € E in addition to the interior CT projection
data, f(x,y) is uniquely determined over the whole ROI S. In addition, Kudo [10]

proved that the inversion in this case is stable.
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Figure 3 shows example reconstructed images in the interior CT. We used a CT image
of human brain as a numerical phantom. The image reconstruction was performed from
numerically computed projection data (with no noise) by using the four exact approaches.
We also implemented the standard local FBP method used in commercial CT scanners
to handle the interior CT case. In this method, the missing part of interior CT projection
data is extrapolated with a smooth function and the resulting completed projection data
is reconstructed by using FBP method. In Fig. 3, local FBP method suffered from the
severe low-frequency shading artifact and the DC shift. As is worried, Yu and Wang’s
approach (Method 2) suffered from the loss in smooth intensity changes and textures.
Other three approaches, z.e. Method 1, Method 3, and Method 4, succeeded in providing
nice images. In this experiment, the most surprising discovery was the following. In
implementing Method 4, we used only one (minimum) additional complete projection
data in addition to the interior CT data, but the artifact could be almost completely
eliminated leading to an almost perfect reconstruction.

A priori knowledge region B

(In Method 1, Method 3)

Complete projection data Local FBP method Method 1 (Intensity on B is known )

[-20HU,90H%
e

[-20HU,9QH

Current standard methods

Method 2 (whole ROl is Pie.Con.) Method 3 (Bis Pie.Con) Method 4 (+ Complete Projection)
[-20HU,90HY]

Only one complete projection

data 1s used (guarantee uniqueness)

Fig. 3 Reconstructed images in the simulation studies of interior CT. In Method 1 and Method
3, a priori knowledge region B was set to the ring-shaped region shown on the top. In
Method 4, we used only one complete (non-truncated) projection data corresponding to

zero degree as an additional measurement.
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