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ABSTRACT

Predictive models have received wide attractions in modern engineering, financial, and social

problems. We develop models and algorithms to analyse the patterns in big data, and try to

leverage these patterns to make better predictions on what may happen in the next. In this

process, structured data and patterns play an important role, because they are the intersections

between the raw observations that we collect from the real world and the algorithms that we

build and operate on computing resources. In the pursuit of favourable predictive performance,

the models are mainly challenged by the variety and veracity of structured data and represen-

tations, because we neither have trustworthy raw observations that unveil the ground truth

nor have enough amount of qualitative techniques to infer the values of interest given the

heterogeneous observations.

In this dissertation, we attempt to address the variety and veracity problem in predicting with

structured data by developing learning algorithms that can discover hidden structured patterns

and use the patterns to facilitate the learning algorithm and the prediction. There are three

essential challenges involved: (1) develop a method for the graph-structured data in materials

informatics so that the fine-grained similarity of the graph elements can be accounted and

contributes to the prediction, (2) construct learning algorithms and proper data representations

so that the risk of conflicting observations can be mitigated, (3) develop time series forecasting

algorithm that is robust to noisy temporal observation and is complementary to legacy evaluation

metrics.

To tackle these challenges, we propose innovative structured learning techniques that

can incorporate structured patterns as complementary input, output, and model components

that can be learned directly from raw observations. For the first challenge, we develop fine-
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grained kernels to describe the similarity of graph elements, e.g., labeled vertices and labeled

edges. The proposed technique is tailored for domain experts to contribute and transmit their

knowledge to the kernel construction. The proposed method achieves favourable predictive

performance compared to the methods that use handmade features. In the small data scenario

in materials informatics, the proposed method exhibits a significant advantage when the

availability of annotations is limited. For the second challenge, we propose two techniques

ranging from shallow model to deep neural networks to handle the intransitive relationships in

raw observations. The models generalise the related works via incorporating cross-sectional

numerical interactions between model parameters. For the shallow model, we define the

numerical interactions via additional matrices and show constructively how the model generalise

to the legacy related works. For the deep neural networks, we devise a structured neural network

that simplifies the legacy models while maintaining the notion of pairwise comparison and

matchup. A thorough investigation on real-world datasets show an universal presence of

conflicting observations and highlights the importance of developing algorithms that can handle

intransitive relationships. For the final challenge, we develop an alternative perspective, i.e.,

the ranking perspective, that is robust to noisy temporal observations in comparison with the

legacy methods that optimize tracking errors. The proposed forecasting algorithm leverages the

learning-to-rank technique and can simultaneously analyze the time series from both ranking

and tracking error perspective by adopting a local learning algorithm that enables augmented

inference. We are able to obtain improved ranking performance for the temporal observations,

and moreover, this improvement is complementary to the tracking errors that are optimized by

the conventional methods.
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Chapter 1

Introduction

When we encounter a predictive analytics task for big data, existing solutions or algorithms

are often challenged by the 4Vs, i.e., volume, velocity, variety and veracity of the data. To

deal with these challenges, one may design elegant algorithms and data-driven models by

leveraging the structure of the data in efficient and effective ways; for example, applying the

infamous "kernel trick" on high-dimensional data helps transform the numerical optimization

of an empirical risk minimization into solving for a well-posed linear system. Others may

tailor the structure and units of deep neural networks depending on how it would best fit the

characteristics of data [1]. An example of such is the adversarial training techniques that are

developed to mitigate the risk of over-fitting when random or even adversarial samples are

involved in model training. Therefore, it is well recognized that a proper structuring of data

representation and additional efforts on feature engineering can provide valuable reflections

on how to enhance the performance of a predictive model, despite that certain downstream

problems like finding a global optimum and maintaining the generalization power of a model

are equally important in the implementation.

A proper structuring of data for machine learning responses to the 4V challenges in

different ways. First, on volume, machine learning has been developed with many theoretical

justifications, generic techniques to create learning algorithms with structured data remain
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Figure 1.1: Data representations for graphs, ranking lists and time series.

as an open area when the algorithms that operate on structured data are analysed in terms of

complexity. Second, on velocity, when data structure is weaved into the data management

process, the technical challenge tends to shift it focus away from machine learning to the

acceleration of numerical computation and the deployment of data operations. Third, on

variety, the overwhelming presence of unstructured data, such as images and audios that do not

easily fit into a tabular representation on a spreadsheet or in a relational database, enlarges the

information gap between raw data and extracted patterns. Lastly, on veracity, in the process of

translating a problem from its primitive description to a solvable mathematical formulation,

some meaningful information may be lost and the intrusion of toxic information may be

unavoidable, so a proper representation of data is needed to carry on the profound insights.

Overall, all the 4V challenges in big data are exposed to the problem of structuring data in

different ways and machine learning is a generic and promising solution to these challenges.

Among the multi-facet deliberations of data structure and algorithms, leveraging the struc-

tured patterns hidden behind raw observations is an all-weather technique to enhance the utility

of a machine learning model or a predictive modeling workflow. For example, in materials

informatics, the domain knowledge of similarities between atomic elements can be critical

to the accurate inference of certain material properties; fine-grained atom-level information

is descriptive of electromagnetic properties, because the formation process of the material

compound is essentially a series of electromagnetic interactions between the underlying atoms.
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In network analysis and preference aggregation problem, feature extraction is difficult from

raw observation, so this challenge on how to structure effective features from the nodes and

objects motivates the development of representation learning techniques, which aim to build

learning algorithms that can automatically discover favorable hidden patterns from the data. In

Fig. 1.1, three typical data representations, i.e., graphs in materials informatics, ranking list in

recommender system, and time-series in the financial domain are illustrated to highlight the

variation of problem settings in predictive modeling, especially when the variety and veracity

issue of big data is concerned.

In recent years, a transition from statistical machine learning models to deep neural net-

works, which aim to integrate feature extraction into learning algorithms in an end-to-end

manner, has been witnessed in the research community. In this transition, the gap between the

number of available techniques to discover hidden patterns and the exponential accumulation of

unstructured data is large. As a result of the gap, feature engineering is no longer a standalone

module in a predictive modeling workflow. Instead, more and more features can be learned

directly from raw data via representation learning algorithms [5]. For example, word embed-

ding techniques in natural language processing (NLP) has been widely adopted to improve the

performance over handicraft NLP features. By learning a multi-dimensional representation for

the word QUEEN from the data, the learned word representations have demonstrated superior

descriptive power as a feature vector and have exhibited favourable cognitive properties in

natural language, which can be as simple as the following semantic "equation":

QUEEN

[2.0, 1.0, 4.1] ⇐
KING

[0.9, 1.1, 2.0]−
MAN

[−1, 0.5,−2.0]+
WOMAN

[0.1, 0.5, 4.0]

Overall, it has been recognized that revisiting the data representation and its utility is a

prerequisite in the successful design of learning algorithms that are challenged by the 4Vs in

big data. In order to better discover and leverage the hidden patterns from noisy observations

and limited source of annotations, several directions are envisioned by the research community.
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The most intuitive direction is to restructure the input and ensure that meaningful information

are fed into the model. A similar mindset can be applied to the output of models to ensure

meaningful feedback signals can be back-propagated to facilitate the parameter estimation. In

statistical machine learning, the iterative learning and inference procedure provides a fertile soil

to propagate structured patterns back and force; therefore, revisiting the algorithmic challenges

from alternative angles and resolutions is thrilling, albeit with some technical difficulties.

1.1 Challenges

In practice, the elements of structured data are sometimes only partially observable. This

happens either due to a high measurement or assessment cost to obtain an accurate and trust-

worthy observation or because the ill-posed problem definition inevitably involves conflicting

observations. For example, the functional property of a material compound is unveiled to

material scientists before the material is physically developed with a high implementation cost.

As a result, in order to guide the high-throughput materials discovery and better control the

cost, predictive models are positioned to leverage only a limited amount of graph-structured

observations, although the patterns and annotations are domain-specific and difficult to handle

by generic models. To overcome this shortage of annotations, learning algorithms that can

outperform with small data are demanded. Indeed, such a shortage of annotated data is

common to the data science problems in many scientific discovery [2], not only in materials

informatics but also in the development of machine learning algorithms in pharmaceutical

industry, medical diagnosis, earth observation and astronomy. Besides, the technical challenge

caused by conflicting or adversarial observations is also inevitable. In rank aggregation, in

order to predict a result exhibiting a cross-sectional and temporal consistency, the learning

algorithm has to arbitrarily eliminate conflicting observations. This is only feasible with an

awareness of hidden patterns behind the model. In this dissertation, several approaches are

proposed to tackle the problem of predicting with structured data with a focus on the variety
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and veracity of structured data. By taking one step back from the conventional problem settings,

the proposed approaches first revisit the hidden pattern behind the raw observations and then

deliberately solve the problems by raising the following fundamental questions:

1. DOES atomic-level similarity provide constructive information for predictive analytics

in material informatics?

2. WHAT is the proper data representation to mitigate the risk of conflicting observations,

given unconcordant pairwise relationships? HOW to improve the predictive performance?

3. IS concordance an alternative and meaningful optimization objective for time-series

forecasting? HOW to utilize the concordance information as a complement to the

conventional approaches that optimize tracking errors?

For Question 1, we face a scarcity of effective features related to the data variety. A

conventional and de facto approach in statistical machine learning to deal with such a scarcity

of effective features and annotated data is kernel method. The kernel method constructs kernel

matrices by exploiting the similarity of objects, and thereafter learns a predictive model from

the data. Although the kernelization of machine learning models for a variety of structured

data has been extensively studied in literature, the techniques regarding how to utilize domain

knowledge in random walk graph kernels for materials informatics problem remain unexplored

for both material scientists and computer scientists.

In Chapter 2, we propose a novel predictive model for materials informatics. The proposed

model incorporates fine-grained details, e.g., atomic-level and bond-level similarities of the

graph elements in materials compounds by using graph kernel. To calculate the similarity at

atom level and bond level, we refer to one of the most fundamental domain knowledge in

materials science and chemistry, i.e., the periodic table of the elements. In the periodic table, the

element-level adjacency in column and in row are qualitative descriptors for electromagnetic

properties. Thus, we can use the concordance relationship between the random walk sequences
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Figure 1.2: Predictive modeling pipeline for graph-structured data in materials informatics.

on graphs as a proxy for the estimation of the similarity between material compounds by

adopting soft matching functions instead of the exact matching functions in the primitive

definition. To reduce the complexity of the computation, we formulate a minimum spanning

tree algorithm that reduces the complexity of of a kernel update from O(|V |3) to O(|V |2) by

cutting off the redundant chemical bonds in a graph representation. The proposed method is

examined in real world materials informatics database. In comparison to the methods that

rely on conventional handicraft features, the proposed method exhibited superior predictive

performance when only a tiny fraction of labeled samples is available for training. This is

favorable for the small data challenge in materials informatics.

For Question 2, we study the modeling of intransitive relationships. Intransitive relationship

refers to a property of binary relations that are not transitive. The problem is a derivative

of data veracity and is unique to graph and ranking data. In network and ranking analysis,

one may gather ranking information from different data vendors or annotators, while the

annotators may provide data with limited veracity intentionally or unintentionally. It is trivial

to show that even for the simplest form of ranking observation, i,e., pairwise comparison and

matchup, the intransitivity issue is unavoidable if the pairwise relationships can propagate

freely on different ranking lists. To infer an unobserved pairwise relationship, one can distill

the conflicting observations by arbitrarily propagating the relationships and dropping out the
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Figure 1.3: Learning structured representation of objects for predictive modeling of intransitive
pairwise relationships.

conflicts along the path. However, it is not always preferred to do so, because the uncertainty

of pairwise relationships is nature to the problem and such uncertainty has to hold a presence

in the predictive model. In order to systematically handle the conflicting observations, a proper

structuring of data representation is needed.

In Chapter 3, we present a novel multi-dimensional representation learning technique for

predicting pairwise comparison results. Our proposed method utilizes a unified structured

representation of objects that can represent various scoring attributions, including the interaction

between objects and the intrinsic strength of each object. On the expressiveness of the proposed

model, we provide a simple and constructive example that shows how the proposed model

generalises its related works. For the estimation of the parameters, we devise a stochastic

gradient algorithm based on alternating direction methods of multipliers. Through missing value

inference experiments on real-world datasets covering recommender system, food preference

and online gaming platform, we demonstrate that the proposed method improves the prediction

accuracy of existing models. Moreover, to highlight the importance of dealing with intransitivity

in data science problems that involve a ranking perspective, we provide an extensive quantitative

investigation on the universal existence of intransitive relationships in real-world datasets.

In Chapter 4, we further present an end-to-end intransitivity modeling technique for learning

with pairwise comparisons and matchups. Different from the techniques presented in Chapter
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Figure 1.4: Learning to rank temporal observation pairs for time-series forecasting.

3, a structured multi-layer neural network is used for the parameter estimation, instead of

the conventional logistic function. Through experiments on synthetic data with a controlled

rank, we verified that the proposed end-to-end approach is superior to shallow models that do

not leverage deep neural networks. In comparison to the model presented in Chapter 3, the

proposed technique opens the gateway to future research and development of more expressive

network structures. Through missing value inference experiments, we demonstrate that the

proposed method is a simpler yet more effective method to improve the prediction accuracy for

the modeling of pairwise comparison and matchup.

For Question 3, we concern the veracity of temporal data. Time-series forecasting is a

common research topic in this scope. Forecasting requires a model capacity to capture the

long-term dependency in the past and to make prediction of future events in a forward-looking

horizon. Conventional evaluation metrics of time-series forecasting are unthinkingly based

on tracking error and are not robust to inaccurate measurements of temporal observations.

When the utility of the forecasts is evaluated in the lens of relative orderings of the temporal

observations, tracking error can be too primitive because it does not help minimize the mis-

alignment between the forecast and the ground truth. In the financial domain, asset managers

and hedge funds may prefer a longer forward-looking horizon and weights the utility of relative

ordering between temporal observations more than that of the tracking errors. In such cases,
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learning algorithms that can optimize the ranking objectives directly is appreciated, because it

maximises the utility of the model output and is more robust considering discrete nature of the

model outputs.

In Chapter 5, we propose a novel time-series forecasting method that optimizes and infers

the relative relationship of temporal observations by using learning to rank technique. A local

learning technique for temporal observations based on nearest neighbor model is proposed to

make the discrete forecast comparable to what is predicted by the conventional tracking-error-

focused models. To improve the predictive performance, heterogeneous modules are wrapped

up in a dynamic prediction strategy. Extensive experiments on real-world financial data show

that the proposed method significantly improves the prediction of relative relationship between

temporal observations. Moreover, the utility of the model is discussed for different types of

time-series and within various lengths of forward-looking horizon.
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Chapter 2

Predictive Modeling for Graph-structured

Data in Materials Informatics

2.1 Introduction

Machine learning with structured data has been widely applied to computer vision, natural

language processing, speech recognition, bioinformatics, and etc. In order to achieve the

goal of certain domain-specific predictive or prescriptive analytical tasks with satisfactory,

researchers in informatics as well as experts in the respective domain investigate various

scientific data and patterns. The inspirations come in two perspectives. The first perspective is

the algorithmic perspective that focuses on data representations and efficient algorithms that

manipulate underlying data structures. The second perspective is the domain perspective, that

focuses on the discovery of patterns aiming at a better construction of logical explanations

based on domain knowledge. Both perspectives are indispensable for a successful design of

data-driven algorithm based on machine learning and data mining techniques [3].

Recently, the rapid growth of volume and velocity of big data has made impacts on scientific

discovery. Materials informatics [4], a subarea in scientific discovery, has been pioneered by

the Materials Genomes Initiative [35] and thereafter followed by researchers who develop novel
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algorithms that can combine the machine learning algorithms with interdisciplinary knowledge

or insights from domain experts in chemistry and physics. Examples of such advancement

include the prediction of material properties that are difficult to measure or simulate and the

discovery of novel functional materials based on a limited amount of experimental trails. Over

time, more and more successful applications have emerged, not only in materials informatics,

but also in the pharmaceutical industry, in earth observation and in astronomy.

In materials informatics, material compounds are normally recorded as non-vectorial graph

units and space groups, which are highly dependent on domain knowledge. The feature

engineering of material compounds by handmade vectorial representations that used to be the

de facto treatment for machine learning algorithms, is not sufficient any more, because even

material scientists can not easily specify key features of a material compound. When it comes

to the prediction of functional properties, feature engineering in scientific discovery has always

been an ad-hoc process that is dependent on domain knowledge and prone to measurement

error.

In this chapter, we propose an automated approach to leverage the hidden patterns on

the input end of a predictive model for materials informatics. The model is an extension

of the random walk graph kernel techniques for material property prediction in which the

similarity between graph objects can be automatically calculated from the non-vectorial graph

representations in the material informatics databases. By constructing the graph representation

efficiently from the raw geometric coordinate data using maximum spanning tree, the proposed

method achieves approximately the same prediction power when compared to the conventional

vectorial compound representation, and even outperforms in situations where the availability

of labeled data is limited. We highlight this suitability for the current material informatics

practice in which numerous potential material structures have not yet been properly annotated.

Moreover, we demonstrate that the method maintains a flexible framework that enables potential
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inclusion of constructive domain knowledge, such as electromagnetism specified by the domain

experts in materials science.

2.2 Related Work

Material informatics studies the data-driven approaches for novel material discovery. Pre-

dicting functional properties of a material compound stands at the front line of this research area.

Traditional methods for predicting material properties are based on first principle computation,

which is computationally inefficient and requires coarse-to-fine refinement of the model param-

eters based on quantum mechanics and electromagnetism [6]. With the advancements of data

infrastructure and machine learning techniques, data-driven approaches for material property

prediction based on machine learning techniques have achieved promising prediction accuracy

with an improved computational efficiency by orders of magnitude [18][7][8]. For example,

materialsproject.org is one of the leading databases, where 50,000+ compounds, 40,000+ band

structures, 1,000+ elastic tensors, together with 2,000+ Li interclalation electrodes and 15,000+

Li conversion electrodes [18] are recorded. Compared with former databases, such as ICSD,

which records data in non-exchangeable format [19], materiasproject.org offers rich APIs and

elastic data format. This opens a new era of collective and data-driven innovations. The raw

data in such databases describes the atomic species, three-dimensional polyhedra, and the space

group related to the lattice tiling patterns for crystalline materials. However, crafting expressive

features from domain-specific descriptions is non-trivial to the research community.

Several material compound representations have been proposed in literature to tackle the

prediction of atomization energy, static polarizabilities, frontier orbital eigenvalues, electronic

ground, and excite states of material compounds [8][9][11][28]. Coulomb matrix (CM) rep-

resentation is one of this kind that has been widely used in the recent materials informatics

research. The CM quantifies the electrostatic force of interaction between two point charges

[10] by following one of the most essential physics laws in electromagnetism, the Coulomb’s
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law. Many variants of the CM representation, such as eigenspectrum, sorted, and random CMs,

have been proposed in order to incorporate the rotational invariance property of the atom index

[11].

In principle, feature engineering requires a rational relationship between the representation

and the predicted functional property of material. For example, although CM-based representa-

tions demonstrate promising results in electronic property prediction, partial radial distribution

function (PRDF) representation based on the local density of different types of atoms and

interactions outperforms the CM in the prediction of density of states (DOS) at the Fermi

energy [9]. Although most of the former approaches focused on crafting feature vectors from

the elemental unit of material compounds, an automated evaluation is demanded given the

sophistication of graph-structured chemical compounds. In the current notation system, 230

space groups and a combinatorial amount of potential tiling patterns need to be considered for

novel material design, while the database records only a limited number of physical properties.

When the tiling patterns come into horizon, there should be more doubts than visible benefits if

one use a generic feature vector to represent a material compound.

To automate the feature extraction, an alternative approach is to construct a measure of

similarity or kernel between the graph objects from the raw data. A variety of graph kernels

in machine learning has been proposed for different applications, ranging from computer

graphics and computer vision to social networks and bioinformatics [29] [13][14][15][16][26].

Intuitively, a kernel s : G1 × G2 → R is a function of the similarity between two graph-

structured objects. Many machine learning methods can be solved by applying the "kernel

trick" in the models. For these kernel machines, a kernel implicitly control what hidden patterns

count. Given a graph G defined by its vertex and edge labels, a graph kernel compares the

structured objects with a hybrid of intuition and efficient computation. One example is the

random walk graph kernel, which compares the matching probability of the contemporary

random walk pairs in two graphs [13]. Other examples include the graphlet kernel which counts
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Figure 2.1: Different space group has different elemental unit and various tiling patterns of the
elemental units.

the identical pairs of specific sub-graphs or sub-trees in two graphs [16]. In general, these graph

kernel frameworks open a gateway for researchers to further incorporate domain knowledge

into the modeling workflows and have become useful tools for domain experts [20].

2.3 Preliminaries

In material science, a crystal is structurally an infinite periodic net of units with an extended

framework lattice using a series of basic operators such as "expansion", "decoration" and

"augmentation" [30]. A unit can be characterized in three-dimensional geometry, such as a

polyhedron. The generative process using these operators results in a large amount of potential

crystals and our goal is to utilize this wide spectrum of geometric information from a unit

graph as well as the lattice tiling pattern to predict functional material properties. Given a

material representation M(G, T ), a triplet G(V,E, L(V )) is a vertex-labeled unit graph that

shapes a polyhedron and T ∈ space group is the tiling pattern of the polyhedron. The space

group is also called the Fedorov group in crystallography. It describes the symmetry of the

crystal. The vertex-labeled unit G(V,E, L(V )) contains the set of vertices V and the set of

edges E, as well as the set of labels of the vertices L(V ). The vertex labels v ∈ V are the

atomic numbers of the element in the periodic table and the edges e ∈ E are the chemical bonds

interaction between the atoms. In this chapter, we consider only the isolated polyhedra, where
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the tiling pattern set T is empty. This is basically a simplification of the graph kernel notation

for materials M1(G1, T1) and M2(G2, T2) into s : G1×G2 → R. Note that it is also sufficiently

flexible to convert the edge-labeled graph G0(V0, E0, L(V0)) into an only-vertex-labeled graph

G0(V
′
0 , E

′
0, L(V

′
0 )) with |V ′

0 | = |V0| + |E0| and |E ′
0| = 0, where the number of vertices and

number of edges in the graph are denoted by |V | and |E| respectively.

2.3.1 Random walk kernel

Given graph G(V,E, L(V )), a random walk kernel summarizes the similarity between joint

random walks on two graphs in infinite steps. The rationality of this method lies in that, by

doing joint random walks on two graphs simultaneously, two independent sequences of visited

vertex labels on each graph can be generated. The similarity of two sequences generated from

two random walks on respective graphs is a natural quantification of the similarity between

the two graphs. In practice, by introducing a termination parameter λ, the random walk kernel

quickly converges as the random walk continues; sometimes after only several iterations [27].

Assuming there are two graphs denoted by G1(V1, E1, L(V1)) and G2(V2, E2, L(V2)), a

random walk on a single graph starts with an initial vertex and then transits between the

vertices through the edges in the graph. Suppose that the initial distribution of the random

walk position is a vector u(0) ∈ R|V | and the position of the random walk at the t-th step is

u(t) ∈ R|V |. The random walk on a single graph visits edges and vertices at intervals. At step

t = 2k−1, k = 1, 2, ...,∞, the random walk visits the vertices. At step t = 2k, k = 1, 2, ...,∞,

it visits the edges. In this way, it generates an infinite sequence of visited labels as

v1, e1, v2, e2, v3, e3...vk, ek...

The transition probability from vertices to edges Tv→e and the transition probability from edges

to vertices Te→v = T
′
v→e are defined based on the connectivity of the vertices given in edge set
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E. At each time epoch t, the random walk kernel has a termination probability 1− λ, where

λ ∈ [0, 1]. The dynamics of the random walk are reflected by the transition matrix and is given

as

u(t) = λTu(t− 1) (2.1)

where

T =

Tv→e (t = 2k − 1)

Te→v (t = 2k)

A general treatment for this transition matrix T is to assume a uniform distribution over the

connected vertices and edges. For example, a fully connected three-dimensional graph with

G(V,E, L(V )) has two transition matrices, i.e., a node-to-edge transition matrix Tv→e(t) ∈

R|V |×|E| and an edge-to-node transition matrix Te→v(t) ∈ R|E|×|V |, where |E| = |V |(|V | − 1).

In order to compute the possibility of two labeled sequences that are generated from

independently two graphs, the dynamic of the simultaneous joint random walks on G1 and

G2 can be denoted by the Kronecker tensor product of the dynamic on both graphs as U(t) =

u(t1)⊗ u(t2)
′ , which is identical to

U(t) = (λ1T1)U(t− 1)(λ2T
′

2) (2.2)

By defining the label matching matrices Mvertex ∈ R|V1|×|V2|, Medge ∈ R|E1|×|E2| within

elements in vertex alphabets and edge alphabets, respectively, we can derive the dynamics of a

matching joint random walk,

Umatching(t) = M ∗ (λ1T1)Umatching(t− 1)(λ2T
T
2 ) (2.3)
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where * denotes the Hadamard element-wise product of the matrices and

M =

Mvertex (t = 2k − 1)

Medge (t = 2k)
(2.4)

After infinite steps of such joint random walk, the random walk graph kernel, which

expresses the matching probability of two random walks, can be estimated by

K(G1, G2) = (1− λ1)(1− λ2)
∞∑
t=1

sum(Umatching(t)) (2.5)

where sum(X) is the sum of all elements in matrix X .

2.3.2 Kernel machine regression

Kernel ridge regression (KRR) is a kernelized least-squares regression with L2 regulariza-

tion [12]. By applying the kernel trick, the prediction can be derived from a linear combination

of the kernels between the test and training data through dual parameters α ∈ Rn. After an

implicit construction of the graph kernel matrix K ∈ Rn×n from graph-structured objects, one

can substitute the defined kernel in the KRR with our pre-computed kernels. An analytical

solution to this variant of KRR exists [34]; given a graph kernel K ∈ Rn×n, the analytic

solution for the dual parameters is

α = (K+ λI)−1y (2.6)

Note that the predictions for test samples based on KRR largely rely on the computation of

the kernel K(xi, x) between the training set and the testing samples. Because the solution

of the dual parameters is not essentially sparse, the prediction time of the testing data grows

quadratically w.r.t. the size of the training set. To accelerate the prediction time of such graph
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Figure 2.2: Graph representations of CH4 molecule for graph kernel computation. The red
atom is the carbon atom and the grey atoms are hydrogen atoms.

kernels, support vector regression can be used to solve for a sparse solution. In our experiments,

the KRR is adopted, because the prediction accuracy is prioritized over the explainability.

2.4 Proposed Methods

2.4.1 Spanning tree graph representation

In material informatics databases, there is limited information describing chemical bonds,

despite that all the three-dimensional coordinates of the atoms are given. To properly incorporate

the chemical bonds in the predictive analysis, a naive approach is to represent the compound

as a graph object G. A fully connected graph for the random walk kernel computation with a

transition matrix of size |E|×|V | results in O(|E||V |) computational complexity in each update

of Equation (2.3). However, the fully connected graph in Figure 2(b) does not characterize

the material properties well in the sense that the existence of random walk transitions between

a large amount of light-weighted atoms would potentially dilute the matching signals of the

sequences, especially when dominating atoms are involved.

In order to carve out the relevant active bonds from the graph-structured representation of

materials compound, one may use the Cartesian coordinates of the compounds and construct a
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combinatorial pool of graph representations. However, only one of the candidate representations

corresponds to the genuine structure that explains active bonds between atoms, as depicted

in Figure 2(a). From the chemical physics perspective, a polyhedron of chemical compound

should follow a heavy-atom-centered, symmetric principle for the sake of the stability of the

structure. To generate an informative graph representation of the given chemical compounds

systematically and automate the predictive modeling pipeline, we use the maximum spanning

tree to estimate the adjacency of a valid trimmed graph from the fully connected adjacency

matrix W ∈ R|V |×|V | of the chemical compound. In the adjacency matrix, Wi,j denotes the

hypothetical strength of the interaction between vertex i and vertex j. In practice, either a

Coulomb matrix (CM) or a distance matrix can be used as a candidate for W in order to

generate a trimmed symmetric graph of the data.

The entries in a Couloumb Matrix can be formulated by combining the Cartesian coordinates

of the atoms with the corresponding nuclear charge of each atom, formulated by

Ci,j =

0.5Z2.4
i (i = j)

ZiZj

|Ri−Rj | (i ̸= j)
(2.7)

where Zi is the nuclear charges of the i-th atom and Ri is the Cartesian coordinates of the

i-th atom in the three-dimensional space. Since the CM characterizes the strength of the

electronic force between atoms and is positively correlated with the chemical bonds between

atoms, the adjacency matrix A ∈ R|V |×|V | generated by the minimum spanning tree on the

negative CM constitutes a fine-trimmed core-rooted symmetric graph representation, as shown

in Figure 2.2(c). In practice, the Kruskal’s algorithm is used to ensure the heavy bonds are

included in the final structure, because the Kruskal’s algorithm starts from a sorting operation,

which can ensure the inclusion of strong bonds and thereby the centricity of heavy atoms. To

ensure that the search will start from the centralized heavy atom, one may aggregate the edge

values associated with each vertex and select the highest ranked vertex as the starting point
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of search. This initialization works empirically in our application and its time complexity is

O(|V |log(|V |)).

From the overall computation complexity perspective, by taking the element-wise product

of this adjacency matrix A with the original fully connected weighted matrix, which can be

either a CM or a distance matrix (DM), one can obtain a graph representation G′, that has a

reduced number of edges at |E ′| = |V | − 1 instead of |E| = |V |2. Thereby, the computational

complexity of each update in Equation (2.5) can be reduced from O(|V |3) to O(|V |2). In

theory, the kernel defined in Equation (2.4) should be positive semi-definite as a valid kernel

in the kernel machine. In practice, it is simply useful to have kernels defined using domain

knowledge and adopt the exponential kernel to transform the similarity matrix into a positive

semi-definite kernel [21].

The exact matching of labeled sequences results in a coarse evaluation of the graph kernel.

However, beyond such an explicit relationship between the two graphs, domain knowledge

in material science is also constructive for the prediction of material properties. Enlightened

by this rich source of additional information, we propose multiple fine-grained graph kernels,

i.e., vertex kernel and edge kernel in order to enrich the prediction power of the graph kernel

framework. The proposed vertex kernel is a generalized evaluation of concordance of random

walk sequences with a focus on the proximity of atomic elements in the infamous periodic

table, as illustrated in Figure 2.3. Similarly, an edge kernel can be constructed via a similar

technique that allows for incorporating the proximity of bond strength.

2.4.2 Vertex kernel with domain knowledge

In the construction of graph kernel, the primitive technique is to calculate an exact matching

between the atomic numbers V1 and V2:

M
(0)
vertex(V1, V2) = δ(V1, V2) (2.8)
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Figure 2.3: Periodic table for chemical elements, describing the atomic number (upper-left in
the cubicle), energy level (the row in the periodic table), and the distribution of the electrons
(upper-right in the cubicle).

where δ(x1, x2) is the Dirac delta function.

To incorporate a soft matching between the label sequences generated from the random

walk, one can use the following Gaussian kernel to estimate the similarity between the atomic

numbers in the periodic table,

M
(1)
vertex(V1, V2) = exp

(
−(V1 − V2)

2

2σ2

)
(2.9)

where σ > 0 is the bandwidth of the kernel controlling the distance between different objects.

By setting σ → 0, Gaussian kernel is identical to the Dirac delta kernel.

Other variants of vertex kernels can be derived according to the relative position of the

atoms in a periodic table. For example, the rows and columns in a periodic table are informative,

describing the energy level of each atom and the free electrons in the outer orbit of the elements,

respectively. These are important characteristics for determining the electromagnetism proper-

ties of the chemical compounds, as shown in Figure 2.3. Motivated by the domain knowledge

in the periodic table, given the atomic number of two atoms in the compound, an energy level
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kernel can be defined as the following

M
(2)
vertex(V1, V2) = exp

(
−(level(V1)− level(V2))

2

2σ2

)
(2.10)

where level(A) is the energy level of the atom in the periodic table, which corresponds to the

row index of atom A in the table.

Similarly, to leverage the domain knowledge behind the number of free electrons in the

outer orbit of an atom, one can define the free electron kernel as the following

M
(3)
vertex(V1, V2) = exp

(
−(free(V1)− free(V2))

2

2σ2

)
(2.11)

where free(A) is the number of electrons in the outer orbit, corresponding to the column index

of atom A in the table.

2.4.3 Edge kernel with domain knowledge

The similarity between edge labels provides another perspective to in the evaluation of

kernel entries. the edge labels between the vertices can be quantified by the strength of the

bond or distance between atoms. As described in Section 2.4.1, depending on whether the fully

weighted matrix W is described as a Couboumb matrix or a distance matrix, the trimmed graph

representation can result in different graph representations. In either case, we propose to use

the Gaussian kernel to express a real-numbered strength level of the interaction between two

atoms by

Medge(E1, E2) = exp
(
−(E1 − E2)

2

2σ2

)
(2.12)

where Ei is the strength of the interaction between two edges.
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Table 2.1: Hyperparameters of graph kernels for kernel machine regression. ©IEEE, 2015

Name Values
λterminate 0.1, 0.01, 0.001, 0.0001, 0.00001
σedge 0.1, 1, 5, 10, 50, 100,∞

atomic number M (1)
vertex

Mvertex energy level M (2)
vertex

electrons in outer orbit M (3)
vertex

σvertex 0.1, 1, 5, 10, 50, 100,∞
σgaussian [20, 80]

2.5 Experiments

2.5.1 Dataset and experiment setting

The qm7 dataset is used to demonstrate the effectiveness of our proposed method for the

prediction of atomization energy. The dataset contains 7,165 molecules together with their

compound names and Cartesian coordinates. For the qm7 dataset, the state-of-the-art handmade

feature representation is the CM representation. The range of atomization energy is from

−400 to −2,200 eV/atom with its medium at −1,538 eV/atom. The alphabet of atom labels

in qm7 contains H, C, O, N, S. The largest compound in this dataset contains 23 atoms and

the smallest contains 6 atoms. This information is completely correspondent with the formula

of the compound without any tiling patterns inside, since it is recognized that the chemical

compounds in qm7 preferably position the heavy atoms, e.g., C, O, N, S in the core part of their

polyhedron, and the light-weighted atoms, e.g., hydrogen at its periphery.

In practice, we perform coarse-to-fine parameter tuning for λ in the kernel ridge regression,

starting with 10−10, 10−9, 10−8, ..., 104, 105, as well as the hyperparameters as shown in Table

2.1. In order to make a fair comparison of the different methods, a finer tuning of these

parameters is necessary. For all the experiments, we measured the performance based on

the mean absolute error (MAE) together with the variance, which implies a 70% confidence

interval. We utilize the CM and the DM as two different kinds of W to generate two trimmed

graph representations and compare the proposed random walk graph kernel approach with
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Figure 2.4: Mean absolute error when the percentage of training data increases when using
Coulomb matrix representation.©IEEE, 2015

linear regression (LR), Gaussian KRR, and the random walk kernel assembled with vertex

and edge kernels. We follow the 5-fold cross validation set specified in the qm7 dataset, and

determined the best hyperparameters according to the average performance of the prediction

for all testing folds. When the CM is in use, we applied the sorted version of the CM as the

vectorial feature of the chemical compound [11]. Similarly when the DM is in use, we applied

the sorted version of the DM. The hyperparameter of the best prediction for our method is

obtained at λterminate = 0.00001, Mvertex
.
= M

(1)
vertex, σvertex = 1, σedge = 5, λ = 100 and W uses

the CM representation.

In Figure 2.4 and Figure 2.5, we show the test error with a 70% confidence interval by

using the best model at each fraction of the training set. This provides an optimistic evaluation,

because the best hyperparameter configuration may vary when the model is trained on a

subset of the whole training data. Nevertheless, the performance comparison of the competing

methods remains fair, even when the volume of training set is small. Further, by dividing

the whole dataset into 10 equally-sized bins, we evaluate the competitiveness of the proposed

method when the amount of annotation is limited. We train the competing models by gradually
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Figure 2.5: Mean absolute error when the percentage of training data increases when using
distance matrix representation. ©IEEE, 2015

increasing the number of bins used for training from 10% to 90%, while using the remaining

bins as test sets.

2.5.2 Results

Figure 2.4 and Figure 2.5 show the MAEs of the atomization energy prediction of the four

methods that utilize the CM and the DM, respectively. In Figure 2.4, the proposed random

walk graph kernel using the vertex and edge kernels, named Coulomb matrix + RW + domain

knowledge, performs the best with a score of MAE = 15.11 ± 0.55 eV/atom. Although the

CM + KRR also achieves a comparably good or even better score in the same 10-fold setting,

the prediction performance of CM + KRR degenerates greatly when the training set becomes

smaller. In the extreme condition, where only 10% of the whole dataset is used for training, the

prediction performance of our method remains approximately the same as that of the handmade

representation with 30% training data. Such an superior performance in small data setting is

valid until the training set constitutes 30% of the whole dataset. In other words, we can achieve

a prediction performance similar to that of the sorted CM with as little as 30% of the labeled
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Table 2.2: A summary of experimental results for the competing and the proposed methods,
by taking the Coulomb matrix or the distance matrix as the raw representation of material
compounds. A fixed amount of 70% of dataset is used for training and validation.

Mean Absolute Error (eV/atom) Graph representation

Dataset Method Coulomb matrix Distance matrix

mean predictor 179.02 ± 0.06 179.02 ± 0.06
linear regression 26.18 ± 3.46 51.58 ± 4.92

qm7 Gaussian kernel ridge regression 10.44 ± 0.53 33.31 ± 0.36
RW kernel 41.24 ± 0.56 49.81 ± 1.28
RW kernel + vertex kernel + edge kernel 15.11 ± 0.55 16.35 ± 0.29

data by the proposed method. This is suitable for the practices in novel material discovery,

where a large amount of undiscovered materials needs to be accurately predicted with a limited

amount of discovered (labeled) materials.

A possible reason for this is that there may exist a linear combination of the kernel matrices

between the testing data and the training data through the dual parameters α. In the current

dataset with 7,165 samples originally extracted from 5 specific groups [8], each 10-fold bin

contains about 700+ compounds that are randomly sampled from the the 5 groups. For each

bin, the calculation of a non-sparse kernelized feature vector of fixed length K(xi, x) ∈ R700+

is required, which is computationally heavy. This expressiveness issue greatly increases with

the reduction in the training dataset for the sorted CM. In Figure 2.5, we observe a similar

result for the DM. The difference between Figure 2.4 and Figure 2.5 is that the proposed graph

kernel methods that take CM as an input, always outperform the sorted DM in Figure 2.5. The

most competitive prediction performance is achieved by Coulomb matrix + RW + domain

knowledge. The mean absolute errors in eV/atom for the the proposed and competing methods

are summarized in Table 2.2.
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2.6 Summary

In this chapter, we propose novel techniques to predict the atomization energy of molecules

based on random walk graph kernel. The proposed method leverages the structured patterns and

the domain knowledge in the periodic table. By trimming the graph-structured data in material

informatics databases based on the maximum spanning tree algorithm, the proposed method

can extract informative graph representation for graph kernel computation and reduces the

computational complexity of kernel update from O(|V |3) to O(|V |2). We also demonstrate that

the random walk graph kernel can be easily used to incorporate domain knowledge by using

Gaussian kernel. As a promising approach to build automated predictive modeling pipeline, the

proposed method demonstrates superior prediction power by achieving a near state-of-the-art

prediction performance with a limited portion of labeled samples that is as little as 30% of the

whole dataset. Given the fact that the availability of annotated material is limited, we argue that

the proposed method is well-suited for the practices in material informatics, because it saves

the simulation time by orders of magnitude, compared to the conventional quantum simulation

methods in computational material science.
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Chapter 3

Learning from Intransitive Relationships

for Preference and Matchups

3.1 Introduction

Intransitivity is a type of data veracity that reflects the uncertainty of observations in social

choice theory [81] and in preference modeling [61]. It emerges as a research topic because the

data collection or generation process behind the problem setting involves uncertainty or even

veracity. These issues are not properly addressed by generic models in statistics and in machine

learning. For example, in ranking problems [36, 37], a top-class chess player may lose a game

to a lower-ranked player, due to his under-preparation or carelessness in certain unique moves.

This does not essentially mean that by observing this matchup result, one should assert that

the winner of the game is surely a stronger player who will constantly win the games against

the loser. Likewise, when multiple players are involved in a tournament, intransitive pairwise

relationships between a group of players or objects are inevitable. In a directed graph, these

intransitive pairwise relationships potentially form a cyclic preference chain, that leads us to an

error-prone situation where the algorithm has to make counterfactual deterministic decisions

regarding which pairwise observation to prioritize. In order to deal with these problems, the
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development of structured representations and learning algorithms that can handle the data

veracity is demanded, despite that it is not easy to override the transitivity principle of pairwise

comparison and matchup between individual objects.

Following the divide-and-concur design pattern of data structure and algorithm, escalating

the dimension of representation of players raises our hope in systematically satisfying all the

conflicting pairwise relationships. Given the multifaceted nature of intransitive relationship

between objects, the stringency of transitivity bonded to the scalar representation for an object

can be relaxed by extending the representation of the object from a scalar to 2-dimensional

[52].

In this chapter, we propose a probabilistic model that joint learns the d-dimensional rep-

resentation (d > 1) for each player and a dataset-specific metric space that systematically

captures the distance metric in Rd in the embedding space. By imposing additional constraints

in the metric space, the proposed model can degenerate to former models used in intransitive

representation learning. To highlight the importance of dealing with intransitivity, an extensive

quantitative investigation is provided, showing the wide existence of intransitive relationships

between objects in various real-world datasets. The missing value inference experiments show

that the proposed method outperforms its competing methods in terms of prediction accuracy

for a variety of real-world applications, including social choice, election and online gaming.

3.2 Related Work

In literature, pairwise comparison refers to the situation where two participants are evaluated

by a third-party judge or an objective rule that decides the discriminative win/lose result for

each player. Examples of such a comparison appears in recommender systems [63], social

choice systems [80, 70, 81], and so on. In pairwise matchup, two participants are each other’s

competitive opponents, and therefore the discriminative win/lose result is a reflection of their

strength in the game. Examples of such matchup applications are sports tournaments [68] and
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online games [77]. In both cases, the hidden winning ability of each individual object can be

quantitatively profiled by parametric probabilistic models [75].

Many existing works on parametric models for pairwise matchups data are originated from

the seminal works in computational statistics and choice theory, including the Thurstone model

and the Bradley-Terry-Luce (BT) model [75]. The BT model considers restrictly pairwise

comparison without tie. The parameter estimation is based on maximum likelihood estimation.

However, the expressiveness of the BT model is limited without further generalization in

practice. To improve the expressiveness, some works have been further proposed to handle

multiparty matchups and comparisons involving a tie [53]. The first generalization of BT model

to multi-dimensional representation was limited to the 2-dimensional case with a non-linear

logistic function, inspired by classical multidimensional scaling. In real-world matchups,

the ranking of the players’ ability is closely related to the parametric modeling for pairwise

matchup data. For instance, in sports tournaments [49] and online games, the Elo ratings system

and the TrueSkill ratings system are noteworthy. On the other hand, instead of modeling the

matchups between individual players, some methods concentrate on group matchup, rating

individual players from group matchup records, or alternatively model the belief of each

collected record. These methods are different from ours because they all strictly assume the

principle of transitivity.

In the context of modeling intransitivity, a 2-dimensional vector can be used to represent

the ability of players in a matchup. The state-of-the-art model for intransitive modeling is

the BC model [77], which imitates the offense and defense characteristics of a player and

learns the corresponding multidimensional representations from matchup records. The BC

model was then extended to context-aware settings with an improvement in the performance.

Existing works in this line of research include the studies on the seminal Bradley-Terry pairwise

comparison model and some extensions and applications in various real-world data science

applications, e.g., matchup prediction [68], social choices [70], and so on. In the BT model, the
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Figure 3.1: A directed asymmetric graph that illustrates the observed intrasitivity relationships
in Table 3.1 ©Springer, 2017

strength of the players is parameterized as a single scalar value so that the matchups between

players always remain transitive. Other attempts to meet the challenge by extending the scalar

into a 2-dimensional vector representation through a non-linear logistic model. Recently,

the Blade-Chest model with a multidimensional embedding scheme is proposed to imitate

the offense and defense ability of a player in two independent multidimensional spaces [77].

However, the BC model, which was extended directly from the seminal BT model, is limited in

its expressiveness of intransitivity due to its arbitrary separation of two representation metric

spaces, which technically leads to an unfavorable numerical conjugation. In theory, a thorough

theoretical justifications of these parametric probabilistic models requires certain levels of

transitivity; however, the existence of intransitivity in the real world overrides the transitivity of

preference and therefore has been widely discussed also in econometrics, behavior economics,

and social choice theory for decades.

Overall, the challenge in modeling intransitivity motivates alternative approaches, such as

learning intransitivity-compatible multidimensional embedding from pairwise comparisons.

Without loss of generality, we denote the participants in a pairwise comparison or a matchup as

players in our context, and discuss only the non-tie case.
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3.3 Preliminaries

3.3.1 Intransitivity

Intransitivity refers to the property of binary relations (i.e., win/loss or like/dislike) that are

not transitive. For instance, in a rock-paper-scissors game, the pairwise matchup result is judged

by three rules: {opaper ≻ orock, orock ≻ oscissors, and oscissors ≻ opaper }. A transitive model

results in a transitive dominance opaper ≻ oscissors, that violates the third rule oscissors ≻ opaper.

In other words, the binary relationships in the rock-paper-scissors game are not transitive.

In the real world, such intransitivity exists in the form of cyclic dominance that implies the

non-existence of a local dominant winner in the local preference loop. Moreover, the presence

of a nested local intransitive preference loop results in intransitive comparison and matchup

systematically; therefore predictive modeling with such data veracity is challenging. This

situation occurs when objects have multiple features or views of judgment and each of these

views dominates a corresponding pairwise comparison. Although an underestimation of such

cyclic dominance can be subtle in the numerical testing scores in terms of prediction accuracy,

it is critical in the perspective of making the learning algorithm explainable and cost-sensitive

in decision making. A toy example is illustrated in Figure 3.1 and Table 3.1 to highlight the

importance of learning with intransitivity.

Figure 3.1 shows a directed asymmetric graph (DAG) to illustrate the toy game records in

Table 3.1; the numbered nodes represent the corresponding player, the arrows demonstrate the

dominant relationship between players, and the three dotted circles demonstrate the existing

cyclic intransitive dominance relationships in the observed game records. In Table 3.1, the last

two columns are exemplar predictions derived from transitive and intransitive models. The

prediction of a transitive model predtrans cannot fully capture the intrinsic intransitivity in the

dataset, leading to a deterioration in terms of predictive performance, whereas the prediction

made by an intransitivity-compatible model predintrans is able to accurately capture all the
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Table 3.1: A toy example demonstrating the subtle deterioration of test accuracy when intransi-
tive pairwise relationships are involved in a ranking analysis. ©Springer, 2017

Winner ID Loser ID #wins #loses GT predtrans predintrans

1 2 10 5 ✓ ✓ ✓
1 3 1 2 ✓ x ✓
1 4 10 5 ✓ ✓ ✓
1 5 1 2 ✓ x ✓
2 3 10 5 ✓ ✓ ✓
3 4 10 5 ✓ ✓ ✓
3 5 10 5 ✓ ✓ ✓
4 5 10 5 ✓ ✓ ✓

Test Accuracy: 0.6458 0.6667

deterministic matchups. The mis-prediction of two out of the eight pairwise relationships leads

to a subtle deterioration of the average test accuracy by 0.0208. However, a growth in the

number of observed records may introduce a further difficulty in the evaluation of the unveiled

intransitivity. In this toy example, the local intransitive sets {1,2,3} and {1,4,5} are nested

in a global intransitive set {1,2,3,4,5}. Such c locally nested structures in a dataset with a

large number of players n and active dominance e lead to an exponentially growing number

of intransitive cycles. To enumerate the ground truth for all such cycles, the most efficient

algorithm for searching all such cycles yields a time complexity bounded by O((n+ e)(c+ 1))

[78], which is intractable for randomly observed dense matchups that involves a large number

of participants. Therefore, brute force approaches to satisfy all the possible views are not

practical. This motivates the development of novel techniques such as learning structured

representation of objects from data. In the next section, we provide a quantitative exploration

of cyclic intransitive relationships that are observed in a variety of real-world datasets.

3.3.2 Intransitivity in datasets

We investigate several benchmark datasets collected from diversified areas. The datasets

are commonly grounded on pairwise comparisons or matchups between objects or players.
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Table 3.2: Summary of intransitivity real-world datasets. ©Springer, 2017

DATASET No. of Players No. of Records isIntrans Intrans@3 No. PlayerIntrans@3
SushiA 10 100000 x 0.00% 0/10
SushiB 100 25000 ✓ 26.87% 92/100
Jester 100 891404 ✓ 1.77% 97/100
MovieLens100K 1682 139982 ✓ 0.19% 1130/1682
ElectionA5 16 44298 ✓ 0.44 % 6/16
SF45000 35 5000 ✓ 23.86% 34/35
Dota 757 10442 ✓ 97.58% 550/757

SushiA and SushiB [70] are food preference datasets. Jester [79] and MovieLens100K [80] are

collective preference datasets in an online recommender system. ElectionA5 [81] is an election

dataset for collective decision making. In the area of online gaming, SF45000 [77] is a dataset

collected from professional players and is used to evaluate the strength and weakness of players.

Similar to SF45000, Dota [77] is a dataset of game records containing a large number of players

on an online RPG game platform.

A summary of the quantitative statistics of intransitive relationships in these datasets are

presented in Table 3.2. isIntrans indicates the existence of the intransitivity relationships.

Intrans@3 indicates the percentage of intransitive loops that are analogous to the rock-paper-

scissors game, where the number of involved players equals 3. In Intrans@3, the denominator is

the total number of directed length-3 loops given by 2
(
N
3

)
for a fully observed pairwise dataset.

PlayerIntrans@3 is the number of players who are involved in a rock-paper-scissors-like

relationship. Both Intrans@3 and PlayerIntrans@3 characterize the intensity of intransitivity,

and a higher score indicates more intensive intransitivity in the dataset. In the majority of the

seven datasets we investigated, intransitive relationship between players exists. Moreover, in

five out of the seven datasets, more than half of the players are involved in local intransitive

relationships. This highlights the necessity of modeling the intransitivity. The facts listed in

Table 3.2 is also the first empirical exploration of the existence of intransitive relationships in

the respective domain applications.
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3.3.3 Bradley-Terry model

Bradley-Terry model [75, 76] is one of the most fundamental model for pairwise comparison.

A critical determinant of the Bradley-Terry model is matchup matrix M ∈ RN×N , whose entry

M(i, j) indicates the comparative advantages of item i over item j. M(i, j) > 0 literally reads,

"item i has a comparative advantage over item j." and vice versa.

In the model, each player i has a strength parameter γi, and the (i, j)-th element of the

matchup matrix can be defined as

M(i, j) = γi − γj.

When two players i and j play a match, the winning probability pij = Pr(i ≻ j) that player i

wins the match is given using the matchup matrix, that is,

pij =
exp(γi)

exp(γi) + exp(γj)

=
1

1 + exp (−(γi − γj))

= σ(M(i, j)), (3.1)

where σ(x) = 1/(1 + exp(−x)) is the sigmoid or logistic function.

The model has several core properties: Firstly, M(i, j) > 0 means i has more than 50%

chance to win, and M(i, i) = 0 means it is an even matchup; Secondly, M(i, j)→ +∞ means

Pr(i ≻ j) → 1; Lastly, the matchup matrix M satisfies the following negative symmetry

condition,

M = −M⊤. (3.2)

This negative symmetry property in Equation (3.2) is put in place to ensure pij + pji = 1.
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As a result, each player in the Bradley-Terry model has a one-dimensional strength param-

eter and the probability of player i winning a match against j only depends on the relative

advantage of player i over player j.

3.3.4 Blade-Chest model

To capture the multi-dimensional nature of player’s strength and weakness, Blade-Chest

model has been proposed to overcome the limitation of scalar γp that is not intransitivity-

aware. The Blade-Chest model uses blade and chest vectors to imitate the offense and defense

of a player. The abilities of player p ∈ P are parameterized by ablade, achest ∈ Rd. The

corresponding matchup function is formulated by

• the Blade-Chest-Inner (BCI) embedding MBCI(a, b)

MBCI(a, b) = aT
blade · bchest − bT

blade · achest (3.3)

• the Blade-Chest-Distance (BCD) embedding MBCD(a, b)

MBCD(a, b) = ∥bblade − achest∥22 − ∥ablade − bchest∥22

Overall, these formulations of the matchup function naturally ensure the symmetry property

denoted in Condition (3.2) and are compatible with the scalar-valued representation of the

players’ strength in the BT model. The connection between these two formulations can also be

evidenced under a mild condition [77]. Assembled by this multidimensional formulation, the

BC model is the state-of-the-art model in both predictive modeling and representation learning

for the players’ intransitivity. Some general justifications of its expression power have been

developed. However, there are still rooms for an improvement, because by treating the matchup
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matrix as an anchor in learning and inference, the algorithm may fail to explicitly explain

high-order interactions between players.

3.4 Proposed Methods

We propose a novel model for learning with intransitive relationships in real-world datasets.

The proposed model learns multi-dimensional intransitive representations for each object or

player, e.g., items in a recommender system, tennis players in a tennis tournament, game players

in online game platforms, or candidates in a political election. Different from the BC model,

we focus on the joint learning of the d-dimensional representation (d > 1) for each player and

a dataset-specific metric space that systematically captures the distance metric in Rd over the

embedding space. The joint modeling of the multidimensional embedding representation and

the metric space is achieved by involving two types of covariance matrices, one to capture the

interactive battling result between two players on the metric space, and a second to capture

the intrinsic strength of each player. Through an analysis of the symmetry and expressiveness

of our proposed embedding formulation, we argue that the constrained optimization problem

implied by the proposed multi-dimensional embedding formulation can be transformed into an

unconstrained form. This reformulation results in a generic numerical solution of the proposed

model by using stochastic gradient descent method [71]. Finally, we evaluate the effectiveness

of the proposed method on a variety of real-world datasets, and demonstrate its superiority over

other competitive methods in terms of predictive performance.

Assume that we are given a set of candidate players P with |P| = M . The dataset D

contains N pairwise matchup records xi(ai, bi) ∈ {0, 1}, i = [1:N ], where the players ai and bi

∈ P. An ordinal matchup record oa ≻ ob is the matchup record between player a and player b,

meaning a beats b, and oa ≺ ob , vice versa. The observed record x(a, b) can be represented in a

4-tuple: either x(a, b) = (a, b, 1, 0) meaning oa ≻ ob or x(a, b) = (a, b, 0, 1) meaning oa ≺ ob.

The identical deterministic events can be aggregated, resulting in a collapsed dataset Dcollapse.
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The data entry xaggregate(a, b) ∈ Dcollapse is given by 4-tuples in xaggregate(a, b) = (a, b, na, nb),

where na is the total count of observed event oa ≻ ob, and nb of oa ≺ ob, accordingly.

The goal is to predict the result of matchups by learning multidimensional representation of

the players, so that the structured representations are visible and can reflect the players’ ability

in multiple views better than the conventional models.

3.4.1 Generalized intransitivity model

By introducing two transitive matrices Σ,Γ ∈ Rd×d, we propose a generic formulation of

the matchup function that jointly captures a d-dimensional representation (d > 1) for each

player and a dataset-specific distance metric for the learned representation in Rd over the

embedded dimensions. Let us assume we have a d-dimensional representation a ∈ Rd for

player a ∈ P; then, we can formulate the generalized intransitivity embedding MG(a, b) as,

MG(a, b) = aTΣb+ aTΓa− bTΓb (3.4)

where a and b are the d-dimensional representation for player a and player b, respectively,

and Σ,Γ ∈ Rd×d are the transitive matrices. The model parameters we attempt to learn are

θG := {a,b,Σ,Γ}. In the proposed formulation, the first term aTΣb reflects the interaction

between players, and the latter term aTΓa− bTΓb reflects the intrinsic strength of each player.

The embedding is proposed to model the pairwise preference, in which two properties should

be preserved, i.e., preference symmetry and expressiveness.

We characterize the detailed properties of the proposed formulation in terms of symmetry

and expressiveness in comparison with the BC model and verify that the BC model is a

specialized formulation in a family of our generalized formulation.
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3.4.2 Symmetry property

Different from other problems, such as link prediction in social networks, where the

directed preference between items is naturally asymmetric, a matchup result between two

players requires a preservation of symmetry as defined in Equation (3.2). We demonstrate that

the proposed generalization of multi-dimensional intransitivity models meets this requirement.

Obviously, the two numerical computations of the first term aTΣb and the latter term

aTΓa−bTΓb are independent, given randomized d-dimensional embeddings a and b. Without

a special design of a and b, the sufficient condition to preserve the symmetry of the first term is

Σ = −ΣT (3.5)

which is difficult to regularize given the gradient∇ΣM
G(a, b):

∇ΣM
G(a, b) = abT

However, the induced constrained optimization problem is difficult to solve. Alternatively,

we devise an efficient solution which transforms the constrained optimization problem into an

unconstrained optimization by reparameterizing Σ with Σ′ by

Σ = Σ′ − Σ′T (3.6)

where Σ′ is a free matrix with the same shape as Σ. The symmetry of aTΣb can be thereby

satisfied via this reparameterization trivially. Together with the fact that the symmetry of the

self-regulation term aTΓa− bTΓb in MG holds constantly, we conclude that the symmetry of

the proposed matchup function formulation is guaranteed.
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3.4.3 Expressiveness

A superior expressiveness of our proposed intransitive representation of objects can be

expected by relating the proposed structured representation to the related works.

Suppose that we have blade and chest vectors for player a, ablade and achest ∈ Rd′ , where

d′ = 3; then, we integrate them into a generalized vector ageneral ∈ R2d′ defined by

ageneral =

ablade

achest

 =



blade1

blade2

blade3

chest1

chest2

chest3


(3.7)

This metaphorical definition is derived from the BC model. As a result, the 2d′-dimensional

ageneral has two distinct subspaces ablade and achest, explicitly indicating the physical strength

and weakness of player a in the BC model.

Theorem 1 (Expressiveness). Given the proposed matchup formulation in 2d′-dimensional

space, the proposed model degenerates to a BCI model in d′-dimensional space, under mild

condition

∥a∥22 = ∥b∥
2
2 (3.8)

∥Γ∥F → 0

and,

Σ =

 0 Id′×d′

−Id′×d′ 0





41

Proof 1. On the one hand, by the identified sufficient Condition (3.5) for the symmetry of aTΣb,

given Id′×d′ as a d′-dimensional identity matrix, a fixed transitive matrix Σ with

Σ =

 0 Id′×d′

−Id′×d′ 0


is a sufficient condition to preserve the symmetry of aTΣb, and results in

aTΣb =

ablade

achest


T  0 Id′×d′

−Id′×d′ 0


bblade

bchest

 (3.9)

= aT
blade · bchest − bT

blade · achest (3.10)

On the other hand, given ∥a∥22 = ∥b∥22 = c, the inequality
∥∥aTΓa− bTΓb

∥∥ ≤ 2c ∥Γ∥

holds. Thus, aTΓa− bTΓb→ 0 holds by ∥a∥22 = ∥b∥
2
2 = c and ∥Γ∥F → 0.

Therefore, the BCI model can be recovered by our proposed model.

Based on the fact that BCI formulation MBCI achieves better predictive performance than

its variant MBCD in practice and the proposed formulation MG is inclusive of MBCI , we argue

that the proposed method is superior in terms of expressiveness over the competing methods,

including the BC model [75, 77].

3.5 Parameter Estimation

3.5.1 Training

Without loss of generality, given a set of players P and a collapsed training dataset Dcollapse

with pairwise matchup between players in 4-tuple (a, b, na, nb), as exemplified previously,

we estimate the model parameters θG := {a,b,Σ,Γ} so that the predictive model can better

predict unseen matchups. Following Equation (3.6), we reparameterize the transitive matrix
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Σ as Σ′ and optimize θG
′
:= {a,b,Σ′,Γ}. Similar to the BT model, we train the model by

maximizing the cross-entropy objective,

L(D|θG′
) =

∏
(a,b,na,nb)∈Dcollapse

Pr(oa ≻ ob)
na · Pr(oa ≺ ob)

nb

where Pr(oa ≻ ob) is the probability of the event oa ≻ ob.

In practice, we calculate the log-likelihood and optimize it with stochastic gradient descent

method [71]. In each epoch of the stochastic gradient descent update, we randomly sample one

4-tuple from Dcollapse and update the model parameters θG′ w.r.t. the corresponding players in

the tuple until convergence.

3.5.2 Regularization

The regularization terms are chosen as the following:

R1(D|θG
′
) =

∑
a∈P

1

2
∥a∥22

R2(D|θG
′
) = ∥Σ′∥F

R3(D|θG
′
) = ∥Γ∥F

where ∥·∥2 is L2 norm and ∥·∥F is Frobenius norm. R1 regularizes the scale of our embedding

by intuition, as well as the scale of the blade and chest jointly, since they are integrated into our

embedding. R2 regularizes the scale of the free matrix Σ′ as well as the scale of the symplectic

matrix Σ, because ∥Σ∥F =
∥∥Σ′ − Σ′T

∥∥
F

is upper bounded by 2∥Σ∥F . R3 regularizes the scale

of the free matrix Γ, in line with Condition (3.8) given in Theorem 1.
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Overall, the regularized training objective for a given training dataset is

Q(D, θG
′
) = L(D|θG′

)−
∑
i

λiRi(θ
G′
) (3.11)

where θG
′
:= {a,b,Σ′,Γ} denotes the model parameters and λ controls the regularization.

3.6 Experiments

3.6.1 Evaluation metric

Cross validation for parameter tuning is used in the missing value inference experiments.

Given the dataset in 4-tuple format, we first split the dataset randomly into three folds for cross

validation and then identify the unique pairwise interactions and aggregated the interactions

before initializing the model parameters. The hyperparameters are the dimensionality of the

embedding d and the regularization coefficient λ. The performance is measured by the average

test accuracy A(Dtest|θ), defined by

A(Dtest|θ) =
1

|Dtest|
∑

(a,b,na,nb)∈Dtest

na · 1(ôa ≻ ôb) + nb · 1(ôa ≺ ôb)

where 1(·) is the indicator function of an event.

The proposed method is compared with three competitive methods, namely the naïve

method, BT model, and BC model. The naïve method estimates the winning probability of

each player based on the empirical observations, with Pr(oa ≻ ob) =
na+1

(na+1)+(nb+1)
. If na = nb,

one player is randomly assigned as the winner. The BT model estimates player ability with

a scalar representation. The BC model estimates player ability with two multidimensional

vectors that are independent of each other.
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Table 3.3: A summary of test accuracy on datasets in food preference, recommender system
and online gaming. ©Springer, 2017

DATASET Naïve Bradley-Terry Blade-Chest Proposed Model
SushiA 0.6549± 0.0044 0.6549± 0.0021 0.6551± 0.0038 0.6551± 0.0027
SushiB 0.6466± 0.0042 0.6582± 0.0077 0.6591± 0.0051 0.6593± 0.0058
Jester 0.6216± 0.0006 0.6236± 0.0028 0.6242± 0.0035 0.6243± 0.0019
ElectionA5 0.6507± 0.0031 0.6531± 0.0038 0.6533± 0.0043 0.6535± 0.0055
SF45000 0.5297± 0.0102 0.5329± 0.0044 0.5329± 0.0062 0.5355± 0.0080

3.6.2 Results

Table 3.3 shows the experimental results of our proposed method. For all of the four

transitivity-rich datasets, SushiB, Jester, ElectionA5, and SF45000, we observe improvement

in terms of the average test accuracy. In addition to the predictive performance, two practical

facts are noteworthy. (a) The observed pairwise interactions in all these datasets are rich, and

a K-fold cross validation procedure with no data augmentation results in a set of data bins,

each of which contains identical players. As a result, it is guaranteed that the representation

of each player in the validation and test bin is learned in the training phase that utilizes

K − 2 bins. However, as the number of players grows, the number of records required to

accommodate such a full-evidenced cross validation procedure grows quickly. For instance, in

the case of the SushiB dataset with 100 players, 25000 pairwise records, Intrans@3 = 26.87%,

and PlayerIntrans@3 = 92/100, the empirical down sampling for 3-fold cross validation is

sufficient to perform a sufficiently evidenced prediction of the dominance for all possible

player pairs, instead of a random guess caused by the existence of non-observed players in

the validation and test bins. (b) Given a sampling scheme that is sufficiently stable to allow

the model to give a sufficiently evidenced prediction, a K-fold cross validation results in

sparser interactions in the bins, which can be indicated by the connectivity of the matchup

network, i.e., Borda count or Copeland count for directed graphs. However, in the challenging

MovieLens100K and Dota datasets, the resultant heterogeneous interactions between players

prevent us from providing evidenced dominance prediction from the observed sparse networks.
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A trivial solution for such a case is a random guess, which is meaningless for intransitivity

recovery. The above two facts hold for all the competitive methods.

3.7 Summary

In this chapter, we study the issue of modeling intransitivity and representation learning for

players involved in pairwise interactions. We proposed a generalized embedding formulation

for learning structured representation that is compatible with intransitivity from pairwise

comparison and matchup data. We also discussed the key properties of the proposed structured

representation in terms of symmetry and expressiveness constructively. For the parameter

estimation, an efficient solution to the constraint optimization problem involving multiple model

parameters was developed based on alternating direction methods of multipliers. Through

missing value inference experiments on datasets collected from recommender system, food

preference and online gaming platform, we demonstrated that the proposed method improves

the prediction accuracy of existing models. Moreover, we provided an extensive investigation

of the wide existence of intransitive relationships between objects and players in real-world

datasets. This highlights the importance of dealing with intransitivity in predicting with

structured data, especially when ranking perspective is involved.
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Chapter 4

End-to-end Learning from Intransitive

Relationships with Structured Neural

Networks

4.1 Introduction

In the previous chapter, we showed how multi-dimensional representation of objects for

pairwise comparison and matchup can help in dealing with intransitivity. The simplest case

is that when the intrinsic dimension of the problem is one, the problem degenerates into the

Bradley-Terry model, in which no intransitivity of pairwise relationship is allowed. In order

to motivate a structured discovery of hidden patterns behind the conflicting observations, two

aspects of a predictive model demand further deliberation. Firstly, to preserve the generalization

power of a predictive model, one may specify an intrinsic dimension d beforehand, despite

that identifying the intrinsic dimension of a problem is difficult. Secondly, in order to build

models with richer expressiveness to handle the conflicting observations, one can utilize deep

neural networks and tailor the network architecture so that it is compatible with intransitive
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relationships. In this chapter, we discuss the construction of deep neural networks for the

problem of learning from intransitive relationships.

The modeling of pairwise comparisons and the modeling of ranking lists share common

elements, such as the interactions between players and objects. Representative pairwise

comparisons are matchups, including online video games [67, 66] and sports tournaments

[68], where the model is used to either pair an equal and fair game or to predict winner by

systematically taking into account of overall track records. In ranking problems where rankings

can be aggregated from partially observed results, pairwise comparisons and preferences are

easily found as essential elements [61, 64].

The advantage of highlighting the pairwise comparisons for the ranking problem comes

in two directions. Firstly, the pairwise comparison is the basic element for the data-driven

model and the learning system to read and to learn from, in order to predict a win/lose result of

future competitions. Secondly, the interpretation of the model can be streamlined in the lens

of a simple matchup matrix because the matchup matrix is an abstraction that carves out the

predictive ranking list.

Two of the most widely used models of ranking from pairwise comparisons are the Thur-

stone model [65] and the Bradley-Terry (BT) model [75, 76], both of which belong to an

extended class of Random Utility Models and share a common characteristic that a scalar score

is used to represent a player’s overall capability. In more recent works [62], the BT model

becomes the basis of all probabilistic approaches and shows a well-balanced status between a

model’s interpretability and its predictability.

A critical limitation of the BT pairwise comparison model is that the strength or the

competitiveness of a player is modeled by using only a single scalar. In fact, it is not sufficient

to represent one player with only a single scalar. It is straightforward to show that if player

A beats B and B beats C more often than not, then the model will predict that A always beats

C. However, intransitive relationship naturally exists in many real world applications such as
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economics, sports games and social choice theory. An exemplar case is a basketball tournament

with three teams, i.e. team A, team B and team C. The transitive model can not satisfy the

following potential outcomes at the same time: Pr(A beats B) > 0.5, Pr(B beats C) > 0.5

and Pr(C beats A) > 0.5, where Pr(A beats B) > 0.5 indicates that the probability of team A

beats team B is larger than 0.5. Besides, some decisive factors, like injuries, teamwork and

psychological factors, are neither explicitly included. Therefore, to improve the prediction

accuracy in the inference of missing observations as well as the fairness in player pairing,

innovative solutions are needed.

To deal with these problems, several models of intransitive comparison have been proposed,

such as the 2-dimensional vector representation BT model [59], the Blade-Chest (BC) model

[73, 77]. The BC model utilizes two multi-dimensional vectors, i.e. ‘blade’ and ‘chest’, to

reflect different aspects of each player’s strength. The blade and chest vectors can be then

integrated into a generalized intransitive model [72], which enhances the numerical interactions

between the vectors. Most of these works considered a multi-dimensional representation of

each player and adopted stochastic gradient method to optimize a regularized cross-entropy

objective.

In this chapter, we propose an end-to-end approach to develop an intransitive model. The

model is a generalized from the Blade-Chest model, but avoids the estimation of the ‘blade’ and

‘chest’ vectors of each player by using structured deep neural networks. We show constructively

how the proposed framework unifies a series of the existing works. The framework opens a

gateway to future development of more expressive network structures, thanks to the automatic

differentiation of deep neural network modules. Through similar experimental setting in

the previous chapter, we demonstrate that our proposed method achieves a higher prediction

accuracy in missing value inference experiments.
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4.2 Related Work

The Thurstone [65] and the Bradley-Terry-Luce [75, 76] form the fundamentals of matchup

and pairwise comparison. They use one-dimensional embedding which assumes that each item

can be completely represented by an inherent strength. These work were surveyed extensively

[53, 62] and the applications of utilizing such single scalar to measure the strength of the

players and to estimate the ranking have expanded to wider domains, such as the matchmaking

for online games [58, 54], sports [49, 55, 50] and rating system [56, 57, 45].

Multi-dimensional representation emerged in [51, 62] to advance the oversimplified prob-

abilistic model without explicitly taking the intransitivity issue into consideration. [59] uses

a 2-dimensional vector to model the property of each player, but only with verification on

small datasets. [46] adopts matrix factorization to predict the scores of professional basketball

games. These works do not explicitly address the intransitive property. Nevertheless, they have

a common mindset of attempting to reparameterize the probabilistic model. Since then, the

idea of using multi-dimensional representation for pairwise comparison has been adopted in

applications such as the recommendation system [46, 47], language modeling [44].

Learning from intransitive relationships has been addressed in the data mining research

community [77, 72, 83]. An example is the rock-paper-scissor in which the existence of

intransitivity is authorized by the game rules. [73, 77, 72, 83] propose state-of-the-art intran-

sitive models assembled with multi-dimensional features to differentiate the analogous plays.

Context-aware models have also been developed with special concerns on feature engineering

[73] and domain adaptation. [84] addresses the time-varying property of pairwise comparison

by leveraging the covariance function of continuous-time Gaussian processes. [85] proposes a

context dependent random utility model, which allows for a particular class of choice set effects

that can oversee the prediction in the panorama. In general, incorporating context information

helps improve predictive performance [39–41] and an awareness of intransitivity in decision

making helps improve overall utility [42, 43].
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4.3 Preliminaries

The notations in this chapter generally follow the notations defined in Chapter 3, we focus

on modeling comparisons between two players and we assume the result of each matchup

cannot be a draw. Given a set of players P with |P | = N and a dataset D which contains n

pairwise matchup records (i, j), where i, j ∈ P . For any players i, j ∈ P , we denote i ≻ j

when player i wins a match against player j. For an observed matchup between each pair of

players can be described in 4-tuple as (i, j, 1, 0) that means i ≻ j, or (i, j, 0, 1) which means

j ≻ i. In any subset of D, the game between the same players can be aggregated, and also

resulting in a 4-tuple as (i, j, ni, nj). In such a tuple, ni indicates the number of times i wins j

and nj means the opposition. In this section, we briefly review the preliminary works, including

the Blade-Chest (BC) model, which allows intransitive ordering by generalizing the BT model

and the Blade-Chest-Sigma model, which is a generalized from the BC model.

4.3.1 Generalized Blade-Chest model

A critical limitation of the Bradley-Terry model is that it assumes transitive relations among

players; that is, if player γi > γj (i.e., i has an advantage over player) and γj > γk, then γi > γk

holds. In other words, all players are transitively ordered. Such assumption may not hold in

practice and a simplest counter example is Rock-Paper-Scissors game where the rule is Paper

≻ Rock, Rock ≻ Scissor and Scissor ≻ Paper. By sampling pairwise observation from the

predefined rules, the intransitivity issue arises. It can defined as the following:

Definition 4.3.1. Matchup relations of n players contain (stochastic) intransitivity if there exist

three players i, j and k such that

• Pr(i ≻ j) > 0.5;

• Pr(j ≻ k) > 0.5;
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• Pr(k ≻ i) > 0.5.

Chen and Joachims [77] proposed the Blade-Chest model that allows intransitive relations

among players by introducing two extra d-dimensional vectors for each player i: xblade
i and

xchest
i . The matchup matrix of the Blade-Chest model1 is given as

M
(Blade−Chest−Inner)
ij = xblade

i

⊤
xchest
j − xblade

j

⊤
xchest
i + γi − γj. (4.1)

The Blade-Chest model is a multi-dimensional extension of the Bradley-Terry model. The

multi-dimensional representation in the BC model allows intransitive relations among players.

Generally, the more dimensions the representation has, the more intransitivity the model allows.

A neural network framework of the Blade-Chest model has been proposed by Chen and

Joachims [73]. The top layer of the neural network expresses the blade-chest-inner model in

Equation (4.1). The bottom layer is a fully-connected feed-forward mapping that entangles the

blade/chest vectors and feature vectors. There are two variants, namely CONCAT and SPLIT.

Both variants require feature vectors that describe the environment and the player as input

information.

4.3.2 Blade-Chest-Sigma model

In the previous chapter, we proposed a generic formulation of the BC model. By assuming

a 2d-dimensional representation xi ∈ R2d for player i, the matchup matrix is given by

M
(Blade−Chest−Sigma)
ij = x⊤

i Σxj + x⊤
i Γxi − x⊤

j Γxj, (4.2)

1More precisely, this model is called the Blade-Chest-Inner model, and they also propose another variant
called the Blade-Chest-Dist model; however, there is no significant difference between them. And in practice, the
Blade-Chest-Inner always achieves better prediction than Blade-Chest-Dist. Then we focus on the former in this
paper.
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where Σ,Γ ∈ R2d×2d are the transitive matrices, x⊤
i Σxj reflects the interaction between players

and x⊤
i Γxi − x⊤

j Γxj reflects the intrinsic strength of each player. We denote this model as

"Blade-Chest-Sigma". Following the Theorem 1 in Chapter 3, if we initialize the matrix Σ

properly as

Σ =

 0 I

−I 0

 ,

the Blade-Chest-Sigma model in Equation (4.2) can be reduced to the Blade-Chest-Inner.

4.4 Proposed Method

4.4.1 Generalized intransitivity model

We first describe a generalized representation for the matchup matrix in the Blade-Chest

model. Let us denote the representations of player i by

xi =

 xblade
i

xchest
i

 ,

and define the representation matrix as

X =

 Xblade

Xchest

 ,

where

Xblade = (xblade
1 , . . . ,xblade

N ),

Xchest = (xchest
1 , . . . ,xchest

N ).



53

We rewrite the strength parameters in the original Bradley-Terry model as

γ = (γ1, γ2, . . . , γN).

By using the above notations, we can see the Blade-Chest-Inner model in Equation (4.1) can

be expressed as

M = X⊤

 0 I

−I 0

X+ γ⊤1− 1⊤γ (4.3)

= Xblade⊤Xchest −Xchest⊤Xblade + γ⊤1− 1⊤γ. (4.4)

By replacing the matrix product Xblade⊤Xchest by a new matrix Y defined as

Y = Xblade⊤Xchest

we obtain a generalized representation of the matchup matrix with a rank constraint

M =
(
γ⊤1− 1⊤γ

)
+
(
Y −Y⊤) s.t. rank(Y) ≤ D. (4.5)

Depending on the intransitivity level requires, the structure of model can be change to deal

with the increasing rank of Y. In practice, an arbitrarily matchup matrix by Y − Y⊤ with

rank D can be sufficient in terms of expressiveness, implied by the constructive example [77,

Theorem 1].

4.4.2 Properties

Similar to the discussion in Chapter 3, the matchup matrix should satisfy several properties.
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Figure 4.1: An illustration of the proposed generalized intransitivity framework. ©IEEE, 2020

Firstly, it has been mentioned above that Y − Y⊤ can represent an arbitrarily complex

matchup matrix by removing the rank constraint.

Secondly, it is important to notice that the model can still represent the intransitivity even

when we reduce the rank of Y to 1. If we take Y as a rank-1 matrix by

Y = (xblade
1 , xblade

2 , . . . , xblade
N )⊤(xchest

1 , xchest
2 , . . . xchest

N ),

Thereby, the matchup matrix without the strength terms γ⊤1− 1⊤γ becomes

Mij = xblade
i xchest

j − xchest
i xblade

j .

Assuming that i ≻ j and j ≻ k (i.e., Mij > 0 and Mjk > 0), one can verify that the

intransitive relations among three players in the rock-paper-scissors game can be expressed.

Lastly, if Y = 0 and rank(Y) = 0, the model with a separated strength terms in Equation

(4.5) is equivalent to the primitive Bradley-Terry model.

4.4.3 Parameter estimation with structured neural network

Figure 4.1 illustrates the entire parameter setup and the structure of neural network that

expresses the Equation (4.5). The proposed framework is essentially simpler than the framework
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of the Blade-Chest model in [73], because the “blade” and “chest” vectors are implicitly

embedded in the model via the embedding modules.

Similar techniques that attempt to structure neural networks to solve domain specific

optimization problems can be also found in the development of neural networks for model

predictive control [38]. For a pairwise (i, j), we have two 0-1 vectors that encode the players’

identities. The bottom is an embedding that link the player vector into an embedded vector.

We assume that there are links between the embedding vectors and the entries in the matchup

matrix Y is calculated by a linear transformation

Yij = A

 xi

xj

+ b,

Yji = A

 xj

xi

+ b. (4.6)

In this linear transformation, the rank of matrix Y is identical to the dimension of the one-hot

representation of players. Besides, the negative symmetry of the matchup matrix can be easily

verified by

Mij = Yij − Yji = A

 xi

xj

− A

 xj

xi

 ,

Mji = Yji − Yij = A

 xj

xi

− A

 xi

xj

 ,

By letting A =

 B

C

 and b = 0. The model can be viewed as a linear transformation of

blade and chest vectors as discussed in the previous chapter.
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Instead of using a logistic function to construct the cross-entropy objective, we use a fully-

connected nonlinear neural network layer with an activation function f . The first hidden layer

is given as

z11 = f1(xi,xj),

z12 = f1(xj,xi).

The winning probability of the pairwise relationship between player i and player j can be

estimated by

pij = σ(M(i, j)) = σ(Yij − Yji). (4.7)

4.5 Experiments

The proposed model is evaluated on a synthetic dataset and several real-world datasets,

covering domains such as food preference, recommender system and online gaming. The

evaluation is focused on the accuracy of the predictive model in missing value inference setting.

4.5.1 Experiment setting

The input of all experiments includes: a set of players P = {1, 2, ..., N}; a dataset D of all

the match results between player i and j in P , for any i, j ∈ P ; ni being the number of times

player i win j; nj being the opposition. The output of the experiments is a estimated strength

matrix Y.

By assuming player i is the winner, the objective function is

argmaxΘ Σ(i,j)∈D log Pr(i ≻ j|Θ).



57

For a test partition D′, the test accuracy is defined as

A(D′|Y) =
1

N ′

∑
(i,j)∈D

1(i ≻ j),

where N ′ is the total number of games in the testing set, and 1(·) is the indicator function.

We compared our proposed method with four competitive methods as following

1. Bradley-Terry model with the stochastic gradient method (BT model);

2. Blade-Chest-Inner with the stochastic gradient method (Blade-Chest-Inner);

3. Blade-Chest-Sigma with the stochastic gradient method (Blade-Chest-Sigma);

4. Blade-Chest-Inner with neural network framework (Neural BC).

We follow the same setting for BT model, Blade-Chest-Inner and Blade-Chest-Sigma with

the stochastic gradient method in [77, 72]. The optimization objective is cross-entropy com-

bined with corresponding regularization. The model includes three parameters: the parameter

λ of the regularization term, the learning rate r and the embedding dimension d. We do grid

search over powers of 10 from 10−5 to 102 for λ and r, and also take d = {2, 5, 10, 50, 100}.

For the Neural-BC and the proposed method, we take the batch size from 16 to 1,024 and the

middle dimension from 8 to 512.

4.5.2 Results on synthetic dataset

We randomly generate the datasets which have the full intransitivity with different ranks and

sizes. Let R = {1, 3, 5, 7} be a set of ranks assumed to be the genuine dimension of the blade

and chest vectors, and S = {500, 1000, 2000} be a set of training data size. Given N = 100

players, for every rank element r ∈ R, we randomly generate blade and chest parameters
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Figure 4.2: Test accuracy on the synthetic datasets with controlled rank. ©IEEE, 2020

X∗
blade ∈ Rr×100, X∗

chest ∈ Rr×100 and calculate the relation matrices Y∗, M∗ by

Y∗ = X∗
blade

⊤X∗
chest, M∗ = Y∗ −Y∗⊤.

For all sizes s ∈ S, we randomly generate a training data T with size s, a validation data V

with size 2, 000 and a evaluation data E with size 2, 000 using the true relation matrix M.

The models are trained for all four rank groups and the accuracy results are averaged over

10 trials, as shown in Figure 4.2. For each rank, there are three different training sets, and we

generate 10 trials for each of them.

Figure 4.2 shows the curves of the accuracy values with respect to the size of training set.

For all the competitive methods, the predictive accuracy is high around 0.9 when the amount

of observations becomes larger. The Blade-Chest-Inner and the Blade-Chest-Sigma perform



59

Table 4.1: Summary of the datasets. ©IEEE, 2020

Dataset Players Records Intrans. No.IntPlayer Int.Ratio

SushiA 10 100000 no 0 0
SushiB 100 25000 yes 92 26.87%

MovieLens100K 1682 139982 yes 1130 0.19%

Election A5 16 44298 yes 6 0.44%

Election A9 12 95888 yes 5 1.82%

Election A17 13 21037 yes 8 8.18%

Election A48 10 25848 no 0 0
Election A81 11 44298 yes 5 2.50%

SF4-5000 35 5000 yes 34 23.86%

Dota 757 10442 yes 550 97.58%

Pokemon 800 50000 yes 784 78.58%

consistently better than the primitive BT model, while the proposed model outperforms all of

them. In comparison with the Neural BC model, the proposed method performs on par in terms

of predictive accuracy but with a simpler construction that drops the requirement of solving for

”blade” and ”chest” vectors.

4.5.3 Results on real-world datasets

Similar to the previous chapter, we conduct missing value experiment on datasets that

include food preference datasets are SushiA and SushiB [70], online recommender system for

pairwise preference datasets: MovieLens100K [60], decision making datasets: Elections [69],

and online gaming: SF4, Dota [77] and Pokemon.

As illustrated in Table 4.1, the SushiA and Election A48 datasets have no intransitivity;

MovieLens100K and other Elections have lower ratios of intransitivity, while SushiB and online

games have a higher intransitivity ratios. Intrans. means the existence of the intransitivity,

No.IntPlayer indicates the number of players those involved in rock-paper-scissors relationship,

and the Int.Ratio is the percentage of intransitive loops in the whole games. We use 50%

observed records for training, 20% records for validation and the remaining 30% records for
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Table 4.2: Summary of test accuracy. ©IEEE, 2020

Dataset Bradley-Terry Blade-Chest-Inner Blade-Chest-Sigma Neural BC Proposed model

SushiA 0.6525 ± 0.0011 0.6546 ± 0.0006 0.6560 ± 0.0004 0.6630 ± 0.0004 0.6632 ± 0.0003
SushiB 0.6257 ± 0.0025 0.6235 ± 0.0150 0.6414 ± 0.0019 0.6561 ± 0.0017 0.6563 ± 0.0011

MovieLens100K 0.6785 ± 0.0005 0.6792 ± 0.0004 0.6789 ± 0.0003 0.6950 ± 0.0019 0.6973 ± 0.0002
Election A5 0.6478 ± 0.0017 0.6489 ± 0.0011 0.6494 ± 0.0018 0.6550 ± 0.0030 0.6560 ± 0.0018
Election A9 0.6028 ± 0.0003 0.6096 ± 0.0007 0.6047 ± 0.0008 0.6174 ± 0.0003 0.6175 ± 0.0003

Election A17 0.5189 ± 0.0001 0.5305 ± 0.0010 0.5296 ± 0.0013 0.5582 ± 0.0003 0.5598 ± 0.0002
Election A48 0.5993 ± 0.0001 0.6001 ± 0.0001 0.5996 ± 0.0001 0.6060 ± 0.0001 0.6056 ± 0.0001
Election A81 0.6013 ± 0.0001 0.6018 ± 0.0001 0.6011 ± 0.0002 0.6194 ± 0.0001 0.6194 ± 0.0001

SF4-5000 0.5079 ± 0.0078 0.5181 ± 0.0171 0.5358 ± 0.0049 0.5514 ± 0.0008 0.5496 ± 0.0021
DotA 0.6334 ± 0.0077 0.6432 ± 0.0034 0.6420 ± 0.0051 0.6468 ± 0.0031 0.6485 ± 0.0025

Pokemon 0.8157 ± 0.0094 0.8495 ± 0.0016 0.8187 ± 0.0168 0.8943 ± 0.0040 0.8949 ± 0.0021

testing in each dataset by randomly separating. We do this random sampling for 3 times and

report the mean and standard deviation of prediction accuracy on the test set. A summary of

the averaged test accuracy of all the comparison methods is reported in Table 4.2.

Compared with the baseline methods such as the BT model, Blade-Chest-Inner, Blade-

Chest-Sigma, and Neural BC, the proposed model achieved sound improvement on the test

accuracy on the majority of the datasets. We attribute this advancement to the deep numerical

conjugation of networked information in the neural network.

Bringing together Table 4.1 and Table 4.2, we observe that there is a high correlation

between the Intransitivity Ratio in 4.1 and the variance of test accuracy in all corresponding

columns in 4.2. For datasets whose Intransitivity Ratio is below 10%, e.g., SushiA, Movie-

Lens100K, Election A5, Election A9, Election A17, Election A48, Election A81, the standard

deviation of prediction accuracy is below 0.001. For datasets whose Intransitivity Ratio is

relatively high, e.g., SF4-5000, DotA, Pokemon, the standard deviation of predictive test

accuracy is reasonably higher at above 0.002.

A summary of CPU time for training the models in Chapter 3 and Chapter 4 is provided

in Table 4.3. The CPU time of each method is reported based on the experiments on the

SushiB dataset on a Macbook Pro with 2.9 GHz Dual-Core Intel Core i5 and 16 GB 1867

MHz DDR3 memory. Because the designs and implementations of each model and the corre-
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Table 4.3: A summary of model parameters and the CPU time (in seconds) for SushiB

Method Model Parameter(s) CPU time for Training

Bradley-Terry λ ∈ R1 0.52
Blade-Chest-Inner ablade, achest ∈ Rd 8.70
Blade-Chest-Sigma ablade, achest ∈ Rd 8.04
Generalized BC (Chapter 3) ageneral ∈ R2d,Σ,Γ ∈ Rd×d 19.88
Neural BC ablade, achest ∈ Rd, wij ∈ Rd 29.10
Proposed Model (Chapter 4) wij ∈ Rd 28.59

sponding stochastic optimisation follow similar principles (e.g. cross-validation configuration,

convergence criteria, gradient acceleration, etc.), we argue that the CPU time listed in Table 4.3

provides additional insights on how different the methods are. Bradley-Terry model has the

simplest model parameter structure and reports the lowest CPU time for training. The proposed

method in Chapter 3 has a moderate model complexity, because of the additional numerical

calculation in the gradient estimation and during the inference, caused by the transitive matrics

Σ and Γ. The highest CPU time is reported from the experiments on the models that are

structured by deep neural networks, because updating the meta weights w_i, j in the neurons

requires additional numerical operations like back propagating the errors from the output layer

to the hidden layers. Nevertheless, the gain on predictive accuracy achieved by the deep models

compensates well for the increase in CPU time cost.

4.6 Summary

In this chapter, we proposed a novel end-to-end intransitivity modeling technique for

predicting pairwise comparisons and matchups. Different from the techniques presented in

Chapter 3, a structured multi-layer neural network is used for the parameter estimation instead

of logistic function. By conducting missing value inference experiments on synthetic data with

controlled rank, we verified that the proposed end-to-end approach is superior to the shallow

models for datasets that contain different intrinsic dimension. Through similar experimental
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setting in Chapter 3, we demonstrated that the proposed method improves the prediction

accuracy in comparison to the Blade-Chest model and other related works. Moreover, we argue

that the proposed framework is also open for further extensions to more expressive network

structures with the recent advancements in deep neural networks, e.g., attention mechanism.
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Chapter 5

Learning to Rank for Multi-step Ahead

Time Series Forecasting

5.1 Introduction

Time-series forecasting is a fundamental problem associated with a wide range of engineer-

ing, financial, and social applications. The challenge arises from the complexity due to the

time-variant property of time series and the inevitable diminishing utility of predictive models.

Therefore, it is difficult to accurately predict the sequential values given the uncertainty of

observations, especially in a multi-step ahead setting. Instead of forecasting the values of the

time series, an ex-ante prediction of the relative order of values in the near future is sufficient

in domains such as financial time series forecasting; i.e., the next 100 days can help make

meaningful investment decisions.

The data veracity of time series refers to how accurate or trustworthy the collected sequential

observations are, if a ground truth exists. For time series, the veracity issue is essentially

associated with the stochastic nature of the sequential observations in the data acquisition

process, in which setting a proper sampling frequency and annotating the cross-sectional

alignment are more an art than a technical problem to solve. For practitioners, the veracity of
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Figure 5.1: Illustration of data veracity of an observed time series.

time series is therefore neglected, because the available time-series datasets only record one-

way sequential observations. Consequently, it is difficult to take the veracity of the observed

time series into consideration during the development of a forecasting algorithm. In contrast, if

multiple samples with certain variation can be collected simultaneously at time epoch t, one

can then utilize the samples to estimate a distribution or identify a proper stochastic process in

order to quantify the magnitude of stochasticity. This would provide analytical insights on how

responsive are the algorithms to the veracity of time series in a dataset. A traditional treatment

to unveil such insights is block bootstrapping, a technique designed to quantify the impact of

the stochasticity of sequential observations. However, the technique is an ex-post evaluation of

the developed forecasting algorithms and does not tackle the challenge in robust forecasting

under stochasticity in the front line.

Figure 5.1 illustrates how the veracity of time series may impact a time-series forecasting

algorithm and thereby highlights the importance of evaluating the relative ordering of observa-

tions as an alternative and meaningful perspective to handle the veracity of time series. At each

time epoch, the observed value follows an unknown distribution, however, the data acquisition

process has only limited budget or capacity to simultaneously obtain enough samples from these
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distributions. For each of these distributions, training objectives that measures the deviation

between observed value and the mean of the underlying distribution are subject to changes in

the observation, even if the change is small. This is different when the relative ordering of

sequential observations is considered because a subtle change of the sampled value from the

distribution would make no impact on the relative ordering of the observations, as long as the it

falls in a trustworthy zone, marked in blue.

In this chapter, we propose a dynamic prediction framework that makes it possible to

make an ex-ante forecast of time series with a special focus on the relative ordering of the

forecast within a forward-looking time horizon. Through the lens of the concordance index (CI),

we compare the proposed method with conventional regression-based time-series forecasting

methods, discriminative learning methods and hybrid methods. Moreover, we discuss the use

of the proposed framework for different types of time series and under a variety of conditions.

Extensive experimental results on financial time series across a majority of liquid asset classes

show that the proposed framework outperforms the benchmark methods significantly.

In science and engineering applications, time-series forecasting is applied to areas such

as energy management [102], predictive maintenance [107], and anomaly detection [108].

Normally, it is evaluated based on the nowcasting performance, which reduces to certain

evaluation metrics such as the tracking error. In the financial and social domains, the impact

of time-series forecasting goes beyond nowcasting and it shifts its focus from the near future

to the long-term horizon, bringing in other perspectives such as concordance, causality, in

order to guide the decision makers to intervene appropriately. In this case, the use of a

forecasted time series is prioritized over the conventional tracking error. Examples of this

include empirical economics [113, 112], asset pricing [109, 95], business cycle analysis [110],

monetary policy [111], and others that span all of the UN Sustainable Development goals,

which address a blueprint for achieving a better and more sustainable future for all [98]. In

addition to this discretion of appropriate utility function and evaluation metric, the length of the
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forward-looking horizon is an equally important aspect for such time-series forecasting task

[120]. However, the majority of research work in time-series forecasting focuses on short-term

forecasting, and often even on one-step ahead setting. For this reason, the potential variations

in optimization objectives and evaluation metrics are not well explored beyond a predominant

focus on tracking error. On the one hand, it is trivial to show the deterioration in forecast quality

assuming a random walk prediction with no prior knowledge of what will happen in the next

time epoch. On the other hand, the conviction that near-term nowcasting is accurate can provide

meaningful support for long-term forecasting, especially in applications where the sequential

dependency matters for multiple time epochs of interest. At the intersection of nowcasting and

long-term forecasting, the predictability of time series is involved not only theoretically but

also empirically [117]. Assuming that the forecasting task is ergodic, the predictability can be

formulated as the ratio of the variance in the optimal prediction to the variance in the ground

truth time series. This sheds light on feasibility issues in time-series forecasting.

To address the many challenges in time-series forecasting, a variety of time-series fore-

casting approaches have been developed to capture certain structural assumptions of time

series. Traditional methods include the non-stationary model [101, 102], the moving aver-

age method [100], the auto-regressive model [99], the auto-regressive moving average model

[149], the auto-regressive integrated moving average (ARIMA) model [100], the tree-based

model [158], and the fuzzy time series models that consider different types of uncertainties,

varying from the formulation in evidence theory [151] to the formulation in statistics or fuzzy

logic and set [150]. Independently, machine learning and deep neural network approaches,

which have been developed in the past few decades with a focus on discriminating between

observations, have also been adopted in time-series analysis to tackle the forecasting problem

[116, 118, 158, 159, 114, 92, 87, 153]. Overall, the above techniques provide sound founding

elements for time-series analysis and forecasting, but the simplicity of the model results in

its limited capability to deal with sophisticated situations. Moreover, because many of these
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techniques are derived independently in terms of notations and terminology, the alignment and

synergy between these methods become extremely challenging [155]. As a result, the imple-

mentation of machine learning methods in the context of time-series forecasting oversimplifies

the time-series forecasting problem by assuming i.i.d. samples and neglecting the sequential

nature of the observed signals. Although the actual utility of the forecast in a one-step ahead set-

ting varies by application, the corresponding evaluation metric is often monotonously inherited

from that of regression-based methods. In such scenarios, the common determinant criterion is

the tracking error calculated from the point-wise difference between the ground truth and the

forecasted value. Among the most widely used performance metrics in this category [121], the

symmetric mean absolute percentage error (SMAPE) and the mean absolute scaled error are

frequently used in existing literature [148, 146].

However, in a multi-step ahead setting, tracking error is no longer the only aspect of interest

in performance evaluation [115]. Depending on how the forecasted values are further utilized,

other discriminative metrics, such as directional symmetry [115], trajectory affinity [122],

relative orders and concordance [123], become equally important or even more important when

evaluating performance. For instance, in situations where privileged information is available,

local forecasting around the privileged time epoch is less vulnerable from the perspective

of tracking error [103], whereas the relative disordering phenomenon remains considerable.

Among others, the relative ordering and concordance of the forecast are unique and critical to

problems where the structural insights of time series matter [145].

Recently, the advancement of time-series forecasting methods has been featured by the

construction of hybrid methods and the use of alternative perspectives. The traditional formula-

tion and evaluation can be extended to a multi-step ahead forecasting setting by introducing a

structured output, e.g., multiple output and recursive output. Such forecasting strategies and

the essential techniques for multi-step ahead settings have been comprehensively reviewed

by [119, 152]. Moreover, in contrast to traditional approaches, many studies have begun
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to adopt novel perspectives for time-series forecasting. Hybrid methods have proposed to

highlight the benefits of combining the traditional time-series forecasting models with alterna-

tive objectives or complementary techniques [156, 157]. Some examples include the use of

complex networks [147, 146], the ordered weighted averaging aggregation operator [148] and

deep-neural-networks-based approaches [154, 103, 153]. These hybrid methods bring together

different objectives from a mathematical programming perspective and some even enhance the

expression power of existing architectures by incorporating deep neural networks [133, 153].

As with the growth of model complexity and the number of hyperparameters, the generalization

of a model’s predictive power in a multi-step forecasting setting becomes a greater challenge.

Rather than contributing to this increasing sophistication, we argue that alternative objectives

of certain time-series forecasting models, which are expected to deliver a higher explanation

power by leveraging a limited number of model parameters, are critical to the time-series

forecasting research. Specifically, in this study, we investigate the relative ordering objective,

which has not yet been thoroughly formulated and explored.

In the financial domain, the relative ordering of the market values of asset prices at different

time epochs is an essential component, because it is associated with theoretical and practi-

cal issues, e.g., mispricing, arbitraging, and market inefficiency. On the hunt for excessive

investment returns, asset managers and hedge funds can leverage a variety of financial instru-

ments, including futures, swaps, and options to monetize investment ideas and to optimize

the investment performance given the investment ideas originated from such relative ordering.

However, despite the wide adoption of stochastic mathematics and regression-based techniques

in time-series analysis, limited efforts have been made to explore the relative orderings of

time series within a specified horizon. Therefore, developing a method to forecast the relative

ordering of the observations in time series is fundamental to time-series forecasting and critical

in many financial applications [124, 91]. To an extreme degree, census data or variables in

macroeconomics are released at a lower frequency in contrast to the data available at the
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Figure 5.2: Illustration of the multi-step time-series forecasting scheme. There are in total five
values of interest including the r̂[t], whose ground truth of x[t] is known and highlighted in red
color. ©IEEE, 2021

exchange markets. This results in a gap between the tremendous number of model parameters

and the small number of available observations [160], which further induces difficulty in model

generalization. As an addition to the traditional econometric approaches, alternative methods

[166, 165, 163] have been proposed to achieve robust parameter estimation, where vector

auto-regressive models [160, 161, 163] suffer from an out-of-sample prediction performance

in the mid-long horizon. The intrinsic problem related to such application is that directional

guidance and timing become more important issues than tracking error [164, 167]; therefore,

alternative techniques that can leverage alternative utility functions of the forecast values should

be highlighted [162].

To tackle these challenges, we propose a multi-step ahead forecasting framework that is

capable of forecasting relative orders at multiple time epochs within a forward-looking horizon.

The framework has three key components, including pairwise discriminative learning, local

learning (LL) of privileged information, and dynamic multi-step ahead prediction with ex ante

information. First, the pairwise discriminative learning module follows the learning-to-rank

principles that directly optimise ranking objective rather than tracking error and output a
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ranking list instead of an array of forecasted values. Second, a LL algorithm is proposed to

infer the values with the concept of neighboring or auxiliary samples, so that the optimised

ranking list is interpretable and comparable to the conventional forecasts. Finally, all the above

proposed elements are integrated into a dynamic multi-step ahead prediction scheme iteratively,

aiming to boost the overall predictive performance. By bridging the best of two orthogonal

evaluation metrics, i.e. relative ordering and tracking error, this scheme delivers an overlaying

synergy of all the proposed elements underneath.

5.2 Preliminaries

In this section, we describe the problem setting and the notations. As depicted in Section

5.1, one major challenge in multi-step ahead forecasting is the domain-specific utility of the

forecasted values. The other challenge is the diminishing utility of the trained model when the

forecast horizon is expanded from one-step ahead to multi-step ahead.

To tackle the first challenge, we employ the learning-to-rank technique, which is considered

as a fundamental method for ranking estimation, recommender systems, and data science

[3]. Although being unexplored in time-series forecasting, the objective of learning-to-rank

technique is to minimize the mismatch between the ground-truth ranking list and the estimated

ranking list, which is in practice orthogonal to the conventional objective of minimizing the

point-to-point euclidean error. In recent years, a variety of machine learning approaches to

ranking estimation have been discovered via techniques such as Bayesian modeling [125],

generalization of the Bradley-Terry model [72], the structured support vector machine (SVM)

[49], optimal transport [126], the tree-based models [159], and fuzzy logic [148, 147, 146],

etc. Different from the others, ranking SVM directly models and optimises the ranking loss

on the data, which is essential to the ranking estimation problem. Although we only consider

the linear ranking SVM in this study, the formulation is flexible for further extension to tackle

the non-linear features via kernel tricks with a minor revision of the framework; therefore,
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ranking SVM is favourable among others, especially in applications where the availability of

high quality features is limited. Overall, formulating time-series forecasting in a ranking setting

remains an open and challenging problem. In this study, we leverage the ranking SVM because

it tackles the ranking estimation problem with an end-to-end objective and with a favourable

flexibility. In the following parts of this section, we establish the notations and define the

problem setting, which are innovative in themselves.

To tackle the second challenge, we devise an iterative prediction scheme that follows the

dynamic forecasting strategy in [119] in order to make informative inference. This scheme

is motivated by LL techniques that bridge the two orthogonal worlds of tracking error and

relative ordering. Although the details will be discussed in Section 5.3.4, the key notations and

preliminaries will be described in this section.

5.2.1 Problem setting

We consider multi-step time-series prediction. Assume X[0:N ] is the ground truth time

series with a span of [0 : N ]. At time t, the observation of the time series is given as

X[t] = (x[t], r[t]) ∈ X, where x[t] ∈ Rp is the observation of the time series and r[t] ∈ [0 : N ] is

the associated rank of the observation within the whole span of the time series during [0 : N ].

We define R : Rp → [n] as an invertible ranking function that transforms x[t] to r̂[t]. The

corresponding inverse function is denoted as R−1 : [n]→ Rp and transforms r[t] to x̂[t]. The

transform function is formulated as

r̂[t] = R(x̂[t]), (5.1)

x̂[t] = R−1(r̂[t], x[0:t]). (5.2)

The goal is to make an informed forecast of a ranking list π(h)
[t] := r̂[t+1:t+h], which is

a ranking list of length h that expresses the relative relationships of the observations that
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are obtained from the multi-step forecast X̂[t+1:t+h] = (x̂, r̂)[t+1:t+h] at time t = T . Given

all the historical observations (X[0], X[1], ..., X[T ]) at t = T , we aim to forecast the relative

relationships in the time series in a forward-looking horizon of h during [T +1 : T + h], where

the ground truth of the forecast r[T+1:T+h] is a subset of X[0:N ]. Without loss of generality, by

setting p = 1, we address the problem of forecasting time series with only one dimension.

However, to implement all the competing methods and the proposed methods in a fair and

qualitative manner, we construct multidimensional features based on generic feature engineering

techniques for time series, especially time series in the financial domain.

In this study, we use π
(h)
[t] ∈ [0 : h] to denote the h-step ahead forecast of relative rela-

tionships at time t. An auxiliary set x̃[t−q:t] = x[t−q:t] representing the q auxiliary anchors is

deployed in LL to boost the performance of the forecast. The simplest case is q = 0, indicat-

ing no privileged information other than the observation at time t can be utilized during the

inference phase. However, in common cases, it is natural to assume that we have access to and

can reuse all the historical observations up to time t. In the extreme scenario where q = t, the

auxiliary set is identical to the training set and is denoted by x̃[t−q:t] = x[0:t].

Figure 5.2 illustrates this relative-value-focused multi-step time-series forecasting scheme

with an example that uses h = 4 and q = 0. In this extreme case, x[t] is the only available

privileged information in inference, and therefore it becomes difficult to infer x̂[t+1:t+h], regard-

less of whether the ranking estimation is perfectly aligned with the ground truth ranking or

not within the test horizon. In a nutshell, only x[t] can be exploited for a hint as to whether

the observations within the test horizon will be higher or lower than x[t]. In cases where the

relative ordering is not the only metric of interest, the learning-to-rank model requires deliberate

revision before it can provide meaningful guidance.
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5.2.2 Feature extraction

Among the various techniques that have been proposed to extract informative features from

time series, we adopt two fundamental suites of indicators for financial time series, i.e., level

indicators and momentum indicators [91].

Level indicators consist of the historical prices denoted by Fprice(t, i) and the moving aver-

ages of the historical prices [99] denoted by Fma(t, i), for i ∈ {5, 10, 20, 60, 120, 250, 500, 1000},

where

Fprice(t, i;x[0:t]) = x[t−i] (5.3)

Fma(t, i;x[0:t]) =

i∑
j=1

x[t−i]

i
(5.4)

Momentum indicators include the moving average convergence divergence (MACD) [129]

and rolling returns over the past {5, 10, 20, 60, 120, 250, 500, 1000} days. In consideration of

the fact that volatility is a critical facet of financial time series and the fact that the volatility

scaling technique plays a significant role in the construction of investment strategies [128], we

adopt the risk-adjusted momentum features FrollingReturn(t, i) by

FrollingReturn(t, i;x[0:t]) =
x[t] − x[t−i]

std(ẋ[t−i:t])
(5.5)

where std(ẋ[t−i:t]) is the standard deviation of the daily price change ẋ during the period

[t− i, t].

With the feature extraction defined as above, we construct multidimensional features for

each observation x[t] that is obtained from the environment at time t. Finally, the level indicators

and momentum indicators are combined by a concatenation denoted by

Fall(t, i;x[0:t]) = [Fprice, Fma, FrollingReturn] (5.6)
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where i ∈ {5, 10, 20, 60, 120, 250, 500, 1000}. Overall, 17 features are employed this study for

the proposed framework.

5.3 Proposed Methods

5.3.1 Learning to rank for time-series forecasting

We formulate the multi-step time-series forecasting task as a multi-step learning-to-rank

process that incorporates a learning phase and an inference phase. In the inference phase, a

ranking model takes the historically observed objects and their associated feature matrices

X[0:t] as an input and outputs the inferred scoring of the observed objects π̂[0:t].

π̂[t:t+h] = f(X[0:t],W;w) (5.7)

The overall learning objective of the ranking model is to discriminate the observed objects from

a relative relationship perspective so that the inferred ranking list π̂[t:t+h] is close enough to the

ground truth π[t:t+h]. Assuming the observations being forecasted, X[0:t], by the ranking model

follow the same distribution of historical observations, the learning objective in Equation (5.7)

is approached by devising a pairwise ranking model based on the observed time series by time

t. Given a rank order r[i] ∈ π[0:t] where i ∈ [0 : t], a scoring function ϕ(X[i]) is devised to

measure the relative ordering of the objectives.

ϕ(i) = ϕ(X[i];w) (5.8)

=
∑
j

wjXj
[i] (5.9)

An array of such scoring ϕ(·) can be trivially converted to a corresponding ranking list by

using Equation (5.1). In fact, it is identical to the primal model output π̂[t,t+h] from the ranking
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perspective and is used as an input in the calculation of the ranking performance metric, which

we will introduce later in Section V.

Assume that W ∈ Rt,t is a match-up matrix indicating the soft constraints that can be

incorporated into the learning part of the framework, where an entry Wi,j denotes the importance

weight of each pairwise comparison (i, j) in the ranking list. Given the ground truth π[0,t], each

entry in the match-up matrix Wi,j is defined as follows:

Wi,j =


+1 if r[i] ⪰ r[j]

−1 if r[i] ≺ r[j]

0 pair is not considered

where i, j ∈ [0 : t]. The ranking loss between the ground truth π and the inferred ranking list π̂

is expressed as

∆(i, j) = Wi,j(ϕ(X[i];w)− ϕ(X[j];w)) (5.10)

where ϕ(X[i];w) is the scoring function defined by Equation (5.8) for the observation at time i.

Note that the feature for the observation at t is often a function of the observation by

that time; however, the values are not available between t and t + h in multi-step ahead

setting. Therefore, the construction of pseudo features is necessary for forecasting the future

observation at t + h. As a naive solution, we adopt the latest available observation for the

ex-ante observations at each future time epoch t+ h, formulated as

x̃[t+j] = x[t] (5.11)
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Figure 5.3: Illustration of the local learning that is embedded into the dynamic prediction
scheme for multi-step time-series forecasting scheme. ©IEEE, 2021

for all j ∈ [0 : h]. Therefore, the features X̃[t+h] are calculated by calling the feature

construction function with the above pseudo estimates by

X̃[t+h] = Fall(t+ h;x[0:t], x̃[t:t+h]) (5.12)

The overall loss function is written as

L(X,W;w) =
1

|P||N |
∑
x∈P

∑
y∈N

d(∆(i, j)) (5.13)

where

d(∆(i, j)) = max(0, 1−∆(i, j)) (5.14)

is the Hinge loss [130]. In Equation (5.13), P and N denote the upper-ranked object subset

and the lower-ranked object subset, respectively. Without loss of generality, one can extend the

definition of P andN to the full list, which is also referred to as the list-wise ranking operation

[49].



77

In our proposed framework, we restrict ourselves to solving the classic RankSVM optimiza-

tion problem [130, 173, 49]. The overall optimization objective is expressed as

min
w

λ

2
||w||2 + L(X,W;w) (5.15)

where λ is the hyperparameter regularizing the learning objective in SVM via the soft margin

embedded in the first term of the optimization objective in Equation (5.15).

5.3.2 Optimization

Solving for w∗ in Equation (5.15) is a numerical optimization problem. Generic solutions

to such a problem include the stochastic subgradient descent method in the Support Vector

Machine optimization [168, 71]. Specifically, we adopt the stochastic subgradient descent

method for solving the L2-regularized L1-loss SVM implemented in the scikit-learn library

[131] as the solver for our proposed pairwise learning-to-rank method. The subgradient update

is given as

w ← w − η∇w(Wi,jw
T (X[i] −X[j])) (5.16)

where η > 0 is the learning rate and is chosen as η(t) = 1
λ(t+t0)

. t is the epoch of gradient

update and t0 is chosen by the heuristic proposed in [169]. For a cross-temporal pair (i, j)

sampled from the training set, the corresponding subgradient is estimated by

∇w(i, j) =


λw if Wi,j(ϕ(i)− ϕ(j)) > 1,

λw −Wi,j(X[i] −X[j]) otherwise

The selection of regularization term λ was done through a set of predefined hyperparameters

{10−4, 10−2, ..., 104}. Empirically, we would like to emphasize that the pairwise ranking
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Algorithm 1 Pairwise Ranking - Learning to rank for multi-step ahead time-series forecasting
Input: Forward-looking horizon h
Data: Observed time series x[0:t]

initialization
for i ∈ [0 : t] do

X[i] ← Fall(i;x[0:t]);

r[i] ← R(x[i]);

end
ŵ∗ ← Optimize Equation (5.15)
for j ∈ [0 : h] do

ϕ̂(t+ j)← f(X[t+j]; ŵ
∗);

r̂[t+j] ← R(ϕ̂(t+ j));

end
Output: Forecast of π̂[t:t+h]

approach faces certain issues like scalability when the volume of training data grows and

computational convergence when the learning rate is not chosen properly. However, with a

fine-tuning of the key hyperparameters, e.g. the learning rate η and the λ associated with the

regularization term as we suggested, these issues can be mitigated.

Algorithm 1 describes the proposed learning-to-rank framework for multi-step ahead

time-series forecasting. The input of the algorithm is the forward-looking horizon. After

initialization of the model parameters including w, λ, and the forward-looking horizon h, the

pairwise learning-to-rank model is trained until the convergence condition is met. This training

phase is followed by a standalone inference phase where the forecast of relative ordering r̂[t:t+h]

is inferred.

Note that the r̂[t:t+h] estimated by Algorithm 1 is insufficient for an estimation of the tracking

error, which is normally adopted by competing methods and related works on multi-step ahead

time-series forecasting. To fill in this gap between the orthogonal evaluation metrics, we

further develop a LL technique in Section 5.3.4 that is able to obtain x̂[t+1:t+h] and integrate the

LL module into an overlaying dynamic forecasting scheme that operates iteratively between
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Algorithm 2 Local learning of x̂[t+1:t+h]

Input: Backward-looking horizon m
Data: Observed time series x[0:t]

initialization
r̂[t:t+h] ← Algorithm 1
r̂[t−m:t] ← Equation (5.7)
r̂[t−m:t+h] ← Merge r̂[t−m:t], r̂[t:t+h]

for each j ∈ [t+ 1 : t+ h] do
j+ ← argmin

p∈[t−m:t]

r̂[p] − r̂[j] for r̂[p] > r̂[j]

j− ← argmax
p∈[t−m:t]

r̂[p] − r̂[j] for r̂[p] < r̂[j] x̂[j] =
1
2
(x[j+] + x[j−])

end
Output: Forecast of x̂[t+1:t+h]

learning and inference to lower the tracking error while optimizing the discriminative objective

in Equation (5.15).

5.3.3 Local learning

To improve the quality of the multi-step ahead forecast, we apply LL techniques during the

approximate inference of x̂[t+1:t+h]. In Algorithm 1, the output of the algorithm is the relative

ordering of objects, which reveals only the relative relationship between future observations and

the observation at time t. We devise a local learning(LL) procedure to improve the inference of

x̂[t+1:t+h], which can be used in turn to improve the quality of features by letting

x̃[t+j] = x̂[t+j] (5.17)

where j ∈ [1 : h] and x̃[t] represents the ex-ante expected value of the time series at time t.

Figure 5.3 illustrates the proposed LL scheme. In this study, we define the privileged

information available for local learning from the perspective of time dependency [120]. At

time T , the most recent m ≤ T samples are employed for local learning and we update the

point estimate each time when the local learning procedure is called.
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To further boost the forecasting performance based on the informative ex-ante prediction

obtained from local learning, we devise a dynamic prediction as described in Algorithm 3.

Local learning is an important technique in machine learning that allows the model to

efficiently incorporate certain dependency structures, such as neighborhood dependency [132],

time dependency [120], and spatial-temporal dependency [133]. Given an output r̂[t:t+h] from

Algorithm 1, auxiliary information can be added as anchors into the well-trained ranking model,

so that the inference of x̂[t+1:t+h] can be formulated as a LL procedure as described in Algorithm

2.

Assuming m neighbors are available for the LL, we rewrite Equation (5.1) in array form

and incorporate the local neighbors as anchors by

x̂′
[t+1:t+h] = R̃−1(r̂[t−m:t+h], x[t−m:t]) (5.18)

The effectiveness of such an ex-ante forecast can be verified via performance metrics such

as the concordance index (CI). Despite of the orthogonality between CI and tracking error,

this promising result sheds light on a potential improvement in terms of the ex-ante tracking

error; therefore, we propose an iterative dynamic forecasting scheme to capture this signal

and combine the best of LL framework with the proposed learning-to-rank framework for

time-series forecasting.

In Figure 5.3, we illustrate a toy example of local learning, where we indent to forecast five

values of interest in the forward-looking horizon, with two privileged samples in the training

and validation set highlighted in green color. In this example, the total length of the ranking list

is seven, among which five are identical to the values of interest illustrated in Figure 5.2. What

makes a difference is that we have partial access to their ground truth; therefore, a performance

improvement in the inference phase can be expected.
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Algorithm 3 DynaPairwise Ranking - Dynamic prediction scheme that improves learning to
rank for time-series forecasting and local learning iteratively
Input: Maximum number of iteration lmax

Data: Observed time series x[0:t]

initialization
r̂[t:t+h] ← Algorithm 1

while l ≤ lmax do
x̂[t+1:t+h] ← Algorithm 2
r̂[t:t+h] ← Algorithm 1 l++

end
Output: Forecast of x̂[t+1:t+h], r̂[t+1:t+h]

5.3.4 Dynamic prediction

The previous section showed that multi-step ahead forecasting can be cast in a conventional

supervised learning-to-rank framework by employing certain inference techniques such as

LL. In this section, we extend the proposed framework in Algorithm 2 and further propose

an iterative dynamic prediction scheme that improves the performance of multi-step ahead

forecasting. The proposed scheme follows the recursive strategy for multi-step ahead time-

series forecasting [120]. Such recursive strategies for time dependency are widely deployed

implicitly or explicitly in structured output prediction models such as conditional random fields

[135] and recursive neural networks [134].

Overall, the proposed iterative dynamic scheme involves three steps as described in Algo-

rithm 3. The key components are organized in a nested structure. In the first step, Algorithm

1 is called to give an initial ex-ante forecast of the relative ordering r̂[t+1:t+h]. Next, the LL

procedure depicted in Algorithm 2 is called to provide an initial ex-ante forecast of the time

series x̂′
[t+1:t+h]. Because the features are constructed by a function of such an ex-ante estimate

of the time series in Equation (5.6), Algorithm 1 is called again in step 3 to brush up the features

by using these ex-ante estimations. Such an iterative procedure can be terminated either when

a convergence criterion is met or when the maximum number of iterations lmax is reached. In
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Table 5.1: Hyperparameters deployed in the benchmark scheme and the proposed method.
©IEEE, 2021

Parameter Setting Description

Ntrain 500 size of the training and validation data
Nroll {50,100,200} number of time epochs between model retraining
m {0,100,500} length of the backward-looking horizon in local learning
h {50,100,200} length of the forward-looking forecast horizon

lmax 1 number of iterations in the dynamic prediction scheme
λ {10−4, 10−3, 10−2, 10−1} strength of the regularization term that controls the soft margin
µ refer to Table 5.2 calibration factor that reflects domain knowledge
η refer to Equation (5.16) learning rate of the gradient descent method

practice, we set lmax = 1 and apply the dynamic prediction procedure on a rolling basis with a

specified interval that equals to the forward-looking horizon h.

5.4 Experiments

In this section, we describe the evaluation metrics, the characteristics of datasets and

the benchmark procedure that is executed for all competing and proposed methods. In the

experimental results, particularly in Table 5.4 and Table 5.5, we refer to Pairwise Ranking and

DynaPairwise Ranking as the proposed Algorithm 1 and the proposed Algorithm 3, respectively.

5.4.1 Evaluation metrics

In line with the previous studies, three evaluation metrics, i.e., SMAPE [127], RMSE [121],

and the CI [141, 142] are used to evaluate the performance of competing models including

the theta model [136, 137], the regression-based model [138], the ARIMA model [100], the

DeepAR model [153], the random forest model [158], the LightGBM model [159], the logistic

regression model [139, 140], and the ordinal regression method [143].
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Table 5.2: An overview of financial time series dataset. The dataset has two categories,
i.e., growth indices and mean-reverting indices, addressing the economic properties of the
underlying asset classes. In the upper part of the table, equity indices and fixed income indices
are categorized as growth indices. In the lower part of the table, currency exchange indices are
categorized as mean-reverting indices. ©IEEE, 2021

Index Asset Class Ticker Description Experiment Period Avg. Rolling Return (std.)

Growth Indices
S&P 500 Equity index SPX S&P 500 price return index 12.31.1999 to 12.31.2019 5.19%(16.11%)

Russel 2000 Equity index RUT Russell 2000 index 12.31.1999 to 12.31.2019 7.27%(19.21%)

DAX Equity index DAX German stock total return index 12.31.1999 to 12.31.2019 5.25%(21.96%)

TOPIX Equity index TPX Tokyo Stock Exchange price index 12.31.1999 to 12.31.2019 2.58%(22.34%)

Bund 10Y Fixed income index CBKIG0FT German 10Y Bund futures index 12.31.1999 to 12.31.2019 4.60%(4.82%)

Gilt 10Y Fixed income index CBKIK0FT UK 10Y Gilt futures index 12.31.1999 to 12.31.2019 3.60%(5.45%)

Treasury 10Y Fixed income index CBKIU0FT US 10Y Treasury futures index 12.31.1999 to 12.31.2019 3.82%(5.13%)

Mean-reverting Indices
EURUSD Currency EURUSDCR EURUSD carry return index 12.31.1989 to 12.31.2019 0.29%(10.80%)

GBPUSD Currency GBPUSDCR GBPUSD carry return index 12.31.1989 to 12.31.2019 1.58%(9.29%)

CHFUSD Currency CHFUSDCR CHFUSD carry return index 12.31.1989 to 12.31.2019 1.13%(10.81%)

JPYUSD Currency JPYUSDCR JPYUSD carry return index 12.31.1989 to 12.31.2019 −0.72%(11.05%)

CADUSD Currency CADUSDCR CADUSD carry return index 12.31.1989 to 12.31.2019 0.49%(7.85%)

AUDUSD Currency AUDUSDCR AUDUSD carry return index 12.31.1989 to 12.31.2019 2.89%(13.10%)

NZDUSD Currency NZDUSDCR NZDUSD carry return index 12.31.1989 to 12.31.2019 4.30%(13.43%)

NOKUSD Currency NOKUSDCR NOKUSD carry return index 12.31.1989 to 12.31.2019 1.44%(11.89%)

SEKUSD Currency SEKUSDCR SEKUSD carry return index 12.31.1989 to 12.31.2019 0.79%(12.76%)

Mathematically, the metrics are calculated as follows:

SMAPE =
1

n

n∑
t=1

∣∣x̂[t] − x[t]

∣∣∣∣x̂[t]

∣∣+ ∣∣x[t]

∣∣ × 100% (5.19)

RMSE =
1

n

√√√√ n∑
t=1

∣∣x̂[t] − x[t]

∣∣2 (5.20)

CI =
2

|E|
∑

(i,j)∈E

1(r̂[i] ⪰ r̂[j]) (5.21)

where E := {(i, j);x[i] ≥ x[j], i < j ∈ [1 : n]} is the set of event of interest (EOI), which is

observed in the ground truth time series. 1(r̂[t] ≥ r̂[t]) is an indicator function that outputs 1

when the condition r̂[t] ≥ r̂[t] is satisfied. At time i, we focus on the concordance between the

relative ordering of the observations and the relative ordering of the model forecast. The CI is a

generalization of the area under the ROC curve to the regression problem, and therefore it can

be calculated trivially by transforming the continuous outputs into a ranking list using Equation
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Figure 5.4: Two categories of financial indices, i.e., growth indices (in blue) and mean-reverting
indices (in red). ©IEEE, 2021

(5.1). In our definition, over a specific time horizon n, the CI is 1 if all the upward movements

of the time series along the timeline are successfully captured by the forecast and 0 if all the

upward movements of the time series are forecasted as downward movements. Assuming the

time series is a random walk with no expectations regarding its upside and downside, CI = 0.5

indicates that the performance is as good as a random predictor. However, given some domain

knowledge of the time series, the outlook for certain directional move of the time series may

shift from neutral to up or down in expectation. In such cases, the output of the models can be

calibrated toward the predefined expectation by

x̂′
[t0]

(t) = x̂[t0]e
µ(t−t0) (5.22)

where µ is a positive scalar when the outlook for the time-series observation from time t0 is

more on the upside and is negative when the outlook is more on the downside.

Note that for discriminative models, including logistic regression, ordinal regression, and

the proposed pairwise ranking models, only r̂[t:t+h] is forecasted. Therefore, the tracking

errors can not be calculated and reported in the comparison with the competing methods. An

exception is the proposed dynamic prediction scheme assembled with LL, for which the output
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of the discriminative model can be interpreted as scalar values x̂[t:t+h] given sufficient privileged

information. For non-discriminative models, including the theta model and the regression-based

models, both r̂[t:t+h] and x̂[t:t+h] are forecasted. All three evaluation metrics are calculated and

reported in Section 5.4.

5.4.2 Datasets

We use historical future contract and index data obtained from the Bloomberg Terminal1.

The dataset is retrieved on October 31, 2020, and consists of major liquid asset classes including

equity indices, fixed income indices, and currency indices2. An overview of the dataset is

provided in Table 5.2. For the equity and fixed income indices, the observations are either

price return or total return, which are tradable in the market via exchange-traded funds or

future contracts at low transaction costs. The time horizon of the time-series data ranges from

December 31, 1999, to December 31, 2019, on a daily basis. For currency indices, the time

horizon is from December 31, 1989, to December 31, 2019, on a daily basis. In the last column

of Table 5.2, the historical return statistics are presented to characterize the asset classes. In

the last column of Table 5.2, we summarize the average annualized rolling return and the

standard deviation of the annualized rolling return over the entire observation period. Because

the observation period contains at least one economic and market cycle, the return and standard

deviation statistics reflect the expected growth of an asset class in mid-long term. Depending

on the level of growth expectation, we categorize the 16 indices into two groups. On the one

hand, equity and fixed income indices are categorized as growth indices, because they generally

record positive asset pricing results based on historical performance. This is in line with the

economic outlook of these asset classes in the long run. On the other hand, currency indices are

categorized as mean-reverting indices, because the annualized returns of the currency indices

1https://www.bloomberg.com/professional/
2Financial indices source data can also be obtained from other data vendors, e.g., https://tradingeconomics.com/
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Table 5.3: A summary of averaged CPU time (in seconds) for model training with cross-
validation.

Ntrain = 500 h = 50 h = 100 h = 200

m = 100

Theta Forecaster 0.54 0.46 0.44
Linear Regression 0.63 0.55 0.46
ARIMA 5.15 4.37 4.14
DeepAR 35.72 54.93 134.13
Random Forest 2.39 3.58 4.38
LightGBM 0.57 1.10 0.98
Logistic Regression 2.41 2.99 2.01
Ordinal Regression 1.36 1.30 1.43
Pairwise Ranking 1.90 2.20 2.65
DynaPairwise
Ranking

3.17 3.31 3.40

are not significantly positive in a market cycle, which signals a strong mean-reversion style of

the asset class.

5.4.3 Experimental setting

All results of both competing and proposed methods are produced based on a common

benchmark procedure. For each of the retrieved time series, we retrained on a rolling basis,

i.e., every Nroll trading days and varied the forecasting horizon from 50 trading days to 200

trading days accordingly. By default, the forward-looking forecast horizon h is aligned with the

interval of the rolling retraining by setting h = Nroll. By varying the horizon from short term

h = 50 to mid-long term h = {100, 200}, we validate the consistency of the results and report

the evaluation metrics together with their statistical significance, i.e. standard deviation. To

summarize, the benchmark procedure is analogous to Algorithm 1, where the LL in Algorithm

2 and the iterative dynamic prediction in Algorithm 3 are not considered.
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Table 5.4: A summary of predictive performance on equity indices and fixed income indices,
measured by tracking errors and relative relationships, i.e., Symmetric mean absolute percentage
error (SMAPE), Root-mean-square error (RMSE) and Concordance index (CI). ©IEEE, 2021

Ntrain = 500 h = 50 h = 100 h = 200

m = 100 SMAPE RMSE CI SMAPE RMSE CI SMAPE RMSE CI

S&
P

50
0

Theta Forecaster 0.02 (0.01) 55.86 0.55 (0.06) 0.03 (0.01) 81.21 0.51 (0.04) 0.04 (0.01) 110.72 0.51 (0.01)
Linear Regression 0.02 (0.01) 53.01 0.64 (0.07) 0.03 (0.01) 84.53 0.60 (0.06) 0.05 (0.02) 129.65 0.61 (0.07)
ARIMA 0.02 (0.01) 51.12 0.51 (0.02) 0.03 (0.01) 73.58 0.51 (0.01) 0.04 (0.02) 107.55 0.52 (0.03)
DeepAR 0.03 (0.02) 58.10 0.52 (0.05) 0.06 (0.04) 86.55 0.52 (0.05) 0.06 (0.03) 143.26 0.53 (0.03)
Random Forest 0.02 (0.01) 56.83 0.68 (0.14) 0.04 (0.01) 84.94 0.72 (0.11) 0.06 (0.02) 141.48 0.76 (0.14)
LightGBM - - 0.62 (0.20) - - 0.72 (0.24) - - 0.77 (0.23)
Logistic Regression - - 0.59 (0.17) - - 0.60 (0.18) - - 0.80 (0.20)
Ordinal Regression - - 0.62 (0.20) - - 0.62 (0.20) - - 0.65 (0.22)
Pairwise Ranking - - 0.63 (0.08) - - 0.61 (0.06) - - 0.62 (0.07)
DynaPairwise Ranking 0.03 (0.02) 75.94 0.73 (0.13) 0.04 (0.01) 94.53 0.70 (0.15) 0.06 (0.02) 150.89 0.73 (0.14)

R
us

se
ll

20
00

Theta Forecaster 0.03 (0.01) 43.95 0.56 (0.06) 0.04 (0.02) 61.85 0.53 (0.05) 0.06 (0.02) 87.82 0.52 (0.04)
Linear Regression 0.02 (0.01) 40.98 0.63 (0.09) 0.04 (0.02) 58.18 0.62 (0.05) 0.07 (0.03) 95.96 0.60 (0.11)
ARIMA 0.03 (0.01) 37.79 0.53 (0.06) 0.04 (0.02) 51.56 0.54 (0.11) 0.06 (0.02) 82.43 0.55 (0.12)
DeepAR 0.02 (0.02) 49.46 0.52 (0.06) 0.05 (0.03) 68.84 0.52 (0.04) 0.08 (0.4) 104.30 0.52 (0.01)
Random Forest 0.03 (0.02) 46.26 0.66 (0.09) 0.05 (0.02) 62.80 0.68 (0.11) 0.07 (0.02) 92.78 0.67 (0.16)
LightGBM - - 0.65 (0.21) - - 0.63 (0.20) - - 0.64 (0.22)
Logistic Regression - - 0.61 (0.17) - - 0.65 (0.19) - - 0.75 (0.22)
Ordinal Regression - - 0.59 (0.17) - - 0.63 (0.20) - - 0.70 (0.20)
Pairwise Ranking - - 0.63 (0.08) - - 0.60 (0.08) - - 0.61 (0.10)
DynaPairwise Ranking 0.04 (0.02) 57.99 0.70 (0.11) 0.05 (0.02) 73.30 0.70 (0.11) 0.09 (0.04) 124.69 0.65 (0.09)

D
A

X

Theta Forecaster 0.03 (0.02) 448.49 0.57 (0.06) 0.05 (0.02) 652.03 0.54 (0.04) 0.07 (0.03) 887.01 0.54 (0.02)
Linear Regression 0.03 (0.01) 410.94 0.62 (0.08) 0.04 (0.02) 611.71 0.57 (0.05) 0.07 (0.03) 868.62 0.58 (0.07)
ARIMA 0.03 (0.02) 419.74 0.54 (0.10) 0.05 (0.03) 600.70 0.53 (0.09) 0.07 (0.03) 815.33 0.57 (0.12)
DeepAR 0.05 (0.02) 503.56 0.51 (0.06) 0.07 (0.04) 798.61 0.52 (0.04) 0.08 (0.04) 908.40 0.51 (0.03)
Random Forest 0.04 (0.02) 427.67 0.68 (0.12) 0.06 (0.04) 650.77 0.68 (0.11) 0.08 (0.04) 882.51 0.71 (0.12)
LightGBM - - 0.62 (0.19) - - 0.63 (0.21) - - 0.67 (0.19)
Logistic Regression - - 0.60 (0.17) - - 0.63 (0.18) - - 0.76 (0.17)
Ordinal Regression - - 0.54 (0.12) - - 0.57 (0.17) - - 0.57 (0.17)
Pairwise Ranking - - 0.61 (0.07) - - 0.61 (0.06) - - 0.60 (0.08)
DynaPairwise Ranking 0.05 (0.03) 721.36 0.75 (0.10) 0.06 (0.03) 830.78 0.68 (0.14) 0.09 (0.04) 1106.25 0.66 (0.16)

TO
PI

X

Theta Forecaster 0.04 (0.02) 71.39 0.60 (0.09) 0.06 (0.03) 111.43 0.58 (0.05) 0.12 (0.07) 192.67 0.58 (0.05)
Linear Regression 0.03 (0.02) 67.03 0.64 (0.12) 0.06 (0.04) 108.99 0.62 (0.10) 0.12 (0.07) 189.64 0.63 (0.07)
ARIMA 0.04 (0.03) 63.98 0.64 (0.17) 0.06 (0.03) 102.09 0.59 (0.13) 0.12 (0.06) 176.59 0.63 (0.14)
DeepAR 0.05 (0.02) 83.52 0.53 (0.06) 0.08 (0.05) 133.58 0.51 (0.02) 0.09 (0.04) 154.85 0.51 (0.03)
Random Forest 0.04 (0.02) 66.43 0.69 (0.11) 0.06 (0.04) 103.50 0.74 (0.14) 0.12 (0.06) 182.72 0.68 (0.17)
LightGBM - - 0.66 (0.21) - - 0.61 (0.20) - - 0.76 (0.23)
Logistic Regression - - 0.61 (0.17) - - 0.64 (0.21) - - 0.74 (0.17)
Ordinal Regression - - 0.55 (0.15) - - 0.60 (0.18) - - 0.70 (0.23)
Pairwise Ranking - - 0.66 (0.10) - - 0.63 (0.08) - - 0.64 (0.11)
DynaPairwise Ranking 0.05 (0.03) 99.35 0.70 (0.12) 0.07 (0.03) 122.89 0.66 (0.10) 0.14 (0.05) 216.19 0.68 (0.11)

B
un

d
10

Y

Theta Forecaster 0.01 (0.01) 2.96 0.56 (0.07) 0.01 (0.01) 4.19 0.53 (0.05) 0.02 (0.01) 6.07 0.51 (0.03)
Linear Regression 0.01 (0.01) 2.97 0.64 (0.08) 0.02 (0.01) 4.48 0.62 (0.08) 0.02 (0.01) 6.55 0.61 (0.10)
ARIMA 0.01 (0.01) 2.48 0.53 (0.06) 0.02 (0.01) 3.73 0.53 (0.08) 0.03 (0.02) 6.47 0.54 (0.08)
DeepAR 0.01 (0.01) 2.45 0.51 (0.06) 0.02 (0.02) 4.35 0.51 (0.04) 0.04 (0.03) 9.24 0.51 (0.04)
Random Forest 0.01 (0.01) 2.74 0.72 (0.13) 0.02 (0.01) 4.27 0.69 (0.15) 0.03 (0.02) 6.13 0.67 (0.18)
LightGBM - - 0.61 (0.21) - - 0.61 (0.21) - - 0.57 (0.17)
Logistic Regression - - 0.56 (0.15) - - 0.69 (0.21) - - 0.68 (0.21)
Ordinal Regression - - 0.54 (0.12) - - 0.57 (0.16) - - 0.56 (0.15)
Pairwise Ranking - - 0.64 (0.09) - - 0.56 (0.06) - - 0.56 (0.09)
DynaPairwise Ranking 0.01 (0.01) 3.82 0.72 (0.11) 0.02 (0.01) 5.28 0.69 (0.14) 0.03 (0.01) 7.46 0.70 (0.18)

G
ilt

10
Y

Theta Forecaster 0.01 (0.01) 3.82 0.56 (0.07) 0.02 (0.01) 5.28 0.55 (0.08) 0.03 (0.02) 7.46 0.54 (0.09)
Linear Regression 0.01 (0.01) 3.20 0.64 (0.05) 0.02 (0.01) 3.92 0.63 (0.07) 0.03 (0.02) 7.42 0.63 (0.11)
ARIMA 0.01 (0.01) 3.10 0.55 (0.10) 0.02 (0.01) 3.46 0.52 (0.05) 0.02 (0.02) 5.43 0.52 (0.06)
DeepAR 0.01 (0.01) 2.97 0.52 (0.05) 0.03 (0.02) 5.57 0.50 (0.04) 0.05 (0.03) 9.08 0.52 (0.02)
Random Forest 0.02 (0.01) 3.30 0.70 (0.11) 0.02 (0.01) 4.26 0.67 (0.11) 0.03 (0.02) 6.19 0.65 (0.09)
LightGBM - - 0.65 (0.22) - - 0.69 (0.24) - - 0.57 (0.17)
Logistic Regression - - 0.58 (0.16) - - 0.64 (0.21) - - 0.70 (0.23)
Ordinal Regression - - 0.60 (0.16) - - 0.60 (0.18) - - 0.63 (0.21)
Pairwise Ranking - - 0.63 (0.08) - - 0.64 (0.11) - - 0.63 (0.13)
DynaPairwise Ranking 0.02 (0.01) 4.45 0.68 (0.08) 0.02 (0.01) 5.49 0.66 (0.10) 0.04 (0.03) 9.26 0.60 (0.07)

Tr
ea

su
ry

10
Y

Theta Forecaster 0.01 (0.01) 2.38 0.61 (0.10) 0.01 (0.01) 3.22 0.60 (0.10) 0.02 (0.01) 4.37 0.58 (0.10)
Linear Regression 0.01 (0.00) 2.14 0.65 (0.09) 0.01 (0.00) 2.80 0.63 (0.07) 0.01 (0.01) 3.79 0.60 (0.10)
ARIMA 0.01 (0.00) 2.19 0.67 (0.16) 0.01 (0.01) 2.90 0.66 (0.18) 0.02 (0.01) 3.75 0.63 (0.17)
DeepAR 0.01 (0.01) 2.22 0.52 (0.04) 0.02 (0.01) 4.54 0.52 (0.03) 0.04 (0.03) 10.02 0.51 (0.03)
Random Forest 0.01 (0.01) 2.44 0.67 (0.11) 0.02 (0.01) 3.43 0.65 (0.09) 0.02 (0.01) 3.70 0.70 (0.09)
LightGBM - - 0.64 (0.20) - - 0.64 (0.19) - - 0.50 (0.00)
Logistic Regression - - 0.57 (0.15) - - 0.56 (0.11) - - 0.65 (0.21)
Ordinal Regression - - 0.56 (0.14) - - 0.56 (0.15) - - 0.59 (0.16)
Pairwise Ranking - - 0.65 (0.10) - - 0.63 (0.06) - - 0.58 (0.08)
DynaPairwise Ranking 0.01 (0.01) 3.22 0.70 (0.11) 0.02 (0.01) 4.06 0.66 (0.11) 0.02 (0.01) 5.27 0.65 (0.11)
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Table 5.5: A summary of predictive performance on currency time series, measured by tracking
errors and relative relationships, i.e., Symmetric mean absolute percentage error (SMAPE),
Root-mean-square error (RMSE) and Concordance index (CI). ©IEEE, 2021

Ntrain = 500 h = 50 h = 100 h = 200

m = 100 SMAPE RMSE CI SMAPE RMSE CI SMAPE RMSE CI

E
U

R
U

SD

Theta Forecaster 0.03 (0.02) 4.63 0.61 (0.08) 0.04 (0.03) 6.70 0.60 (0.10) 0.05 (0.02) 7.14 0.62 (0.10)
Linear Regression 0.03 (0.02) 4.34 0.64 (0.08) 0.04 (0.03) 6.24 0.60 (0.06) 0.05 (0.02) 6.84 0.60 (0.06)
ARIMA 0.03 (0.03) 3.99 0.56 (0.15) 0.05 (0.04) 6.13 0.57 (0.15) 0.07 (0.08) 9.10 0.62 (0.20)
DeepAR 0.04 (0.03) 4.88 0.52 (0.05) 0.06 (0.04) 7.79 0.49 (0.04) 0.09 (0.08) 11.22 0.51 (0.03)
Random Forest 0.03 (0.02) 3.85 0.66 (0.09) 0.04 (0.03) 5.52 0.64 (0.08) 0.04 (0.02) 5.16 0.64 (0.10)
LightGBM - - 0.70 (0.22) - - 0.68 (0.23) - - 0.69 (0.22)
Logistic Regression - - 0.59 (0.16) - - 0.69 (0.20) - - 0.75 (0.18)
Ordinal Regression - - 0.62 (0.18) - - 0.67 (0.19) - - 0.53 (0.08)
Pairwise Ranking - - 0.65 (0.08) - - 0.63 (0.09) - - 0.64 (0.07)
DynaPairwise Ranking 0.03 (0.02) 4.86 0.78 (0.14) 0.04 (0.03) 6.66 0.77 (0.18) 0.05 (0.02) 7.35 0.77 (0.12)

G
B

PU
SD

Theta Forecaster 0.03 (0.02) 4.21 0.65 (0.11) 0.04 (0.04) 6.78 0.62 (0.11) 0.04 (0.02) 7.10 0.63 (0.09)
Linear Regression 0.02 (0.02) 4.02 0.67 (0.07) 0.04 (0.03) 6.25 0.63 (0.08) 0.04 (0.02) 6.65 0.60 (0.08)
ARIMA 0.03 (0.02) 3.33 0.54 (0.10) 0.04 (0.04) 5.54 0.57 (0.13) 0.08 (0.10) 9.81 0.60 (0.16)
DeepAR 0.03 (0.03) 3.57 0.51 (0.06) 0.05 (0.04) 7.00 0.52 (0.05) 0.10 (0.09) 11.68 0.51 (0.04)
Random Forest 0.02 (0.02) 3.13 0.66 (0.09) 0.04 (0.03) 5.29 0.63 (0.10) 0.04 (0.02) 5.33 0.65 (0.10)
LightGBM - - 0.71 (0.22) - - 0.73 (0.22) - - 0.83 (0.20)
Logistic Regression - - 0.62 (0.19) - - 0.64 (0.20) - - 0.71 (0.20)
Ordinal Regression - - 0.55 (0.13) - - 0.58 (0.17) - - 0.55 (0.14)
Pairwise Ranking - - 0.65 (0.08) - - 0.64 (0.09) - - 0.63 (0.09)
DynaPairwise Ranking 0.03 (0.02) 4.29 0.76 (0.13) 0.04 (0.03) 6.69 0.79 (0.14) 0.04 (0.02) 6.72 0.86 (0.09)

C
H

FU
SD

Theta Forecaster 0.03 (0.02) 5.41 0.58 (0.07) 0.05 (0.04) 8.39 0.54 (0.38) 0.06 (0.03) 8.12 0.56 (0.07)
Linear Regression 0.03 (0.03) 5.61 0.63 (0.09) 0.05 (0.04) 8.76 0.59 (0.09) 0.05 (0.03) 7.64 0.59 (0.07)
ARIMA 0.03 (0.03) 4.33 0.56 (0.10) 0.06 (0.06) 8.02 0.53 (0.05) 0.06 (0.04) 7.86 0.54 (0.06)
DeepAR 0.03 (0.03) 5.28 0.52 (0.07) 0.07 (0.04) 9.52 0.51 (0.04) 0.14 (0.12) 15.06 0.50 (0.02)
Random Forest 0.03 (0.02) 4.11 0.69 (0.11) 0.05 (0.03) 6.73 0.65 (0.10) 0.06 (0.03) 7.51 0.65 (0.14)
LightGBM - - 0.70 (0.21) - - 0.73 (0.20) - - 0.75 (0.20)
Logistic Regression - - 0.62 (0.18) - - 0.67 (0.21) - - 0.73 (0.21)
Ordinal Regression - - 0.66 (0.20) - - 0.68 (0.22) - - 0.75 (0.21)
Pairwise Ranking - - 0.64 (0.07) - - 0.61 (0.08) - - 0.62 (0.09)
DynaPairwise Ranking 0.03 (0.02) 5.63 0.73 (0.13) 0.05 (0.04) 8.36 0.73 (0.18) 0.05 (0.03) 8.13 0.76 (0.19)

JP
Y

U
SD

Theta Forecaster 0.02 (0.02) 2.77 0.63 (0.11) 0.03 (0.02) 4.06 0.59 (0.10) 0.05 (0.04) 6.73 0.57 (0.09)
Linear Regression 0.02 (0.02) 2.76 0.62 (0.07) 0.03 (0.02) 4.03 0.57 (0.06) 0.05 (0.04) 6.78 0.56 (0.05)
ARIMA 0.02 (0.02) 2.45 0.53 (0.07) 0.04 (0.02) 3.67 0.51 (0.02) 0.05 (0.04) 5.54 0.51 (0.03)
DeepAR 0.03 (0.02) 3.12 0.54 (0.04) 0.04 (0.03) 3.90 0.49 (0.03) 0.14 (0.08) 13.75 0.51 (0.03)
Random Forest 0.02 (0.02) 2.55 0.69 (0.11) 0.03 (0.02) 3.59 0.69 (0.13) 0.05 (0.04) 5.27 0.68 (0.13)
LightGBM - - 0.67 (0.22) - - 0.65 (0.22) - - 0.68 (0.23)
Logistic Regression - - 0.60 (0.18) - - 0.60 (0.17) - - 0.59 (0.14)
Ordinal Regression - - 0.56 (0.13) - - 0.62 (0.19) - - 0.58 (0.16)
Pairwise Ranking - - 0.62 (0.09) - - 0.60 (0.08) - - 0.60 (0.08)
DynaPairwise Ranking 0.03 (0.02) 3.64 0.73 (0.14) 0.04 (0.02) 4.84 0.83 (0.12) 0.06 (0.04) 7.07 0.83 (0.08)

C
A

D
U

SD

Theta Forecaster 0.02 (0.02) 5.13 0.63 (0.10) 0.03 (0.03) 6.73 0.60 (0.09) 0.03 (0.02) 7.38 0.57 (0.09)
Linear Regression 0.02 (0.02) 4.92 0.63 (0.08) 0.03 (0.02) 6.19 0.61 (0.10) 0.03 (0.02) 6.44 0.57 (0.10)
ARIMA 0.02 (0.02) 3.67 0.55 (0.11) 0.03 (0.03) 5.22 0.55 (0.13) 0.04 (0.02) 6.98 0.65 (0.21)
DeepAR 0.02 (0.03) 4.04 0.52 (0.05) 0.04 (0.02) 6.60 0.51 (0.04) 0.09 (0.05) 16.16 0.50 (0.02)
Random Forest 0.02 (0.02) 3.78 0.65 (0.09) 0.03 (0.02) 5.22 0.67 (0.12) 0.03 (0.02) 6.38 0.69 (0.11)
LightGBM - - 0.65 (0.20) - - 0.62 (0.19) - - 0.68 (0.23)
Logistic Regression - - 0.63 (0.19) - - 0.69 (0.21) - - 0.76 (0.20)
Ordinal Regression - - 0.62 (0.18) - - 0.71 (0.22) - - 0.87 (0.20)
Pairwise Ranking - - 0.64 (0.09) - - 0.61 (0.10) - - 0.57 (0.07)
DynaPairwise Ranking 0.03 (0.02) 5.19 0.78 (0.12) 0.03 (0.02) 6.77 0.78 (0.13) 0.04 (0.05) 10.01 0.85 (0.11)

A
U

D
U

SD

Theta Forecaster 0.04 (0.04) 9.75 0.60 (0.07) 0.05 (0.05) 14.76 0.58 (0.06) 0.06 (0.04) 15.61 0.54 (0.05)
Linear Regression 0.03 (0.03) 9.43 0.63 (0.10) 0.05 (0.05) 14.25 0.59 (0.08) 0.06 (0.04) 15.88 0.59 (0.08)
ARIMA 0.04 (0.04) 8.09 0.60 (0.15) 0.07 (0.07) 13.40 0.59 (0.15) 0.11 (0.14) 21.88 0.56 (0.16)
DeepAR 0.04 (0.04) 8.79 0.53 (0.06) 0.09 (0.06) 18.57 0.53 (0.04) 0.12 (0.05) 26.64 0.53 (0.02)
Random Forest 0.04 (0.04) 8.17 0.70 (0.08) 0.06 (0.06) 12.41 0.68 (0.11) 0.07 (0.03) 14.72 0.70 (0.11)
LightGBM - - 0.62 (0.19) - - 0.70 (0.21) - - 0.77 (0.18)
Logistic Regression - - 0.57 (0.15) - - 0.55 (0.11) - - 0.55 (0.13)
Ordinal Regression - - 0.58 (0.16) - - 0.63 (0.18) - - 0.69 (0.22)
Pairwise Ranking - - 0.66 (0.11) - - 0.61 (0.10) - - 0.63 (0.09)
DynaPairwise Ranking 0.04 (0.03) 11.42 0.79 (0.13) 0.06 (0.05) 15.72 0.75 (0.14) 0.07 (0.04) 17.97 0.71 (0.17)

N
Z

D
U

SD

Theta Forecaster 0.04 (0.03) 9.32 0.58 (0.07) 0.05 (0.04) 14.17 0.55 (0.06) 0.07 (0.03) 17.03 0.53 (0.05)
Linear Regression 0.03 (0.03) 8.44 0.64 (0.08) 0.05 (0.04) 13.16 0.59 (0.07) 0.07 (0.04) 16.80 0.62 (0.08)
ARIMA 0.04 (0.03) 8.16 0.55 (0.11) 0.07 (0.05) 13.61 0.55 (0.12) 0.12 (0.13) 22.62 0.54 (0.11)
DeepAR 0.04 (0.03) 9.10 0.52 (0.06) 0.06 (0.05) 13.50 0.51 (0.04) 0.20 (0.09) 39.06 0.50 (0.01)
Random Forest 0.04 (0.04) 8.52 0.69 (0.12) 0.06 (0.05) 12.49 0.68 (0.14) 0.07 (0.02) 15.64 0.66 (0.09)
LightGBM - - 0.59 (0.17) - - 0.68 (0.22) - - 0.76 (0.21)
Logistic Regression - - 0.62 (0.19) - - 0.65 (0.19) - - 0.77 (0.20)
Ordinal Regression - - 0.56 (0.14) - - 0.55 (0.13) - - 0.55 (0.14)
Pairwise Ranking - - 0.66 (0.08) - - 0.63 (0.07) - - 0.60 (0.09)
DynaPairwise Ranking 0.04 (0.03) 10.97 0.75 (0.14) 0.05 (0.04) 14.11 0.78 (0.13) 0.07 (0.03) 16.73 0.68 (0.17)

N
O

K
U

SD

Theta Forecaster 0.03 (0.03) 7.08 0.60 (0.09) 0.05 (0.04) 10.41 0.57 (0.08) 0.05 (0.02) 10.13 0.54 (0.05)
Linear Regression 0.03 (0.03) 6.62 0.64 (0.09) 0.04 (0.03) 9.68 0.59 (0.07) 0.05 (0.02) 9.76 0.60 (0.08)
ARIMA 0.03 (0.03) 5.83 0.60 (0.17) 0.05 (0.05) 9.12 0.62 (0.19) 0.08 (0.12) 12.63 0.74 (0.20)
DeepAR 0.03 (0.03) 5.76 0.53 (0.06) 0.06 (0.04) 9.63 0.50 (0.03) 0.13 (0.11) 18.61 0.49 (0.02)
Random Forest 0.03 (0.03) 5.57 0.66 (0.12) 0.05 (0.03) 8.00 0.64 (0.10) 0.05 (0.02) 8.54 0.63 (0.13)
LightGBM - - 0.63 (0.20) - - 0.63 (0.19) - - 0.73 (0.23)
Logistic Regression - - 0.65 (0.18) - - 0.74 (0.20) - - 0.77 (0.20)
Ordinal Regression - - 0.62 (0.19) - - 0.61 (0.20) - - 0.59 (0.15)
Pairwise Ranking - - 0.62 (0.09) - - 0.59 (0.07) - - 0.59 (0.06)
DynaPairwise Ranking 0.04 (0.02) 7.53 0.75 (0.13) 0.06 (0.04) 11.93 0.80 (0.14) 0.07 (0.06) 15.24 0.84 (0.10)

SE
K

U
SD

Theta Forecaster 0.04 (0.03) 5.56 0.59 (0.08) 0.05 (0.04) 7.95 0.57 (0.07) 0.06 (0.03) 8.82 0.56 (0.06)
Linear Regression 0.03 (0.03) 5.15 0.62 (0.07) 0.04 (0.04) 7.37 0.58 (0.08) 0.05 (0.03) 8.11 0.58 (0.07)
ARIMA 0.04 (0.03) 4.71 0.53 (0.10) 0.06 (0.05) 7.04 0.53 (0.09) 0.10 (0.13) 12.00 0.58 (0.15)
DeepAR 0.04 (0.04) 5.41 0.51 (0.04) 0.08 (0.05) 10.25 0.51 (0.04) 0.09 (0.05) 11.50 0.48 (0.02)
Random Forest 0.04 (0.03) 4.81 0.67 (0.10) 0.05 (0.04) 6.22 0.69 (0.11) 0.06 (0.04) 7.51 0.65 (0.12)
LightGBM - - 0.64 (0.20) - - 0.67 (0.21) - - 0.70 (0.21)
Logistic Regression - - 0.62 (0.19) - - 0.70 (0.20) - - 0.74 (0.22)
Ordinal Regression - - 0.64 (0.20) - - 0.69 (0.21) - - 0.67 (0.20)
Pairwise Ranking - - 0.63 (0.08) - - 0.59 (0.08) - - 0.59 (0.07)
DynaPairwise Ranking 0.04 (0.03) 5.64 0.75 (0.13) 0.05 (0.04) 8.31 0.80 (0.14) 0.05 (0.03) 8.56 0.82 (0.11)
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For each of the individual time series, we take the last 30% of the retrieved data as the

test set and report the performance based on the forecasted values in that horizon. Given the

benchmark scheme that behaves in a rolling manner, we set the latest Ntrain = 500 trading days

as the input data for all the models involved and set m = Ntrain for Algorithm 2 by default, so

that all observed data are exploited in LL. In practice, the results delivered by setting m = 100,

m = 500 and m = 1, 000 does not show a significant difference; therefore, we report all

results by setting m = Ntrain as the default configuration. The detailed hyperparameters for the

benchmark procedure and the proposed learning algorithm are summarized in Table 5.1.

In practice, we follow the standard de facto hyperparameter tuning processes and models

available in packages like scikit-learn library [131], sktime [174] and GluonTS [175]. The

CPU time of each method taken for the cross-validation is based on the computation on a

Macbook Pro with 2.9 GHz Dual-Core Intel Core i5 and 16 GB 1867 MHz DDR3 memory. A

summary of the CPU time for model training is summarized in Table 5.3. Note that although

the averaged CPU time for training a model in cross-validation is obtained by using different

implementations in scikit-learn, sktime and GluonTS, a comparison between the CPU time

for each method is meaningful, because for each length of the forward-looking horizon, the

number of models to be trained is fixed. Given a fixed h, the most time-efficient method is

Theta Forecaster for all lengths of forward-looking horizons. The proposed method is moderate

among others. The highest CPU time is reported from the experiments on the DeepAR method,

for which the training is subject to a termination after 5 epochs which is set empirically.

5.5 Discussions

In this section, we discuss the experimental results on real world financial time series. In

the first part, we examine the use of the proposed methods from an alternative perspective other

than tracking error; specifically, we examine the impact of the proposed method in the lens

of time to event (TTE), which is critical in certain financial applications [164, 167]. In the
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second part, we discuss the practical issues, such as the performance of the proposed methods

on different types of time series and under different lengths of the forecast horizon. The details

of the results are presented in Table 5.4 and Table 5.5.

5.5.1 Impacts of concordance index

The CI is a well-established evaluation metric for survival analysis in medical statistics

[144]. The metric addresses the differences along the timeline between a forecasted event and

a ground truth event. It essentially indicates the time until the occurrence of an event of interest

(EOI), e.g., death, onset of a disease, or failure of a machine, depending on the domain. The

adoption of CI as the major evaluation metrics instead of the tracking errors, happens in a wide

spectrum of applications from clinical research [141], epidemiology, disease control [170] to

predictive maintenance [107], reliability engineering [171], and insurance [172]. We hereby

discuss its property, usage and potential impacts in financial applications.

Recalling the definition of the CI in Equation (5.19), TTE in Figure 5.5, and the gap between

its ground truth and its forecast by the ranking model can be written as

TTE(i) =
∑

∀rj>ri
∀j>i

min(j − i) (5.23)

T̂TE(i) =
∑

∀r̂j>r̂i
∀j>i

min(j − i) (5.24)

∆TTE(i) =
∣∣∣TTE(i)− T̂TE(i)

∣∣∣ (5.25)

where TTE(i) and T̂TE(i) refer to the length of the vertical black lines in Figure 5.5. A

permutation of the neighboring items in the ground truth ranking list would lead to a same

directional change of ∆TTE(i) and CI. When the CI is maximized to 1, ∆TTE(i) is minimized

to 0. A higher CI score indicates not only the correctness of the relative ordering of the

multi-step ahead forecast but also the similarity between the two TTE maps in Figure 5.5.
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(a) The ground truth time-to-event (TTE) map

(b) The forecasted time-to-event (TTE) map by the proposed method

Figure 5.5: The time-to-event (TTE) alignment between the ground truth and the forecast by
the proposed method. The event of interest (EOI) is defined as the successful observation of
a higher scalar. The horizontal index indicates the starting time epoch of each event, and the
vertical index indicates the time epoch when an EOI is first observed. Therefore, the length
of the black bars in the figure indicates the duration before an EOI occurs. The horizon of
multi-step ahead forecasting is set to 50, and by forecasting 100 time epochs, we obtain a TTE
estimate without censoring. ©IEEE, 2021

In the financial domain, the similarity between the ground truth TTE map and the forecasted

TTE map is important. The existence of certain financial derivative instruments enable the

monetization of the forecasted TTE map by the proposed models. Typical examples include
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future contracts, which can be used to construct a long-short investment portfolio [94, 88, 87].

With proper position sizing [90] and risk management, the signals or forecast derived from the

model can be transformed into an investment strategy. Following the intuition that a future

contract has a profit and loss profile that is dependent on the price difference at two different

time epochs, we define the EOI as the successful observation of a higher value in the time series

within a specified forward-looking horizon h from time i. As depicted in Figure 5.5, with more

accurate forecasting of the TTE map, better investment decisions for hunting alternative returns

from the financial asset class can be made easily. By refering to a TTE map, one can answer

questions such as, should the current position be renewed at its termination and by how much.

The relationship between the CI and the TTE is intuitive. In Figure 5.5, the ground truth

TTE map and the forecasted TTE map are visualized. The horizontal index indicates the starting

time epoch of each event, and the vertical index indicates the time epoch when an EOI is first

observed. The length of the black bars in the figure indicates the duration before an EOI occurs.

The horizon of multi-step ahead forecasting is set to 50, and by forecasting 100 time epochs,

we obtain a time-to-event estimate without censoring. In essence, the CI is a generalization of

the gap between the ground truth TTE map in Figure 5.5-a) and the forecasted TTE map in

Figure 5.5-b). Given a cross-temporal pair (i, j), TTE neglects the impact of the forecasted

order during t ∈ [i + 1 : j − 1], if they are correct with respect to r̂t, the forecasted order at

time j.

Overall, although it is technically difficult to directly optimize such a gap denoted by

∆TTE(i), we argue that the proposed learning-to-rank approach which intends to optimize the

concordance at a pairwise level is a promising solution for time-series forecasting, especially

when relative ordering within a specified horizon matters to the domain experts.
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5.5.2 Growth index vs. Mean-reverting index

As shown in Table 5.4 and Table 5.5, the performance of the proposed method varies by

the underlying asset class of the indices. For the growth indices in Table 5.4, we vary the

forward-looking horizon of the competing models. In terms of our optimisation objective,

i.e. CI, the proposed dynamic prediction scheme outperforms its competing methods in the

short-term settings, where h = 50 and 100, and underperforms its competing methods in the

long-term settings, where h = 200. Among the competing methods, the ARIMA model, the

DeepAR model and the random forest model are the ones that deliver superior performance in

terms of tracking error and deserve an attention. The DeepAR model outperformed consistently

in fixed income indices, e.g. German 10Y Bund and UK 10Y Gilt. Given the low volatility of

these fixed income indices recorded in Table 5.2, we think that the DeepAR method outperforms

because the method captures the short-term trends better than others by leveraging the recurrent

neural networks. However, the other side of this superior tracking error performance is its

poor performance in terms of relative ordering or CI. Recalling that the growth indices share

a common positive expected upward movement, we adopt Equation (5.22) to calibrate this

expectation in reference to Table 5.2. However, such a calibration is trivial in short-term and

does not show a significant impact in long-term forecasting with h = 200. We argue that this

is partially due to the fact that the calibration is not integrated into the learning phase. When

the length of the forward-looking horizon increases, the discriminative power of our model

decreases dramatically. Similar deterioration is also observed in the results by the competing

methods.

In contrast to this significant deterioration, the performance deterioration with respect to

the increase in the length of the forward-looking horizon is not significant for mean-reverting

indices except for the ARIMA model and the DeepAR model, as observed in Table 5.5. We

attribute this advantage of the proposed method to the increased volatility of the mean-reverting

time series. The mean-reverting indices have on average higher standard deviations in terms of
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rolling return; therefore given a fixed length of horizon, both the features and the observations

in the time series are more informative and discriminative. Since the momentum factor does

not function well for mean-reverting time series, we also observed that among the competing

methods, the random forest model performs consistently better than the ARIMA model and

the DeepAR model. This is counterfactual to what we observed in Table 5.4, where the linear

regression, the random forest model, the ARIMA model and the DeepAR model tie in terms

of tracking error metrics, e.g., SMAPE and RMSE. We argue that, this is because the moving

average module in ARIMA detracts the performance by explicitly incorporating the momentum,

which is meaningless for mean-reverting time series.

Overall, the proposed model outperforms its competing methods for all mean-reverting

indices in almost all settings of the forward-looking horizon. This implies that the proposed

dynamic prediction scheme is a better solution in situations where the utility of the forecast is

dependent on the relative ordering rather than on tracking error; the forecasting horizon is long;

and the time series exhibits high volatility or strong mean-reverting behavior.

Note that although the focus of this work is the relative ordering of multi-step ahead fore-

casting. The proposed dynamic prediction scheme has also achieved comparable performance

in terms of tracking error, i.e., SMAPE and RMSE, while significantly excelling its competing

methods in terms of the CI. For a time series in Table 5.4 and Table 5.5, an improvement in

the tracking error is not empirically correlated with the improvement in the relative ordering

metrics. We argue that, the tracking error metrics and the relative ordering metrics which

is advocated in the proposed method are orthogonal or even complementary to each other.

In the DeepAR method, a best RMSE score is likely associated with a worst CI score, like

for German Bund 10Y and for UK Gilt 10Y. With the promising experimental results by the

proposed method in terms of CI score, we argue that the differences and connections between

the competing methods and the proposed method worth a thorough investigation in the future.
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5.6 Summary

Data veracity of time series refers to the uncertainty of sequential observations. Relative

ordering of the noisy sequential observations is a robust interpretation, which can be utilized

to develop promising algorithms that directly tackle the data veracity of time series. We

proposed a learning-to-rank framework for multi-step ahead time-series forecasting which aims

to optimise the relative ordering of the forecast. A local learning technique is incorporated in

the framework to tackle the approximate inference of the time-series value given the forecast of

its relative orderings at each time epoch along the timeline. A dynamic prediction scheme is

proposed to integrate the proposed learning-to-rank model and the local learning in an iterative

manner. A combined framework results in an improvement in terms of the CI, which is robust

to subtle changes of the observed values. By comparing the proposed framework with a series

of conventional methods on financial time series across different types of asset classes, we

empirically verified that the proposed framework outperforms its competing methods through

the lens of the CI. A comprehensive examinations of the proposed method is provided from

multiple perspectives, e.g., the impact of the learning-to-rank model in time-series forecasting,

the use of the proposed method, for different categories of time series and under different

horizons of interest.
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Chapter 6

Conclusion and Future Works

6.1 Conclusion

In this dissertation, the data variety and veracity issues in predicting with structured data have

been studied by raising three fundamental questions:

1. DOES atomic-level similarity provide constructive information for predictive modeling

in materials informatics?

2. WHAT is the proper data representation to mitigate the conflicting observations, given

unconcordant pairwise relationships? HOW to improve the predictive performance?

3. IS concordance an alternative and meaningful optimization objective for time-series

forecasting? HOW to leverage it as a complement to conventional tracking errors?

We developed three types of approaches that answer the above questions accordingly.

1. Atomic-level similarity can provide constructive information for predictive modeling in

materials informatics. By using fine-grained graph kernel and domain knowledge, e.g.

the adjacency of atomic elements in the periodic table, the predictive model can exhibit

superior prediction power by using only a small amount of labeled data.
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2. Structured representation of players that separately expresses the strength and the weak-

ness of a player can mitigate the negative impact of conflicting observations or uncon-

cordant pairwise relationships. In order to improve the expressiveness or predictive

performance, developing deeper numerical interaction between the embedded representa-

tions via transitive matrices or structured deep neural networks can help.

3. Ranking of temporal observations is an alternative and meaningful optimization objective

for time-series forecasting. The relative ordering of temporal observations can be opti-

mized by learning to rank techniques and this optimization is robust to subtle changes in

observed value, which mitigates the challenge of data veracity for time series.

For the first approach, a novel predictive model for materials informatics is proposed based

on random walk graph kernel. The model utilizes atomic-level and bond-level similarities of the

graph elements in a materials compound. The similarity is estimated based on one of the most

fundamental domain knowledge in materials science and in chemistry, i.e., the periodic table of

the elements, because the element-level adjacency in the periodic table is a good descriptor of

electromagnetic properties. By constructing fine-grained kernels for such domain knowledge,

additional intelligence from the domain experts can be incorporated into the predictive analytics

framework. To reduce the complexity of the computation, a minimum spanning tree algorithm

can be used to cut off the redundant chemical bonds and carve out the critical vertices and

edges in a graph representation. As a result, the computational complexity of a kernel update

reduces from O(|V |3) to O(|V |2). Experimental results on real-world materials informatics

database show that, in comparison to the methods that rely on conventional handicraft features,

the predictive performance of the proposed method is significant better, especially when the

availability of labeled sample is limited.

For the second approach, two novel techniques are proposed to improve the expressiveness

of intransitivity by incorporating additional numerical interaction between model parameters.

The first technique is a novel multi-dimensional representation of objects where a unified
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structured representation of objects is proposed to handle various scoring attribution, including

the interaction between objects and the intrinsic strength of each individual. Regarding the

expressiveness of the proposed method, a simple and constructive example is illustrated to show

how the proposed model generalises its related works. On the parameter estimation, a stochastic

gradient algorithm based on alternating direction methods of multipliers is devised. Through

missing value inference experiments on recommender system, food preference and online

gaming platform, we demonstrate that the proposed method improves the prediction accuracy.

Moreover, we provide an extensive investigation of the universal existence of intransitive

relationships between objects in real-world datasets. This highlights the importance of dealing

with intransitivity in ranking problems. The second approach we proposed is a novel end-to-

end intransitivity modeling technique. Different from the techniques presented previously, a

structured multi-layer neural network is used for the parameter estimation instead of the legacy

logistic function. Through experiments on synthetic data with a controlled rank, we show that

the proposed end-to-end deep neural network approach is superior to the shallow models. This

opens the gateway to the development of more expressive network structures. Through missing

value inference experiments, we demonstrate that the proposed method is a simpler yet more

effective method to improve the prediction accuracy for the modeling of pairwise comparison

and matchup.

For the third approach, a novel time-series forecasting method is proposed to optimize and

infer the relative relationship between temporal observations. The model is robust to noisy

temporal observations by its discrete nature and directly optimizes ranking objectives. To make

the forecast comparable to what is predicted by the legacy tracking-error-focused techniques,

we develop a local learning technique based on nearest neighbor model. The predictive

performance can be further improved by implementing an overlaying dynamic prediction

strategy that warps up the heterogeneous modules. The proposed method significantly improves

the prediction of relative relationship between temporal observations. Extensive experiments on
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financial data concludes the practical concerns for different types of time-series and in various

lengths of forward-looking horizon.

6.2 Future Works

As for future works, two directions for predicting with structured data are noteworthy.

Firstly, it is recognized that the variety and veracity of structured data will inevitably become

more challenging than what we can foresee at present, because they are the forefront business-

related aspects when we handle big data. As with the wide adoption of deep neural networks,

learning algorithms that handle structured patterns should be more explainable and robust

against noises and adversarial samples. Going forward, representation learning techniques

which envision the automatic discovery of patterns from data worth further investigation.

Besides, techniques that can integrate the innovative techniques and the legacy techniques and

make them complement with each other will guide us towards an all-round status in predictive

modeling. A primitive effort in this line of research is studied in Chapter 5 of this dissertation

and we look forward to future research efforts in this direction.

Secondly, regarding the underlying techniques in predicting with structured data, e.g.,

graphs, rank, and time-series, learning with finer-grained structured representation of plain

objects remains as a green field. The technical challenge behind is the algorithmic efficiency,

because the complexity of the algorithm may grow exponentially when fine-grained patterns are

investigated. Therefore, Revisiting the foundation of algorithms, from graph search algorithms

that can systematically enumerate the candidate structures to dynamic programming that is

the best practice in deterministic inference, will become the lancet for the next generation of

learning algorithms when predicting with structured data.
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