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RIMS Kôkyûroku Bessatsu
B86 (2021), 331–349

A construction of an infinite family of dihedral

quintic fields with unramified biquadratic extensions

By

Hiroshi Tsunogai∗

Abstract

In this article, we give an infinite family of dihedral quintic fields with unramified bi-

quadratic extensions by specializing a generic dihedral quintic polynomial to an explicit family

of values of rational numbers.

§ 0. Introduction

In this article, we shall construct an infinite family of dihedral quintic fields having

unramified biquadratic extensions by using a generic D5-polynomial

fD5(a, b;X) := X5 + (a− 3)X4 + (b− a+ 3)X3 + (a2 − a− 1− 2b)X2 + bX + a

over Q given by Brumer[2], Hashimoto[5], which was also reconstructed by Hashimoto

and the author [6] with connection to cross-ratios.

The main result of this article is

Theorem A. Let n,m be integers satisfying n ≥ 1, m ≡ 1 (mod 8) and
m

24n+2
>

β where β = −1.3463 · · · is the unique real root of the cubic polynomial −4b3 + 32b2 −
44b−127. Denote a root of f(X) = fn,m(X) := fD5(−1,

m

24n+2
;X), which is irreducible

over Q, by θ = θn,m and the root field generated by θ by K = Kn,m = Q(θ). We also

put L = Ln,m := K(
√
θ,
√
1− θ).

1. The field K is a dihedral quintic field and the extension L/K is unramified.
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2. Moreover, when m ≡ 9 (mod 16), L/K is biquadratic.

3. For each fixed n, the family

{Kn,m |m ≡ 9 (mod16),m > 0}

is an infinite family of dihedral quintic fields having unramified biquadratic exten-

sions.

For the dihedral quintic field K = Kn,m in the theorem above, we also consider

unramified extensions over the Galois closure K̃ = K̃n,m of K over Q. Since L/K is

unramified, L̃/K̃ is also unramified, where L̃ = L̃n,m denotes the Galois closure of L

over Q. Moreover we put L̃♯ := L̃(
√
−1).

Theorem B. Let n,m be integers satisfying n ≥ 1, m ≡ 9 (mod 16) and
m

24n+2
> β. Then L̃♯ is an unramified extension of K̃ with Galois group isomorphic

to (Z/2Z)5. In other words, the 2-rank of the ideal class group of K̃ is at least five and

the class number of K̃ is divisible by 32.

Moreover, for each fixed n, the family{
K̃n,m

∣∣∣m ≡ 9 (mod16),m > 0
}

is an infinite family of number fields satisfying Gal(K̃n,m/Q) ' D5 and the 2-rank of

the ideal class group of K̃ is at least five.

This study was inspired from Nakano’s result [13] which gave an infinite family

of cyclic quintic fields with even class number by specializing Lehmer’s cyclic quintic

polynomial [12]

f(T,X) = X5 + T 2X4 − 2(T 3 + 3T 2 + 5T + 5)X3

+ (T 4 + 5T 3 + 11T 2 + 15T + 5)X2 + (T 3 + 4T 2 + 10T + 10)X + 1.

In fact, when for t ∈ Q we denote a root of f(t,X) ∈ Q[X] by θt and the root

field of f(t,X) by Kt = Q(θt), he showed that Kt(
√

θt(θt − t− 1)) is an unramified

quadratic extension over Kt for infinitely many values of t ∈ Q and that this family

Kt(
√

θt(θt − t− 1))/Kt includes infinitely many distinct cyclic quintic fields Kt.

On the other hand, various arithmetic properties of dihedral quintic fields obtained

by specializing Brumer’s polynomial fD5(a, b;X) has been studied by many researchers

(e.g. [1, 8, 9, 10, 11]). This study gives another application of Brumer’s polynomial

fD5 .

The key property of fD5 for our purpose is that, for each a, b ∈ Q, if we denote

a root of fD5 by θ, both θ and 1 − θ are simultaneously p-adic units for any prime
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p with vp(a) = 0 and vp(b) ≥ 0. Hashimoto and the author [6] reconstructed fD5

with connection to cross-ratios, which explains this phenomenon well (see Section 1).

Cross-ratios are rational functions on the moduli space M0,n of projective lines with n

marked points, which have their supports only on the boundary of M0,n. In this sense,

cross-ratios may be regarded as “modular units in genus zero”. From this point of view,

it looks natural that cross-ratios are closely related with units of number fields, so is

Brumer’s polynomial fD5 .

Acknowledgment. The author would like to appreciate the organizers of the

workshop “Algebraic Number Theory and Related Topics 2018” for giving him this

opportunity. This study started as a joint work with Yuichi Kato for his master’s

thesis [7] at Sophia University. The author thanks his eager cooperation including the

observation of these phenomena using computers. This work was also supported by the

Research Institute for Mathematical Sciences, a Joint Usage/Research Center located

in Kyoto University.

§ 1. Review of construction of D5-polnomials

We shall review a construction and some basic properties of a genericD5-polynomial

given by Brumer[2], Hashimoto[5] based on the manner of [6].

Let x1, . . . , x5 be five indeterminates and L := Q(x1, . . . ., x5) be the rational func-

tion field over Q generated by them. The symmetric group S5 of degree 5 acts on L

via permutation of indices: σ(xi) := xσ(i).

The projective general linear group PGL(2,Q) over Q acts on L via fractional

linear transformation diagonally, commuting with the action of S5. Define CR5 to be

the set of the cross-ratios of the indeterminates:

CR5 =

{
xi − xk

xi − xl

/
xj − xk

xj − xl

∣∣∣∣ i, j, k, l are all distinct

}
.

Then the fixed field LPGL(2,Q) is generated by CR5. In particular, LPGL(2,Q) = Q(x, y),

which is purely transcendental over Q of degree two, where we put
x =

x3 − x1

x3 − x5

/
x4 − x1

x4 − x5
,

y =
x2 − x1

x2 − x5

/
x3 − x1

x3 − x5
.

In fact, LPGL(2,Q) is the function field of the moduli space M0,5 of projective lines with

ordered five marked points, and the class of (x1, . . . , x5) modulo PGL(2,Q) is uniquely

represented by (0, xy, x, 1,∞).

Let X be the set of the injective mappings from {1, 2, 3, 4} to {1, 2, 3, 4, 5}. Then on

X act S4 from the right and S5 from the left naturally. The mapping cr : X −→ CR5
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defined by cr(τ) :=
xτ(1) − xτ(3)

xτ(1) − xτ(4)

/
xτ(2) − xτ(3)

xτ(2) − xτ(4)
induced the bijection cr : X/V4

∼−→

CR5 which commutes with the left action of S5, where V4 = 〈(1 2)(3 4), (1 3)(2 4)〉 is
Klein’s four group in S4. Since S4 decomposes into the semi-direct product of V4 by

S3, S3 acts on CR5 from the right via cr, where the orbit of an element θ ∈ CR5 by

S3 is {θi|i = 0, . . . , 5} with

θ0 := θ, θ1 := 1− θ, θ2 :=
1

θ
,(1.1)

θ3 := 1− 1

θ
=

θ − 1

θ
, θ4 :=

1

1− θ
, θ5 := 1− 1

1− θ
=

θ

θ − 1
.

Let D5 be the subgroup of S5 generated by α = (1 2 3 4 5) and β = (1 3)(4 5),

which is a dihedral group of degree 5 and is the stabilizer of a necklace permutation

(1, 2, 3, 4, 5). We consider the D5-orbits in CR5.

The action of D5 on Q(x, y) is described as

α :


x 7−→ 1− xy

y 7−→ 1− y

1− xy
,

β :


x 7−→ x

y 7−→ 1− y

1− xy
.

Let S = OrbD5
(x) be the D5-orbit of x. Then we have

S =

{
x, 1− xy, y,

1− y

1− xy
,
1− x

1− xy

}
.

We also notice that for any θ ∈ S, it holds that

(1.2) 1− θ = α(θ)α−1(θ).

Let

f(X) :=
∏
u∈S

(X − u) =: X5 + c4X
4 + c3X

3 + c2X
2 + c1X + c0 ∈ KD5 [X],

and put a := c0, b := c1. Then we have the following1:

Theorem 1.1 ([6] Theorem 1).

1. The fixed field KD5 of D5 is rational and coincides with Q(a, b).

2. (reconstruction of Brumer[2], Hashimoto[5]) The polynomial

(1.3) fD5(a, b;X) := X5+(a−3)X4+(b−a+3)X3+(a2−a−1−2b)X2+bX+a

is a generic polynomial for D5 over Q.
1Errata of [6]. Theorem 1(1): As seen in (1.3), c3 = b − a + 3 is correct. Theorem 5(1): v =
((2a5 + 18a4 − 140a3 + 13a2 − 2a)− (4a3 + 20a2 + 6a)b− (a2 + 1)b2)/a3 is correct.



dihedral quintic fields 335

The discriminant D(a, b) of fD5 is a square since D5 is an even subgroup of S5. In

fact, we have D(a, b) = a2D0(a, b)
2, where

(1.4) D0(a, b) =

− 4b3 + (a2 − 30a+ 1)b2 + 2a(12a2 − 17a− 7)b− a(4a4 − 4a3 − 40a2 + 91a− 4).

Remark 1. The relation (1.2) characterizes the dihedral quintic polynomial (1.3).

In fact, if a sequence w = (w(i))i∈Z satisfies the relation 1 − w(i) = w(i−1)w(i+1) for

all i ∈ Z, then w is periodic with period five (See e.g. Kihel[9]2). Moreover, the group

of the permutations of the set
{
w(i)

∣∣i = 0, 1, 2, 3, 4
}
preserving the relations 1− w(i) =

w(i−1)w(i+1) coincides with D5.

Remark 2. Similarly to the minimal polynomial fD5(a, b;X) of θ = θ0, the min-

imal polynomials fD5
i (a, b;X) of θi (i = 1, . . . , 5) presented in (1.1) are written in a

concise form in terms of a, b:

fD5
1 (a, b;X) = −fD5(a, b; 1−X)

= X5 − (a+ 2)X4 + (3a+ b+ 1)X3

− (a2 + 2a+ b)X2 + a(2a− 1)X − a2,

fD5
2 (a, b;X) = −X5fD5(a, b; 1/X)

= −aX5 − bX4 − (a2 − a− 2b− 1)X3

+ (a− b− 3)X2 − (a− 3)X − 1,

fD5
3 (a, b;X) = (1−X)5fD5(a, b; 1/(1−X))

= −aX5 + (5a+ b)X4 − (a2 + 9a+ 2b− 1)X3

+ (3a2 + 6a+ b)X2 − a(3a+ 1)X + a2,

fD5
4 (a, b;X) = X5fD5(a, b; (X − 1)/X)

= a2X5 − a(2a− 1)X4 + (a2 + 2a+ b)X3

− (3a+ b+ 1)X2 + (a+ 2)X − 1,

fD5
5 (a, b;X) = (X − 1)5fD5(a, b;X/(X − 1))

= a2X5 − a(3a+ 1)X4 + (3a2 + 6a+ b)X3

− (a2 + 9a+ 2b− 1)X2 + (5a+ b)X − a.

This may give an explanation why both θ and 1− θ behave well for our purpose.

For later use, we consider the unique quadratic subfieldQ(x, y)C5 ofQ(x, y)/Q(a, b),

where C5 = 〈α = (1 2 3 4 5)〉 is the unique cyclic subgroup of order 5 of D5 (see [6,

2In [9], it is written that this result is due to an unpublished note by H. Darmon. The polynomial
p(x) presented in p.471 loc. cit. coincides with −fD5 (S + 3, T + 2S + 5;−x).
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§4]). Let
c :=

∏
i∈Z/5Z

(αi(x)− αi+1(x)) =
∏
u∈S

(u− α(u)).

Then, we have α(c) = c, β(c) = −c, from which follows KC5 = KD5(c) = Q(a, b, c) and

c2 ∈ Q(a, b). By writing c2, a, b in terms of x, y explicitly, we have c2 = D0(a, b). (This

shows that the choice of the signature of D0(a, b) in (1.4) is meaningful.) We can also

consider

c′ :=
∏

i∈Z/5Z

(αi(x)− αi+2(x)) =
∏
u∈S

(u− α2(u))

instead of c. In fact, we have c′ = −ac and D(a, b) = (cc′)2.

§ 2. Unramifiedness at Archimedean places

From now on, we consider a specialization

f(b;X) := fD5(−1, b;X) = X5 − 4X4 + (b+ 4)X3 − (2b− 1)X2 + bX − 1

of our D5-polynomial fD5(a, b;X) at a = −1 so that the norm of a root of f is 1. The

polynomials appearing in Remark 2 are also specialized as

f1(b;X) := fD5
1 (−1, b;X) = X5 −X4 + (b− 2)X3 − (b− 1)X2 + 3X − 1,

(2.1)

f2(b;X) := fD5
2 (−1, b;X) = X5 − bX4 + (2b− 1)X3 − (b+ 4)X2 + 4X − 1,

f3(b;X) := fD5
3 (−1, b;X) = X5 + (b− 5)X4 − (2b− 9)X3 + (b− 3)X2 − 2X + 1,

f4(b;X) := fD5
4 (−1, b;X) = X5 − 3X4 + (b− 1)X3 − (b− 2)X2 +X − 1,

f5(b;X) := fD5
5 (−1, b;X) = X5 − 2X4 + (b− 3)X3 − (2b− 9)X2 + (b− 5)X + 1.

The discriminant of f(b;X) is D0(b)
2, where

(2.2) D0(b) := D0(−1, b) = −4b3 + 32b2 − 44b− 127.

The polynomial D0(b) has the unique real root β = −1.3463 · · · and D0(b) < 0 if and

only if b > β (see Figure 1(i)). For b ∈ Q we denote a root field of f(b;X) over Q by

K = Kb, and the splitting field by K̃ = K̃b. If K̃ is a D5-extension of Q, K̃ includes

the unique quadratic subfield F = Fb = Q(
√
D0(b)).

Proposition 2.1. When b > β, the polynomial f(b;X) has only one real root θ

with 0 < θ < 1 and two pair of conjugate complex roots. When b < β, f(b;X) has five

real roots, one of which is between 0 and 1, two are greater than 1, and the other two

are negative.

----
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b

d

0β

(i) d = −4b3 + 32b2 − 44b− 127

X

b

0 1

β

(ii) b = −X5 − 4X4 + 4X3 +X2 − 1

X(X − 1)2

Figure 1. The graphs of (i) d = D0(b) and (ii) f(b;X) = 0

Proof. By solving the equation f(b;X) = X5 − 4X4 + (b+ 4)X3 − (2b− 1)X2 +

bX − 1 = 0 in b, we have

b = −X5 − 4X4 + 4X3 +X2 − 1

X(X − 1)2
.

We obtain the result by figuring the graph on (x, b)-plain (see Figure 1(ii)). While direct

calculation shows the threshold value is β, we also obtain the result in the following

argument. Since f(b;X) is a D5-polynomial, the complex conjugate in Gal(K̃/Q) is a

product of an even number of disjoint transpositions, hence it is trivial (K is totally

real) or a product of two disjoint transpositions. Since K is totally real if and only if

F = Q(
√
D0(b)) is real, we conclude the result.

Corollary 2.2. Assume b ∈ Q, b > β and f(b;X) is irreducible over Q. Let

θ = θb be a root of f(b;X), and denote K = Kb = Q(θb). Then the extention L =

K(
√
θ,
√
1− θ) over K is unramified at all Archimedean places of K.

Remark 3. If b < β, in any quadratic subextension in L/K, some Archimedean

place of K ramifies.

§ 3. Unramifiedness at Non-Archimedean places

Let n,m be integers satisfying the following assumption

(3.1) n ≥ 1, m ≡ 1 (mod 8) and
m

24n+2
> β.

□ 
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For convinience, we also put N = 22n+1. We consider the polynomial

f(X) = fn,m(X) := f(
m

24n+2
;X) = f(N−2m;X)(3.2)

= X5 − 4X4 +N−2(m+ 4N2)X3

−N−2(2m−N2)X2 +N−2mX − 1 ∈ Q[X].

§ 3.1. The valuations of the roots of f

First we observe the valuations of the roots of f . For any odd prime p, all roots of

f are p-adic units since f lies in Zp[X] and is monic with constant term −1. On 2-adic

valuations, by considering the 2-adic Newton polygon of f (Figure 2), we have

Proposition 3.1. The 2-adic valuations of five roots of f are 4n+2, 0, 0,−2n−
1,−2n− 1, where the valuation is normalized as v(2) = 1.

i

v

0
1 2 3 4 5

-4n-2
-4n-1

2

Figure 2. The 2-adic Newton polygon of fn,m(X)

To make the coefficients to be integral, we use also

F (Z) := N5f(N−2m;N−1Z)(3.3)

= Z5 − 4NZ4 + (m+ 4N2)Z3 −N(2m−N2)Z2 +N2mZ −N5 ∈ Z[Z].

Proposition 3.2. Under the assumption (3.1) on n and m,

1. f(X) = fn,m(X) is irreducible over Q. Hence K is a quintic field.

2. Moreover K is a dihedral quintic field, that is, Gal(K̃/Q) ' D5.

-------------• 
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Proof. (1) Since f(b;X) is a D5-polynomial over Q(b), f cannot have a cubic

irreducible factor. Hence it suffices to show that f has no rational roots for proving the

irreducibility of f over Q.

Suppose that θ is a rational root of f(X) = fn,m(X). Since θ is a p-adic unit for

any odd prime p, and the 2-adic valuation v2(θ) is one of 4n+2, 0 or −2n−1, all possible

values of θ are ±24n+2,±1 and ±2−2n−1. On the other hand, θ is the unique real root

of f , which lies in the range 0 < θ < 1. Hence θ must be 2−2n−1, which is impossible

because

N5f(N−2m; 2−2n−1) = F (1)

= 1− 4N + (m+ 4N2)−N(2m−N2) +mN2 −N5

≡ 1 +m ≡ 2 6≡ 0 (mod 8).

Here we use 8|N .

(2) It suffices to show that K̃/Q does not degenerate into a cyclic quintic extension.

Since

(2−1N3)2 ·D0(N
−2m) = (2−1N3)2(−4N−6m3 + 32N−4m2 − 44N−2m− 127)

= −m3 + 8m2N2 − 11mN4 − 127 · 212n+4

≡ −1 (mod 8),

D0(N
−2m) is not a square in Q. From this the assertion holds.

Remark 4. We can also deduce (2) by investigating the rational points of the

elliptic curve E : c2 = −4b3 + 32b2 − 44b− 127. Changing variables by b = −x+ 3, c =

2y + 1, we can see that E is isomorphic to E′ : y2 + y = x3 − x2 − 10x − 20 over

Q, which is the elliptic curve labeled 11a1 in Cremona’s table [3]. From this table

we know E′(Q) = 〈(5, 5)〉 = {(5, 5), (16,−61), (16, 60), (5,−6)), O} ' Z/5Z, hence

E(Q) = 〈(−2, 11)〉 = {(−2,±11), (−13,±121), O}. But neither b = −2 nor −13 is the

case.

Denote a root of fn,m(X), which is irreducible overQ, by θ = θn,m and the root field

generated by θn,m by K = Kn,m = Q(θn,m). In the previous section, we have already

seen that the extention L = K(
√
θ,
√
1− θ) over K is unramified at all Archimedean

places of K.

§ 3.2. Unramifiedness at odd primes

As already seen, for any odd prime p, θ is a p-adic unit. Moreover, considering

f1(X) = −f(1−X), we can see also that 1−θ is a p-adic unit. Therefore, the extention

L = K(
√
θ,
√
1− θ) over K is unramified at all places above p.

□ 
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§ 3.3. Unramifiedness at 2

For extensions of local fields, it is known that if two polynomials are p-adically near

enough their root fields and their splitting fields coincide with each other. Here we need

to know that in our case what precision is enough to determine the root field and the

prime decomposition in it. For this purpose we prepare the following lemma:

Lemma 3.3. Let F (X) = X2−cX+d ∈ Z2[X] be a monic quadratic polynomial

with c, d ∈ Z2, c ≡ 0 (mod 8), d ≡ 1 (mod 8). Denote a root of F by Θ.

1. Then F is irreducible over Q2 and the root field k = Q2(Θ) of F over Q2 is

Q2(
√
−1).

2. Moreover put G(Y ) := 4F (2−1Y 2) = Y 4 − 2cY 2 + 4d ∈ Z2[Y ]. Then the root

field k(
√
2Θ) of G over Q2 is Q2(

√
−1) (resp. Q2(

√
−1,

√
5)) if d ≡ 1(resp. 9)

(mod 16). In particular, k(
√
2Θ)/k is unramified.

Proof. (1) It follows since

F (X) = X2 − cX + d =
(
X − c

2

)2

−
(
c2

4
− d

)

and
c2

4
− d ≡ −1 (mod 8). (2) Since d ≡ 1 (mod 8), d is a square in Z2, hence we can

put d = u2, where we choose the signature of u to be u ≡ 1 (mod 4). Then a root
√
2Θ

of G(Y ) = Y 4 − 2cY 2 + 4u2 ∈ Z2[Y ] is of the form ±
√
c+ u±

√
c− u, where we note

that
√
c+ u

√
c− u =

√
c2 − u2 =

√
c2 − d ∈ Q2(

√
−1). Hence

k(
√
2Θ) = Q2(

√
−1,

√
c+ u) =

Q2(
√
−1) (d ≡ 1 (mod 16))

Q2(
√
−1,

√
5) (d ≡ 9 (mod 16)),

since u ≡ 1(resp. 5) (mod 8) when d ≡ 1(resp. 9) (mod 16). The last assertion holds

since Q2(
√
−1,

√
5) is the unique unramified quadratic extension of Q2(

√
−1).

Now we are ready to prove the first two assertion of Theorem A, for which it is

enough to show the following proposition:

Proposition 3.4. Let n,m be integers satisfying n ≥ 1, n ≡ 2 (mod 4) and

m ≡ 1 (mod 8). Then the factorization of f(X) = fn,m(X) into irreducible factors

over Q2 is

(3.4) f(X) = g0(X)g1(X)g2(X),

where g0 is of degree 1 and the 2-adic valuation of its root is 4n + 2, g1 is of degree 2

and the 2-adic valuation of its roots are 0, and g2 is of degree 2 and the 2-adic valuation

□ 
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of its root is −2n− 1. Moreover, if we denote the prime ideal dividing 2 corresponding

to gi by pi, the prime decomposition of 2 in K is

(3.5) 2OK = p0p
2
1p

2
2,

and

1. the completion Kp0
of K at p0 is Q2, and p0 splits in both K(

√
θ)/K and K(

√
1− θ)/K

(hence splits completely in L/K).

2. the completion Kp1
of K at p1 is Q2(

√
−1), and p1 is unramified in both K(

√
1− θ)/K

and K(

√
θ

1− θ
)/K (hence also in L/K). In these two extension, p1 splits if m ≡ 1

(mod 16), is inert if m ≡ 9 (mod 16).

3. the completion Kp2
of K at p2 is Q2(

√
−1), and p2 is unramified in both K(

√
θ)/K

and K(
√
1− θ)/K (hence also in L/K). In these two extension, p1 splits if m ≡ 1

(mod 16), is inert if m ≡ 9 (mod 16).

Compiling these, we deduce that any prime ideal of K dividing 2 is unramified in L/K.

In particular, when m ≡ 9 (mod 16), L/K is a biquadratic extension.

Proof. The factorization (3.4) of f comes from the argument on the Newton poly-

gon of f except the irreducibility of g1 and g2.

For the root θ with 2-adic valuation v2(θ) = 4n + 2 (i.e. for the factor g0), we

can apply Hensel’s Lemma directly for the integralized polynomial F for f , presented

in (3.3), to show that θ ≡ 24n+2 (mod 24n+5). This implies that both θ and 1 − θ are

square in Q2. Here, for parallel treatise as other factors g1 and g2, we prefer to give

an explanation using the polynomials f2 and f3, presented in (2.1), which have θ2 =
1

θ

and θ3 =
θ − 1

θ
as one of their roots respectively. Consider the integralized polynomial

F2(Z) := N10f2(N
−2m;N−2Z)

= Z5 −mZ4 +N2(2m−N2)Z3 −N4(m+ 4N2)Z2 + 4N8Z −N10

for f2, which has N2θ2 = N2 1

θ
as the unique unit root. Applying Hensel’s Lemma to

the congruence

F2(Z) ≡ Z5 −mZ4 ≡ Z4(Z −m) (mod N),

we obtain N2θ2 ≡ m (mod N). Since 8|N , we have N2θ2 ≡ 1 (mod 8), which shows

that N2θ2 (and hence θ) is a square in Q2. Similarly, considering the integralized

polynomial

F3(Z) := N10f3(N
−2m;N−2Z)

= Z5 + (m− 5N2)Z4 −N2(2m− 9N2)Z3 +N4(m− 3N2)Z2 − 2N8Z +N10
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for f3, and applying Hensel’s Lemma to the congruence

F3(Z) ≡ Z5 +mZ4 ≡ Z4(Z +m) (mod N),

we also obtain N2θ3 ≡ −m (mod N). Since N2 1− θ

θ
= −N2θ3 ≡ 1 (mod 8),

1− θ

θ
is a square in Q2. Thus the local extension Q2(

√
θ,
√
1− θ)/Q2 is trivial, i.e., the

corresponding prime ideal p0 in K lying above 2 decomposes completely in the extension

L = K(
√
θ,
√
1− θ)/K. In particular, p0 is unramified in L/K.

Next we consider the quadratic factor g1 of f whose roots are 2-adic units. Here we

use the polynomials f4 and f5, presented in (2.1), which have θ4 =
1

1− θ
and θ5 =

θ

θ − 1
as one of their roots respectively. Consider the integralized polynomial

F4(Z) := N5f4(N
−2m;N−1Z)

= Z5 − 3NZ4 + (m−N2)Z3 −N(m− 2N2)Z2 +N4Z −N5

for f4, which has Nθ4 = N
1

1− θ
as a unit root. Applying Hensel’s Lemma to the

congruence

F4(Z) ≡ Z5 −NZ4 +mZ3 −NmZ2 ≡ Z2(Z −N)(Z2 +m) (mod 2N),

we know that Nθ4 = 22n
2

1− θ
is a root of a monic quadratic factor of F4 congruent

to Z2 + m (mod 2N). Since 16|2N , we can apply Lemma 3.3 for this factor. Then

first we have Q2(1 − θ) = Q2(Nθ4) = Q2(
√
−1), which shows that the factor g1 is

irreducible over Q2. Denote the corresponding prime factor of 2OK by p1. Then, since

the localization Kp1
of K at p1 is Q2(

√
−1), p1 is a prime ideal of degree one and

ramifies in K/Q. Moreover, in K(
√
1− θ) = K(

√
2Nθ4)/K, p1 splits when m ≡ 1

(mod 16), and is inert when m ≡ 9 (mod 16). This also shows that K(
√
1− θ)/K is

a quadratic extension when m ≡ 9 (mod 16). Similarly, next consider the integralized

polynomial

F5(Z) := N5f5(N
−2m;N−1Z)

= Z5 − 2NZ4 + (m− 3N2)Z3 −N(2m− 9N2)Z2 +N2(m− 5N2)Z +N5

for f5, which has Nθ5 = N
θ

θ − 1
as a unit root. The congruence

F5(Z) ≡ Z5 +mZ3 ≡ Z3(Z2 +m) (mod 2N)

shows that Nθ5 = N
θ

θ − 1
is a root of a monic quadratic factor of F5 congruent to

Z2 +m (mod 2N). Again, from Lemma 3.3, we have Q2(

√
θ

1− θ
) = Q2(θ,

√
θ

θ − 1
) =
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Q2(
√
−1,

√
2Nθ5) coincides with Q2(

√
−1) (resp. Q2(

√
−1,

√
5)) when m ≡ 1 (resp. 9)

(mod 16). Hence in K(

√
θ

1− θ
)/K, p1 splits when m ≡ 1 (mod 16), and is inert when

m ≡ 9 (mod 16). This also shows that K(

√
θ

1− θ
)/K is a quadratic extension when

m ≡ 9 (mod 16).

Thirdly, we consider the quadratic factor g2 of f whose roots θ are of 2-adic valua-

tion v2(θ) = −2n− 1. Here we use the polynomials f itself and f1 in (2.1), which have

θ and θ1 = 1− θ as one of their roots respectively. Consider the integralized polynomial

F (Z) = N5f(N−2m;N−1Z)

= Z5 − 4NZ4 + (m+ 4N2)Z3 −N(2m−N2)Z2 +N2mZ −N5 ∈ Z[Z]

for f , presented already in (3.3), which has Nθ as a unit root. Applying Hensel’s Lemma

to the congruence

F (Z) ≡ Z5 +mZ3 ≡ Z3(Z2 +m) (mod 2N),

we know that Nθ is a root of a monic quadratic factor of F congruent to Z2 + m

(mod 2N). Hence again we can apply Lemma 3.3 for this factor. Then first we have

Q2(θ) = Q2(Nθ) = Q2(
√
−1), which shows that also the factor g2 is irreducible over

Q2. Denote the corresponding prime factor of 2OK by p2. Then, since the localiza-

tion Kp2
of K at p2 is Q2(

√
−1), p2 is a prime ideal of degree one and ramifies in

K/Q. Moreover, in K(
√
θ) = K(

√
2Nθ)/K, p2 splits when m ≡ 1 (mod 16), and is

inert when m ≡ 9 (mod 16). This also shows that K(
√
θ)/K is a quadratic extension

when m ≡ 9 (mod 16). Now, when m ≡ 9 (mod 16), we know all of the extensions

K(
√
θ),K(

√
1− θ),K(

√
θ

1− θ
) are quadratic over K, hence K(

√
θ,
√
1− θ) is a bi-

quadratic extension over K. Finally, consider the integralized polynomial

F1(Z) := N5f1(N
−2m;N−1Z)

= Z5 −NZ4 + (m− 2N2)Z3 −N(m−N2)Z2 + 3N4Z −N5

for f1, which has Nθ1 = N(1− θ) as a unit root. The congruence

F1(Z) ≡ Z5 −NZ4 +mZ3 −NmZ2 ≡ Z2(Z −N)(Z2 +m) (mod 2N)

shows that Nθ1 is a root of a monic quadratic factor of F1 congruent to Z2 + m

(mod 2N). Again, from Lemma 3.3, we have Q2(
√
1− θ) = Q2(

√
2Nθ1) coincides

with Q2(
√
−1) (resp. Q2(

√
−1,

√
5)) when m ≡ 1 (resp. 9) (mod 16). Hence, in

K(
√
1− θ)/K, p2 splits when m ≡ 1 (mod 16), and is inert when m ≡ 9 (mod 16).

That is all to be proved. □ 
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Remark 5. If m ≡ 1 (mod 16), L = K(
√
θ,
√
1− θ) may coincide with K. In

fact, (n,m) = (1,−47), (1, 257) are the cases (see also Section 6, Table 1(i)). When

(n,m) = (1,−47), for a root θ of fn,m(X) = X5 − 4X4 +
209

64
X3 +

79

32
X2 − 47

64
X − 1,

we have

θ =

(
− 96

133
θ4 +

352

133
θ3 − 467

266
θ2 − 13

14
θ − 8

133

)2

,

1− θ =

(
16

133
θ4 − 16

19
θ3 +

337

532
θ2 +

117

76
θ − 75

133

)2

.

When (n,m) = (1, 257), for a root θ of fn,m(X) = X5 − 4X4 +
513

64
X3 − 225

32
X2 +

257

64
X − 1, we have

θ =

(
32

121
θ4 − 32

121
θ3 − 31

242
θ2 +

205

242
θ +

40

121

)2

,

1− θ =

(
144

121
θ4 − 496

121
θ3 +

3593

484
θ2 − 2005

484
θ +

169

121

)2

.

§ 4. Infiniteness

In this section, we show the infiniteness of the family

(4.1) {Kn,m |m ≡ 9 (mod16),m > 0}

for each fixed positive integer n. It suffices to show the infiniteness of the family of the

unique quadratic subfield Fn,m = Q(
√

D0(b)) of the Galois closure K̃n,m of K. We will

give the proof in two different way.

The first proof employs the following theorem in analytic number theory:

Theorem 4.1 (Erdös [4]). Let f(x) ∈ Z[x] be a polynomial of degree l ≥ 3

whose coefficients are integers with highest common factor 1. Assume that l ≥ 3 and

that f(x) is not divisible by the (l − 1)-th power of a linear polynomial with integral

coefficients. (When l is a power of 2, we require an additional assumption that f(n) 6≡ 0

(mod 2l−1) for some integer n.) Then there are infinitely many positive integers n for

which f(n) is (l − 1)-th power free.

For each fixed positive integer n, put

d(m) := 212n+4D0(
m

24n+2
) = −m3 + 24n+5m2 − 28n+4 · 11m− 212n+4 · 127 ∈ Z[m]

and d̃(T ) := d(16T + 9) ∈ Z[T ]. Then the coefficients of d̃(T ) are coprime because

the coefficient of T 3 is a power of 2 and the constant term is odd. Moreover, since
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d̃(T ) ≡ −T 3 − T 2 + T − 1 (mod 3), which is irreducible over F3, d̃(T ) does not have

multiple roots. Hence we can apply Theorem 4.1 for d̃(T ) with l = 3, which implies that

d̃(t) are square-free integers for infinitely many positive integers t. Since d̃(t) tends to

−∞ when t −→ ∞, d̃(t) attains infinitely many different square-free values, which give

infinitely many different quadratic fields Q(

√
d̃(t)) = Fn,16t+9 belonging to our family

(4.1). This completes the proof.

In another way of proof we use Dirichlet’s prime number theorem in arithmetic

progression. Let mi (i = 1, . . . , r) be finite numbers of positive integers satisfying

mi ≡ 9 (mod 16), and put Fi := Fn,mi
= Q(

√
d(mi)). We shall show that there exists

a prime number p with p ≡ 9 (mod 16) such that F := Fn,p = Q(
√
d(p)) is different

from all Fi. First we may remove Fi’s where 127 ramifies beforehand, because in the

following construction we shall obtain F where 127 does not ramify. Let d(Fi) be the

discriminant of Fi, and put M := lcm {d(Fi)|1 ≤ i ≤ r}. Then we have (M, 127) = 1

and v2(M) ≤ 3 since d(Fi) are the discriminants of quadratic fields. Hence there exists

a prime number p satisfying

p ≡ 1 (mod M), p ≡ 9 (mod 16), and p ≡ −1 (mod 127).

Then, at first,

d(p) = −p3 + 24n+5p2 − 28n+4 · 11p− 212n+4 · 127
≡ −(−1)3 + 24n+5(−1)2 − 28n+4 · 11 · (−1) (mod 127)

≡ 1 + 32 · (2n)4 + 16 · 11 · (2n)8 6≡ 0 (mod 127),

since no possible value of 2n ≡ 1, 2, 4, 8, 16, 32, 64 (mod 127) gives a zero of the polyno-

mial 1 + 32T 4 + 16 · 11T 8 ∈ F127[T ]. Hence 127 does not ramify in F := Q(
√
d(p))/Q.

Moreover, since d(p) ≡ −(26n+2)2 · 127 (mod p), we have(
d(p)

p

)
=

(
−127

p

)
=

( p

127

)
=

(
−1

127

)
= −1.

Hence p is inert in F . On the other hand, p splits in each Fi/Q since p ≡ 1 (mod d(Fi)).

Thus we have F 6= Fi, which is desired.

§ 5. Unramified extensions over K̃

In this section, we consider the splitting field K̃ of

f(X) = f(b;X) = X5 − 4X4 + (b+ 4)X3 − (2b− 1)X2 + bX − 1,

that is, the Galois closure of a root field K = Q(θ), where θ is a root of f , and show

Theorem B. We continue assuming that b =
m

24n+2
satisfies m ≡ 9 (mod 16), n being a
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positive integer, and b > β. As seen in the previous sections, under these assumptions,

L = K(
√
θ,
√
1− θ) is a unramified biquadratic extension of K.

Since the prime decomposition of 2 in K is 2OK = p0p
2
1p

2
2 as in (3.5), it decomposes

in K̃ as

2OK̃ =
∏

i∈Z/5Z

P2
i ,

where p0OK̃ = P2
0, p1OK̃ = P1P−1 and p2OK̃ = P2P−2. The action of Gal(K̃/K) =

D5 on the set {Pi|i ∈ Z/5Z} is compatible with the natural action of D5 on Z/5Z,

that is, α(i) = i + 1, β(i) = −i. In particular, the prime p0 ramifies in K̃/K, hence

LK̃/K̃ is an unramified biquadratic extension.

Let θ(i) (i = 0, 1, 2, 3, 4) be the conjugates of θ = θ0 over Q, i.e. the roots of f .

Then we have also that K̃(
√
θ(i),

√
1− θ(i))/K̃ is an unramified biquadratic extension

for each i.

Moreover we consider the extension K̃(
√
−1)/K̃.

Proposition 5.1. The extension K̃(
√
−1)/K̃ is a non-trivial, (that is, quadratic)

unramified extension.

Proof. To show the non-triviality, it suffices to show that
√
−1 6∈ F = Q(

√
D0(b)),

since F is the unique quadratic field in K̃. This is equivalent to that b is never the first

coordinate of a rational point (b, c) of the elliptic curve E : −c2 = D0(b) = −4b3 +

32b2 − 44b− 127. Changing variables by b = (x+ 11)/4, c = y/4, we can see that E is

isomorphic to E′ : y2 = x3+x2−165x+1427 over Q, which is the elliptic curve labeled

176b2 in Cremona’s table [3]. From this table we know E′(Q) = {O}. Hence, for any

b ∈ Q,
√
−1 does not belong to F .

Since the localization K̃Pi of K̃ at Pi is Q2(
√
−1), any prime Pi lying over 2 splits

in K̃(
√
−1)/K̃. In particular, K̃(

√
−1)/K̃ is unramified.

Therefore we obtain an unramified extension

L̃ := K̃
(√

−1,
√
θ(i),

√
1− θ(i)

∣∣∣i ∈ Z/5Z
)

over K̃ whose Galois group G̃ := Gal(L̃/K̃) is an elementary 2-group. We want to know

the 2-rank of G̃.

First, we have

L̃ = K̃(
√
−1,

√
θ(0),

√
θ(1),

√
θ(2),

√
θ(3))

owing to the following multiplicative relations among θ(i) and 1− θ(i) (see (1.2)):

1− θ(i) = θ(i−1)θ(i+1) (i ∈ Z/5Z),∏
i∈Z/5Z

θ(i) = 1.

□ 
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Hence the 2-rank of G̃ is at most 5.

By Proposition 3.4, in K(
√
θ)/K, p0 and p1 decompose, and p2 is inert. Hence,

in K̃(
√
θ)/K̃, P0 and P±1 decompose, and P±2 are inert. Considering the action of

Gal(K̃/Q) = D5, we obtain the following table describing the behavior of prime ideals

Pi in each subextension K̃i/K̃i−1 (+ denotes “decompose”, and − denotes “inert”):

K̃0 := K̃ P0 P1 P2 P−2 P−1

K̃1 := K̃(
√
−1) + + + + +

K̃2 := K̃(
√
−1,

√
θ0) + + − − +

K̃3 := K̃(
√
−1,

√
θ0,

√
θ1) + + −

K̃4 := K̃(
√
−1,

√
θ0,

√
θ1,

√
θ2) − +

K̃5 := K̃(
√
−1,

√
θ0,

√
θ1,

√
θ2,

√
θ3) = L̃ −

For 2 ≤ i ≤ 5, each subextension K̃i/K̃i−1 is non-trivial since some prime ideal is

inert in it. Combining Proposition 5.1, we obtain that L̃ is an unramified extension of

K̃ with Galois group isomorphic to (Z/2Z)5.

The infiniteness of K̃ follows from the result in the previous section asserting that

the infinitess of F . Thus the proof of Theorem B is completed.

§ 6. Examples

Here we give tables of examples of ideal class groups Cl(K) of K and Cl(K̃) of

K̃ for n = 3,m ≡ 1 (mod 8),−160 < m < 400 using PARI/GP [14]. In the tables,

[a1, . . . , ar] denotes a finite abelian group isomorphic to Z/a1Z × · · · ×Z/arZ and [ ]

denotes a trivial group. Note that, when n = 3, the inequality
m

24n+2
> β = −1.3463 · · ·

holds if and only if m > −86.16 · · · . We indicate this threshold by the horizontal lines

among the items.

Remark 6. In the cases m = −47, 257 ≡ 1 (mod 16) (denoted with ∗ in the

table), it occurs that L = K (See Remark 5).

Remark 7. We can see that in some cases the 2-rank of Cl(K) is 2 and the 2-rank

of Cl(K̃) is 5. Therefore our result is best possible in a sence.

Remark 8. We can find also that in some cases the 2-rank of Cl(K) and the

2-rank of Cl(K̃) are around the twice of the lower bounds obtained in the theorems.

These fields are maybe given by two different parameters (n,m).

II I I I I 
-

- -

- - -

- - - -

- - - - -
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mCl(K) Cl(K̃)

−159 [5] [50, 10]

−143 [ ] [3]

−127 [ ] [12, 4, 2]

−111 [ ] [4]

−95 [10, 2] [10, 2, 2, 2]

−79 [2, 2] [26, 2, 2, 2, 2, 2, 2, 2]

−63 [4, 4] [180, 4, 4, 4, 4]
∗ − 47 [ ] [4]

−31 [2, 2] [228, 2, 2, 2, 2, 2]

−15 [60, 12] [3300, 60, 12, 12, 2, 2]

1 [2, 2] [244, 2, 2, 2, 2, 2]

17 [6, 6, 2, 2] [648, 6, 6, 6, 6, 2, 2, 2, 2]

33 [4, 4] [244, 4, 4, 4, 4, 2]

49 [6, 6] [210, 6, 6, 6, 6, 2]

65 [2, 2, 2, 2] [308, 2, 2, 2, 2, 2, 2, 2, 2, 2]

81 [10, 10] [600, 10, 10, 2, 2]

97 [2, 2] [196, 2, 2, 2, 2, 2, 2]

113 [4, 4] [300, 4, 4, 4, 2, 2, 2]

129 [10, 2, 2, 2] [300, 10, 2, 2, 2, 2, 2, 2, 2, 2, 2]

145 [4, 4] [112, 4, 4, 4, 4, 4]

161 [10, 2] [700, 10, 2, 2, 2, 2]

177 [2, 2, 2, 2] [124, 2, 2, 2, 2, 2, 2, 2, 2, 2]

193 [8, 8] [1432, 8, 8, 8, 4]

209 [4, 4] [48, 4, 4, 4, 4, 4, 2]

225 [10, 2] [500, 10, 2, 2, 2, 2]

241 [124, 4] [8308, 124, 4, 4, 4]
∗257 [ ] [2, 2]

273 [2, 2] [56, 2, 2, 2, 2, 2, 2]

289 [4, 4] [60, 4, 4, 4, 4, 2, 2]

305 [10, 2] [1500, 10, 2, 2, 2]

321 [4, 4, 2, 2] [32, 4, 4, 4, 4, 2, 2, 2, 2, 2, 2]

337 [2, 2] [228, 2, 2, 2, 2, 2]

353 [2, 2] [452, 2, 2, 2, 2]

369 [2, 2] [126, 2, 2, 2, 2, 2]

385 [10, 2] [1700, 10, 2, 2, 2]

(i) m ≡ 1 (mod 16)

mCl(K) Cl(K̃)

−151 [ ] [4]

−135 [ ] [2]

−119 [ ] [2]

−103 [ ] [6, 2, 2]

−87 [ ] [ ]

−71 [2, 2] [372, 2, 2, 2, 2]

−55 [2, 2] [392, 2, 2, 2, 2]

−39 [2, 2] [40, 2, 2, 2, 2, 2, 2]

−23 [2, 2] [548, 2, 2, 2, 2]

−7 [10, 2] [360, 20, 2, 2, 2, 2]

9 [2, 2] [26, 2, 2, 2, 2, 2, 2, 2]

25 [10, 2] [100, 10, 2, 2, 2, 2]

41 [2, 2] [308, 2, 2, 2, 2, 2]

57 [2, 2] [208, 2, 2, 2, 2, 2]

73 [10, 10] [240, 10, 10, 10, 10, 2]

89 [10, 2, 2, 2] [2700, 10, 2, 2, 2, 2, 2, 2, 2]

105 [2, 2] [98, 2, 2, 2, 2, 2]

121 [2, 2] [264, 2, 2, 2, 2, 2]

137 [2, 2] [540, 2, 2, 2, 2, 2]

153 [2, 2, 2, 2] [336, 2, 2, 2, 2, 2, 2, 2, 2]

169 [10, 2] [1440, 2, 2, 2, 2]

185 [2, 2] [78, 2, 2, 2, 2, 2, 2]

201 [2, 2] [160, 2, 2, 2, 2]

217 [2, 2] [258, 2, 2, 2, 2, 2]

233 [2, 2] [46, 2, 2, 2, 2, 2, 2, 2]

249 [2, 2, 2, 2] [176, 2, 2, 2, 2, 2, 2, 2, 2]

265 [2, 2, 2, 2] [144, 2, 2, 2, 2, 2, 2, 2, 2, 2]

281 [2, 2] [72, 2, 2, 2, 2, 2, 2]

297 [10, 2] [900, 10, 2, 2, 2]

313 [2, 2] [200, 2, 2, 2, 2, 2]

329 [2, 2] [112, 2, 2, 2, 2, 2]

345 [30, 6] [60, 6, 6, 6, 6]

361 [2, 2] [48, 2, 2, 2, 2]

377 [10, 2] [390, 10, 10, 2, 2, 2]

393 [10, 2] [500, 10, 2, 2, 2, 2, 2]

(ii) m ≡ 9 (mod 16)

Table 1. b =
m

64
,m ≡ 1 or 9 (mod 16)




