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RIMS Kôkyûroku Bessatsu
B86 (2021), 121–148

Good reduction of hyperbolic polycurves and their

fundamental groups: A survey

By

Ippei NAGAMACHI∗

Abstract

The goal of this manuscript is to provide a survey of good reduction criteria for hyperbolic

polycurves. In particular, we give outlines of the proofs of the main theorems of the papers [19]

and [20], which are details of the talk “Criteria for good reduction of hyperbolic polycurves”

given at “Algebraic Number Theory and Related Topics 2018”. Also, this paper contains a

proof of a specialization theorem of pro-L fundamental groups.

§ 1. Introduction

Let K be a discrete valuation field, OK the valuation ring of K, k the residual field

of OK , p the characteristic of k, and Ksep a separable closure of K. Write GK for the

absolute Galois group Gal(Ksep/K) of K and IK for an inertia subgroup of K (which is

uniquely determined up to conjugation). For a smooth variety X over K (i.e., a smooth

separated scheme of finite type over K with geometrically connected fibers), the issue of

whether or not there exists a “good” model X of X (i.e., a “good” scheme over OK such

that the scheme X ×SpecOK
SpecK is isomorphic to X over K) is interesting and has

been studied in arithmetic geometry. In the case where X(= A) is an abelian variety

over K, we may say that A has a “good” model if the Néron model of A is proper over

OK . The following criteria determine the existence of a good model of A:

Theorem 1.1 (Néron, Ogg, Shafarevich, Serre, and Tate). For a prime number

l, write TlA for the l-adic Tate module of A. Write Tp′A for the group
∏
l ̸=p

TlA (where l

ranges over the prime numbers not equal to p). The following are equivalent:
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1. A has good reduction (i.e., A has a proper Néron model).

2. Tp′A is unramified (i.e., the action of IK on Tp′A is trivial).

3. TlA is unramified for some prime l 6= p.

4. TlA is unramified for any prime l 6= p.

Theorem 1.2 (Fontaine, Mokrane, Coleman, Iovita, and Breuil). Suppose that

K is a complete discrete valuation field of characteristic 0, k is a perfect field, and

p > 0. Write TpA for the p-adic Tate module of A. Then A has good reduction if and

only if the p-adic GK-representation TpA is crystalline.

Note that the Tate module of A is isomorphic to the dual module of the first étale

cohomology of A ×SpecK SpecKsep. The implication 1 ⇒ 2 of Theorem 1.1 follows

from the proper base change theorem of étale cohomology groups and a specialization

argument. Therefore, for any proper variety X over K and its étale cohomology groups,

a similar implication holds in general. However, it is not sufficient to see the étale coho-

mology groups of X to determine whether there exists a good model of X. For example,

in the case where X is a proper hyperbolic curve over K (cf. Notation-Definition 3.1),

the unramifiedness of its first étale cohomology group is equivalent to the condition

that the Jacobian variety of X has good reduction (cf. Theorem 1.1 and Theorem 3.6).

Moreover, if we treat non-proper varieties, we need to define “good reduction” of them

carefully. For example, consider the case where there exist a smooth compactification

X of X over K and a semi-stable model X of X over OK . In this case, the smooth locus

U of the complement of the topological closure of X \X in X has a nonempty special

fiber. We do not want to treat such a U as a smooth model of X in general because X

might not be smooth over OK . Hence, we need to consider smooth models with their

suitable compacitification.

If X is a hyperbolic curve over K, we can define the notion of good reduction of X

since we have the canonical smooth compactification of X over K (cf. Section 3). Oda

and Tamagawa established a good reduction criterion for hyperbolic curves. They used

étale fundamental groups instead of étale cohomology groups. Andreatta, Iovita, and

Kim gave a p-adic analogue of this criterion. Note that the étale fundamental groups

of hyperbolic curves are not abelian. Moreover, note that, in general, we cannot define

Galois actions on the étale fundamental groups similar to the Galois actions on the

étale cohomology groups of hyperbolic curves. Therefore, we need to consider an outer

Galois representation instead, or suppose that X has a K-rational point x and consider

the Galois action on the étale fundamental group induced by x.

A hyperbolic polycurve, that is, a successive extension of hyperbolic curves, is a

higher dimensional analogue of a hyperbolic curve (cf. Definition 5.1). It is natural to
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ask if we can determine whether a hyperbolic polycurve has good reduction or not from

its outer Galois representation, which was studied in [19] and [20]. In an imitation of

the proof of the criterion for hyperbolic curves, a major obstacle is that the functor of

taking pro-l completion is not exact. Hence, we need to seek the condition that there

exist pro-l homotopy exact sequences of étale fundamental groups. This paper gives an

overview of these theories.

Contents of this paper are as follows: In Section 2, we review basic properties of

profinite groups and specialization homomorphisms of étale fundamental groups. In

Section 3, we overview results of Oda and Tamagawa. In Section 4, we introduce results

of [8], [9], and [16]. In Section 5, we give a definition of hyperbolic polycurves and the

precise statement of good reduction criteria for them. In Section 6, we describe the

approach of [19]. In Section 7, we describe the approach of [20]. In Section 8, we give

a proof of a pro-L specialization theorem.

§ 2. Basic Properties of Étale Fundamental Groups

In this section, we review basic properties of profinite groups and specialization

homomorphisms of étale fundamental groups.

§ 2.1. Profinite Groups

First, we introduce some notation. Write Primes for the set of prime numbers. Let

G be a profinite group. For any subset L ⊂ Primes, we shall write GL for the inverse

limit of the inverse system consisting of the quotient groups of G by open normal

subgroups such that the prime factors of the orders of the quotient groups are in L. Let
l (resp. p) be a prime number (resp. a prime number or 0). We shall write Gl = G{l}

(resp.Gp′
= GPrimes\{p}).

We shall write Inn(G) (resp.Aut(G); Out(G)) for the group of inner automor-

phisms (resp. continuous automorphisms; continuous outer automorphisms) of the profi-

nite group G. Hence, we have a natural exact sequence

1→ Inn(G)→ Aut(G)→ Out(G)→ 1.

Let N be a subgroup of G. We shall write ZG(N) for the centralizer of N in G.

Lemma 2.1. Let

1→ N → G→ H → 1

be an exact sequence of profinite groups.

1. The kernel of the homomorphism N → NL is a characteristic subgroup of N . In

particular, the group Ker(N → NL) is a normal subgroup of G.
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2. Write G(L) for the group G/Ker(N → NL). There exist an exact sequence of

profinite groups

1→ NL → G(L) → H → 1

and an induced natural outer action H → Out(NL).

3. If the outer action H → Out(N) is trivial, we have G = N · ZG(N).

4. If N is center-free, we have {1} = N ∩ ZG(N).

Proof. Assertion 1 holds since every automorphism of N induces a natural auto-

morphism of NL. Assertion 2 follows from assertion 1. H → Out(N) is trivial if and

only if the natural homomorphism ZG(N) → H is surjective. Therefore, assertion 3

holds. Since N ∩ ZG(N) is the center of N , assertion 4 holds.

Definition 2.2. Let g and r be integers satisfying g ≥ 0, r ≥ 0, and 2g+r−2 > 0.

We shall write Σg,r for the group

〈α1, . . . , αg, β1, . . . , βg, γ1, . . . , γr〉/[α1, β1] . . . [αg, βg]γ1 . . . γr.

Here, αi, βi, and γj are letters, and “[, ]” denotes the commutator. We shall write Πg,r

for the profinite completion of Σg,r.

Lemma 2.3 ([21, Corollary (1.3.4)]). The profinite groups Πg,r, Π
l
g,r, and Πp′

g,r

are center-free.

§ 2.2. Étale Fundamental Groups and Specialization

Let K be a discrete valuation field with residual characteristic p (≥ 0). Write OK

for the valuation ring of K and k for the residual field of OK . Fix a separable closure

Ksep of K and write GK = Gal(Ksep/K). Let X → SpecK be a separated morphism of

finite type with geometrically connected fibers and write XKsep = X ×SpecK SpecKsep.

Take a geometric point ∗ of XKsep and write ΠX (resp.∆X) for the étale fundamental

group π1(X, ∗) (resp.π1(XKsep , ∗)). Let l be a prime number satisfying that l 6= p. Then

we have an exact sequence of profintie groups

(2.1) 1→ ∆X → ΠX → GK → 1,

which induces exact sequences of profintie groups

(2.2) 1→ ∆p′

X → Π
(p′)
X → GK → 1

and

(2.3) 1→ ∆l
X → Π

(l)
X → GK → 1

□ 
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by Lemma 2.1.2. Here, Π
(p′)
X = Π

(Primes\{p})
X and Π

(l)
X = Π

({l})
X . Choose an inertia

subgroup IK of GK (which is uniquely determined up to conjugation). By using the

above exact sequences, we obtain outer Galois representations

(2.4) IK → Out(∆p′

X)

and

(2.5) IK → Out(∆l
X)

for any prime number l 6= p. As in the case of étale cohomology groups, the pro-L spe-

cialization homomorphisms of étale fundamental groups are isomorphisms (cf. Theorem

8.3).

Proposition 2.4. Let X→ SpecOK be a morphism satisfying the following two

conditions:

• The scheme X is isomorphic to X×SpecOK
SpecK over K.

• We have a facotrization

X = Xn → . . .→ X0 = SpecOK

such that there exist a proper smooth morphism Xi+1 → Xi with geometrically

connected fibers and a normal crossing divisor Di+1 ⊂ Xi+1 of the scheme Xi+1

relative to Xi satisfying that the complement Xi+1 \ Di+1 is isomorphic to Xi+1

over Xi for each 0 ≤ i ≤ n− 1.

Then the outer action (2.4) is trivial.

Proof. We may assume that K is strictly henselian (and hence GK = IK). Take

a geometric point t of X ×SpecK SpecKsep over its generic point. Since the natural

homomorphism

π1(X ×SpecK SpecKsep, t)p
′
→ π1(X, t)

p′

is an isomorphism by Theorem 8.3, the exact sequence (2.2) has a retraction. Hence,

the outer action (2.4) is trivial.

§ 3. Reduction of Hyperbolic Curves

In this section, we recall the precise statement of the good reduction criterion given

by Oda and Tamagawa. We also see a p-adic analogue of this criterion [1].

□ 
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Notation-Definition 3.1. Let S be a scheme and X a scheme over S. We shall

say that X is a hyperbolic curve over S (or X → S is a hyperbolic curve) if there exists

a pair of schemes (X,D) over S satisfying the following four conditions:

• The structure morphism X → S is proper smooth of relative dimension 1 with

geometrically connected fibers of genus gX/S .

• D is a divisor of X which is finite étale of rank rX/S over S.

• X is isomorphic to the open subscheme X \D of X over S.

• 2gX/S + rX/S − 2 > 0.

Remark. If S is a connected normal scheme, the pair (X,D) in the definition of

a hyperbolic curve is uniquely determined by X → S. See the argument given in the

discussion entitled “Curves” in [15], §0.

Let K,OK , k, p,Ksep, GK , and IK be as in Section 2.

Definition 3.2.

1. LetX → SpecK be a proper smooth morphism with geometrically connected fibers.

We shall say that X has good reduction if there exists a proper smooth OK-scheme

X such that X×SpecOK
SpecK is isomorphic to X over K.

2. Let X → SpecK be a hyperbolic curve. We shall say that X has good reduction

if there exists a hyperbolic curve X → SpecOK such that X ×SpecOK
SpecK is

isomorphic to X over K.

Remark.

1. The morphism X→ SpecOK in Definition 3.2.1 has geometrically connected fibers

automatically.

2. For any proper hyperbolic curve X over K, X has good reduction in the sense of

Definition 3.2.1 if and only if X has good reduction in the sense of Definition 3.2.2.

3. If X is a hyperbolic curve having good reduction, a hyperbolic curve X→ SpecOK

satisfying the condition in Definition 3.2.2 is unique up to canonical isomorphism

(cf. [5] and [10]).

4. Suppose that X is a hyperbolic curve over K. Let L be the henselization (or, strict

henselization; completion) of the field K. By using the uniqueness of good model

discussed in 3 and descent theory, one can verify that X has good reduction if and

only if X ×SpecK SpecL has good reduction.
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Let X,XKsep , ∗,∆X , and ΠX be as in Section 2. Suppose that X is a hyperbolic

curve over K. Write (X,D) for the pair as in Notation-Definition 3.1. We have non-

commutative analogues of Theorem 1.1 and Theorem 1.2.

Theorem 3.3 ([22], [23], and [24]). The following are equivalent:

1. X has good reduction.

2. The outer action (2.4) is trivial.

3. The outer action (2.5) is trivial for any prime number l 6= p.

4. The outer action (2.5) is trivial for some prime number l 6= p.

Theorem 3.4 ([1]). Suppose that the assumptions on K, k, and p in Theorem

1.2 hold. Suppose that X → SpecK is proper. Moreover, suppose that X has a K-

rational point bK and write bKsep for the closed point of XKsep defined by bK . The

following are equivalent:

1. X has good reduction.

2. Gét(XKsep , bKsep) is crystalline (cf. [1, THEOREM 1.6]).

In this section, we explain the proof of Theorem 3.3 (and do not explain the proof of

Theorem 3.4). Note that, in [22] and [23], outer Galois actions on truncated fundamental

groups defined by lower central series were also treated. Let us describe the easy part

of the proof of Theorem 3.3. The implications 2⇒ 3⇒ 4 follow from elementary group

theory, and the implication 1⇒ 2 follows from Proposition 2.4. The nontrivial part of

this theorem is the implication 4 ⇒ 1. To show the implication 4 ⇒ 1, we need the

assumption that X is a hyperbolic curve. For example, in the case where X is a proper

smooth curve of genus 1, Theorem 3.6.2 does not hold in general (and the implication

4 ⇒ 1 does not hold in general (cf. the fourth item of Remark following the proof of

Theorem 3.3)). We fix a prime number l satisfying that l 6= p and that the outer action

(2.5) is trivial for this l.

Write JX for the Jacobian variety of X over K, TlJX for the l-adic Tate module of

JX , and ∆X for π1(X, ∗). Theorem 1.1 and the following lemma and theorem give the

first step of the proof of Theorem 3.3:

Lemma 3.5. We have an exact sequence of GK-modules

0→ Zl(1)→ Z[D(Ksep)]⊗Z Zl(1)→ (∆l
X)ab → (∆l

X
)ab → 0.

Here, the superscript “ab” denotes the abelianization of the profinite groups.
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Proof. One can obtain this exact sequence by taking étale cohomology groups of

X. See also [24, Remark (1.3)].

Theorem 3.6. Suppose that X → SpecK is proper (i.e., X = X).

1. (∆l
X)ab ∼= TlJX as GK-modules.

2. JX has good reduction if and only if X has stable reduction and the dual graph of

the special fiber of the stable model of X is a tree.

Proof. Assertion 1 follows from the fact that the Tate module of JX is isomorphic

to the abelianization of the profinite group ∆X as a GK-module. Next we show assertion

2. Since JX has stable reduction if and only if X has stable reduction by [5, Theorem

(2.4)], we may assume that X has stable reduction. Then assertion 2 follows from [5,

Theorem (2.5)] and [3, §9.2 Corollary 12(c)].

To prove the implication 4 ⇒ 1 of Theorem 3.3, we may assume that K is com-

plete and k is separably closed by the fourth item of Remark following Definition 3.2.

Moreover, we may assume that X has a stable model X over SpecOK by Theorem 1.1,

Lemma 3.5, and Theorem 3.6. (Note that we need additional arguments in the case of

g = 0 or 1.) It suffices to show that the morphism X → SpecOK is smooth. Since a

stable model of a hyperbolic curve is stable under base extension, we may assume that

k is algebraically closed.

Roughly, the rest of the proof may be regarded as a consequence of a result of

[23] (see [2] for a stronger result). Precisely speaking, we can prove it by constructing

a stable curve over a regular local scheme of dimension 2 having a closed subscheme

which is isomorphic to SpecOK (and defines the stable curve X → SpecOK), and

comparing X with a transcendental case. Actually, a more direct proof was given in

[24], which we briefly outline. Let X′ be the minimal semi-stable model of X obtained

by applying blowing up along a closed subscheme of X contained in the special fiber.

Note that the dual graph of the special fiber of the scheme X′ over SpecOK is also a

tree. Let Y→ X′ be a Z/lZ-Galois étale covering whose restriction to each irreducible

component of X′ ×SpecOK
Spec k which is isomorphic to neither P1

k nor A1
k is also a

Z/lZ-Galois étale covering. Then one can verify that the dual graph of the scheme

Y ×SpecOK
Spec k is a tree. (Here, we use the assumption that the outer action (2.5)

is trivial again.) Therefore, the cardinality of the set of the irreducible components of

X′ ×SpecOK
Spec k isomorphic to neither P1

k nor A1
k is 1. On the other hand, since X′ is

the minimal semi-stable model of X, X′ ×SpecOK
Spec k has no irreducible components

which are isomorphic to P1
k or A1

k and meet the other irreducible components at precisely

one point. Since the dual graph of X′ ×SpecOK
Spec k is a tree, it turns out that the

□ 

□ 
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scheme X′ ×SpecOK
Spec k is irreducible. Therefore, the morphism X′ → SpecOK is

smooth and X has good reduction.

Remark. We explain relations between reduction of X and its pro-l outer Galois

representation for a prime number l 6= p in the case where 2g + r − 2 ≤ 0. Let (X,D)

be a pair defined in the same way as Notation-Definition 3.1. As in Definition 3.2.2, we

say that X has good reduction if there exist a proper smooth scheme X over OK and a

reduced divisor D of X finite étale over OK such that the base change of the pair (X,D)

to SpecK is isomorphic to (X,D) over SpecK.

1. In the case where (g, r) = (0, 0), ∆l
X is trivial and X(= X) is a Severi-Brauer

variety of dimension 1 over K. Therefore, we cannot determine whether X has

good reduction or not from its étale fundamental group. For example, consider

the case K is a finite extension field of Qp. Since k is a finite field, any Severi-

Brauer variety over K is trivial. Therefore, X has good reduction if and only if X

is isomorphic to P1
K over K. On the other hand, there exists a nontrivial Severi-

Brauer variety of dimension 1 over K. Here, we give an explicit construction of

such a Severi-Brauer variety. Let $ be a uniformizer of K. Write L for the unique

quadratic unramified extension field of K in Ksep and τ for the nontrivial element

of the Galois group Gal(L/K). Then we define a nontrivial action of the Galois

group Gal(L/K) on P1
K such that τ induces the nontrivial involution

P1
K → P1

K : z 7→ $

z
.

By taking the quotient scheme of the scheme P1
L = P1

K×SpecKSpecL by the diagonal

action of Gal(L/K), we obtain a Severi-Brauer variety Z over K which splits over

L. This Severi-Brauer variety is nontrivial. Indeed, if a closed point a ∈ P1
L is fixed

by this action, a is contained in A1
L and satisfies

NL/K(a) = $,

where NL/K(a) is the norm of a. Since L is quadratic unramifeid over K, the

valuation of NL/K(a) cannot coincides with 1. Hence, there are no K-rational

points in Z.

2. Also, in the case where (g, r) = (0, 1), ∆l
X is trivial. Since X is isomorphic to P1

K ,

X has good reduction.

3. In the case where (g, r) = (0, 2), we can determine whether X has good reduction

or not from its étale fundamental group. Indeed, if D is not irreducible, X is

isomorphic to Gm,K over K and hence has good reduction. Moreover, since ∆l
X

is isomorphic to Zl(1) as GK-module, IK acts ∆l
X trivially. Suppose that D is



130 Ippei Nagamachi

irreducible. Write K(D) for the residual field of the unique point of D. Note

that K(D) is a quadratic separable extension field of K. The scheme X ×SpecK

SpecK(D) is isomorphic to Gm,K(D) over K(D). Therefore, X has good reduction

if and only if the normalization of OK in K(D) is unramified over OK . Consider

the composite homomorphism

GK/GK(D)
∼= {±1} ↪→ Aut(Zl).

Write Zl(χ) for the free Zl-module of rank 1 equipped with continuous GK-action

defined by this homomorphism. Then we have an isomorphism ∆l
X
∼= Zl(1)⊗Zl

Zl(χ)

of GK-modules by Lemma 3.5 (note that Lemma 3.5 holds in the case where X is

a (not necessarily hyperbolic) smooth curve over K). Therefore, the action of IK

on ∆l
X is trivial if and only if the normalization of OK in K(D) is unramified over

OK . Hence, we can determine whether X has good reduction or not from its étale

fundamental group.

4. In the case where (g, r) = (1, 0), we cannot determine whetherX has good reduction

or not from its étale fundamental group. Suppose that K is strictly henselian. Let

E be an elliptic curve over K having good reduction. Suppose that X is an E-

torsor. Then ∆l
X is isomorphic to ∆l

E as a GK-module. In particular, it follows

from Theorem 1.1 that the action of GK(= IK) on ∆l
X is trivial. If X has good

reduction, X has K-rational points and hence X is a trivial torsor over K. In the

next paragraph, we show that there exists a nontrivial E-torsor. Hence, we cannot

determine whether or not X has good reduction from its étale fundamental group.

Write k for the residual field of the valuation ring of Ksep, E for the Néron model

of E, and Ek for the scheme E ×SpecOK
Spec k. Then k is an algebraically closed

field. Moreover, we have the following commutative diagram of Galois cohomology

groups:

H1(GK , E(K)) //

��

H1(GK , E(Ksep))

��
H1(GK ,Ek(k))

� � // H1(GK ,Ek(k)).

Since the action of GK on the discrete abelian group E(K) (resp.Ek(k); Ek(k))

is trivial, we have a canonical isomorphism H1(GK , E(K)) ∼= Hom(GK , E(K))

(resp.H1(GK ,Ek(k)) ∼= Hom(GK ,Ek(k)); H1(GK ,Ek(k)) ∼= Hom(GK ,Ek(k))).

Thus, the second horizontal arrow in the diagram is injective. Let N be an in-

teger greater than 1 and invertible in k. Since E has good reduction, and K is

strictly henselian, it follows that the subgroup E(K)N (resp.Ek(k)N ) of E(K)

(resp.Ek(k)) consisting of all N -torsion points is isomorphic to (Z/NZ)⊕2 as an
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abelian group. Moreover, the reduction homomorphism E(K)→ Ek(k) induces an

isomorphism E(K)N → Ek(k)N . Choose a nontrivial continuous homomorphism

GK(= IK)→ E(K)N . Then the composite continuous homomorphism

GK → E(K)N ↪→ E(K)

defines an element c of H1(GK , E(K)). Since the image of c in H1(GK ,Ek(k)) is

also nontrivial, the image of c in H1(GK ,Ek(k)) and hence also the image of c in

H1(GK , E(Ksep)) are nontrivial. Therefore, there exists a nontrivial E-torsor.

We finish this section with another criterion which describes reduction of a proper

hyperbolic curve in terms of its (geometrically) pro-p étale fundamental group. From

the point of view of anabelian geometry, it is difficult to use Theorem 3.4 (see [7, Remark

3.8.2]). The following result is in line with anabelian philosophy:

Theorem 3.7 ([7]). Suppose that K is a finite extension field of Qp and the

morphism X → SpecK is proper. There exists a group-theoretic algorithm to deter-

mine whether or not X has ordinary good reduction from Π
(p)
X (see [7] for the precise

statement).

§ 4. Further results for hyperbolic curves

In this section, we introduce some results of [8], [9], and [16], which state that the

outer Galois representation (2.5) has a lot of information of stable models of hyperbolic

curves.

Let K,OK , k, p,Ksep, GK , IK , X, (X,D), XKsep , ∗,∆X , and ΠX be as in Section 3.

Let l 6= p be a prime number and IK → Out (∆l
X) the outer representation (2.5) for

this l. Suppose that X has stable reduction (or, equivalently, the action of IK on the

abelianization of ∆l
X induced by (2.5) is unipotent). Let (X,D) be a stable model of

(X,D) (which is unique up to canonical isomorphism (cf. [5] and [10])).

Suppose thatK is henselian. LetKtame (resp.Kunr) be the maximal tame (resp. the

maximal unramified) extension of K in Ksep, OKtame the integer ring of Ktame, ksep the

residual field of OKtame . Note that ksep is a separable closure of k. Write (Xksep ,Dksep)

for the base change of (X,D) to ksep. Let G be the pro-{l} completion of the semi-

graph of anabelioids defined by (Xksep ,Dksep) as in [15, Example 2.10]. Note that the

underlying semi-graph G of G is the dual semi-graph of (Xksep ,Dksep). See [15, Section

1] (resp. [15, Section 2]) for the definition of a semi-graph (resp. the definition of a semi-

graph of anabelioids). Each element of D(Ksep) defines an inertia subgroup of ∆l
X

(well-defined up to conjugation), which we refer to as a cuspidal subgroup. The main

theorem of this section is the following:
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Theorem 4.1 (cf. [8, Corollary 4.2], [9, Theorem 1.9 (ii)], and [16, Corollary 2.7 (iii)]).

The data of the outer representation IK → Out (∆l
X) and the cuspidal subgroups of ∆l

X

determine the isomorphism class of G, and hence the isomorphism class of the dual

semi-graph G. More precisely, the following assertion holds:

Let X ′ be another hyperbolic curve over K. Suppose that X ′ has stable reduction. We

define IK → Out (∆l
X′), G′, and G′ in the same way to define IK → Out (∆l

X), G, and
G, respectively. Let α : ∆X

∼= ∆′
X be an isomorphism of profinite groups such that α

preserves the cuspidal subgroups (i.e., the image of every cuspidal subgroup of ∆l
X is a

cuspidal subgroup of ∆l
X′ , and any cuspidal subgroup of ∆l

X′ is the image of a cuspidal

subgroup of ∆l
X) and α is compatible with the outer representations IK → Out (∆l

X)

and IK → Out (∆l
X′). Then there exists an isomorphism G ∼= G′ inducing α (and an

isomorphism G ∼= G′).

The outer representation IK → Out (∆l
X) factors through the quotient group

Gal(Ktame/Kunr) of IK , which is isomorphic to the group IKlog as we shall see later.

In Theorem 4.2, we rewrite the statement of Theorem 4.1 in terms of the induced outer

action of the quotient group. To state Theorem 4.2, we use logarithmic geometry. We

consider the log structure of the scheme SpecOK (resp. SpecOKtame) defined by the

direct image of the structure sheaf of SpecK (resp. SpecKtame) and write SpecOlog
K

(resp. SpecOlog
Ktame) for the resulting log scheme. As in [16, Section 0], we consider a

natural log structure on X defined by the fact that (X,D) is a stable curve and write

X
log

for the resulting log scheme. Write Xk for the scheme X ×SpecOK
Spec k. Con-

sider the log structure on Xk (resp. Spec k; Spec ksep) defined as the inverse image of

the log structure on X (resp. SpecOK ; SpecOKtame) and write X
log

k (resp. (Spec k)log;

(Spec ksep)log) for the resulting log scheme. We have a commutative diagram of profinite

groups with exact horizontal lines and three vertical isomorphisms

(4.1) 1 // Gal(Ktame/Kunr)

��

// Gal(Ktame/K)

��

// Gal(Kunr/K)

��

// 1

1 // Iklog
// Gklog

// Gal(ksep/k) // 1,

where Gklog is the automorphism group Aut ((Spec ksep)log/(Spec k)log) of (Spec ksep)log

over (Spec k)log and Iklog = Hom(Q/Z, (ksep)×).
As in [16, Example 2.5], we consider the admissible fundamental group Π

X
log

(resp.∆
X

log) associated with X
log

(resp. the stable curve (Xksep ,Dksep) over ksep). See

[12, §3], [13, §2], and [14, §2 and Appendix] for admissible coverings of stable curves.

Then we have a commutative diagram of profinite groups with exact horizontal lines
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and three vertical surjections

(4.2) 1 // ∆X

��

// ΠX

��

// GK

��

// 1

1 // ∆
X

log
// Π

X
log

// Gklog
// 1.

Here, the third vertical homomorphism of the diagram (4.2) is the composite of the

second vertical homomorphism of the diagram (4.1) and the natural surjective homo-

morphism GK → Gal(Ktame/K). Then the first vertical homomorphism ∆X → ∆
X

log

induces an isomorphism ∆l
X
∼= ∆l

X
log . As explained in [16, Example 2.5], ∆l

X
log is

isomorphic to the fundamental group ΠG of G. In particular, we obtain an outer action

Gklog → Out(∆l
X)

and

(4.3) Iklog → Out(∆l
X)

Theorem 4.2 (cf. [8, Corollary 4.2], [9, Theorem 1.9 (ii)], and [16, Corollary 2.7 (iii)]).

The data of the outer action (4.3) and the cuspidal subgroups of ∆l
X determine the iso-

morphism class of G, and hence the isomorphism class of the dual semi-graph G (i.e.,

a statement similar to that of Theorem 4.1 for the outer action (4.3) holds).

Remark. In this section, we start with a hyperbolic curve X over a discrete

valuation field K, and then determine the reduction type of X from the outer Galois

representation IK → Out (∆l
X). On the other hand, in [8], [9], and [16], the authors start

with the fundamental group Π of some sort of semi-graphs of anabelioids and an outer

action of a profinite group on Π. This type of study is important in anabelian geometry

and brings deeper results. (For example, Theorem 4.2 holds even if the coefficient field

of X ′ is another henselian discrete valuation field K ′ and we have an isomorphism

ι : IK ∼= IK′ of profinite groups which is compatible with α and the outer Galois

representations.) In this paper, we just apply the results of [8], [9], and [16], and avoid

explanations from a viewpoint of anabelian geometry.

Proof of Theorem 4.1. Theorem 4.1 follows from Theorem 4.2.

Proof of Theorem 4.2. Here, we outline the proof. To prove that α arises from an

isomorphism between G and G′, it suffices to show that α is graphically filtration preserv-

ing (cf. [16, Definition 1.4 (iii)]) by [16, Theorem 1.6 (ii)] (and [17, Comments on [16]]).

Since α preserves the cuspidal subgroups, it suffices to show that α is group-theoretically

□ 
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verticial (cf. [16, Definition 1.4 (iv)]) by [8, Proposition 1.13]. By [8, Theorem 4.1], it

suffices to show that there exists a verticial subgroup A of ΠG (cf. [16, Definition 1.1

(ii)]) such that α(A) is also a verticial subgroup of ΠG′ . This follows from [9, Theorem

1.9 (ii)]. (See also [16, Proposition 2.6] (and [16, Remark 1.4.1]) (resp. [8, Corollary

4.2]), which treats the case where X is proper (resp. not proper).)

§ 5. Reduction of Hyperbolic Polycurves

In this section, we give a precise definition of a hyperbolic polycurve and we state

the main theorems of [20] which improve those of [19].

Definition 5.1. Let S be a scheme, X a scheme over S, and n a positive integer.

We shall say that X is a hyperbolic polycurve of relative dimension n over S if there

exists a sequence of schemes

S : X = Xn → Xn−1 → . . .→ X0 = S

such that Xi+1 → Xi is a hyperbolic curve for each 0 ≤ i ≤ n − 1. We shall refer to

such a sequence as a sequence of parametrizing morphisms. We write gS for the number

max
1≤i≤n

gXi/Xi−1
and gX/S for the number min

S
gS (where S ranges over the sequences

satisfying the conditions in the definition of a hyperbolic polycurve).

Remark. Note that, for a hyperbolic polycurve X → S, the following three con-

ditions are equivalent:

• The morphism X → S is proper.

• There exists a sequence of parametrizing morphisms X = Xn → . . . → X0 = S

such that the morphism Xi → Xi−1 is proper for each 1 ≤ i ≤ n.

• For any sequence of parametrizing morphisms X = Xn → . . . → X0 = S and any

1 ≤ i ≤ n, the morphism Xi → Xi−1 is proper.

Hence, if these equivalent conditions are satisfied, we say that the hyperbolic polycurve

X → S is proper.

Let K, p,OK ,Ksep, GK , and IK be as in Section 2.

Definition 5.2. Let

S : X = Xn → . . .→ X0 = SpecK

□ 
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be a sequence of parametrizing morphisms of a hyperbolic polycurve over K. We shall

say thatX has good reduction with respect to S if there exists a sequence of parametrizing

morphisms

X = Xn → . . .→ X0 = SpecOK

of a hyperbolic polycurve over OK such that the sequence

X×SpecOK
SpecK = Xn ×SpecOK

SpecK → . . .→ X0 ×SpecOK
SpecK = SpecK

is isomorphic to S.

Remark. Let X be a proper hyperbolic polycurve over K. If X has good reduc-

tion with respect to some sequence of parametrizing morphisms, X has good reduction

in the sense of Definition 3.2.1. By using the proofs of Theorem 5.3 and Theorem 5.4,

we can show that the converse to this statement holds under some assumptions. In

the case where X has good reduction in the sense of Definition 3.2.1 and p = 0, X

has good reduction with respect to any sequence of parametrizing morphisms of the

hyperbolic polycurve X → SpecK. Furthermore, in the case where X has good reduc-

tion in the sense of Definition 3.2.1 and at least one of the following three conditions:

p > 2gX/SpecK + 1 and dimX = 2; p > 2gX/SpecK + 1 and X has a K-rational point;

p � 0 (cf. [20, Theorem 1.3] for the precise bound), is satisfied, then X has good re-

duction with respect to some sequence of parametrizing morphisms of X → SpecK. At

the time of writing, the author does not know whether or not the statement “if X has

good reduction in the sense of Definition 3.2.1, then X has good reduction with respect

to any (or some) sequence of parameterizing morphisms of X → SpecK” holds.

Let X, ∗, ∆X , and ΠX be as in Section 2.

Theorem 5.3. Suppose that X is a proper hyperbolic polycurve over K of di-

mension n. Consider the following two conditions:

(A) X has good reduction.

(B) The outer Galois action IK → Out (∆p′

X) is trivial.

Then the following hold:

1. (A) ⇒ (B).

2. If p = 0, (B) ⇒ (A).

3. If p > 2gX/SpecK + 1 and n = 2, (B) ⇒ (A).

4. Suppose that p > 2gX/SpecK + 1. Moreover, suppose that X has a K-rational point

x and the Galois action IK → Aut (∆p′

X) defined by x is trivial. Then (A) holds.
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Theorem 5.4. Let

S : X = Xn → . . .→ X0 = SpecK

be a sequence of parametrizing morphisms of a hyperbolic polycurve X over K. Consider

the following two conditions:

(A’) X has good reduction with respect to S.

(B) The outer Galois action IK → Out (∆p′

X) is trivial.

Then the following hold:

1. (A’) ⇒ (B).

2. If p = 0, (B) ⇒ (A’).

3. If p > 2gX/SpecK + 1 and dimX = 2, (B) ⇒ (A’).

4. If p� 0 (cf. [20, Theorem 1.3] for the precise bound), (B) ⇒ (A’).

Remark. For any prime number l0, there exists a proper hyperbolic polycurve

X → SpecC((t)) satisfying the following conditions (cf. [20, Example 8.2]):

• X has bad reduction.

• For any prime number l 6= l0, the outer action IC((t)) → Out(∆l
X) is trivial.

Therefore, we cannot expect that a naive analogue for proper hyperbolic polycurves of

the pro-l good reduction criterion given by Oda and Tamagawa holds.

Remark. There exist a finite extension field L of Qp and a sequence of parame-

terizing morphisms X2 → X1 → SpecL of a proper hyperbolic polycurve X2 → SpecL

satisfying the condition that ∆p
X2

∼= ∆p
X1

, where ∆X1
(resp.∆X2

) for the étale fun-

damental group of X1 (resp.X2) (cf. [20, Example 8.4]). Hence, we cannot expect the

existence of pro-p good reduction criterion for hyperbolic polycurves unlike in the case

of abelian varieties or hyperbolic curves.

First, we reduce the main theorems to Claim 5.5.

Proof. The implications (A) ⇒ (B) and (A’) ⇒ (B) follow from Proposition 2.4.

Suppose that condition (B) holds. If n = 1, the main theorems follow from Theorem 3.3.

Suppose that n ≥ 2 and the main theorems hold for hyperbolic polycurves of dimension

n − 1. If we work under the setting of Theorem 5.3, take a sequence of parametrizing

morphisms

S : X = Xn → . . .→ X0 = SpecK
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such that gX/S = gS . Thus, by applying the main theorems to the hyperbolic polycurve

Xn−1 of dimension n− 1, we can take a hyperbolic polycurve Xn−1 over OK such that

the scheme Xn−1×SpecOK
SpecK is isomorphic to Xn−1 over K. Write Πn (resp.Πn−1)

for the étale fundamental group of Xn (resp.Xn−1) and ∆n (resp.∆n−1) for the étale

fundamental group of Xn ×SpecK SpecKsep (resp.Xn−1 ×SpecK SpecKsep). Note that

∆n = ∆X and Πn = ΠX . Let K(Xn−1) be the function field of Xn−1 and K(Xn−1)
sep

a separable closure of K(Xn−1). We may assume that the morphism ∗ → Xn ×SpecK

SpecKsep factors through the morphism

Xn ×Xn−1
SpecK(Xn−1)

sep → Xn ×SpecK SpecKsep.

WriteGn−1 (resp.∆) for the profinite group Gal(K(Xn−1)
sep/K(Xn−1)) (resp.π1(Xn×Xn−1

SpecK(Xn−1)
sep, ∗)). We have a diagram of profinite groups with exact horizontal lines

(5.1) 1 // ∆ // π1(Xn ×Xn−1
SpecK(Xn−1), ∗)

��

// Gn−1

��

// 1

∆ // Πn
//// Πn−1

// 1.

Here, all the vertical homomorphisms are surjective. Write ξ for the generic point of

the special fiber of the morphism Xn−1 → SpecOK and I for an inertia subgroup of ξ in

Πn−1 (uniquely determined up to conjugation). By using Theorem 8.3 and the diagram

(5.1), we obtain natural outer actions

(5.2) I → Out(∆p′
) and I → Out(∆l) (l 6= p : prime number).

Claim 5.5. There exists a prime number l 6= p such that the outer action I →
Out(∆l) in (5.2) is trivial.

In the rest of this section, we prove the main theorems under the assumption that

this claim holds. It suffices to show that there exists a hyperbolic curve Xn → Xn−1

such that the scheme Xn×Xn−1
Xn−1 is isomorphic to Xn over Xn−1. By [18], it suffices

to show that Xn×Xn−1 SpecK(Xn−1)→ SpecK(Xn−1) has good reduction at the local

ring OXn−1,ξ of ξ. Let Ĩ be an inertia subgroup of OXn−1,ξ in Gn−1 and

Ĩ → Out(∆l)(5.3)

the outer Galois action defined by applying the construction of the Galois action (2.5)

to the first horizontal exact sequence of the diagram (5.1). By Theorem 3.3, it suffices

to show that the outer Galois action (5.3) is trivial. This follows from Claim 5.5. □ 
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§ 6. Approach of [19]

In Section 6 and Section 7, we give overviews of the proofs of Claim 5.5. In this

section, we describe the strategy to show Claim 5.5 given in [19].

To prove Claim 5.5, we need to describe the difference between the outer action of

the inertia group IK of the base field K and the outer action of the inertia group I. In

[19], we used the actions defined by all the closed points of Xn to compare these two

outer actions. Namely, we assume that the following condition:

Assumption 6.1. Let x be a closed point ofXn,K(x) the residual field of x, and

K(x)sep a separable closure of K(x). Take a geometric point x of X×SpecKSpecK(x)sep

over x and an inertia subgroup IK(x) of the Galois group Gal (K(x)sep/K(x)) of a

valuation ring of K(x) dominating OK . Then the Galois action

IK(x) ⊂ Gal (K(x)sep/K(x))→ Aut (π1(Xn ×SpecK SpecK(x)sep, x)p
′
)

is trivial. Here, this Galois action is defined by the section of the exact sequence (2.1)

for the variety X ×SpecK SpecK(x) over K(x) determined by the K(x)-rational point

determined by x.

Moreover, as in the case of [19], we also assume that the morphism f : Xn → Xn−1

is proper and has a section σ. Note that we do not need the assumption on all the

closed points of Xn. We only need the assumption on all the closed points in σ(Xn−1).

To compare the inertia subgroups associated to closed points of Xn−1 with the inertia

subgroup I, we use the following Proposition:

Proposition 6.2 (cf. [19, Lemma 5.1, Corollary 5.2, and Theorem 6.4]). Let U be

a regular scheme surjective, flat, separated, and of finite type over SpecOK . Write U

for the generic fiber of U. Suppose that U is connected (or, equivalently, U is connected

(cf. Remark 1 following this proposition)). Write π1(U) for the étale fundamental group

of U (cf. Remark 2 following this proposition). Moreover, suppose that the special fiber

of U is integral and write η for the generic point of the special fiber. We define two

closed normal subgroups of π1(U) as follows:

• Let I1 be the normal closed subgroup generated by the inertia subgroups of η in

π1(U).

• For any closed point x of U , we write K(x) for the residual field of x and OK(x)

for the normalization of OK in K(x). For such a closed point x and any closed

point y of SpecOK(x), we write Oy for the local ring of y in SpecOK(x). For such a

closed point y, any separable closure K(x)sep of K(x), and any inertia subgroup Iy

of Gal(K(x)sep/K(x)) of Oy, we write Iy for the image of Iy via the homomorphism



Good reduction of hyperbolic polycurves and their fundamental groups: A survey 139

Gal(K(x)sep/K(x))→ π1(U) induced by the morphism SpecK(x)→ U . We define

I2 to be the normal closed subgroup of π1(U) generated by the subgroups Iy defined

by all such closed points x, closed points y, and inertia subgroups Iy satisfying that

the natural morphisms SpecK(x)→ U induce canonical morphisms SpecOy → U.

Then I1 = I2.

Remark.

1. Since U in Proposition 6.2 is regular and flat over SpecOK , the following are equiv-

alent: (i) U is irreducible. (ii) U is connected. (iii) U is irreducible. (iv) U is

connected.

2. In Proposition 6.2, we only consider normal subgroups of π1(U). Hence, we do not

fix a geometric point of U and consider π1(U) as the étale fundamental group of

the scheme U up to inner isomorphism in Proposition 6.2.

3. In [19], the exact same statement as that in Proposition 6.2 is not given.

Proof of Proposition 6.2. Note that I1 = Ker(π1(U) → π1(U)) by the Zariski-

Nagata purity theorem. First we show that I2 ⊂ I1. Let x, y, and Iy be as in Proposition

6.2. Since the morphism SpecK(x)→ U induces SpecOy → U, the image of Iy in π1(U)

is trivial. Next we show I1 ⊂ I2. By the Zariski-Nagata purity, it suffices to show the

following claim:

Claim 6.3 (cf. [19, Lemma 5.1]). Let G be a finite group and Z a G-torsor over

U which does not extends to a G-torsor over U. There exist x and y as in the definition

of I2 satisfying the following property:

Take a geometric point y over y. Let Uy be the strict henselization of U with respect to

y. Then the pull-back of the G-torsor Z to SpecK(x) does not extends to a G-torsor

over SpecOy.

This claim follows from [19, Lemma 5.1 and Claim in the proof of Theorem 6.4].

There is another remarkable difference between condition (A) or (A’) and Claim

5.5. We need to compare the outer action of the inertia group on ∆ and that on ∆n. To

overcome this problem, in [19], a homotopy exact sequence of Tannakian fundamental

groups was constructed.

Notation-Definition 6.4. Let Y be a connected Noetherian scheme, l a prime

number invertible on Y , and m an integer.

1. We shall write Étl(Y ) for the category of smooth Ql-sheaves on Y , which is a

Tannakian category over Ql.

□ 
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2. We define a Tannakian subcategory Ét
≤m

l (Y ) (resp. U Étl(Y )) of Étl(Y ) to be the

minimal one which contains all the smooth Ql-sheaves of rank ≤ m (resp. the

trivial smooth Ql-sheaf Ql) and which is closed under taking subquotients, tensor

products, duals, and extensions.

3. Let g : Z → Y be a proper smooth morphism with geometrically connected fibers.

We define a Tannakian subcategory UgÉt
≤m

l (Z) of Étl(Z) to be the minimal one

which contains the essential image of g∗ : Ét
≤m

l (Y )→ Ét
≤m

l (Z) and which is closed

under taking subquotients, tensor products, duals, and extensions.

Fix a geometric point s→ Xn−1. Write Xs for the scheme Xn ×Xn−1 s and is for

the projection Xs → Xn. We have functors of Tannakian categories

(6.1) Ét
≤m

l (Xn−1)
f∗

⇄
σ∗

Uf Ét
≤m

l (Xn)
i∗s→ U Étl(Xs),

which induce homomorphisms

(6.2) π1(Xs, s)
l-unip is∗→ π1(Xn, s)

l-rel-unip,m
f∗
⇄
σ∗

π1(Xn−1, s)
l-alg,m

between their Tannaka duals.

By [4], the homomorphisms of affine group schemes in (6.2) are induced from ho-

momorphisms between the fundamental groups

(6.3) π(Uf Ét
≤m

l (Xn))
f∗→ f∗π(Ét

≤m

l (Xn−1)),

σ∗π(Uf Ét
≤m

l (Xn))
σ∗← π(Ét

≤m

l (Xn−1)),(6.4)

and

π(U Étl(Xs))
is∗→ i∗sπ(Uf Ét

≤m

l (Xn)).(6.5)

Write Kr,σ for the kernel of the homomorphism (6.4). The morphisms of schemes

Xs
is→ Xn

f→ Xn−1 induce homomorphisms

(6.6) π(U Étl(Xs))
is∗→ i∗sπ(Uf Ét

≤m

l (Xn))
i∗sf∗→ i∗sf

∗π(Ét
≤m

l (Xn−1))

of affine group schemes over U Étl(Xs). By taking fibers at s, we obtain homomorphisms

(6.7) π1(Xs, s)
l-unip is∗→ π1(Xn, s)

l-rel-unip,m f∗→ π1(Xn−1, s)
l-alg,m.

We have a canonical morphism

π1(Xs, s)
l-unip = s∗π(U Étl(Xs))→ s∗Kr,σ.(6.8)

The following theorem is an l-adic étale analogue of [11, Theorem 1.6]:
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Theorem 6.5 ([19, Theorem 4.3]). Suppose that rankR1f∗Ql ≤ m. Then the

homomorphism (6.8) is an isomorphism.

Since the homomorphism π1(Xn, s)
l-rel-unip,m → π1(Xn−1, s)

l-alg,m is surjective,

Theorem 6.5 shows that the sequence

(6.9)

1→ π1(Xs, s)
l-unip is∗→ π1(Xn, s)

l-rel-unip,2gX/SpecK
f∗→ π1(Xn−1, s)

l-alg,2gX/SpecK → 1

is an exact sequence of affine group schemes over Ql. By using this exact sequence,

we can see that there exists an ind-étale sheaf K on Xn−1 such that the outer action

I → Out(∆l) of (5.2) is trivial if and only if K extends to Xn. Then we can apply

Proposition 6.2 and prove Claim 5.5.

§ 7. Approach of [20]

In this section, we describe the strategy to show Claim 5.5 given in [20].

As explained in the beginning of Section 6, we need to compare the inertia sub-

groups to prove Claim 5.5. To send the information of the outer actions of the inertia

subgroups back and forth, we use centralizer subgroups. It is convenient to discuss the

case p = 0 and the case p > 0 separately. Indeed, if charK = p > 0, the sequence

(7.1) 1→ ∆→ ∆n → ∆n−1 → 1

which we can construct by using (5.1) and (2.1) for Xn−1 and Xn may not be exact in

general. Moreover, if p > 0, the sequence

(7.2) ∆p′
→ ∆p′

n → ∆p′

n−1 → 1

induced by the sequence (7.1) may not be exact in general.

For simplicity, we assume that K is strictly henselian (and hence IK = GK) in this

section.

§ 7.1. The Case of Residual Characteristic p = 0

Suppose that p = 0 in this subsection. By [6, PROPOSITION 2.4], the sequence

(7.1) is exact. To prove Claim 5.5, it suffices to show the following claim:

Claim 7.1. The outer action I → Out (∆)(= Out (∆p′
)) in (5.2) is trivial.

It is easy to see that Claim 7.1 is equivalent to the following claim:

Claim 7.2. The image of the composite homomorphism

ZΠn(∆) ⊂ Πn → Πn−1

contains I.
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Hence, it suffices to show the following two lemmas:

Lemma 7.3 ([20, Lemma 4.1]). We have Πn = ∆n × ZΠn(∆n) and Πn−1 =

∆n−1 × ZΠn−1
(∆n−1).

Lemma 7.4 ([20, Lemma 4.2]). I ⊂ ZΠn−1
(∆n−1). (In fact, I = ZΠn−1

(∆n−1).)

Proof of Lemma 7.3. The assertions follow from the assumptions that IK = GK

and that the outer Galois action IK → Out(∆) is trivial, Lemma 2.1.3, Lemma 2.1.4,

and Lemma 2.3.

Proof of Lemma 7.4. Since the composite homomorphism

∆n−1 → Πn−1 → π1(Xn−1, ∗)

is an isomorphism by Theorem 8.3, we have

I ⊂ Ker (Πn−1 → π1(Xn−1, ∗)) ⊂ ZΠn−1
(∆n−1).

§ 7.2. The Case of Residual Characteristic p > 0

Suppose that p > 0 in this subsection. To apply a similar argument to the argument

of the case of p = 0, we need to see that there exist a prime number l 6= p and a quotient

group of the group ∆n such that the quotient group ∆l of ∆ injects into it. We use

the assumptions on p and g to find such an l and a quotient group. Indeed, we have a

prime number l 6= p and a commutative diagram with exact horizontal lines

(7.3) 1 // ∆l // ∆(l,p′)
n

��

// ∆p′

n−1

��

// 1

1 // ∆l // Π(l,p′)
n

//// Π(p′)
n−1

// 1

induced by the diagram (5.1). Here, ∆
(l,p′)
n is a quotient group of ∆n which makes the

first line exact, and Π
(l,p′)
n (resp.Π

(p′)
n−1) is a quotient group of Πn (resp.Πn−1). Note

that the existence of the first line is equivalent to the fact that the homomorphism

∆n−1 → Out (∆l) factors through the canonical homomorphism ∆n−1 → ∆p′

n−1. It is

easy to see that Claim 5.5 follows from Claim 7.5.

□ 

□ 
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Claim 7.5 (cf. Claim 7.2). The image of the composite homomorphism

Z
Π

(l,p′)
n

(∆(l,p′)
n ) ↪→ Π(l,p′)

n → Π
(p′)
n−1

contains the image of the composite homomorphism I ↪→ Πn−1 → Π
(p′)
n−1.

Theorem 5.3.4 follows from the diagram (7.3) and the assumption of Theorem 5.3.4.

To prove the other assertions, we need an analogue of Lemma 7.3.

Lemma 7.6 (cf. [20, Section 5 and Corollary 6.2]). If ∆p′

n−1 is center-free, ∆
(l,p′)
n

is also center-free. In this case, we have decompositions of Π
(l,p′)
n and Π

(p′)
n−1 similar to

those of Lemma 7.3.

Remark. In [20], the exact same statement as that in Lemma 7.6 is not given.

Proof of Lemma 7.6. The assertion follows from the same argument as that in the

proof of Lemma 7.3.

If n = 2, ∆p′

2−1 is center-free by Lemma 2.3. Hence, Theorem 5.3.3 and Theorem

5.4.3 follow from Lemma 7.6.

Next, we explain a main ingredient of the proof of Theorem 5.4.4 given in [20].

In the proof, we constructed a center-free quotient group of ∆p′

n in the following way:

For any open normal subgroup H of Πg,r (cf. Definition 2.2), the group H l is center-

free by Lemma 2.3, and moreover, the group Πg,r/(Ker (H → H l)) is also center-free

(cf. [20, Lemma 6.3.2]). If the quotient group Πg,r/H is of order prime to p, the group

Πg,r/(Ker (H → H l)) is a quotient group of Πp′

g,r. Similarly, one can take an open

subgroup ∆′
n−1 of ∆p′

n−1 such that the quotient group ∆p′

n−1/(Ker (∆′
n−1 → (∆′

n−1)
l))

is center-free. (Indeed, in [20], we take such an open normal subgroup of ∆p′

n−1 by [20,

Lemma 6.3], [20, Proposition 6.4], and the assumption that p � 0. Then we prove

Theorem 5.4.4 by applying [20, Proposition 6.2].)

§ 8. Appendix : A Specialization Theorem for Pro-L Étale Fundamental

Groups

In this section, we prove that a sort of specialization homomorphism of pro-L étale

fundamental groups is an isomorphism. This fact (Theorem 8.3) seems to be known to

experts, but the author cannot find it in the literature.

Let K be a discrete valuation field, OK the valuation ring of K, p (≥ 0) the residual

characteristic of OK , k the residual field of OK , Oh
K a henselization of OK , Osh

K a strict

henselization of Oh
K , Kh the field of fractions of Oh

K , Ksh the field of fractions of Osh
K , and

□ 
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Ksep a separable closure of Ksh. Let L ⊂ Primes be a nonempty subset not containing

p. For any scheme Z geometrically connected over K and any geometric point ∗ of the
scheme Z ×SpecK SpecKsep, we write π1(Z, ∗)(L) for the group

π1(Z, ∗)/Ker(π1(Z ×SpecK SpecKsep, ∗)→ π1(Z ×SpecK SpecKsep, ∗)L).

Lemma 8.1. Let K ⊂ K1 ⊂ K2 be finite extensions of fields. Suppose that K2

and K1 are Galois over K. Write OK1
(resp.OK2

) for the normalization of OK in K1

(resp.K2). Suppose that OK1 is a discrete valuation ring totally ramified over OK and

OK2
is a discrete valuation ring unramified over OK1

. Then the maximal unramified

extension K3 of K in K2 is Galois over K and K2
∼= K1 ⊗K K3.

Proof. Since OK2
is a discrete valuation ring, we may assume that K is complete.

In this case, one can verify the assertion easily.

Lemma 8.2.

1. Let X→ SpecOK be a proper smooth morphism with geometrically connected fibers.

Let D ⊂ X be a normal crossing divisor of the scheme X relative to SpecOK . Write

X (resp.X; X; Xk) for the scheme X \ D (resp.X ×SpecOK
SpecK; X ×SpecOK

SpecK; X ×SpecOK
Spec k). Since the scheme Xk is a dense open subscheme of a

connected regular scheme, Xk is irreducible. We write ξ for the generic point of

Xk. Take a geometric point t of X×SpecK SpecKsep. Consider a finite Galois étale

covering Y → X corresponding to an open subgroup of π1(X, t)(L). Suppose that the

coefficient field of Y is K. Then the normalization SpecO(Y, ξ) of the spectrum of

the local ring OX,ξ in Y is the spectrum of a discrete valuation ring.

2. Suppose that OK = Oh
K . Write X0 (resp.X0) for the spectrum of the ring OK

(resp.K). Let

Xn → . . .→ X0

be morphisms such that there exist a proper smooth morphism Xi+1 → Xi with

geometrically connected fibers and a normal crossing divisor Di+1 ⊂ Xi+1 of the

scheme Xi+1 relative to Xi satisfying that the complement Xi+1\Di+1 is isomorphic

to Xi+1 for each 0 ≤ i ≤ n − 1. Write Xi (resp.Xi) for the scheme Xi ×SpecOK

SpecK (resp.Xi ×SpecOK
SpecK). Since the scheme Xi,k = Xi ×SpecOK

Spec k

is a dense open subscheme of a connected regular scheme, Xi,k is irreducible for

each 0 ≤ i ≤ n. We write ξi for the generic point of Xi,k for each 0 ≤ i ≤ n.

Consider a finite Galois étale covering Yn → Xn corresponding to an open subgroup

of π1(Xn, t)
(L). Then the normalization SpecO(Yn, ξn) of the spectrum of the local

ring OXn,ξn in Yn is the spectrum of a discrete valuation ring.

□ 
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Proof. To show assertion 1, we may assume that OK is strictly henselian. Write

G for the opposite group of the automorphism group of Y over X. Then Y is a G-

torsor over X. Since the coefficient field of Y is K, G is a finite pro-L group. By

[25, Exposé XIII, Corollary 2.9], there exists a finite Galois étale morphism Z → X

such that the pull-back Z×SpecOK
SpecKsep is isomorphic to Y ×SpecK SpecKsep over

X ×SpecK SpecKsep. Therefore, it suffices to show that the normalization SpecO(Z, ξ)

of the spectrum of the local ring OX,ξ in Z is the spectrum of a discrete valuation ring.

Let t′ be a geometric point of Xk. The induced homomorphism π1(Xk, t′)
L → π1(X, t′)

L

is an isomorphism again by [25, Exposé XIII, 2.10 and Corollaire 2.9]. Therefore, the

scheme Z×SpecOK
Spec k is irreducible, and hence the scheme SpecO(Z, ξ) is local.

Next, we show assertion 2. Let Yi (resp.Yi) be the normalization of Xi (resp.Xi)

in Yn. Since the morphism Xn → Xi is smooth and generically geometrically connected,

the schemeXn×XiYi is connected and normal. Moreover, since the finite étale morphism

Yn → Xn factors through the projection Xn ×Xi
Yi → Xn, this projection is also finite

étale. Therefore, it holds that the morphism Yi → Xi is finite étale for each 0 ≤ i ≤ n

since the morphism Xn → Xi is faithfully flat. We will show assertion 2 by induction

on n. Note that the normalization SpecO(Y0, ξ0) of the spectrum of the local ring

OX0,ξ0 = SpecOK in Y0 is the spectrum of a discrete valuation ring. Therefore, we may

assume that Y0 = X0.

If n = 1, the normalization SpecO(Y1, ξ1) of the spectrum of the local ring OX1,ξ1

in Y1 is the spectrum of a discrete valuation ring by assertion 1. Assume that the nor-

malization SpecO(Yn−1, ξn−1) of the spectrum of the local ring OXn−1,ξn−1 in Yn−1 is

the spectrum of a discrete valuation ring. Write K(Yn−1) for the field of fractions of the

scheme Yn−1. By applying assertion 1 to the pair Yn×Yn−1 SpecK(Yn−1)→ Xn×Xn−1

SpecK(Yn−1)→ SpecK(Yn−1) and Xn×Xn−1
SpecO(Yn−1, ξn−1)→ SpecO(Yn−1, ξn−1),

we can show that the scheme SpecO(Yn, ξn) is local.

Theorem 8.3. Let X→ SpecOK be a morphism satisfying the following condi-

tion: There exists a facotrization

X = Xn → . . .→ X0 = SpecOK

such that there exist a proper smooth morphism Xi+1 → Xi with geometrically connected

fibers and a normal crossing divisor Di+1 ⊂ Xi+1 of the scheme Xi+1 relative to Xi

satisfying that the complement Xi+1 \ Di+1 is isomorphic to Xi+1 for each 0 ≤ i ≤
n − 1. Write X for the scheme X ×SpecOK

SpecK and take a geometric point t of

X ×SpecK SpecKsep over its generic point. Then the natural homomorphism

α : π1(X ×SpecK SpecKsep, t)L → π1(X×SpecOK
SpecOsh

K , t)L

is an isomorphism.

□ 
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Proof. We may and do assume K = Ksh. Since the scheme X is smooth over

SpecOK , X is normal. Since the étale fundamental group of the scheme SpecOK(=

SpecOsh
K ) is trivial, for any Galois étale covering space Y → X, the coefficient field of

Y×SpecOK
SpecK is equal to K. Hence, the homomorphism

π1(X ×SpecK SpecKsep, t)→ π1(X×SpecOK
SpecOsh

K , t)

is surjective. Therefore, α is also surjective.

We prove that the homomorphism α is injective. It suffices to show that each

étale covering space of X ×SpecK SpecKsep corresponding to an open subgroup of

π1(X ×SpecK SpecKsep, t)L is isomorphic to the pull-back of an étale covering space

of X over X×SpecK SpecKsep. Since each open subgroup of π1(X×SpecK SpecKsep, t)L

includes the intersection of π1(X ×SpecK SpecKsep, t)L and an open normal subgroup

of the group π1(X, t)(L), Theorem 8.3 follows from the next lemma.

Lemma 8.4. Let X,X, and t be as in Theorem 8.3. Suppose that OK = Osh
K .

Let Y be a Galois étale covering space of X corresponding to an open subgroup of

π1(X, t)(L). Write KY (⊂ Ksep) for the coefficient field of Y and e for the extension

degree of Y ×SpecKY
SpecKsep → X ×SpecK SpecKsep, which is prime to p. Let K ′ be

the tame extension of KY of degree e in Ksep. Then there exists a Galois étale covering

space X′ of X such that the scheme Y ×SpecKY
SpecK ′ is isomorphic to the scheme

X′ ×SpecOK
SpecK ′ over X ×SpecK SpecK ′.

X′ ×SpecOK
SpecK ′

��

Y ×SpecKY
SpecK ′

��

// X ×SpecK SpecK ′

��

// SpecK ′

��

��

Y //

))TTT
TTTT

TTTT
TTTT

TTTT
TTT X ×SpecK SpecKY

��

// SpecKY

��
X′ ×SpecOK

SpecK

��

// X

��

// SpecK

��
X′ // X // SpecOK .

Proof. Note that the field extensionK ′ ⊃ K is Galois, and hence the étale covering

Y ×SpecKY
SpecK ′ → X is also Galois. By Abhyankar’s lemma and the Zariski-Nagata

purity, the normalizationY′ of X×SpecOK
SpecOK′ in the field of fractions of Y ×SpecKY

SpecK ′ is étale over X×SpecOK
SpecOK′ . Let ξX (resp. ξX,K′) be the generic point of

the special fiber of X (resp.X ×SpecOK
SpecOK′). Then the extension of the discrete

□ 
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valuation rings OX×SpecOK
SpecOK′ , ξX,K′ ⊃ OX, ξX is totally ramified and the extension

of their fields of fractions is Galois. Note that the normalization SpecO(Y′, ξX) of the

scheme SpecOX,ξX in the field of fractions of Y ×SpecKY
SpecK ′ is the spectrum of a

discrete valuation ring by Lemma 8.2.2. By Lemma 8.1, the field of fractions of the

maximal unramified extension of OX,ξX in O(Y′, ξX) is Galois over the function field of

X. We write X′ for the normalization of X in this field. Then the morphism X′ → X is

étale over X and ξX . By the Zariski-Nagata purity theorem, the morphism X′ → X is

étale.
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3. Société Mathématique de France, Paris, 2003.




