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Envy-Free and Truthful Cake-Cuttings 

Based on Parametric Flows 

Takao Asano * 

Chuo University 

Abstract 

For the cake-cutting problem, Alijani, et al. [2, 30] and Asano and Umeda [3, 4] 
gave envy-free and truthful mechanisms with a small number of cuts, where the desired 
part of each player's valuation function is a single interval on the given cake. In this 
paper, based on parametric flows, we give efficient envy-free and truthful mechanisms 
with a small number of cuts, which are much simpler than those proposed by Alijani, 
et al. [2, 30] and Asano and Umeda [3, 4]. Furthermore, we show that this approach 
can be applied to the envy-free and truthful mechanism proposed by Chen, et al. 
[16], where the valuation function of each player is piecewise uniform. Thus, we can 
obtain an envy-free and truthful mechanism with a small number of cuts, even if the 
valuation function of each player is piecewise uniform. 

1 Introduction 

The problem of dividing a cake among players in a fair manner has attracted the attention 
fmath ・・of mathematicians, economists, political scientists and computer scientists [6, 7, 14, 16, 17, 

18, 19, 27, 28, 29] since it was first considered by Banach and Knaster [14] and Steinhaus 

[32, 33]. The cake-cutting problem is often used as a metaphor for prominent real-world 

problems that involve the division of a heterogeneous divisible good [12]. Some of examples 

include allocating staff to time-intensive tasks such as scheduling police patrol operations 

and allocating of cleaning tasks to maintenance crews [17, 37]. Territory-splitting applica-

tions are also discussed by Thomson and Sherstyuk based on fair cake-cutting approaches 

[31, 37]. 

Slightly more formally, the cake-cutting problem is stated as follows [16]: Given a 

divisible heterogeneous cake C represented by an interval [O, 1) and n strategic players 

N = {1, 2,..., n }, where each player i has a valuation function Vi over the cake C, divide 
the cake C and find an allocation of the cake C to the players that satisfies one or several 

fairness criteria. In the cake cutting literature, the most important criteria are envy-
freeness and proportionality [6]. In an envy-free allocation, each player considers her/his 

allocation at least as good as any other player's allocation. In a proportional allocation, 

each player gets at least ¾ of the value she/he assigns to the cake C. An envy-free 
allocation is a proportional allocation when every portion of the cake that is desired at 

least one player is allocated to some player. 

*The author would like to thank Professor Shigeo Tsujii of Research and Development Initiative, Chuo 
University. This work was supported by the Research Institute for Mathematical Sciences, an International 
Joint Usage/Research Center located in Kyoto University. E-mail: asano@ise.chuo-u.ac.jp 
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A piece A of cake C is a finite union of disjoint subintervals X of C. A piece A can 

also be viewed as a set of disjoint subintervals X of C. For a general valuation function 
Vi of player i which is integrable or piecewise continuous, the value ¼(A) of a piece A of 
cake C for player i can be written by fxEA防(x)dx.Thus, the value ¼(A) of the piece A 
of disjoint subintervals X of C for player i is ¼(A) = LXEA ¼(X). 
Since general valuation functions may not have a finite discrete representation as an 

input to the cake-cutting problem, most algorithms and computational complexity anal-

yses are based on oracle computation models. Among them a most popular computation 

model for general integrable valuation functions is the Robertson-Webb model based on 

two types of queries: evaluation and cut [29]. 

In the Roberson-Webb model, Even and Paz proposed a proportional cake cutting 

algorithm with O(nlogn) queries that outputs a contiguous interval (a piece with a single 

interval) allocation to each player [20] and Edmonds and Pruhs proved that any propor-

tional cake cutting algorithm, even if it is allowed to output an allocation consisting of 

several disjoint intervals to each player, requires O(nlogn) queries [18]. 

For envy-freeness, Stromquist showed that there is no finite envy-free cake cutting algo-

rithm that outputs a contiguous allocation to each player for any n：：：：： 3 [28, 35],叫山⑳帥

an envy-free allocation with a contiguous interval allocation to each player is guaranteed 

to exist [34, 36]. Note that any cake cutting algorithm that outputs a contiguous allo-

cation to each player uses n -1 cuts on the cake C. If a contiguous allocation to each 
player is not required, Aziz and Mackenzie showed that there is an envy-free cake cutting 

algorithm with O(nn・・) queries [7]. Procaccia showed that any envy-free cake cutting 

algorithm requires n伺） queriesin the Roberson-Webb model [26]. Furthermore, Deng, 
Qi and Saberi showed that finding an envy-free allocation using n -1 cuts on cake C is 
PPAD-complete when valuation functions are given explicitly by polynomial-time algo-

rithms [17], although their result requires very general (e.g., non-additive, non monotone) 

valuation functions [22]. 

In recent papers, some restricted classes of valuation functions have been studied [6, 

9, 12, 15, 16, 25]. Piecewise uniform and piecewise constant valuation functions are two 

special classes of valuation functions [2, 6, 16, 30]. For a nonnegative valuation function 

v on cake C, let D(v) = {x E C I v(x) > O}. Thus, we can consider that D(v) consists 
of several disjoint maximal contiguous intervals. Then v is called piecewise uniform if 

v(x) = v(y) holds for all x, y E D(v). Similarly, vis called piecewise constant if, for each 
contiguous interval Jin D(v), v(x') = v(x") holds for all x',x" E J. Note that v(x) =/ v(y) 
may hold for x E J and y E J when I, J are two distinct maximal contiguous intervals 
in D(v) of piecewise constant valuation v. Thus, a piecewise uniform valuation is always 

a piecewise constant valuation. One of the most important properties of these valuation 

functions is that they can be described concisely. Kurokawa, Lai, and Procaccia proved 

that finding an envy-free allocation in the Robertson-Webb model when the valuation 

functions are piecewise uniform is as hard as solving the problem without any restriction 

on the valuation functions [24]. 

The cake-cutting problem has been studied not only from the viewpoint of computa-

tional complexity but also from the game theoretical point of view [2, 6, 9, 16, 25, 30]. 

Chen, Lai, Parkes, and Procaccia considered a strong notion of truthfulness (denoted by 

strategy-proofness), in which the players'dominant strategies are to reveal their true val-

uations over the cake [16]. They presented an envy-free and truthful mechanism for the 

cake-cutting problem based on maximum flow and minimum cut techniques [39] when 
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the valuation functions are piecewise uniform. Aziz and Ye considered the problem when 

valuation functions are piecewise constant and piecewise uniform [6]. Based on para-

metric network flows [21], random assignments and probabilistic serial algorithms [5, 11], 

they designed three algorithms called CCEA (Controlled Cake Eating Algorithm), MEA 

(Market Equilibrium Algorithm) and CSD (Constrained Serial Dictatorship Algorithm) 

with nice properties for piecewise constant valuations, which partially solve an open prob-

lem for piecewise constant valuations posed by Chen et al. in [16]. They showed that 

CCEA runs in 0（炉M打og（麗））， where(n is the number of players and) M is the num-
ber of subintervals defined by the union of discontinuity points of the players'piecewise 

constant valuations (M：：：：：心iEN叫 wheremi is the number of maximal contiguous 
intervals in D(vi) = {x E C I防(x)> O} of pi of piecewise constant valuation Vi)- They 
also showed that, when CCEA and MEA are restricted for piecewise uniform valuations, 

CCEA and MEA become essentially the same as the mechanism in [16] (as mentioned 

above, a piecewise uniform valuation is always a piecewise constant valuation). Note that, 

however, CCEA, MEA and the mechanism in [16] for dividing the cake use D(nM) cuts 

[2, 30], where M ：：：：：心iEN匹 andmi is the number of maximal contiguous intervals in 
D(vi) = {x EC  I vi(x) > O} of piecewise uniform valuation Vi as mentioned above. 
Alijani, Farhadi, Ghodsi, Seddighin, and Tajik [2, 30] considered that the number of 

cuts is important and considered the following cake-cutting problem by requiring D（Vi)= 
{x E C I Vi(x) > O} of piecewise uniform valuation Vi of each player i to be a single 
contiguous interval Ci in cake C: Given a divisible heterogeneous cake C, n strategic 

players N = {1, 2,..., n} with valuation interval CiこCof each player i E N, find a 
mechanism for dividing C into pieces and allocating pieces of C to n players N to meet 
the following conditions: (i) the mechanism is envy-free; (ii) the mechanism is truthful; 

and (iii) the number of cuts made on cake C is small. And they gave an envy-free and 

truthful mechanism with at most 2n-2 cuts [2, 30]. Asano and Umeda [3, 4] also gave an 
alternative envy-free and truthful mechanism with at most 2n -2 cuts, by pointing out 

that their original mechanism in [2, 30] is not actually envy free. 

In this paper, based on parametric flows, we give efficient envy-free and truthful mech-

anisms with a small number of cuts, which lead to a much simpler mechanism than those 

proposed by Alijani, et al. [2, 30] and Asano and Umeda [3, 4]. Thus, we can obtain 
a much simpler envy-free and truthful mechanism with at most 2n -2 cuts which runs 

in 0（研logn) time for the above cake-cutting problem. Furthermore, we show that this 
approach can be applied to the envy-free and truthful mechanism proposed by Chen, et al. 

for the more general cake-cutting problem where the valuation function of each player is 

piecewise uniform [16]. Thus, this approach can make their envy-free and truthful mecha— 

nism use 2M -2 cuts, where M ：：：：：心iEN匹 andmi is the number of maximal contiguous 
intervals in D(vi) = {x E C I vi(x) > O} of piecewise uniform valuation Vi as mentioned 
above. 

2 Preliminaries 

We are given a divisible heterogeneous cake C = [O, 1) = {x I O :S x < 1} 1, n players 
N = {1, 2,..., n} with valuation interval Ci = [a占） ＝ ｛x I O :S °'i :S x </3i :S 1}~c 

1 We assume, C = [D, 1) = {x I O :'.,'. x < 1}, and, if a subinterval X =［がぷ')= ｛x が:'.,'.X < x"} 
of C = [D, 1) is cut at y EX withぷ<y< x" then X is divided into two subintervals X'=［ぷ，y)and 
X" = [y,x"). 
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of each player i E N. We denote by邸 the(multi-) set of valuation intervals of all the 

players N, i.e.,似＝ （C1, C2,..., Cn)- We also write eN = (Ci : i E N). Valuation 
intervals eN is called solid, if, for every x E C, there is a player i E N whose valuation 
interval Ci E岱 containsx. As in [2, 6, 4, 30], we will assume that岱 issolid, i.e., 

Uc;EeN Ci = C, throughout this paper. 
A union X of mutual disjoint sets Xi, X2,...ぷ isdenoted by X = X1 + X2 + 

k is a union of mutually disjoint subintervals ・・・＋ふ ＝ 区J=1Xg. A piece Ai of cake C i 
Ai1, Ai2,..., Aiki of C. Thus, Ai = Ai1 + Aゅ＋・..+Aiki＝こ似Aie.A partition AN = 
(A1, A2,..., An) of cake C into n disjoint pieces A1, A2,..., An is called an allocation of 

ki C to n players N if each piece A; =区J:1Ae is allocated to player i. We also write 
AN = (Ai : i E N). Thus, in allocation AN = (Ai : i E N) of C to n players N, 

区iENAi = C holds and Ai =区似Aieis called an allocated piece of C to player i. 
For an interval X = ［x'，x”} °f C, the length of X, denoted by len(X)，is defined by 
x" -x'. For a piece A = LJ=1ふ ofcake C, the length of A, denoted by len(A), is 

defined by the total sum of Zen（ふ）， i.e.,len(A) = L;=1 len（ふ）． Foreach i E N and 
valuation interval Ci of player i, the value of piece A = L1=lふ forplayer i, denoted 

k 
by ¼(A), is the total sum of len(Xg n Ci), i.e., ¼(A) =区J=1len(X£ n Ci)- For an 
allocation AN= (A; : i EN) of cake C ton players N, if ¼(A;) 2 ¼(Aj) for all j EN, 
then the allocated piece Ai to player i is called envy―free for player i. If, for every player 
i E N, the allocated piece Ai to player i is envy-free for player i, then the allocation 

AN= (A;: i EN) ton players N is called envy―free. 

Let M be a mechanism (i.e., a polynomial-time algorithm in this paper) for the cake-

cutting problem. Let似＝ （Ci: i EN) be an arbitrary input to Mand AN= (Ai: i EN) 
be an allocation of cake C ton players N obtained by M. If AN= (Ai: i EN) for every 
input応＝（Ci: i E N) to Mis always envy-free then Mis called envy-free. 
Now, assume that only player i gives a false valuation interval Cf and let e~(i) = (C.i : 
j E N) (all the other players j =J i give true valuation intervals Cj and thus c; = Cj for 
each j =J i) be an input to M and let an allocation of cake C to n players N obtained by 
M be A~(i) = (A.1: j EN). The values of A;= L似Auand A: ＝こ応Aしforplayer i 
are 

V砂）＝区似 len(Aien Ci) and ¼(Aり＝区似 len(A~e n Ci) 
K' 

(note that Vi(Aりヂこ凸 len(A~c n Cり）． IfVi(Ai)こい(Aり， thenthere is no merit for 
player i to give false CI and player i will report true valuation interval Ci to M. For each 

player i E N, if this holds for every input岱＝ （Ci : i E N) to M, then M is called 

truthful (allocation AN = (Ai : i E N) obtained by Mis also called truthful). 

For valuation intervals eN = (Ci : i E N) and an interval X = [x', x") of cake C, let 
N(X) be the set of players i in N with valuation interval Ci contained in X and let eN(X) 

be the (multi-) set of valuation intervals in邸 whichare contained in X. Thus, 

N(X) = {i EN  I Ci<;;;; X, Ci E邸｝ 8JldeN(X) = (Ci E eN: i E N(X)). 

Let nx = IN(X)I-The density of interval X = [x',x") of C, denoted by p(X), is defined 
by 

p(X)=~= 
len(X) x" -x' 

IN(X)I nx ・ 
(1) 

The density p(X) is the average length of pieces of the players in N(X) when the part X 

of cake C is divided among the players in N(X). Let X be the set of all nonempty intervals 
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in C. Let Pmin be the minimum density among the densities of all nonempty intervals in 

C, i.e., Pmin = minxE:X: p(X). Let Xmin ={XE XI p(X) = Pmin}-Thus, Xmin is the set of 
all intervals of minimum density in C. An interval X E Xmin is called a maximal interval 

of minimum density if no other interval of Xmin contains X properly. A minimal interval 

of minimum density is similarly defined. 

3 Core Mechanism狐

In this section, we give the core mechanism M1 which can be applied to the envy-free and 
truthful mechanism proposed by Chen, et al. [16] when the valuation function of each 

player is piecewise uniform. We are given a cake C = [0,1), n players N = {1,2,...,n}, 

and solid valuation intervals邸＝ （Ci : i E N) with valuation interval Ci = [aゎ/3i)こC
of each player i E N. We are also given (si : i E N) such that there is an allocation 

A~ = (A'. : i E N) to players N with A; ~ Ci and si = len(A:) > 0 for each i E N and 
区iENA;= C (thus区 Bi = 1). Note that there is no need to have such an allocation iEN °i 
A~ = (A; : i E N) in hand. 
Then the core mechanism M1 can be written as follows. 

ALGORITHM 1: Core Mechanism M1 

Input: A cake C = [O, 1), n players N = {1, 2,..., n} and solid valuation intervals 
岱＝（Ci: i EN) with valuation interval Ci = [ai,店） ofeach player i E N 
(thus UciEeN Ci= C) and (si : i EN) such that there is an allocation 

A¼= (A~: i EN) to players N with A~ こ Ci and len(Aり＝ Sifor each i E N 
and区iEN刈＝ C(thus区iEN名＝ 1).

Output: Allocation AN = (Ai : i E N) with A; <:::; Ci and len(Ai) = Bi for each 

i E N and 区•iEN1i ~ C. 
sort岱＝ （Ci : i E N) in a lexicographic order with respect to（凡，O:i)and assume 
C1 -<:: C2 -<:: ・ ・ ・ -<:: Cn in this lexicographic order; 

set A。=0;
for i = 1 to n do 

set Ai = [ai, bi)＼匹心Ai'withlength Si such that [ai, b,)<:::; Ci and ai is the 
leftmost endpoint in Ci ¥ I: i-1 A・，．i’=0 t, 

Figure 1 shows an example of solid valuation intervals eN = (Ci : i EN) and (si: i E 

N) with区iENSi= 1 and an allocation AN= (A;: i EN) obtained by J¥11. 

We have the following theorem. 

Theorem 3.1 J¥11 correctly finds an allocation AN = (Ai : i E N) with A;こCiand 
len(A;) = Si for each i E N and LiENAi = C in O(nlogn) time. Furthermore, the 
number of cuts made by狐 oncake C is at most 2n -2. 

Proof: The number of cuts made on cake C is clearly at most 2n -2, since J¥11 uses at 

most two cuts at ai and bi to obtain Ai = [a凸）＼区戸。Ai,and no cut is required at 0, 1 
of cake C = [O, 1). Similalrly, it can be easily shown that狐 runsin O(nlogn) time, since 
lexicographical sorting of邸＝ （Ci : i E N) requires O(n log n) time and ai, bi for each 
i EN  can be found in O(logn) time based on appropriate data structures, for example, 

union-find-split data structures (Figure l(c)). 
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Figure 1: (a) Example of eN = (Ci : i E N) and (si : i E N) with区iENBi = 1. (b) 
Allocation AN = (Ai : i E N) obtained by M1. (c) Maintaining of intervals by union-
find-split data structures (the set of thick dotted intervals is allocated to a player in the 

current iteration). 
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We next give a proof on the proposition that M1 correctly finds an allocation AN = 

凶： iEN) with Ai~ Ci,ふ＝ len(Ai)and LiEN A = C. 
s uppose contrarily that we could not set Ai = i-1 

[ai,bi) \区t’=0Aが~ Ci with length 
Bi for some i E N. Let j be the minimum among such is and let J = {l, 2,..., j}. Of 
course, j > 1, since we assumed that there is an allocation A~ = (A: : i E N) to players 
N with A; ~ Ci and len(Aり＝ Bifor each i E N and区iEN刈＝ C(thus C1 = [a1，針） is
of length at least s1 and A1 = [a1ふ） [)~ C1). N = la1, a1 + s1 . Now we consider valuation 

intervals灼＝ （Ci : i E J). Note that each Ci = [ai,(3i) E eJ satisfies(3i ::::;(3j, since 
岱＝（Ci: i E N) was sorted in the lexicographic order with respect to ((3ぃ叫． Thus,we 
could set Ai = [ai, bi) ¥江心At'こCi=[a虚） withlength Bi for each i E J ¥ {j} but 
could not set Aj = [ a凸） ＼江―贔 Ai'~ Ci= [a凸） withlength Bj-This implies that 

Cハ区J-1Ai'=O.., i'is of length s: < s 
and Cj ¥立翡Ai,= [aj, t方）＼こに心Ai,,since(3i ::::;(3j and if凡＝均 then°'i :S:: °'i for 
each i E J. Let 

J-1 j-1 

A;'=Ai (i E J ¥ {j}), A'J =Ci¥〉尼＝［aj,約） ＼LAが・
i=O i'=O 

Thus,区たJ尼 ofallocation (Ar : i E J) consists of several maximal contiguous intervals. 
Let I = [ a, b) be the rightmost maximal contiguous interval among the maximal contiguous 

intervals in LだJ尼 (Figure2). Thus, b = /3j-Define K <:;;; J by 

K = {J} u { i E J I A;'n I# 0}. 

Now we consider valuation intervals似＝ （Ci : i EK). Then each Ci E似 iscontained 
in I, which can be obtained as follows. 

Of course, Cj = [aj,ら） iscontained in J. Actually, since Cj ¥ LにtA;'=[aj,的） ＼ 
区j-1{,~1 Ai, is of length s1 < Sj and A'j = Cj ¥区にtA;'= [a戸方）＼立―=0心 wehave: 
if A" = 0 then Cj <:;;; LにtA;'and a single contiguous interval Cj is contained in the 
rightmost maximal contiguous interval I in Lし。尼＝こにtA;'(i.e., Cj <:;;; I); and 
otherwise (i.e.，if A', ・ バ）， C]こA”u四―1A”t=0 t ＝区し。A;'anda single contiguous interval 
Ci is contained in the rightmost maximal contiguous interval I in こし。A;'.
Now suppose that there were i E K¥ {j} such that Ci E eK is not contained in J. Thus, 

I = [a, b) is a proper subinterval of [O, b) = [O，均） （i.e., a> 0) and Ci = [ai, /3』EeK¥{CJ} 
contains a point x in [O, b) ¥ I = [O, a). Let k E K ¥ {j} be the minimum among such is 
and let Xk be a point of ck = [ak, /3砂EeK contained in [O, a) = [O, b) ¥ I. Note that 
CknI 2 A%nI # 0 since k EK¥ {j}<:;;; J¥ {j}. Thus, f3k :S/3'_j and akさ謀<a さ a~</3k
for some a~ E A% n J cJ 0. Furthermore, since we chose I = [a, b) cJ [O, b) as the rightmost 
maximal contiguous interval among the maximal contiguous intervals in LたJA:', we have 
こたJA;'#[O,b) = [O，功）． LetI'= [a', a) be the rightmost maximal most maximal contiguous interval 

in [O, b) ¥区疋J咄 (Figure2). 
Since ck= [/3）． 知 k)is a contiguous interval and satisfies ak :S吹 <a:Sa~</3k, we 
can assume Xk E I'nck # 0. Thus, Xk If-A% by I'nA%こI'nI:疋JA;'= 0. Then, however, 
M1 would have included Xk into A% in place of some a% E A% n J # 0, because狐 sets
A% = Ak = [ak, bk)＼こにJA;'<:;;; Ck with length Bk such that ak is the leftmost endpoint 
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゜
I'=[a',a) 
トー1-7―→ | l 

a'ak xk a a{EA~/3k b=/3J 

Cj=[aj,/3]) 

I=[a,b) ー

ck =[ak,Pk) 

Figure 2: Illustration of I= [a, b) and I'= [a', a). 

in Ck\~にfiAr This is a contradiction. Thus, we have each Ci E eK is contained in I 
and uiEKciこI.
By the argument above, we have 

LJ Ci=I＝ど刈',
iEK iEK 

since A~ n I = (/J for h E J ¥ K and 

I ＝と刈'nI ＝と刈'nI~L 刈＇ ~Lei
zEJ zEK 妖：K iEK 

by the definitions of I and K and A7こCifor each i E K. Thus, 

L len(A7) = sj + L Bi = len(I) = b -a < Bj十 L s, 
iEK iEK¥ {j} iEK¥ {j} 

since sj < Bj, However, this is a contradiction, since we assumed that there is an allocation 
A~ = (A~ : i E N) to players N with A~ <;;; Ci and si = len(A;) for each i E N and 区iEN刈＝/~:ih:~ players N with A~ <;;; Ci and si = len(A;) 

Sj + L Si＝Llen(Aり:::::;len(LJ Ci) = len(I) = b -a. 
iEK¥{j} iEK iEK 

Thus, M1 correctly finds an allocation AN = (Ai : i E N) with Ai s;; Ci, Si = len(A』
and ~iENA = C．ロ

By Theorem 3.1, in order to obtain an envy-free allocation AN = (Ai : i E N) with 

Ai s;; Ci and len(Ai) = Si for each i E N and ~iEN Ai = C, we only need (si : i E N) 
such that there is an envy-free allocation A¼ = (A~ : i E N) to players N with A~ こ Ci

and len(Aり＝ Sifor each i E N and 区iENA~ = C. 

4 Flow Network on Valuation Intervals 

In this section, we consider a flow network arising from the cake-cutting problem with cake 
C = [O, 1), n players N = {l, 2,..., n} and solid valuation intervals似＝ （C; : i EN) 
with valuation interval C; = [a;,/3i) of each player i E N and u c CiEeN'-'i , = C. Similar 

flow networks are given by Athanassoglou and Sethuraman [5] and Chen, et al. [16]. 
Actullay, the flow network in this section is the same as their flow networks when they 

are applied to the above cake-cutting problem. By this flow network, we will be able to 

obtain (s; : i E N) such that there is an envy-free allocation A¼ = (A~ : i E N) to players 
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C1 =[0.15,0.35) 
ら＝［0.25,0.35)
C3 = [0.25, 0.45) 
c. =[0.1,0.5) 
C5 =[0.65,0.75) 
c6 =[0,0.8) 
C7 = [0.55,0.8) 
C8 =[0.2,1) 

11 =[0,0.1) 

C=[O,l) 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 I 
マー―------,--,--,-----,-----,--,-,------------------------
; I I I ; i ; I 

己十―」 !!i i i : ； 
: ！ ! ；, 
| ！ I ; 1, ； 
i i ! i : 1 
: ： : ; i‘  

i : ； 

! ！ ！ ! ! ! ！ l i 

| | |ll三
I I I 

l ! ！ 1 : : 
1 : I I I l 

; i ; i i i i i 
i i i i i i i i 

11 °J21314 15 16 17 18 19 110凡 112

12 =[0.1,0.15) 1, =[0.15,0.2) 14 =[0.2,0.25) 15 =[0.25,0.35) 

16 =[0.35,0.45) 17 =[0.45,0.5) 18 =[0.5,0.55) 19 =[0.55,0.65) 110 =[0.65,0.75) 

111 =[0.75,0.8) 伍＝［0.8,1) 

cl 
C2 G
 

C4 CS 
c6 C7 CS 

11 
12 13 

14 I5 16 17 I8 19 110 111 112 

Figure 3: Example of solid valuation intervals岱＝ （Ci : i E N) (N = {1, 2,..., 8}），恥＝
(I£ : 1さ/i,:::;m) (R = 1, 2,..., 12) and the convex bipartite graph GN =（以恥恥）．

N with A~ s;; Ci and len(Aり＝ Sifor each i E N and LiEN刈＝ C,and thus we can 
apply Theorem 3.1. 

Let XN be the set of all endpoints a虞 ofCi= [a心） of応＝ （Ci : i E N) and we 
邸 sumethe elements in XN are sorted 

XQ < Xlく・・・ <Xm (2) 

where xo = 0, Xm  = 1 and m :S 2n -1. For each £ with 1 :S £ :S m, let Ic = [xc-1, xc) 

and let JN = (Ic: 1 :S £:Sm). Let GN = (eN,JN,EN) be a bipartite graph with vertex 

set応＝邸＋恥 andedge set恥 where(Ci, Ic) E恥 ifand only if IcこCi(Figure 
3). GN =（以恥脳） iscalled a convex bipartite graph since it has a property that if 
(Cぃle),(Ci,IP) E恥 with£ < £'then (Ci, Jc,,) E恥 foreach £" with £ < £" < £'. 
Let GN(s, t) be the directed graph obtained from GN =（%，釘v,EN) by adding new 
vertices s, t and directed edges (s, Ci) (i E N) and (Ic, t) (£ = 1,..., m). We consider each 

edge (Ci,Ic) E恥 isdirected from Ci to h Then the flow network Hい）（s,t) is obtained 
from G N (s, t) by defining the capacity capa(e) of each directed edge e of G N (s, t) as follows. 

Each directed edge (sぶ） （i E N) has capacity入withparameter O :S入さ 1,each directed 
edge (le, t) (£ = 1,..., m) has capacity len(Ic), and each directed edge (C凸） E応 has
capacity oo (Figure 4). We denote by VN(s, t) and恥 (s,t) the set of all vertices and the 
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s
 

Figure 4: Example of network H N（入）（s,t) corresponding to the valuation intervals邸＝

(Ci:iEN) (N={l,2,...,8}) (and恥＝ （le: 1::; £::; m) (£ = 1, 2,..., 12)) in Figure 3. 

set of all directed edges in H N（入）（s,t), respectively. Thus, 

応 (s,t) =応＋｛s,t} =岱＋恥＋｛s,t}, 

EN(s, t) = EN+ {(s, C』|CiE邸｝ ＋｛（Ip, t) I Ip E恥｝．
(3) 

A function f: EN(s, t)→R+ is called an s-t flow in HN（入）（s,t) with parameter O :S入:S1, 
(later f is also called a parametric s-t flow and denoted by f入sinceit is associated with 

parameter入） if(i) and (ii) hold: 

(i) 0 :S f(s, Ci):S capa(s, Ci)＝入 foreach edge (sぶ） andO :S f (le, t)'.S capa(Ie, t) = 
len(Ie) for each edge (le, t), and 

(ii) f(s, C』＝ ~e=(Ci,Ie)E炉 (Ci) f(e) for each Ci E邸 andJ(Ie, t) = ~e=(C占）E6一 (Ie)f(e)
for each le E恥 whereJ+(c』isthe set of directed edges in Hい）（s,t) leaving from 
Ci andぷ(le)is the set of directed edges in Hい）（s,t) entering into h 

The value of an s-t flow f in H N（入）（s,t), denoted by val(!), is defined by 

val(!)＝ど f(sぶ）．
CiECN 

(4) 

Clearly, val(!)＝区IeEJNf(h t)) by the above condition (ii). An s-t flow fin HN（入）（s,t) 

is called maximum if val(!)2:: val(!') for all s-t flows f'in H N（入）（s,t). A partition (Y, Y) 
of vertex set応（s,t) = eN +恥＋ ｛s, t} is called an s-t cut in HN（入）（s,t) if s E Y and 
t E Y. We also call an edge set 

E(Y, Y) = {e = (y, y') E恥 (s,t) I y E Y, y'E Y} 

the s-t cut in HN（入）（s,t) defined by s-t cut (Y, Y). The capacity of an s-t cut (Y, Y) in 

HN（入）（s,t), denoted by capa(Y, Y), is defined by the sum of the capacities capa(e) of all 
edges e = (y, y') E EN(s, t) with y E Y and y'E Y. That is, 

capa(Y, Y) = こe=(y,y')EEN(s,t): yEY, y'EY 

capa(e) (5) 
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s, t) is called minimum (i.e., capa(Y, Y)＝区eEE(Y,Y)capa(e)). An s-t cut (Y, Y) in HN（入）（・
if capa(Y, Y) :s; capa(Y'，戸） forall s-t cuts (Y'，Y') in Hい）（s,t). For any s-t flow f 
and any s-t cut (Y, Y) in H N（入）（s,t), val(!):S: capa(Y, Y) holds. Furthermore, val(!) = 

capa(Y, Y) holds if and only if f is a minimum s-t flow and (Y, Y) is a minimum s-t cut 
in HN（入）（s,t) (the well-known max-flow min-cut theorem [39]). 

For an s-t flow f in H N（入）（s,t), a residual network with respect to f, denoted by 

HN（入）（s,t)(f), is defined as follows. The vertex set VN(s, t)(f) of HN（入）（s,t)(f) is the 

vertex set VN(s, t) of HN（入）（s,t). The edge set EN(s, t)(f) of HN（入）（s,t)(f) is defined as 
follows. For an edge e = (u, v) of H N（入）（s,t),let erev = (v,u) (i.e., erev = (v,u) is the 

reverse edge of e = (u, v) E EN(s, t)). Let 

E炉(s,t) = {erev I e E EN(s, t)}. 

The residual capacity capa1(a) of an edge a= (u,v) E EN(s, t) + E炉(s,t) is defined as 
follows: 

capaJ(a) ＝ { capa(a) -f(a) （a E EN(s,t)） 
f(e) (a= erev EE炉(s,t), e E EN(s, t)). 

(6) 

Then the edge set EN(s, t)(f) of HN（入）（s,t)(f) is defined by 

EN(s, t)(f) = {a E EN(s, t) + E料v(s,t) I capaf(a) > 0}. (7) 

Thus, the capacity capaf(a) of each edge a in the residual network Hい）（s,t)(f) is posi-

tive. It is well known that an s-t flow f in H N（入）（s,t) is maximum if and only if there is 

no s-t path in the residual network Hい）（s,t) (f) [39]. 

4.1 Finding a maximum flow f入inHN（入）（s,t) 

A maximum s-t flow f入inHN（入）（s,t) can be found by Procedure FindMaxFlow(H N（入）（s,t)) 
below, which is almost the same as Core Mechanism M1 (ALGORITHM 1). 

Procedure FindM邸 Flow(HN（入）（s,t)) 

sort邸＝（Ci: i EN) in a lexicographic order with respect to (f3i, ai) and assume 
C1 ::::; C2 ::::; ・ ・ ・ ::::; Cn in this lexicographic order; 

set A。=0;
for i = 1 to n do 

set Ai= [a凸）＼こ以。Ai,of length min｛入，len(Ci¥区戸0.心）｝ suchthat 
[aふ）こ Ciand a~ is the leftmost endpoint in Ci ¥江喜A四

f (s, Ci) = len(A』;

let A=Lr=lふ；
for each le E'.JN do J(Ie, t) = len(A n It); 
// for each edge (Ci, le) E EN in HN（入）（s,t) do f (Ci, It) = len(Ai n It) implicitly; 

Figure 5 shows a maximum s-t flow f＝ム foundby FindMaxFlow(HN（入）（s,t))for 
the example in Figure 3. Figure 6 shows the the residual network HN（入）（s,t)(f刈with
respect to f入inFigure 5. Figure 7 shows a minimum s-t cut (Y;入，只） inHN（入）（s,t), where 

冗isthe set of vertices v such that there is a v-t path in HN（入）（s,t)(f刈inFigure 6. 
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Figure 5: Maximum s-t flow f = f入with入＝ 0.125found in FindMaxFlow(Hい）（s,t)) 
for valuation intervals CN =(Ci: i EN) (and恥＝ （Ic : 1 :::; R :::; m)) in Figure 3. 

‘‘― ヽs,  ,ヽ,'Y1 
ヽ

｀
 
｀
 

ヽ

t 

H N(J)(s,t)(h) 

Figure 6: The residual network HN（入）（s,t)(f刈withrespect to f入inFigure 5 and只isthe 
set of vertices v (shown by white circle) such that there is a v-t path in HN（入）（s,t)(f砂
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HN(Ji(s,t) 

Figure 7: A minimum s-t cut (Y,ふ冗） inHN（入）（s,t), where冗 isthe set of vertices v 
(shown by white circle) such that there is a v-t path in HN（入）（s,t)（ム） inFigure 6. 

Thus, the capacity of the s-t cut (Y;ふ冗） inHN（入）（s,t) in Figure 7 is 

capa(Y;入，只） ＝入1只 neNI + L capa(v, t) = 3入＋0.5= 0.875, 
v€Y入nJN

since只＝ ｛C6,C7,C8,I1,I8,Ig,In,I12,t} and入＝ 0.125.

The following lemma holds. 

Lemma 4.1 For cake C = [O, 1), n players N = {1, 2,..., n} and solid valuation intervals 
邸＝（Ci: i E N) with valuation interval Ci = [ai,/3』ofeach player i E N and 
Uc怠 N Ci= C, Procedure FindMaxFlow(HN（入）（s,t)) correctly finds a maximum s-t flow 
f=f入inHN（入）（s,t) in O(nlogn) time and uses at most 2n -2 cuts, where f入(s,C』=

len(Ai) = min｛入，len(C八江心Aけ｝ withAiこCifor each Ci E eN, f入(le,t) = len(Anie) 
for each le E恥 withA=区f=1Ai and f入(Ci,le) = len(Ai n le) implicitly for each edge 
饂 le)E恥 inHN（入）（s,t). 

Before giving a proof, we show one more example which will be of help to understand 

the proof more easily. 

Figure 8 shows an example of solid valuation intervals岱＝ （Ci: i EN)，恥＝ （I£ : 
1さ£Sm)and flow network HN（入）（s,t). Figure 9 shows an allocation A=  (Ai : i E N) 
found by FindMaxFlow(HN（入）（s,t)) with入＝ 0.1for valuation intervals邸＝ （Ci: i EN) 
(and'.TN= (le : 1 S £Sm)) in Figure 8. Figure 10 shows the maximum s-t flow f入with

入＝ 0.1found by FindMaxFlow(HN（入）（s,t)) corresponding to allocation A=  (Ai: i EN) 
in Figure 9. Figure 11 shows the residual network HN（入）（s,t)(f刈withrespect to f入in
Figure 9. Figure 12 shows the minimum s-t cut (Y;入ぷ） inHN（入）（s,t), where Y;入isthe 
set of vertices v (shown by white circle) such that there is a v-t path in HN（入）（s,t)(f入） in

Figure 11. 
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Figure 8: Example of solid valuation intervals岱＝ （Ci : i E N),'.J N = (le : 1 :S £ :S m) 
and flow network HN（入）（s,t). 
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Figure 9: Allocation A=  (Ai : i E N) found by FindMaxFlow(HN（入）（s,t)) with入＝ 0.1

for valuation intervals eN =(Ci: i EN) (and恥＝ （le : 1'.'::: £'.'::: m)) in Figure 8. 
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Figure 10: Maximum s-t flow f =ム with入＝ 0.1found by FindMaxFlow(HN（入）（s,t)) 
corresponding to allocation A= (Ai : i E N) in Figure 9. 

Figure 11: The resid叫 networkHN（入）（s,t)（ハ） withrespect to f入inFigure 10. 
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Figure 12: Minimum s-t cut (Y;ふ冗） inHN（入）（s,t), where冗isthe set of vertices v (shown 
by white circle) such that there is a v-t path in HN（入）（s,t)(f刈inFigure 11. 
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Now we are ready to give our proof. 

Proof of Lemma 4.1: It is clear that AiこCiand f入(s,Ci) = len(Ai) for each Ci E e凡
f入(le,t) = len(A n le) for each le E恥 withA=区f=1Ai, and f入(Ci,Ie)= len(Ai n le) 
implicitly for each edge (Ci,Ie) E恥 inHN（入）（s,t). Thus, f入isan s-t flow in H N（入）（s,t). 
We only give a proof that f入isam邸 imums-t flow in H N（入）（s,t), since the time 
complexity 0(n log n) and the number of cuts at most 2n -2 can be obtained by the same 

argument as in Proof of Theorem 3.1. Our proof here is almost the same as Proof of 

Theorem3.l. 

If入＝ min｛入，len(C八江二。ん）｝く len(C八こ以。Ai,)for each i EN= {1,2,....,n}, 
then we haveム(s,C』=len(A;)＝入＝ capa(s,Ci) for all i E N = {1, 2,...., n} and there 
is no s-t path in the residual network HN（入）（s,t)(f入）， whichimplies that f入isam訟 imum
s-t flow in H N（入）（s,t). 

Thus, we can assume, there is i E N = {1, 2,...., n} such that len(Ci ¥江心Aけ＝
min｛入，len(Ci¥匹ご。Ai,)}.Let {j1, h,...,jp} be the set of i E N = {1, 2,...., n} with 
len(Ci ¥ I:闊 Aり＝ min｛入，len(Ci＼江ご。Aけ｝． Thus,

t-1 z-1 

入＝ min｛入， len(Ci¥ L Ai')}< len(Ci ¥ L Ai,) for each i EN¥ {j1,J2,...,jp}- (8) 
i'=O が＝0

Without loss of generality, we can assume 

1 :S ]1 く]2< ・・・<J.pさn. (9) 

We will show that f入isa maximum s-t flow in H N（入）（s,t) by induction on p. 
We first consider when p = 1. Let j = Ji and let J = {1, 2,...,j}. Thus, Aj = 
Cハ区醤A,since len(C八区醤A)=min｛入，len(C八立闊Ai)}.We consider valuation 
intervals釘＝ （Ci : i E J). Note that each Ci = [ai,/3i) E切 satisfies/3i::;約， since
岱＝（Ci: i E N) was sorted in the lexicographic order with respect to (/3ゎ叫． Then
区疋Jふ ofallocation (Ai : i E J) consists of several maximal contiguous intervals. Let 
I = [a, b) be the rightmost maximal contiguous interval among the maximal contiguous 

intervals in区たJAi. Thus, b =/3J・ Define K ~ J by 

K = {j} u {i E JI Ai n I =J 0}. 

Now we consider valuation intervals eK = (Ci : i EK). Then each Ci E似 iscontained 
in I, which can be obtained as follows. 

Of course, Cj = [aj,約） iscontained in I. Actually, if Aj = Cj＼こにtAt = 0 
then Cj ~ Lに5Ai and a single contiguous interval Cj is contained in the rightmost 
imal conti maximal contig.uous interval I in Lし。Ai＝こに&Ai (i.e., CiこI).Otherwise (i.e., if 
AJ = CJ ＼江闊Ai=J 0), G_]こAJu四―1A＝四 Ai=O " •z - L..,i=O i and a single contiguous interval 

C1 is contained in the rightmost maximal contiguous interval I in 区し。Ai.
Now suppose that there were i E K¥ {j} such that Ci E似 isnot contained in I. Thus, 

I = [a, b) is a proper subinterval of [O, b) = [O，約） （i.e., a> 0) and Ci = [ai, /3i) E eK ¥ { Cj} 
contains a point x in [O, b) ¥ I = [O, a). Let k E K ¥ {j} be the minimum among such is 

and let Xk be a point of ck = [ak設） €似 contained in [O,a) = [O,b) ¥ I. Note that 

cknI 2 AknIヂ0since k E K ¥ {j}~ J¥ {j}. Thus,/3k ::;的 andak ::;吹く a::;a~ </3K 
for some a~ E Ak n I =J 0. Furthermore, since we chose I = [a, b) =J [O, b) as the rightmost 
maximal contiguous interval among the maximal contiguous intervals in区たJ心 wehave 
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区iEJAicJ [O,b) = [O，約）． LetI'= [a',a) be the right most maximal contiguous interval in 
⑪ ,k) is a contiguous interval and satisfies ak ::;吹 <a::; [O, b)＼こ疋JAi. Since ck = [ (3）. 

a~< 厖 we can assume Xk EI'n ck -10. Thus, Xk rf-Ak by I'n AkこI'nLiEJ Ai = 0. 
Then, however, Procedure FindMaxFlow(Hい）（s,t)) would have included Xk into Ak in 
place of some a% E Ak n Iヂ0,because Procedure FindMaxFlow(HN（入）（s,t)) sets Ak = 

[ak，似）＼こにlAi t;;; ck with length入＝ min｛入，len(Ck¥区にJAi)}< len(Ck ¥ LにJA』
such that ak is the leftmost endpoint in Ck ¥ L髯A;.This is a contradiction. Thus, we 
have each Ci E切<iscontained in I and uiEK CiこI.
By the argument above, we have 

LJ Ci=I＝どん， (10) 
iEK iEK 

since Ah n I = 0 for h E J ¥ K 皿 d

I＝区AtnI＝LAinIこLAi<:;;LCi
iEJ zEK iEK zEK 

by the definitions of I and K and AiこCifor each i EK. Thus, I can be written by 

わ

I = It1 + I£1+1 +．．．十Iゎ＝どIゎ (11) 
£=£1 

where l£1 = [X£1 -1心迅） withX£1-1 = min{ai I Ci= [ai,(3i) E eK} and l£2 = [xRrl, Xゎ）
with X£2 =(3J・ Thus, for each £ = £1ふ＋ 1,...,£2 (i.e., for each IRこI),we have 
L~=l ふ nIR = LiEK Ai n h since 

ふ nI = (!) for h E N ¥ K (12) 

(i.e., for h E J ¥ K by definition of J and K and for h E N ¥ J by the definition of Ah 
in Procedure FindMaxFlow(HN（入）（s,t))). Furthermore, there is no edge from Ci E似 to
I£ €恥 with le n I = 0 in H N（入）（s,t) by Eq.(10) (Figure 13). 
Since Ai ~ Ci and f入(sぶ） ＝len(A』foreach i E N, f入(Ip,t) = len(A n le) for each 
I£ €恥 with A=区f=1Ai, and f入(Ci,Ic)= len(Ai nic) implicitly for each edge (Ci, le) in 
恥 ofHN（入）（s,t) as mentioned above, we have f入(s,CJ)= len(AJ) = len(Cハ四. -l i=0ん）さ
入＝ capa(s,Cj) and f入(sぶ） ＝len(A』＝入＝ capa(s,Ci) < len(Ci ¥江嘉Ai,)for each 
i E N ¥ {j} by Eq.(8) and p = 1, 

f入(Ip,t) = len(A n le) = Zen（L Ai n le) = len(Ic) = capa(Ic, t), (13) 
iEK 

for each£=£心＋ 1,...，伍 (i.e.,for each lg c::: J) by uiEK Ci = I=I:iEKふ inEq.(10) 
andム(Ch,Ie) = 0 for each仇 withh E N ¥ K and for each Ie E恥 withIe c::: J by 
Ahn J = 0 for h EN¥ Kin Eq.(12). 
Let Y be the set of vertices v of H N（入）（s,t) such that there is a s-v path in the residual 
network HN（入）（s,t)(J入） withrespect to f>-. If f入(s,Cj) = len(Aj)＝入＝ capa(s,Cj) then 
Y = { s }. Otherwise (i.e., if f入(s,Cj) = len(Aj)＜入＝ capa(s,Cj)),then s,Cj E Y C::: 
似＋I+ { s}, since there is no edge from似 to恥＼IinHN（入）（s,t), there is no edge from 
I tot in HN（入）（s,t)(f刈byEq.(13), and f入(CゎIe)= 0 for each仇 withh E N ¥ K and 
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HN(2)(s,t) 

Figure 13: uiEK Ci = I and there is no edge from Ci E似 toI£ E恥 withle n J = 0 in 
HN（入）（s,t). There is no edge from Ci E幻＼似 toJg E'.TN with Jg s;; [b, 1) in HN（入）（s,t). 

for each le E'.JN with le~ las mentioned above (see Figure 13). Thus, tis not contained 
in Y and f入isa maximum s-t flow in H N（入）（s,t). 
Now we assume that f入isa maximum s-t flow in H N（入）（s,t) when there are at most p-1 
numbers i E N = {1, 2,...., n} such that Zen(C八立高A;,)=min｛入，len(C八江嘉A;,)}
and we consider when there are exactly p numbers i E N = {1, 2,...., n} such that 

len(C八区以。Ai,)=min｛入， len(C八こ：l＿」。Ai,)}.Thus, we can assume that {j1,)2,..., ]p} 
is the set of i EN= {1, 2,...., n} with l~n(Ci ¥江嘉Ai,)=min｛入， len(Ci＼区：［土Ai')}
and that Eq.(9) holds, i.e., 

1 < J.lくれ<..．＜J.p < n. 

Let j = j1 and let J = {1, 2,...,j}. Then the argument above holds in this case, that is, 

if we use the srune notation J, K, l as above, then Eq. (10) holds, i.e., 

LJ Ci=I＝LAi, 
iEK iEK 

and there is no edge from Ci E eK to Ie E恥 withIe n J = 0 in H N（入）（s,t). Furthemore, 
since似＝ （C。： iE N) was sorted in the lexicographic order with respect to (/3ぃai),
it is clear that there is no edge from Ci E切 toIp = [xt-1心） E恥 inHN（入）（s,t) 
such that Ic lies to the right of I (i.e., £ ;::,. £2 + 1) as in Figure 13. We then consider 
cake C'= C ¥ LiEJ Ai (thus C'= C ¥ LiEJ Ai is obtained from C by deleting all the 
maximal contiguous intervals in区 Ai)iEJ t ,) and valuations e N¥J = (Cf : i E N ¥ J) with 
Cf = Ci¥区iEJAi. We can vitually consider that all the deleted maximal contiguous 
intervals in区iEJAi) are contracted (i.e., the both endpoints of each deleted maximal 
contiguous interval in LiEJ Ai are considered the same) and that the cake C'is a single 

interval and each Cf E e~\J is also a single interval. 
Thus, the cake cutting problem with cake C', players N ¥ J and valuation intervals 

e' N¥J = (Cf : i E N ¥ J) is almost the same as the original cake-cutting problem. Only 
difference is that valuation intervals e' N¥J = (Cf : i E N ¥ J) may be not solid. In 

this case, we have only to modify C'and set C'= UiEN¥JCf. By this modification, we 
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have the cake cutting problem with cake C', players N ¥ J and solid valuation intervals 

e' N¥J =(CI: i EN¥ J). Note that, the lexicographic order of eN¥J = (Ci : i EN¥ J) is 
preserved in e N¥J = (CI : i E N ¥ J). Let H N¥J（入）（s,t) be the flow network obtained from 
valuation intervals e N¥J = (CI: i EN¥ J). Then, FindMaxFlow(HN¥J（入）（s,t)) runs in 

the same way as FindMaxFlow(HN（入）（s,t)) after i = j + 1 in the instruction "for i = 1 
to n do". Thus, by induction hypothesis, f入restrictedto H N¥J（入）（s,t) is a maximum 
s-t flow in H N¥J（入）（s,t). Since f入restrictedto HJ（入）（s,t) is also a maximum s-t flow in 
HJ（入）（s,t) which can be obtained by the same argument above in the case when p = 1 
(Figure 13), we have that there is no s-t path in the residual network HN（入）（s,t)（ム） and
that f入isa maximum s-t flow in H N（入）（s,t)．ロ

4.2 Parametric Flow in Hい）（s,t) 

Parametric flows and parametric searching have been studied by many researchers [1, 5, 
21, 38]. The density p(X) of interval X = [x',x") of cake C = [O, 1) is closely related to 

the parameter入inHい）（s,t). For a maximum s-t flow f入inHN（入）（s,t), we denote by 
只throughoutthis paper, the set of vertices v such that there is a v-t path in the residual 
network HN（入）（s,t)(J入） andlet 

凡＝応(s,t)＼冗． (14) 

Then (Y;入，只） isa minimum s-t cut in H N（入）（s,t) 2 (Figure 14) and 

y;こ兄 (thus，只こ冗） (15) 

holds for each minimum s-t cut (Y{, Y; 
-7 
入9 炒inHN（入）（s,t). That is, Y>. i 入isa maximum set（冗

-7 
is a minimum set) among the minimum s-t cuts (Y{, Y 入9 入） inHN（入）（s,t). Furthermore, for 
two distinct parameters入'and入，

if入＇＜入 thenY>.'<;;;凡 (thus，只こ冗） (16) 

holds [21]. 

Specifically, for入＝ Pmin(Pmin is the minimum density of valuation intervals eN) and 

the minimum s-t cut (Y;ふ冗） inHN（入）（s,t) defined by Eq.(14) above, Y;入isthe disjoint 

union of all the maximal intervals of minimum density Pmin and its capacity capa(Y;ふY¥)
is 

capa(Y;入，只） ＝入1冗ne州＋ L capa(lp,t). (17) 
ItEY入nJN

Of course, 

入I冗ne刈＝ L capa(sぶ）， (18) 

C玉冗neN

since capa(s, Ci)＝入 foreach Ci E邸． There are at most n distinct minimum s-t cuts 

(Y入，只） inHN（入）（）s, t) for parameters入withO-,::入く 1,since Y;_, c;;; Y;_ (i Y;_,こY;_(i.e., Y;_,コ凡）
holds for two distinct parameters入＇＜入 asdescribed in Eq.(16) above 3. 

2For two maximum s-t flows f入andg入inHい）（s,t)，些'P;:(f>-)be the set of vertices v such that there 
is a v-t path in the resid叫 networkHN（入）（s,t)(f入） and心(g入） b~heset of vertices v suc~且~atthere is a 
v-t path in the residual network HN（入）（s,t)(g入）． Then兄(!>-)= Y;心） holds.Thus, (Y;入，凡） isuniquely 
determined even if we choose an arbitrary maximum s-t flow f入inHN（入）（s,t). 
3 It is easy to show that if Y:,,, C Y;入thenY;入'neN c Y;入n邸 holds.
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Figure 14: Minimum s-t cut (Y;ふ只） inHN（入）（s,t) in Figure 4 with入＝ Pmin= 0.1, where 
魯＝ ％ nY入and'.J'＝恥 nY入・
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Figure 15: Minimum s-t cuts (Y;入，冗） inHN（入）（s,t) in Figure 4 for parameters入withO::::; 

入く 1form a lower envelope of the arrangement of lines generated by y = capa(Y;入，冗） ＝ =-
入mn知＋区hEY入n1Ncapa(h t) (K = 3 and入1= 0.1 <入2= 0.15 <ふ＝ 0.2).

Suppose that there are exactly K + 1 distinct minimum s-t cuts (Y;入,½) in HN（入）（s,t) 
for parameters入withO :<::'.入:<::'.1, and let >-1,極．．．，枯 bethe breakpoints of such K + 1 
disti (Y 

_L 
istinct minimum s-t cuts 入，Y入） inHN（入）（s,t). We assume 

入。＝ 0<入lく入2<...＜入K:S 1 =入K+l, (19) 

where we consider入。＝ 0and入K+l= 1 for convenience. That is, (Y;入k,Y)'入k)IS a llllilllllUlll 
s-t cuts in HN（入）（s,t) if and only if入k-1.::'.入三入kfor each k = 1, 2,..., K + 1. Thus, 
both (Y;加冗） and(Y;入K+1,Y入:;;)are minimum s-t cuts in H N（入k)(s,t) in each breakpoint 

入kfor k = 1, 2,..., K, but (Y;入ぃ冗） isnot a minimum s-t cut in HN（入）（s,t) if入＜入k-1
or入＞入k・

Figure 14 shows an example of network H N（入）（s,t) corresponding to valuation intervals 

邸＝（Ci: i E N) (and恥＝ （I£ : 1 < £く））m)) in Figure 3 and the minimum s-t cut 

(Y;入，冗） inHN（入）（s,t) with入＝ Pmin= 0.1. Figure 15 shows that the minimum s-t cuts 
(Y;入，只） inHN（入）（s,t) in Figure 4 for parameters入withO <:::入<:::1 form a lower envelope 
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Figure 16: Another minimum s-t cut (Z, Z) in HN（入）（s,t) in Figure 4 with入＝ Pmin= 0.1, 
where Z = {s, C2, C5, h, ho} and Z = {t} + (CN ¥ {C2, C5}) +（のv¥ ｛I5,Ilo}）． 
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Figure 17: There are more minimum s-t cuts in HN（入）（s,t). 

of the arrangement of lines generated by 

y = capa(Y;ふ冗） ＝入I只nCNI + L capa(Ie, t) 
It€Y入nJN

(K = 3 andふ＝ 0.1<入2= 0.15 <ふ＝ 0.2).
Note that there are more minimum s-t cuts in HN（入）（s,t), for example, 

(20) 

(Z, Z) with Z = {s, C2, C5, h,!10} and Z = {t} + (eN ¥ {C2, C5}) + ('.JN ¥ {h, ho}) 

is a minimum s-t cut H N（入）（s,t) with入＝ 0.1(Figure 16) and the corresponding line is 

y = capa(Z，万） ＝ 6入＋capa(h,t) + capa(I10, t) = 6入＋0.2

(Figure 1 7). 

Note also that, for finding a lower envelope of the arrangement of lines generated by 

all the minimum s-t cuts in HN（入）（s,t) for parameters入withO:::;入:::;1, it is sufficient to 

consider only all the minimum s-t cuts (Y;入，只） inHN（入）（s,t) defined by Eq.(14) above. 
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4.3 Finding Breakpoints泣極 . ・ ．．．，枯 inParametric Flow 

In order to find all breakpointsふ，極．．．，枯， weuse a binary search on interval (,¥ -,入可

to find入kwith入―く入k<入+basedon the method in [21]. 

We initially set,¥-= 0，入＋ ＝1 and HN（入）（いい(s,t)=HN（入）（o,1)(s,t) = HN(,¥)(s, t). 

Then we find the minimum s-t cut (Y;,\—,Y,\-) in HN（入）（いい(s,t) with入＝,¥-(which is 

denoted by H N（入一）（入一9,¥＋)(s,t)) and the minimum s-t cut (Y;,¥＋，Y,¥＋)in HN（入）（入一9,¥＋)(s,t) 
with入＝入十 (which is also denoted by HN（応）（入一ぷ）（s,t)). Thus, intially, we find the 

two minimum s-t cuts (Y;,¥,Y,¥）in HN（入）（o,1)(s,t) = HN（入）（s,t) with入＝,¥-= 0 and 
入＝入＋ ＝1. 

Let Y,¥-（入） bethe capacity of the s-t cut (Y;ぃ冗） inHい）（いい(s,t). Similarly, 

let y,¥＋（入） bethe capacity of the s-t cut (Y;,¥＋，冗） inHN（入）（入一9,¥＋）(s,t). Thus, 

Y.,¥-（入）

ぬ＋（入）

capa(Y.x-, ~) =入|Yxne団＋ L capa(Ie, t), 
I£EY入＿nJN

capa(Y;ぃ Y入+)＝入|Yぃne刈十 L capa(Ie, t). 
I£EY入□JN

ヽ
｀
~
ヽ
｀
~

1

2

 

2

2

 

（

（

 

Initially, since.x-= 0,炉＝ 1and the solidness of valuation intervals eN = (Ci : i E 

N), we have Y.x-= { s }, Y.x-= VN(s, t) ¥ { s} and Y;入＋ ＝応(s,t)¥{t},Y;入＋ ＝ ｛t}. Thus, 
initially, y入一（入） ＝Yo（入） ＝ n入andy入＋（入） ＝Yl（入） ＝1. Note that, 

Y>--(>.-) 

Y入＋（入打

capa(Y;ぃ冗）＝ X|芹 neNI ＋ 区 capa(Ic, t), 
犀Y入＿ n 恥~

capa(Y;ぃ Y入＋） ＝入打凡＋ ne刈 ＋ L capa(Ic,t). 
ItEY入＋nJN

In each iteration, we first find入＊ suchthat Y>.-(>.*) = y入＋（入＊） byEq.(21) and Eq.(22). 

Then we find the minimum s-t cut (Y;ぃYりinHN（入＊）（入一土）（s,t) (i.e., in HN（入）（入一ぷ）（s,t) 
with入＝入＊） andlet y入＊（入） bethe capacity of the s-t cut (Y;入＊，只り inHN（入）（入一ふ）（s,t). 
Thus, 

訟（入） ＝入I冗 ne刈＋ L capa(Ie, t). 
I£EY入＊nぉN

(23) 

Ify入＊（入＊） ＝ Y入一（入＊） ＝ Y入＋（入＊） then we set 入k = 入＊ and stop the binary search 

on interval （入—,入+)． Otherwise, we continue the binary search on interval（入―,入＊） in

the network H N（入）（入—，入＊）（s,t) obtained from HN（入）（入一，ぃ(s,t) by deleting只:-¥ {t} and 
the binary search on interval （入＊，入打 in the network H N（入）（入＊，入＋）（s,t) obtained from 

HN（入）（X ふ）（s,t) by deleting Y;入• ¥ ｛s} (Figure 18). 
Let eN（入一ふ） bethe set of vertices Ci E邸 whichare contained in HN（入）（入一ふ）（s,t). 

Similarly, let N (>. -,入打 bethe set of players i E N with Ci E e N(..¥-ふ） andlet'.IN(..¥-ふ）

be the set of vertices I, E恥 whichare contained in HN（入）（にい(s,t). Thus, initially, 

eN(D,1) = eN and :JN(D,1) =恥， sinceHN（入）（o,1)(s,t) = HN（入）（s,t). 
Thus, allふ，極...，枯 canbe found by Parametric Flow Algorithm (ALGORITHM 

2) below, where Procedure FindBreakpoints(HN（入）（X ふ）（s,t)) below is used in order to 

find the minimum s-t cut (Y;入＊,'v,;::-)in H N（入＊）（X ぷ）（s,t). 
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H N(l*)(l―，が）（s,t)

s sハロ

t 

H 
N(2)(2―,A) 
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Figure 18: There is no edge from a vertex in Y;入＊ n岱 toa vertex in只:-n恥 in
HN（入＊）（いい(s,t). HN（入）（x，入＊）（s,t) is obtained from HN（入）（X ふ）（s,t) by deleting 
Y入＊ ＼ ｛t}皿 dHN（入）（入＊，応）（s,t) is obtained from HN（入）（入一ふ）（s,t) by deleting Y;入＊ ＼ ｛s}. 
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ALGORITHM 2: Parametric Flow Algorithm 

Input: A cake C = [O, 1), n players N = {1, 2,..., n} and solid valuation intervals 
邸＝（Ci: i EN) with valuation interval Ci = [ai,比） ofeach player i E N 

and Uc怠 NCi= C. 
Output: (si : i E N) such that there is an envy-free allocation A~ = (A; : i E N) to 

players N with A;こCiand len(Aり＝ Sifor each i E N and区iEN刈＝ C.
Let XN = {xo, x1,..., Xm} be the set of all aぃ瓜 ofCi= [aぃ瓜） ofe N = (Ci : i E N); 
sort XN and assume xo < x1 < ・ ・ ・ < Xm, where xo = 0 and Xm  = 1; 

let le = [xc-1，叩） foreach £ with 1 s; £ s; m; 
let :J N = (le : 1 s; £ s; m); 
sort邸＝ （Ci : i E N) in a lexicographic order with respect to (/3ぃai)and assume 
C1 s; C2 s; ・ ・ ・ s; Cn in this order; 

set,¥-= 0 and入＋ ＝1; 

） Consider HN（入）（入一ぃ(s,t)with,¥-<入＜入＋ implicitly;

K=O; 

FindBreakpoints(H N（入）（いい(s,t));

Procedure FindBreakpoints(H N（入）（入一，店）（s,t)) 

find入＊ suchthat Y.>.. -（入＊） ＝Y.>..+（入＊）；

let eN（入一ふ） ＝ （C紅，ci2,・ ・．，Gip) with i1 <匂＜．．．＜ ip;

/ / find a maximum s-t flow f in H N（入＊）（入一い）（s,t) as follows: 

Ai。=0;
for j = 1 to p do 

let Z =江―＝贔Aり，＋こI£釘＼JN(>.-ふ）It; 
set AiJ = [aiJ,似） ＼ Zこ仇＼Zof length min｛入＊，Zen(CiJ¥ Z)} where aiJ is the 
leftmost endpoint in Cij ¥ Z; 

f(s,Cり＝ len(A砂
let A=区『＝1位；
for each le E'.JN（入一ふ） dof (le, t) = len(A n le); 
for each (Cぃlg)E恥 inHN（入）（いい(s,t) do f(Cぃle)= len(AiJ n le) implicitly; 
/ / f is a maximum s-t flow in H N（入＊）（ぷぷ）（s,t) as shown in FindMaxFlow(・) 

let HN（入＊）（入一，灼）（s,t)(f) be the residual network with respect to f; 

let冗 bethe set of vertices v of H N（入＊）（入一ぷ）（s,t)(f) such that there is a path 
from v to t in H N（入＊）（いい(s,t)(f); 

let Y入•be the set of vertices v of H N（入＊）（いい(s,t)(f)not contained in只：；

let y叫） ＝入I応 ne刈＋こ犀Y入＊nJNcapa(Ic, t); 
if y入・（入＊） ＝ぬ—（入＊） ＝ぬ＋（入＊） then
K=K+l;知＝入＊； forj = 1 to p do Si1＝枯；

else 

FindBreakpoints(H N（入）（入一，入＊）（s,t)) where HN（入）（入一，入＊）（s,t) is obtained from 

HN（入）（入一ふ）（s,t) by deleting冗＼ ｛t}; 
FindBreakpoints(H N（入）（入＊，知）（s,t)) where HN（入）（入＊，入＋）（s,t) is obtained from 

HN（入）（入一，ぃ(s,t) by deleting Y;入• ¥ ｛s}. 



25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 I 
,-----,--,--,--,-----,-----,---,--,----,-----,--,-----------, 

G = ［0.15,0,35) l ! ----4 l l ! ！ l' 9 9 9 9 ,  9 
9 9 9 9 9 9 9 ,  9,.  I Ai =[0.15,0.215) 

ら＝［O．25,0.35)| i i i トー i i i i i i i 生＝［O．275,0.35)
G = ［O.25,0.45) i I I i i-----i i i i l 1 ．．， 9,  1, ： ！ふ＝［0.35,0.45) 
G =［0,l,0.5) i -．．トーートー―--+-----Hi I i i 心＝l［0,1,0,15)＋［O.45,0,5)
G =［O.65,0.75) i ! ！ ！ ！ i l l i’'9  
C6=[0,0.8) t---H , 9 : i i l l l l --i l=  ［0.65,0.75) 

l ＇ 十—→•一十•----,-----,--~,-----;-----;--, & =1 , ； 9 : 9 9 9 9 9 : 9 9 丸，［O魯，l）＋［O,5,0,525)''''''''  
1 : 9 : 9 9 9 ー・••-''''''''''  

C7 =[0.55,0.8) I 
I I I I '’’'1  

, 9 ふ＝［O.p5,0.65) + [0.75,0.775) 
C8 = ［O.2,l) : l l t寸―----［一―---「ナ寸――--t----]→一―-----lん＝［0，775,0.9)

11 12バ1415 16 17 18 19 110凡 112

ヽヽ
s,,,  Y,i 

Figure 19: Maximum s-t flow f = f入． with入＝入＊ ＝ 0.125 found in the first call of 
FindBreakpoints(H N（入）（いい(s,t)) in Parametric Flow Algorithm (ALGORITHM 2) for 
valuation intervals邸＝ （Ci : i E N) (and恥＝ （IJ : 1さj:::; m)) in Figure 3 and the 

residual network H N（入＊）（入一，入＋）（s,t)(f入＊）．

Figure 19 shows how Parametric Flow Algorithm works for valuation intervals eN = 

(Ci : i E N) (and恥＝ （Ij : 1さj:::; m)) in Figure 3. Initially, since >.-= 0,入＋ ＝ 1 
阪（入）＝ Yo（入） ＝ n入， andy入＋（入） ＝ Y1（入） ＝ 1，we have n入＝ 8入＝ 1 and入＊ ＝ i ＝ 0.125: 
By FindBreakpoints(HN（入）（入一，灼）（s,t)), we have 

冗＝Yo．125 = ｛C6,C7,C8,I1,I8,Ig,In,I12,t}, Y入＊ ＝Yo.125 = V(s, t)＼只：

and 

y入・（入＊） ＝ 3入＊ ＋0.5 = 0.875 =J ぬ—（入＊） ＝ 8入＊ ＝l=y入＋（入＊）．

Thus, FindBreakpoints(HN（入）（入一，入＊）（s,t)) is recursively called, where 

HN（入）（x，入＊）（s,t) = HN（入）（0,0.125)(s, t) 

is obtained from HN（入）（o,i)(s,t) by deleting冗：＼｛t}. 
Then FindBreakpoints(HN（入）（入＊，入＋）（s,t)) is recursively called, where 

HN（入）（入＊，灼）（s,t)=HN（入）（0.125,l)(s,t) 

is obtained from HN（入）（入一ぷ）（s,t) by deleting Y;入• ¥ ｛s}. 
Figure 20 shows FindBreakpoints(HN（入）（o,o.125i(s,t)). Since y入一（入） ＝Yo（入） ＝ 5入， and

恥（入）＝ Yo.125（入） ＝0.5, we have 5入＝ 0.5皿 d入＊ ＝讐＝ 0.1.
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Figure 20: In the second call of FindBreakpoints(HN（入）（いい(s,t)).

By FindBreakpoints(HN（入）（o,o.125J(s,t)), we have冗＝ Yo．1 = ｛t}, Y入＊ ＝ 
(Yo.125 U {t})＼冗＝ Yo.125and y入•（入＊） ＝ 0.5 = Y,¥-（入＊） ＝ 5入＊ ＝ぬ＋（入＊）．
FindBreakpoints(H N（入）（o,0.125)(s,t)) sets K = K + 1 = 1 andふ＝入＊ ＝0.1. 
Figure 21 shows FindBreakpoints(HN（入）（o.125,1)(s,t)). Since Y,¥-（入） ＝ Yo.125（入） ＝ 

3入， andy入＋（入） ＝ Yl（入） ＝ 0.5, we have 3入＝ 0.5and入＊ ＝讐＝ i= 0.166…• 
By FindBreakpoints(HN（入）（o.125,l)(s,t)), we have Y;入• = Yo.166…=  ｛C8,I12,t}，Y入＊ ＝ 
Yo.166... = (Yo.rn U { s})＼冗＝ ｛C6,C7,I1,I8,I9,In,S} and y入•（入＊） ＝入＊ ＋0.3ヂ0.5= 
Y,¥-（入＊） ＝ 3入＊ ＝ yい（入＊）．

Thus, FindBreakpoints(Hい）（0.125,0.166…)(s,t)) is recursively called, where 

Yo.1 = 

Thus, 

HN（入）（入一，入＊）（s,t)= HN（入）（0.125,0.166...)(s, t) 

is obtained from H N（入）（o.125,1)(s, t) by deleting冗＼ ｛t} = {C3,Ji2}. Since Y.>..-（入） ＝ 
Yo.125（入） ＝ 2入， andy入＋（入） ＝Yo.166…（入） ＝0.3, we have 2入＝ 0.3and入＊ ＝撃＝ 0.15.

By FindBreakpoints(HN（入）（0.125,0.166...)(s,t)), we have冗:=Yo 15 = ｛t}, Y入＊ ＝Yo.15 = 
(Yo.166... U {t})＼冗 ＝ ｛C6, C7, I1, I8, Ig,In, s} and y入・（入＊） ＝ 0.3 = Y.>..-（入＊） ＝ 2入＊ ＝ 
ぬ＋（入＊）． Thus,FindBreakpoints(HN（入）（0.125,0.166...)(s,t)) sets K = K + l = 2 and入2=
入＊ ＝0.15. 
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Figure 21: In the third call of FindBreakpoints(HN（入）（入一，研）（s,t)). 

Then FindBreakpoints(HN（入）（o.166...,1)(s, t)) is recursively called, where HN（入）（0.166...,1)(s, t) 

is obtained from H N（入）（o.12s,1)(s,t) by deleting Y;入＊ ＼ ｛s }. Since Y.x-（入） ＝Yo.166...（入） ＝入，
and y入＋（入） ＝Yl（入） ＝0.2, we have入＝ 0.2and入＊ ＝陪＝ 0.2.

By FindBreakpoints(HN（入）（0.166…,1i(s,t)), we have Y;入＊ ＝ Yo.2 = {t}, Y;入＊ ＝ Yo.2 = 

(~U{s}) ＼只＝ ｛Cs, Ii2, s} and y入＊（入＊） ＝ 0.2 = Y.x-（入＊） ＝入＊ ＝恥（入＊）． Thus,
FindBreakpoints(H N（入）（0.166…,i)(s,t)) sets K = K + l = 3 and入3=入＊ ＝0.2. 

Lemma 4.2 Procedure FindBreakpoints(HN（入）（いい(s,t)) correctly finds all the break-

points of HN（入）（s,t) which are contained in interval(>.-,>.+). 

Proof: We will show that the lemma holds by induction on the number of recursive calls 

FindBreakpoints(・) in FindBreakpoints(HN（入）（入一，応）（s,t)). If there is no recursive call 
FindBreakpoints(•), then y入＊（入＊） ＝Y.x-（入＊） ＝ y入＋（入＊） and入＊ isthe unique breakpoint in 
interval (>.-,応）， andthus, the lemma holds. 
Now we assume that the lemma holds when the number ofrecursive calls FindBreakpoints(・) 

in FindBreakpoints(HN（入）（入一応）（s,t)) is less than p and consider the case when exactly 

p recursive calls FindBreakpoints(•) are contained in FindBreakpoints(HN（入）（入一，ぃ(s,t)).
Without loss of generality, we can assume >. -= 0 and >. + = l. Thus, H N（入）（入一ふ）（s,t) = 

HN（入）（s,t), eN(.X-ぶ） ＝岱， N(>.-,炉） ＝N and'.JN(>--，い） ＝恥．
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Now FindBreakpoints(HN（入）（入一，入＋）（s,t)) first calls FindBreakpoints(HN（入）（入一，入＊）（s,t)) 

and then calls FindBreakpoints(HN（入）（入＊ふ）（s,t)). Both FindBreakpoints(HN（入）（x，入＊）（s,t)) 
and FindBreakpoints(H N（入）（入＊，ぃ(s,t)) contain less than p recursive calls FindBreakpoints(•) 
and, by induction hypothesis, FindBreakpoints(HN（入）（入一，入＊）（s,t)) finds K1 breakpoints 

入i,入;,...，入知 andFindBreakpoints(HN（入）（入＊ふ）（s,t)) finds K2 breakpoints入I,入夕，．．．，入始
Thus, FindBreakpoints(HN（入）（入一ぃ(s,t)) finds K'＝粕＋応 breakpointsand we can 

assume 

刈＜冷＜．．．＜入如＜入'k叶 1<...く枯,, (24) 

where X凡＋k=入%for each k = 1, 2,..., K2. Then we have the following proposition that 
K'=Kand 入~=入k for each k = 1, 2,..., K in Eq.(19). The proposition can be proved 

as follows. 

By the same argument as in Proof of Lemma 4.1 for Procedure FindMaxFlow(H N（入）（s,t)), 

we can show that FindBreakpoints(HN（入）（いい(s,t)) finds a maximum s-t flow f = 
f入•in HN（入＊）（いい(s,t), and that只： isthe set of vertices v of the residual network 
HN（入＊）（入一ぷ）（s,t)(f入•)such that there is a path from v to t in H N（入＊）（入一ぷ）（s,t)(f入＊）
and Y入• is the set of vertices v of H N（入＊）（入一ふ）（s,t)(f入＊） not contained in冗． Thus, 
(Y入＊，冗） isa minimum s-t cut in H N（入＊）（入一ふ）（s,t) and there is no edge from a vertex 

in Y入＊ n似 to a vertex in Y;入． n奴 in HN（入＊）（入一，研）（s,t) (Figure 18). A s mentioned 

before, HN（入）（入一，入＊）（s,t) is obtained from HN（入）（いい(s,t) by deleting冗＼ ｛t} aJ1d 
HN（入）（入＊ぃ(s,t) is obtained from HN（入）（入一土）（s,t) by deleting Y;入＊ ＼ ｛s}. The capacity 

of (Y入＊心） in HN（入＊）（入一土）（s,t) is;入・（入＊）， where

販（入）＝ capa(Y;入＊，冗） ＝入I応 ne刈十 L capa(Ic, t) (25) 
I圧Y入＊n1N

is the capacity of (Y;入＊，応） inH叩）（入一ふ）（s,t) as mentioned in Eq.(23). 

Since f入• is a maximum s-t flow in H N（入＊）（入一ぷ）（s,t) and the restriction of f入• to 
HN（入＊）（入＊，ぃ(s,t) is also a maximum s-t flow in HN（入＊）（入＊，氾）（s,t) by the structure of 

HN（入＊）（いい(s,t) as shown in Figure 18, we can show that, for a parameter入with
入―く入＜入＊， thereis a maximum s-t flow f入inHN（入）（入一ふ）（s,t) whose restriction to 
HN（入）（入＊，ぃ(s,t) is also a maximum s-t flow in HN（入）（入＊土）（s,t) (note that入isnot in the 
interval（入＊，応） andthat the restriction of f入toHN（入）（入＊ふ）（s,t) can be obatained from 
the restriction of f入＊ toHN（入＊）（入＊，灼）（s,t) by decreasing flow). Thus, we can write the 
minimum s-t cut (Y;ふ只） inHN（入）（入一ふ）（s,t) defined by Eq.(14) by using the minimum 

s-t cut (Y;，只） inHN（入）（入一，入＊）（s,t) as follows 4 : 

兄＝Y;, 冗＝可＋応．

Let y;（入） ＝capa'(Y;，只） bethe capacity of (Y;，沢） inHN（入）（入一，入＊）（s,t), i.e., 

必（入） = capa'(Y;, FI)=入|YIn eNI＋ L capa(h t). (26) 
IeEY{n恥

Thus, for a parameter入with>..-<入＜入＊，thecapacity y入（入） of(Y;入，只）inHN（入）（いい(s,t) 

4 冗isthe set of vertices v of the residual network HN（入）（入ー，入＊）（s,t)Un with respect to a maximum 
s-t flow f{ in H N（入）（入一，入＊）（s,t) such that there is a path from v tot in HN（入）（入一，入＊）（s,t)(f炒
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Figure 22: For a parameter入with>,_-<入＜入＊，（a)the capacity y~ （入） ＝capa'(Y{，可） of

(Y{，只） inHN（入）（x，入＊）（s,t), and (b) the capacity y入（入） of(Y;ふ冗） inHN（入）（X ふ）（s,t) 

is given by y入（入） ＝capa(Y;入，只） ＝capa'(Y{，可） ＋入 I只： ne刈＝ y~ （入） ＋入1冗 ne州．

is written by 

y刈入） ＝ capa(Y;入ぷ）

入l(Y,<+咋） ne刈＋ L capa(Ic,t) 
IeEY;n恥

入1Y;neN1＋入I只 ne刈＋ L capa(Ic,t) 
IeEY;nJN 

y~ （入） ＋入VにneNI-

That is, for a parameter入with>.-<入＜入＊， byusing the capacity y~ （入） ＝capa'(Y;, YD 
-7 

of (Y;, YD in HN（入）（入一，入＊）（s,t), the capacity y刈入） of(Y;入，冗） inHN（入）（入一ふ）（s,t) can be 
written as follows: 

ぬ（入）＝ capa(Y;入，只） ＝capa'(Y;，籾＋入1冗 ne刈＝ y;（入） ＋入I只：ne刈．（27)

See Figure 22 (a) and (b). 

Similarly, since f入•is a maximum s-t flow in HN（入＊）（入一ぷ）（s,t) and the restriction of 

f入＊ toHN（入＊）（入一，入＊）（s,t) is also a maximum s-t flow in HN（入＊）（入一，入＊）（s,t) by the structure 
of HN（入＊）（入一ぷ）（s,t) as shown in Figure 18, we can show that, for a parameter入with

入＊ ＜入＜げ thereis a maximum s-t flow f入inHN（入）（X ふ）（s,t) whose restriction to 
HN（入）（入一，入＊）（s,t) is also a maximum s-t flow in HN（入）（入一，入＊）（s,t) (actually, we can choose 

the restriction of f入＊ to HN（入＊）（入一，入＊）（s,t)). Thus, we can write the minimum s-t cut 

(Y入，冗） inHN（入）（Xふ）（s,t) by using the minimum s-t cut (Y;＇，可） inHN（入）（入＊ぷ）（s,t) 
as follows 5 : 

凡＝ Y；'+Y入＊，只＝可．
Let y~ （入） ＝capa" (Y{, Y;') be the capacity of (Y;', Y;') in H N（入）（入＊，入＋）（s,t), i.e., 

y~ （入） ＝capa"(Y;＇，可） ＝入1可 ne刈＋ L capa(It, t). (28) 

IeEY;'n恥

5 冗 isthe set of vertices v of the residual network H N（入）（入＊，ぃ(s,t)(ff.) with respect to a maximum 
s-t flow ff in H N（入）（入＊，入＋）（s,t) such that there is a path from v tot in HN（入）（入＊，迂）（s,t)(ff.). 
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Figure 23: For a parameter入with入＊ ＜入＜に (c)the capacity Yl（入） ＝ 
capa"(Y;＇，可） of(Y;＇，可） inHN（入）（入＊，店）（s,t), and (d) the capacity y入（入） of(Y;入，只）

in HN（入）（入一ふ）（s,t) is given by y刈入） ＝capa(Y;入，冗） ＝capa"(Y;'，可） ＋入I只 ne刈＝
Yl＇（入） ＋区店Y入＊nJNcapa(Ic, t). 

Thus, for a parameter入with入＊ ＜入＜いthecapacity y入（入）of(Y;入，只）inHN（入）（入一ぷ）（s,t) 
is written by 

ぬ（入） capa(Y;入，只）

入I可ne刈＋ L capa(It,t) 

底(Y{'+Y>.•)nJN

入I可 ne刈＋ L capa(It,t)＋ L capa(It,t) 
ItEY{'n恥 I£EY入＊n恥

Yl（入） ＋ L capa(It,t). 
I£EY入＊nJN

That is, for a parameter入with入＊ ＜入＜入+,by using the capacity y~ （入） ＝capa"(Y{'，可）
of (Y{＇，可） inHN（入）（入＊，ぃ(s,t),the capacity y刈入） of(Y;ふ只） inHN（入）（入一ふ）（s,t) can 
be written as follows: 

い（入）＝ capa(Y;入，Yり＝ capa"(Y{', Y_('）+入|Y入＊ne刈＝政（入）＋ど capa(Ic,t). (29) 
I£EY入＊nJN

See Figure 23 (a) and (b). 

This completes our proof of lemma. 

By Lemma 4.2 and Theorem 3.1, we have the following theorem. 

口
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Theorem 4.1 For a cake C = [0,1), n players N = {1,2,...,n} and solid valuation 
intervals似＝ （C; : i E N) with valuation interval C; = [a;, {3;) of each player i E N and 

UciEeN C; = C, Parametric Flow Algorithm (ALGORITHM 2) not only correctly finds 

(s; : i E N) such that there is an envy-free allocation A¼ = (A~ : i E N) to players N 
with A~ ~ C; and len(Aり＝ s;for each i E N and区iEN刈＝ C,but also actually finds 
an envy-free allocation AN = (A; : i E N) with A; ~ C; and len(A;) = s; for each i E N 
and区iENAi= C in O(n打ogn)time using at most 2n -2 cuts on cake C. 

Thus, Parametric Flow Algorithm (ALGORITHM 2) is envy-free. We can also show 

that Parametric Flow Algorithm (ALGORITHM 2) is truthful by an argument which is 

much simpler than the argument in [3]. We omit the details. 

5 Applicati ication to Mechanism of Chen et al. [16] 

By Theorem 3.1, in order to obtain an envy-free allocation AN = (Ai : i E N) with 

AiこCiand len(Ai) = Si for each i E N and LiEN Ai = C, we only need (si : i E N) 
such that there is an envy-free allocation A~ = (A~ : i E N) to players N with A~ こ Ci
and len(Aり＝ Sifor each i E N and LiEN刈＝ C.Thus, Theorem 3.1 can be applied to 
the mechanism of Chen, et al. for the cake-cutting problem when the valuation function 

Vi of each player i E N is piecewise uniform [16]: Given a cake C = [O, 1), n players 
N = { 1, 2,..., n} and solid piecewise uniform valuation functions (Vi : i E N) such that 
D(vi) = {x E C I vi(x) > O} of each valuation function Vi consists of mi :2 1 maximal 
contiguous intervals in C (i.e., D（Vi)= 四~1 仇 where each Cij is a maximal contiguous 
interval in C) and uiEND(vi) = C. 
The mechanism of Chen, et al. [16] finds an envy-free allocation A~ = (A; : i E N) 
such that LiEN刈＝ Cand A;＝こ戸1孔withA;こ仇 foreach i E N and for each 
j = 1, 2,.. ~，叫 (we give an outline of Mechanism ofもhenet al. below). Thus, we can set 
Sii = len(Aし） andapply Theorem 3.1 to obtain an envy-free allocation AN= (A;: i EN) 
such that Ai =区戸1丸 foreach i E N with Ai1 ~仇 and len(Aり＝ Si1for each 
j = 1,2,...，叫 withat most 2（LiEN叫）ー 2cuts. Note that, we can delete all Ci1 if 
sij = len(Aし） ＝0, and thus, we can assume Si1 = len(AU 

tj 
> 0 for each i E N and for 

each j = 1, 2,..., mi, without loss of generality. 

In summary, we have the following corollary. 

Collorary 5.1 Suppose that we are given (si1 : i E N,j = 1, 2,...，叫） suchthat there 

is an envy-free allocation A~ = (A; : i E N) to players N satisfying区iEN刈＝ Cand 
刈＝ I:~1 礼 with Aしこ仇 andlen(Aし） ＝Sii > 0 for each i E N and for each j = 
1, 2,..., mi for the cake-cutting problem with cake C = [O, 1), n players N = {1, 2,..., n} 

and solid piecewise uniform valuation functions (Vi : i E N) such that D(vi) = { x E C I 
糾(x)> O} of each piecewise uniform valuation function Vi consists of mi :2 1 maximal 
contiguous intervals Ci1,..., cimi in C and uiEN D (Vi) = C (such A~ = (A; : i E N) to 
players N can be obtained, for example, by Mechanism of Chen, et al. [16]). Then, Core 
Mechanism Mi (ALGORITHM 1) correctly finds an allocation AN = (A; : i E N) with 

LiENA; = C and Ai= L戸1礼 withAi1 ~ Ci1 and len(A』=Siifor each i E N and 
for each j = 1, 2,...，四 in0（区iEN四 log区iEN叫） time.Furthermore, the number of 
cuts made by Mi on cake C is at most 2（LiEN叫）ー2.Thus, Mechanism of Chen, et al. 

[16] can be implemented to make at most 2（LiEN匹）ー2cuts on cake C. 
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5.1 An Outline of Mechanism of Chen et al. [16] 

In this subsection, we give a brief outline of the envy-free and truthful mechanism proposed 

by Chen, Lai, Parkes, and Procaccia for the cake-cutting problem where the valuation 

function of each player is piecewise uniform by borrowing their description in [16]. 
Thus, we are given a divisible heterogeneous cake C, n players N = {1, 2,..., n} with 
piecewise uniform valuation Vi over C for each player i E N with D(vi)＝区叫j=l C・Zj 
such that each仇 isa maximal contiguous interval in C and uiEN D(v』=C,and the 
mechanism proposed by Chen, et al. [16] finds an allocation AN = (Ai : i E N) of C to the 
players N such that Ai =江戸1丸 withAi1 s;;仇 foreach i EN  and eachj = 1, 2,..., mi 
and区iENAi = C and that AN = (Ai : i E N) is envy-free and truthful. 
We denote by VN the (multi-) set of piecewise uniform valuations of all the players N, 

i.e., VN = (v1,..., vn)-We also write VN =(vi: i EN). For a subset P of players N and 

a piece X of cake C (thus, PこNand X is a set of maximal disjoint subintervals of C), 
let DOM(P, X) denote the set of x EX  such that there are at least one player i E P with 

x E D(vi), i.e., 

DOM(P,X) = {x EX  Ix ED（防） forsome i E P}. 

Note that DOM(P, X) is a set of maximal disjoint subintervals of C, i.e., a piece of C. 

Actually, 

DOM(P, X) = (LJ D(vi)) n X. 
iEP 

Define avg(P, X) by 

avg(P,X) = 
len(DOM(P,X)) 

IPI 

Thus, avg(P, X) is the average length of pieces of the players in P when the piece 

DOM(P, X) of cake C is divided among the players in P. 

Mechanism of Chen et al. [16] for cake C, n players N = {1, 2,..., n} with piecewise 
uniform valuation Vi over C for each player i E N is a recursive mechanism that finds 

a subset of players with a certain property, makes the allocation decision for the subset, 

and then makes a recursive call on the remaining players and the remaining intervals. 

Specifically, for a given set of players P <;;;; N and a remaining piece D of cake to be 

allocated, the mechanism finds the subset P'<;;;; P of players with the minimum avg(P', D). 

Then the mechanism finds an allocation Ap, = (Ai : i E P') of DOM(P', D) to players 

P'such that Ai<;;;; D(vi) and len(Ai) = avg(P',D) for each i E P'and LiEP'Ai = 
DOM(P',D). The mechanism is recursively called on the remaining players P ¥ P'and 

the remaining intervals, i.e., D ¥ DOM(P', D). 

ALGORITHM 3: Mechanism of Chen et al. [16] 

Input: A cake C = [O, 1), n players N = {1, 2,..., n} and solid piecewise uniform 
valuations VN =(vi: i EN) with piecewise uniform valuation Vi over C for 

each player i E N. 

Output: Allocation AN= (A : i EN) to players N with AこD（防） foreach i E N. 
ChenCutCake(N, C, VN); 

To find a maximal subset PminこPsuch that avg(Pmin, D) = minp,s;;p avg(P', D), 
Chen, et al. considered a flow network arising piecewise uniform valuations VN =(vi: i E 
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Procedure ChenCutCake(P, D, V N) 

find a maximal subset Pmin C::: P such that avg(Pmin, D) = minP'<;;P avg(P', D); 

find an allocation Apm,n = (A; : i E Pmin) of DOM(Pmin, D) to players Pmin with 

Ai C::: D(vi) and len(A;) = avg(Pmin, D) for each i E Pmin and 

区 Ai=DOM(Pmin, D); iEPmin 
p = p ¥ Pmini D = D ¥ DOM(Pmin, D); 
if pヂ0then ChenCutCake(P, D, VN); 

N) [16]. We give a flow network HN（入）（s,t) which is almost the same as the network used 
in [16]. 

Let XN be the set of all endpoints aij'仇 ofintervals Cij = [ aij, /3ij) of the piecewise 
uniform valuations Vi in VN = (vi : i E N) such that D（叫＝仇＋ ・・・+C・tm • (i.e., 
D(vi) = (Cij : j = 1,...，匹）） foreach i E N and we assume the elements in XN are 
sorted 

XQ < Xl < ・ ・ ・ < Xm 

where xo = 0, Xm = l and m さ ~iEN2mi ― 1. For each £ with 1.:; £.:; m, let 

lg= [X£-l，叩）皿dlet 
恥＝ （I£ : 1 < f< m) 

(Figure 24(a)). Let邸＝ （Cij : i E N, j = l,...，叫） andlet伍＝ （応，む，Eり bea 
bipartite graph with vertex set VN = eN＋恥 andedge set EN where (Cij,I£) E EN if 
and only if Jg<:;; cij・ GN =（%，恥恥） iscalled a convex bipartite graph since it has a 
property that if (Cぃlg),(Cij,Jg,) E応 with£ < £'then (Cij,I£'') E EN for each £" with 
£<£"<£'. 

Let GN(s, t) be the directed graph obtained from GN =（%，恥，EN)by adding new 
vertices s, t and坊 (i= 1,..., n) and directed edges (s,防） （i E N), (ht) (£ = 1,..., m) 
and (vi, C砂 (Cij,防） （i E N, j = l,...，叫）． Weconsider each edge (Cij,I£) E EN is 
directed from Cij to lg (Figure 24). We denote by VN(s, t) and恥 (s,t) the set of all 

vertices and the set of all directed edges in GN(s, t), respectively. Thus, 

応 (s,t) = VN+{s,t}＝邸＋む＋｛s,t}＋応，

応 (s,t) =応＋｛（s,vi) I Vi EVN}+ {(ht) I I£ E恥｝
+ {(vi, C砂 (Cij,vi)Ii EN, j = 1,...，叫｝．

Then the flow network H N（入）（s,t) can be obtained from GN(s, t) by defining the ca-
pacity of each directed edge of応 (s,t) as follows. Each directed edge (s，防） （i EN) has 
capacity入withparameter O.:;入.:;1, both directed edges (Vi, C砂 (Cij,防） （i EN, j = 
1,...'叫） havecapacity len(Cij), each directed edge (Ic,t) (£ = 1,...,m) has capacity 
len (I£), and each directed edge (Cij,Jg) E恥 hascapacity oo (Figure 24(b)). 

An s-t flow fin Hい）（s,t) is called a parametric flow in HN（入）（s,t). The parameter 
入isclosely related to avg(P, X). Actually, we些vethe following. 
For a maximum flow f入inHN（入）（s,t),let Y;入bethe set of vertices v such that there 
is a v-t path in HN（入）（s,t)(f刈， whichis the residual network of HN（入）（s,t) with respect 
to f入， andlet 

兄＝応(s,t)＼冗．

Then (Y;入，冗） isa minimum s-t cut in H N（入）（s,t)皿 d

y; <:;; Y;入
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Figure 24: (a) Example of piecewise uniform valuations VN = (vi : i E N) with D（町） ＝ 
C11 + C12, D（叫＝ C2and D（叫＝ C31+ C32 and恥＝ （I1,．．．，I7)．（b)応 (s,t) and 
flow network H N（入）（s,t) on V N = (Vi : i E N). 

(thus, Y;入s;;Pl) holds for each minimum s-t cut (Y;ふ只） inHN（入）（s,t). That is,凡 isa 
（ 
． 

) among the mini 
-7 

maximum set (Y;入isa minimum set) among the minimum s-t cuts (Y;んY入） inHN（入）（s,t). 
Furthermore, for two distinct parameters入＇＜入，

Y入＇こ Y入

(i.e.，冗2冗） holds.There are at most n+こiEN 匹＋m+ 1 distinct minimum s-t cuts 
(Y;入，只） inHN（入）（s,t) for parameters入withO :S入:S1, since YNこY入（i.e.,冗 2冗）
holds for two distinct parameters入＇＜入 asdescribed above. 

Suppose that there are exactly K + 1 distinct minimum s-t cuts (Y;入団） inHN（入）（s,t) 
for parameters入withO :S入:S1, and let入1,入2,...'入Kbe the breakpoints where minimum 
s-t cuts (Y;入，只） inHい）（s,t) change. Assume 

入。＝ 0<ふく入2<...＜入K:=; 1 =入K+l, (30) 

where we consi屯！入。＝ 0and入K+l= 1, for convenience. 
0 ::;入＜入1and Y;入＝ ｛t} for入K さ入さ入K+l= 1. 

Note that Y;入＝ ｛s} for 
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Figure 25: A maximum s-t flowふ andthe minimum s-t cut (Y;ふ冗） withparameter 
入＝ 0.325in network H N（入）（s,t) in Figure 24. 

Figure 25 shows a maximum s-t flow f入withparameter入＝ 0.325in network H N（入）（s,t) 
in Figure 24 and Figure 26 shows the residual network H N（入）（s,t)(f刈forthe maximum 
s-t flow f入inFigure 25 and the minimum s-t cut (Y;ふ冗） innetwork HN（入）（s,t) in Figure 
24. In this example, 

avg(Nmin,C) ＝ min avg(N'，C) ＝ふ＝ 0.325
N’<;;N 

and Nmin = {2, 3}, and K = 2 and入2= 0.35. 

Let Procedure ChenCutCake(P, D, V N) be called K'times in Mechanism of Chen et 

al. (ALGORITHM 3). Then, it can be shown that K'= K and, in the kth call of 
ChenCutCake(P, D, VN) which is denoted by ChenCutCake(P(k), D(k), VN), 

avg(P二，D(k))= _mt~" avg(P', D(k))＝入K
P℃p(k) 

holds for each k = 1,..., K. 

Thus, we can set Si1 = f叫Vi,cij) for each j = 1,..., mi if Vi E Pt;~ for each i E N min 
and for each k = 1,..., K. This implies that by applying況 (ALGORITHM1), we 

can make the envy-free and truthful mechanism proposed by Chen, et al. [16] use at 

most 2~iEN叫— 2 cuts, where mi is the number of maximal contiguous intervals in 

D(vi) = {x EC  I vi(x) > O} of each piecewise uniform valuation Vi・
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Figure 26: (a) The residual network任（入）（s,t)(f入） forthe maximum s-t flow f入inFigure 
25 and (b) the minimum s-t cut (Y;ふ応） innetwork HN（入）（s,t) in Figure 24. 

6 Concluding Remarks 

We gave a much simpler envy-free and truthful mechanism with a small number of cuts 

for the cake-cutting problem posed in [2, 30]. Furthermore, we showed that this approach 

can be applied to the envy-free and truthful mechanism proposed by Chen, et al. for the 

more general cake-cutting problem where the valuation function of each player is piecewise 

uniform [16] based on paranietric flows on a network arising from piecewise uniform val-

uations Vi and can make their envy-free and truthful mechanism use 2 ~iEN匹ー 2 cuts, 

where mi is the number of maximal contiguous intervals in D (Vi) = { x E C I Vi (x) > 0} 
of each piecewise uniform valuation vか

If we require the piecewise uniform valuation Vi of each player i to be a single contigu-
ous interval Ci in cake C, then parametric flows on the network arising from valuation 

intervals Ci can be found efficiently. Thus, Mechanism of Asano and Umeda in [4] can be 

implemented to run in 0（炉logn)time. 
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