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1 Introduction 

The problem of analyzing dynamical systems from observed data by Perron-Frobenius operators and their adjoints 
(called Koopman operators), which are linear operators expressing the time evolution of dynamical systems, has 
recently attracted attention in various fields [2, 3, 10, 14, 16, 17]. And, several methods for this problem using 
RKHSs (reproducing kernel Hilbert spaces) or vv-RKHSs (vector-valued RKHSs) have also been proposed [4, 5, 

7, 9, 11], In these methods, sequential data is supposed to be generated from dynamical systems and is analyzed 
through those corresponding representations with Perron-Frobenius operators. 

In this paper, we propose a generalized method with RKHMs (reproducing kernel Hilbert C*-modules) for the 
analysis with Perron-Frobenius operators for cases where multiple dynamical systems interact, which often occurs 

in various dynamic phenomena around us. RKHM is a generalization of RKHS in terms of C* -algebra [6, 8, 15]. 
A C* -algebra is a generalization of the space of complex values. An important example of C* -algebra is the space 
of bounded linear operators on a Hilbert space (the space of matrices if the Hilbert space is finite dimensional). We 

introduce RKHM in Section 2. Then, we define the Perron-Frobenius operators in RKHMs in Section 3 and show 
their applications in Section 4. 

2 Background 

2.1 C*-algebra and C*-module 

AC* -algebra and a C* -module are suitable generalizations of the space of complex numbers (C and a vector space, 

respectively. In this paper, we denote a C* -algebra by屈 anda C*-module by.A, respectively. As we see below, 
many complex-valued notions can be generalized to d-valued. 

AC* -algebra is defined as a Banach space equipped with a product structure and an involution (・)* : d→“ 
Definition 2.1 (C*-algebra) A set J2f is called a C*-algebra ifit satisfies the following conditions: 

1. J2f is an algebra over C, and there exists a bijection (・) * :“→“that satis_.fies the following conditions for 
入，μ E (C and c,d Ed: 
•(J..c+µd)* ＝応＋弘d*，● (cd)* = d*c*, • (c*)* = c 

2. J2f is a norm space with II・ IIJd, and for c,d Ed, llcdlltd <::: llcllJJ1lldllJJ1 holds. In addition, J2f is complete 
with respect to II ・ IIJd-

3. Forc Ed, llc*c|位=|cllシholds.

A main example of C* -algebras is沼（洸）， theset of all bounded linear operators on a Hilbert space洸． In
particular, if洸 isfinite dimensional, it is equal to the space of matrices. In this case, the product structure is the 

usual product of operators, the involution is the Hermitian conjugate, and the norm II・ IIJd is the operator norm. 
The notion of positiveness is also important in C* -algebras. 
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Definition 2.2 (Positive) c E屈 iscalled positive if there exists d E屈 suchthat c = d* d holds. For a positive 

elementc E払 wedenote c 2 0. 

In the case of d = !Jg（洸）， thepositiveness corresponds to positive semi-definiteness of operators. The notion of 
positiveness provides us the (pre) order in屈，andthus, enables us to consider optimization problems ind. 

AC* -module.,,{{ over d is a linear space.,,{/ equipped with a right d-multiplication. 

Definition 2.3 ((Right) multiplication) Let.,,{{ be an abelian group with ean abelian group with operation+. Forc,d E屈 andu,vEヽ r,
if an operation ・ :、／X“ →.,,{{satisfies 

1. (u+v) ・c = u-c+v・c, 

2. u-(c+d) = u-c+u-d, 

3. u-(cd) = (u-d) ・c, and 

4. u-l.s,1 = u, 

where l.s,1 is the multiplicative identity of払 then,・ is called (right) d-multiplication. The multiplication u ・ c is 
usually denoted as uc. 

Definition 2.4 (C*-module) Let.,,((be an abelian group with operation +. If.,,((has the structure of a (right) 
.91-multiplication,.,,((is called a (right) C*-module over.91. 

2.2 C* -algebra-valued inner product and RKHM 

We consider and-valued inner product in a C* -module~. which is a straightforward generalization of a complex-
valued one. 

Definition 2.5 (d-valued inner product) A map <•,•>:¢へ¢／→“iscalled and-valued inner product ifit 
satisfies the following properties for u, v, w Eヽ 勺mdc,d E“、:

1.〈u,vc+wd〉=〈u,v〉c+〈u,w〉d,

2.〈v,u〉=〈u,v)*, 

3.〈u,u〉2'.0, and 

4. lf〈u,u〉=Othenu=O.

For u E ~. we define the d-valued absolute value lul on~ by the positive element lul of d such that luド＝
〈u,u〉.SinceI ・ I talces values in more structured space払 itbehaves more complicatedly, but provides us with 
more information. The必 valuedabsolute value I・ I defines a norm II・ II on A by llull := II lul ll.91-We call A 
equipped with <•,·> aHilbert C*-module if A is complete with respect to the norm II ・ II-
We now summarize the theory of RKHMs. Similar to the case of RKHSs, we begin with an必 valuedpositive 
definite kernel on a non-empty set夜

Definition 2.6 (d-valued positive definite kernel) An必 valuedmap k : W x勿→“iscalled a positive defi-
nite kernel if it satisfies the following conditions: 

1. k(x,y) = k(y,x)* for x,y E勿

2. E「,s=lc;k(x,,xs)Csミ0for n E N, c; E払 XiE勿．
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Let c/J :'!Y→“'!!/ be the feature map associa叫 withk, which is defined as c/J(x) = k(-,x) for x E勿． Similar
to the case of RKHSs, we construct C* -module composed of必 valuedfunctions by means of c/J as.,,/lk,O := 

{Eい¢（ふ）c1In EN, c1 E叫 XiE勿｝． And-valued map 〈•,•〉 K ：瓜，oX 瓜，o→“is defined as 

位c/J(xs)cs,芦如）di)k:=芦芦心(xs況）dt
By Definition 2.6 of k, <•y>kis well-defined and has the reproducing property. Also, it satisfies the properties in 
Definition 2.5. Thus, <·,•>kis an.121-valued inner product. 

The reproducing kernel Hilbert.121-module (RKHM) associated with k is defined as the completion of瓜，o-Similar 
to the cases of RKHSs, <·,•>kis extended continuously to the RKHM and has the reproducing property. Also, the 
RKHM is uniquely determined. 

We denote by.Ak the RKHM associated with k. We also denote by I・ lk and II・ Ilk the absolute value and norm on 、k,respectively. 
2.3 Orthonormality with C* -algebra-valued inner products 

Orthonormality plays an important role in data analysis because an orthonormal basis constructs orthogonal pro-

jections and an orthogonally projected vector minimizes the deviation from its original vector in the projected 

space. We refer to, for example, Definition 1.2 in [ 1]. 

Definition 2.7 (Normalized) A vector q E.,,((is normalized ifO =J〈q,q〉=〈q,q〉.

Note that in the case of a general C*-valued-inner product, for a normalized vector q,〈q,q〉isnot always equal to 
the identity of d in contrast to the case of a complex-valued inner product. 

Definition 2.8 (Orthonormal system and basis) Let :Y be an index set. A setダ＝ ｛q, hE.67 c;;.,,((is called an 
orthonormal system (ONS) of.,,((if q1 is nonnalized for any t E :Y and〈qs,qt〉=Oforsヂt. We callダ an
orthonormal basis (ONB) ifダ isan ONS and dense in.,,{{, 

Unlike Hilbert spaces, Hilbert C* -modules do not always have an ONE for general d [12, 13]. However, the 

following proposition shows the validity of considering ONBs in RKHMs over冤（虎）．

Proposition 2.9 Any Hilbert C* -module over妥（加） hasan orthononnal basis. 

We now consider a practical approach for orthonormalization with matrix-valued inner products. 

Proposition 2.10 (Normalization) Let Pl= icmxm_ Let e ::>-0 and let ij E.,,((satisfy llqll > e. Then, there exists 
b E icmxm such that llbllicmxm < 1/e and q:＝砂 isnormalized. In addition, there exists b E icmxm such that 
llij-qbll ~ e. 

Sketch of the proof : Let入1::>-... ::>-Am ::>-0 be the eigenvelues of〈q,q〉.Since〈ij,ij〉ispositive, there 
exists an unitary matrix c such that〈紐〉＝ c*diag{入,,..．，J.,,,,}c. Let m':= max{j| 入J> e2} and let b := 
c* diag{l／心，．．．，1／ぷ，0,...,O}c. The existance of m'follows by the inequality llijll > e. Then, it can be 
shown that q : = ijh is normalized. In addition, let b := c* diag｛⑪ぷ．．．，A,,O,...,O}c.Then, it can be shown 
that llij — qbll ~ e holds. ロ

Proposition 2.10 and its proof provide a concrete procedure to obtain normalized vectors in.A in practical situa-

tions. This enables us to compute an ONB practically by applying Gram-Schmidt orthonormalization with respect 

to matrix-valued inner product. 
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Proposition 2.11 (G ram-Schmidt orthonormalization) Let { w1};: 1 b 1};: 1 be a sequence in.A. Consider the follow-
ing scheme for t = l, 2,... and e：：：：〇：

t-1 
qt =Wi-Lqs〈qs,Wt〉,qt=qふ if||創|＞e, q1 = O o.w., (1) 

s=l 

where b, is defined as b in Proposition 2.10 by setting q = q1. Then, { q1犀 isan ONS in.,ft such that any w, is 
contained in the £-neighborhood of the space spanned by { q,}にr

Corollary 2.12 If e = 0, and the space spanned by｛閉｝;:1is dense in.,ft, then { q,犀 isan ONB of.4t. 

In practical computations, scheme (1) should be represented with matrices. For this purpose, we derive the follow-

ing about QR decomposition from Proposition 2.11. 

Corollary 2.13 (QR decomposition) For n EN, let W := [w1,..., wn] and Q := [q1,…，qn]-Let e ::>: 0. Then, 
there exist R, Rinv E cmnxmn that satisfies 

Q = WRinv, IIW -QRII :<:: e. (2) 

Decompositions (2) are called QR decompositions. By applying QR decomposition, we only have to compute Rmv 
and R although we are treating vectors in an infinite dimensional space.,,/{. 

The following proposition shows the orthogonally projected vector onto a subspace j/ of“'uniquely minimizes 
the deviation from an original vector in j/. Thus, with an orthonormalization approach proposed above, we can 

generalize methods related to orthogonal projections in RKHSs to RKHMs. 

Proposition 2.14 Let“＝勿（洸），｛q,hE!Y be an ONS of.${, and j/ be the completion of the space spanned by 
{qt}tEク． ForwE ヽ*• letP:“（→ j/ be the projection operator defined as Pw := LEパ t〈q,,w〉.ThenPw is the 
unique solution of the following minimization problem: 

min|w-V|． 
vE"Y 

3 Perron-Frobenius operators in RKHMs 

We define Perron-Frobenius operators in RKHMs. First, let勿 bea topological space,勿：＝｛xo,xぃ．．．｝こ正
be observed data, where x1 = [x,,1,...,x1,m], and f;:虎m→疫 bea(possibly, nonlinear) map. And, consider the 
following interacting dynamical system: 

Xt+l,i = f;(x1,1,...,xi,m) (i = 1,...,m). 

Let瓜，0膚） ：＝ ｛江。¢（ふ）c,I n EN, x, E'!Y, c, E cmxm}. In an RKHM忍，wedefine the Perron-Frobenius 
operator K：瓜，0膚）→.Ak that describs the time evolution of the system as follows: 

Kcp(x) := cp([fi (x),... Jm(x)]) x E夜

We now estimate K with finite observables xo,...,xr through the following minimization problem: 

T-1 
min E|K¢（ふ）ー¢(xt+l)：， 
応 Z（巧） t＝0 

(3) 

whose solution k well approximates K. Here, 1flr is the space spanned by { </J（ふ）｝T-landダ (1flr)is the space t=O 
of all icmxm_linear maps L (i.e., L(uc) = (Lu)c for u E、kand c E icmxm) on 1flr. Existence of a solution of 
problem (3) follows from Proposition 2.14. Thus, we apply the Gram-Schmidt orthonormalization to obtain Qr 

and Rmv,T such that Qr= [</J(xo),...,</J(xr-1)]Rmv,T (see Corollary 2.13). Then, the solution of problem (3) is 
explicitly represented as follows: 

Theorem 3.1 If e = 0 and { </J（ふ）｝［＝閑 islinearly independent, QrQi,KQrQi, is the unique solution of problem (3). 
Also, Qi,KQr = Qi,[</J(x,),...,</J(xr)]Rmv,T holds. 

Remark 3.2 Let Kr= Qi,KQr. Then, Kr is regarded as a matrix representation ofQ心江QrQi, with respect to 
theONBfot}［閑． SinceKr= Qi,[<fJ(x,),..., <fJ(xr)]Rmv,r holds, Kr can be computed only with.finite observables. 
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4 Application to modal decomposition 

We introduce a notion of cmxm_valued eigenpairs of the estimated operator Kr and give a method for extracting 

relations invariant with respect to time. This method is applicable to, for example, causal estimation of time-series 
data. A cmxm_valued eigenpair of Kr is a pair (a, v) that satisfies Kげ＝va.In practical situations, it is easy to 

find them as follows: Let 入!,•·．,Amr E IC be the eigenvalues of Kr and v,,…,Ymr E cmr be the eigenvectors of 
Kr with respect to J..,,..．,Amr-We set Vt:= [vi,O,...,O] E (cmxmf and llt := diag｛At,0,...,0} E cmxm_ Then, 
we can see, fort= 1,...,mT, the pair (aぃv1)is a cmxm_valued eigenpair. Since the relation c/J (xs) = K8c/J(xo) holds 

for times, we approximate c/J(xs) as Qぷ杖Q7cp(xo),and apply the above eigenpairs for extracting time-invariant 
relations. 

Proposition4.1 Assume [v,,...,Vmr] E cmrxmr is invertible. Let Ct E cmxm satisfy Qrc/J(xo) = E芦VtCtand 
f7 := {t I l-1ctl = 1 }. Then, IQrKがQがcp(xo)且isdecomposed into E訂いc;(a;)8〈Vt,V[〉外c1.And, the following 
value is invariant with respect to s: 

Cinv := L c;(a;)'〈Vt,Vt〉a如，
tE.'Y 

For example, we consider the following matrix-valued positive definite kernel: Let k :究 x究→Cbe a complex-

valued positive definite kernel and洸 bethe RKHS associated with k. 

Lemma 4.2 Let k :勿mx疫 m→cmxm be a matrix valued map where the (i, j)-elements of k(x,心） aredefined 
叫 (x,,;ぶ2,j)Jorxi= [xi,1,・・・,xt,m] E正 fort=I, 2. Then, k is a cmxm_valued positive definite kernel. 

The (i, j)-element of k(x1,x2) =〈cf,(x1), cf, (x2)〉kfor x1,x2 E劣 mequals k(x1,;ぶ2,j),which represents the similari-
ties between x,,; and x2,j in洸k-Thus, the inner product between q,(x,) and cf,(x2) describes the similarities of all 
combinations of pairs of elements of x, and x2. If the (i, j) element of Cinv is large, the i-th and j-th elements of Xs 
are similar for any s. This is because the (i,j) element of lc/l(xs)且＝k(xs,xs)represents the similarity between the 
i-th and j-th elements of Xs. As a result, we can extract the similarities that are invariant with respect to time. 
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