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C5-finite acims for weakly expanding random maps with 

uniformly contractive branches 

1 Introduction 

Hisayoshi Toyokawa 

Department of Mathematics 

Hokkaido University 

For a given measurable dynamical system or measurable random dynamical system 

over a probability space, the existence of an absolutely continuous finite or CY-finite 

infinite invariant measure (acim, for abbreviation) with respect to the reference mea— 

sure is important and fundamental to analyze statistical properties of the system. See 

[A97, ANV15, BB16, F69, F80, S95] and references therein. In [Tl], the author gave 

some necessary and sufficient conditions for the existence of a finite or CY-finite acim for a 

given system over a probability space (in terms of Markov operators). In this note, based 
on [T2], we introduce a certain model of (annealed type) random dynamical systems and 

estimate the density functions of their acim. 

We recall definitions and notations which are needed in this note. Let (X訊，入） be

a probability space and T : X →X be a measurable and non-singular transformation 

(i.e., r-1勿 CPlJ and the pushforward measure入or-1 is absolutely continuous with 

respect to入）． Thena measureμ on (X夏） iscalled an acim for T provided that μ 

is absolutely continuous with respect to入andμ o r-1 = μ. 11 is called a finite (resp. 

び—finite) acim when μ is a finite (resp.び-finite)measure. Analogously, for an annealed 

type random map we define an acim as follows. Let I be a non-empty and at most 

countable set and I'; be a measurable and non-singular transformation from X into itself 

for each i E I. For a given probability vector｛防｝iEJ,a random iteration (of {Ti}iEJ 

with probabilities {PihEI) {Ti, Pi : i E I} is the Markov process given by the following 
transition probability: 

IP'(x,A)＝こ叫A(Tix)
iEJ 

for入-almostevery x E X and any A E笏． Thena入-absolutelycontinuous finite (resp. 

CY-finite) measure μ is called a finite (resp. CY-finite) acim ifμ satisfies 

μ = LPiμ 0 r;-1_ 
iEJ 
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We also recall that a measureμ is called ergodic if for any measurable set with lP'(x, E) = 
l土） forμ-almost every x E X we have either μ(E) = 0 or μ(X ¥ E) = 0. For more 

general cases of random dynamics including the case when I is uncountable or position 

dependent cases (i.e., Pi is also a function of x E X), we refer to [GB03, 112, 120] and 

references therein. 

Now we are addressed to define the model of our random dynamical systems on 

the unit interval. Set arbitrary a > 0. We define the partition of X = [O, 1] into 
忠＝｛ふ＝ （（n + 1)-l/a, n-1/a]} ・n>l . Then we have入（ふ）／入(Xn+1)monotonically 

decrease to 1 as n→oo where入isLebesgue measure on X. Let I be a non-empty 

countable set and for each i E I, Ji be a non-empty subset of N. We consider a family 

of transformations {Ti : i E I} on X (see Figure 1 below for an example) which are 

piecewise monotone and piecewise linear on the partition忠 satisfying

(a-1) For each i EI, Ti Ixれ：ふ→ X n-1, for any n 2'. 2, monotonically increasing given 

by 

(n -1)-l/a -n-l/a.. (n + 1)-lfa(n -1)―1/a _ n-2/a 
Ti lxn (x) = n-1/a-（n+ 1)一1/ax- n-1/a -（n+ 1)一1/a'

namely, all T, are identical on X ¥ Xじ

(a-2) For each i E I, Ti lx1: X1→ukEJ;ふ， monotonically increasing and surjective 

which is piecewise linear in the sense 

Tf Ix戸
~kEJ' 入(X砂

入（ふ）

whenever the derivative can be defined. 

We call a family of transformations {Ti : i E I} with the above conditions (a-1) and 

(a-2) piecewise linear intermittent Markov maps (with the index { Jふ叫
Then, for a given probability vector Pi on I, we consider a random iteration of 

piecewise linear intermittent Markov maps with uniformly contractive part such that 

(b-1) {Ti : i EI} is piecewise linear intermittent Markov maps; 

(b-2) On X1, the random iteration｛刀，Pi: i E I} is uniformly contractive on average: 

こ Pt ＝こい（ふ）

iEJ ITf Ix叶
> 1. 

iEJ 江EJ，入（ふ）

Remark 1.1. The requirement that I is countable is just for simplicity of notation. In 

fact, we can define the model even when I is an uncountable set and p is a probability 

measure on I. If I is uncountable then we integrate over I instead of summation over 

I. See {T2j for more detail. 
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Figure 1: A graph of Ti for some i E J of piecewise linear intermittent Markov maps. 

For this T;, we can see』=｛n E N : n ~ 3} since Tiふ＝ U戸 3Xn.

By the definition, random iterations of piecewise linear intermittent Markov maps 

with uniformly contractive part do not satisfy expanding on average even if we remove 

a small neighborhood of a common indifferent fixed point O in the sense [120]. In the 
next section we will see that this model always admits a finite/a-finite acim and show 

the criterion whether an acim is finite or infinite. Moreover, under some mild condition, 

the acim is conservative, ergodic and hence unique up to multiplicative constants. 

2 Main Result 

In this section, we show the existence of a a-finite acim for any random iteration of 

piecewise linear intermittent Markov maps with uniformly contractive part defined in 

the last section. For weakly expanding case (excluding the case like (b-2)), sufficient 

conditions for the existence of a a-finite acim was already shown in [120] via the inducing 

scheme. The main result of this note is as follows. 

Theorem 2.1. Any random iteration {Ti,Pi : i E I} of piecewise linear intermittent 
Markov maps with uniformly contractive part, which satisfies (b-1) and (b-2), admits a 

a-finite acim. The invariant density dμ/d入isgiven by the following formula: 

dμ ~ Pi 入(Xj)
石＝〗こJEJA（ふ）とど 1ふ—n·

Consequently, μ(X) < oo if and only if 

こ Pi
疋Iこ炸Ji入(Xj)

吟 OjEJ;
入(Xj-n)

j>n 

ここ入（ふ）＜ 00.

n2'.0 jEJi 
j>n 

(2.1) 
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Remark 2.2. {i) The statements of Theorem 2.1 are still true when I is an uncountable 

set and p is a probability on I, by replacing the summation by integration over I. See 

Theorem 3.1 and Corollary 3.1 in /T2}. 

{ii) For the case of nonlinear random maps like LSV map or Manneville-Pomeau 

map with uniformly contractive part, we also may be able to show the existence of u-finite 

acims and to estimate its densities if the branches on X1 is linear in the sense (a-2). 

Otherwise, it would be possible to estimate the invariant density under certain distortion 
property on X1. That will be studied in the other paper. 

The following corollary shows the uniqueness of the acim given in Theorem 2.1 under 

mild condition. 

Corollary 2.3. Suppose that #Ji 2 2 for each i EI with Pi > 0. Then the acim μ for 

a random iteration {T;,pi : i E I} given by {2.1) is an ergodic measure. Consequently, 

the acim μ is unique up to multiplicative constant. 

In the rest of this note, we give several examples of random iterations of piecewise 

linear intermittent Markov maps with uniformly contractive part. 

The first example is a random iteration of piecewise linear intermittent Markov maps 

with "thin branches" which return to the indifferent fixed point. The uーfiniteacim of 

the following example varies at a = 1 from finite to infinite, which is same as the 

deterministic case [Th80]. 

Example 2.4. Let a>  0, I= {1, 2} and Ji= {(lOi)n: n 2 1} for i EI. Set Pl = p 

{and p2 = 1 -p). {See Figure 2 below for the corresponding map.) Then the random 

iteration of piecewise linear intermittent Markov maps with uniformly contractive part 

{TiiPi : i EI} has the unique ergodic び—finite acim μ by Theorem 2.1. We also calculate 

that μ(X) < oo if and only if a < 1 same as deterministic transformation case. 
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—— 
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Figure 2: A graph of T1 in Example 2.4 
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The next example is a random iteration which always admits a finite acim for any 

a of the order of tangency at the indifferent fixed point, because all points will never 

return to a neighborhood of the indifferent fixed point. 

Example 2.5. Let a> 0, IC N and Ji satisfy that LJiEI Ji is a finite set. Then, from 

Theorem 2.1, for any probability vector｛防｝iEI,the random iteration of {Ti;Pi : i E I} 

admits a finite acim. Further, the invariant density for this random iteration is bounded 

above even around the point 0. 

The following example also admits a finite acim, although many points of positive 

measure will return to an enough small neighborhood of the indifferent fixed point with 

positive probability. 

Example 2.6. Let a> 0, I= N and Ji= {2,3,...,i+l} fori EI. See Figure 3 for the 

maps {11 : i EI}. If we put Pi= 1/2i for i EI, then the random iteration {Ti,Pi: i EI} 

admits the ergodic a-finite acim μ by Theorem 2.1. We can also see μ(X) < oo for any 

a > 0. That is, the invariant measure μ is always finite. 

2-"" 

3-1,0 

4ー1ん

x3 | X2 
0... 4-"" 3―1ん 2-1,"

XI-

Figure 3: A graph of transformations in Example 2.6 and 2.7 (infinitely many branches 

on X1 correspond to Ti lx1, i EI, respectively) 

We modify Example 2.6 and we show that the modified random dynamics admit 

both finite and a-finite infinite acim depending on the parameter a > 0. The critical 

point of a is different from the deterministic case. 

Example 2. 7. Let a > 0 and k ~ 2 a natural number. Set I= N and Pi = 1/2i. Then 
we put Ji = {2, 3,..., 2k(i+l)}. As the same way in Example 2.6, we have the ergodic 

び—finite acim μ for this random iteration. P加 thermorewe can calculate that μ is finite 

if and only if a< k/(k -1). 

Remark 2.8. For random iterations of non-uniformly expanding maps as Example 2.'l 

and 2. 9, the critical value of a where the invariant measure varies from finite to infinite 
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can be different from deterministic case ([Th80}). Similar example which is expanding on 

average except a small neighborhood of an indifferent fixed point can be seen in Example 

6.2 of /120}. 

In the last two examples, most of points will rarely return to the indifferent fixed 

point O so that the acim hard to become infinite. Then, conversely, we will see that the 

following example makes the acim tend to become an infinite measure. 

Example 2.9. Let a > 0, I = N and k(i) ~ 2 increasing natural numbers of i E I. 

We setみ＝ ｛j E N : j ~ k(i)}. Then for any probability vector {pふEI,the ergodic 

a-finite acim μ for this random iteration satisfies that μ is finite if and only if a < 1 

and江Pik(i)< oo. Thus, for example, if Pi = 6/(i2召） andk(i) = 2 + [i'Y] for some 

"(> 0, thenμ is finite if and only if a < 1 and O < "(< 1. 

2-lla 

3-1,0 

4―1,0 

X,I X -2 

0... 4ー99“3ー1," 2ー1,a

Figure 4: A graph of transformations in Example 2.9 (infinitely many branches on X1 

correspond to Ti lx1, i E J, respectively) 
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