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RECONSTRUCTIONS OF ONE-SIDED DYNAMICAL 

SYSTEMS FROM THE ANALYSIS OF EXPERIMENTAL 

TIME SERIES 

HISAO KATO 

1. INTRODUCTION 

Throughout this article, all spaces are separable metric spaces and maps 
are continuous functions. Let N be the set of all nonnegative integers, i.e., 
N={0,1,2,…｝ and let Z be the set of all integers and良thereal line. 
A map h: X→Y is an embedding if h : X→h(X) is a homeomor-
phism. A pair (X, T) is called a one-sided dynamical system (abbreviated as 
dynamical system) if X is a separable metric space and T : X→Xis any 
map. Moreover, if T : X→X is a homeomorphism, i.e., invertible, then 
(X, T) is called a two-sided dynamical system. Also if T : X→Xis not a 
homeomorphism, (X, T) called a non-invertible dynamical system. 
Reconstruction of dynamical systems from a scalar time series is a topic 
that has been extensively studied. The theoretical basis for methods of 
recovering dynamical systems on compact manifolds from one-dimensional 
data was studied by Takens [Tak81, Tak02]. In 1981, Takens [Tak81], by 
use of Whitney's embedding theorem, proved that under some conditions 
of (two-sided) diffeomorphisms on a manifold, the dynamical system can be 
reconstructed from the observations made with generic functions. 

Theorem 1.1. (Takens'reconstruction theorem for diffeomorphisms [Tak81] 
and [Noa91]) Suppose that M is a compact smooth manifold of dimen-
sion d. Let Dr(M) be the space of all er -diffeomorphisms on M and 
び (M皇） theset of all er -functions (r 2: 1) to艮 IfE is the set of 
all pairs (T,J) E Dr(M) xび (M且） suchthat the delay observation map 

I 
(0,1,2,..,2d) 
T,f :M→炉＋1defined by 

X →(JTJ(x)）翌。
is an embedding, then E is open and dense in Dr(M) xび (M星）．

Moreover, in 2002 Takens [Tak02], extended his theorem for endomor-
phisms on compact smooth manifolds as follows. 

Theorem 1.2. (Takens'reconstruction theorem for endomorphisms [Tak02]) 
Suppose that M is a compact smooth manifold of dimension d. Then there 
is an open dense subset U c End 1 (M) xび(M晨）， whereEnd 1 (M) denotes 
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the space of all C1-endomorphisms on M, such that, whenever (T, f) EU, 

there is a map 1r : 1 
(0,1,..,2d) 
(M)→M with 1r -1 (0,1,..,2d) =T  2d T,f TJ ・

Embeddings of two-sided dynamical systems in the two-sided shift（記，u)
have been studied by many authors (e.g. see [AAM18, Coo 15, Gut 15, Gut 16, 
GQS18, GT14, Jaw74, Lin99, LWOO, Ner91, SYC91, Tak81]). 
In [Kat20], we studied embeddings of one-sided (= non-invertible) dy-
namical systems in the one-sided shift（炉，u).In this article, by use of the 
topological methods introduced in the paper [Kat20], we extend the above 
Takens'reconstruction theorems of dynamical systems on compact mani-
folds to theorems of "non-invertible" dynamical systems for a large class of 
compact metric spaces (see [Kat21] for the proofs of results of this article). 
In this article, we do not assume injectivity of T and so the proofs of our 
results cannot any longer rely on the embedding theorems of Whitney and 
Menger-Nobeling [Eng95]. Instead, an essential role is played by the notion 
defined in Definition 2.1. 

2. DEFINITIONS AND NOTATIONS 

For a space X, dim X means the topological (covering) dimension of X 
(e.g. see [Eng95], [HW41] and [Nag65]). Let X be compact metric space 
and Y a space with a complete metric dy. Let C(X, Y) denote the space 
consisting of all maps f : X→Y. We equip C(X, Y) with the metric d 
defined by 

d(f,g) = sup dy(f(x),g(x)). 
xEX 

Recall that C(X, Y) is a complete metric space and hence Baire's category 
theorem holds in C(X, Y). 
A map g: X→Y of separable metric spaces is n-dimensional (n = 
0, 1, 2,…） if dimg―1(y) ::; n for each y E Y. Note that a closed map g : 
X →Y is 0-dimensional if and only if for any 0-dimensional subset D 
of Y, dimg―1(D) ::; 0 (see [Eng95, Hurewic's theorem (1.12.4)]). A map 

T:X→X is doubly 0-dimensional if for each closed set A C X of dimension 
0, one has dim戸 (A)::; 0 and dim T(A) = 0. 
If K is a subset of a space X, then cl(K), bd(K) and int(K) denote the 
closure, the boundary and the interior of K in X, respectively. A subset A 
of a space X is an Fu―set of X if A is a countable union of closed subsets 
of X. Also, a subset B of X is a G0-set of X if B is an intersection of 
countably many open subsets of X. 
An indexed family (Cs)sES of subsets of a set X will by abuse of notation 

also be denoted by {Cs}sES or {Cs: s ES}. Hence if C = {Cs}sES is such a 
family then its members Cs and Ct will be considered as different whenever 
sヂt.We then put 

ord(C) = sup{ordx(C): x EX}, where ordx(C) = l{s E SI x E Cs}I-
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Note that ord(C) so defined is by 1 larger than it would be according to the 
usual definition, as e.g. in [Eng95, (1.6.6) Definition]. 

Modifying the definition of TSP in [Kat20], we define the notion of (k, ry) 
trajectory-separation property for k E N and T/ > 0 which is very important 
in this paper. 

... 
Definition 2.1. Let T : X→X be a map of a compact metric space X 
with dimX = dく ooand let k E N, T/ > 0. Then T has the (k, TJ) trajectory-
separation property ((k,ry)-TSP for short) provided that there is a closed set 
H of X such that 
(1) X ¥ H is a union of finitely many disjoint open sets of diameter at most 
TJ, and 
(2) ord｛戸（H）｝仁。さ d.

3. RECONSTRUCTION SPACES OF DYNAMICAL SYSTEMS 

For a space K, we consider the (one-sided) shift u : KN→炉 whichis 
defined by 

び(xo,x1, x2, x3….) = (x1, x2, x3…・)，叫 EK.
Let (X, T) and (X', T') be dynamical systems. If a map h: X→X'satisfies 
the following commutative diagram 

h 
X ~ X' 
↓T ↓T' 

h 
X 一➔ X' 

then we say that h: (X, T)→(X', T') is a morphism of dynamical systems. 
In this article, we need the following definition from [Kat20]. 

Definition 3.1. Let T : X→X be a map of a compact metric space X. 
(a) Given a set S C N and a map f : X→良， themap (JTj)jES: X→酎

will be denoted by 1芹，1.We call this map the delay observation map at times 

j ES. Note that lr,1 := 1朽： （X,T)→ （炉，u)is a morphism of dynamical 
systems. We call Ir,1 the infinite delay observation map for (T, f). 
(b) We say that If is a trajectory-embedding if I知） ＃If (y) whenever 
T心） ＃Tj (y) for all j E S. 

Let (X, T) be a dynamical system of a compact metric space X. For 
n 2: 1, let Pn(T) be the set of all periodic points of T with period :S n and 
P(T) the set of all periodic points of T, i.e. 

凡(T)= {x E XI there is an i such that 1 :Siさnand Ti(x) = x} 

and P(T) = LJ Pn (T). 
nミ1

Two points x and y of X are trajectory-separated for T if Tパx)-/=Tパy)for 
j EN. A morphism h: (X, T)→(X',T') i is a trajectory-monomorphism if 
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h(x), h(y) are trajectory-separated for T', whenever x, y EX  are trajectory-
separated for T. 

For x,y EX, let or(x) = (T⑬)）iEN and or(Y) = (Ti(y))iEN be two orbits 
of T. We say that the orbit町 (x)is eventually equivalent to the orbit町 (y)
if the orbits will be equal in the future, i.e., there exists an n E N such that 
T心）＝ Ti(y)for each i 2: n. In this case, we wright町 (x)~e町 (y).We 
see that this relation is an equivalence relation. So we have the equivalence 
class 

[or(x)] = {or(Y)I or(x) ~e or(y)} 

containing町 (x)and we put 

[O(T)] = {[or(x)]I x EX}. 

Note that if T : X→X is injective, the function o : X→[O(T)] defined 
by X→[or(x)] is bijective, i.e., o : X ~ [O(T)]. Also, note that if h : 
(X,T)→(X', T') is a morphism of dynamical systems, then h induces the 
function h : [O(T)］→ [O(T')] defined by h([or(x)]) = [or,(h(x))] for x EX. 
A morphism h : (X, T)→(X', T') of dynamical systems is a trajectory-
isomorphism if h induces the bijection h : [O(T)]~ [O(T')]. 
p roposition 3.2. Suppose that a morphism h : (X, T)→(X',T') ZS a 
trajectory-monomorphism and h is surjective, i.e., h(X) = X'. Then h is a 
trajectory-isomorphism: 

h: [O(T)］竺 [O(T')]

We need the definition of topological entropy and we give the definition 
by Bowen [Bow78]. Let T : X→X be any map of a compact metric space 
X. A subset E of X is (n, E)-separated if for any x, y E E with x -/-y, there 

is an integer j such that O :S j < n and d(Tパx),Tパy)）2:E. If K is any 
nonempty closed subset of X, sn(c; K) denotes the largest cardinality of any 
set E C K which is (n, E)-separated. Also we define 

1 
s(c;K) =limsup-=-logsn(c;K), 

n→oo n 

h(T; K) = liII1 s(c; K). 
€• O 

It is well known that the topological entropy h(T) of T is equal to h(T; X) 
(see [Bow78]). 
Let (X, T) and (Y, S) be one-sided dynamical systems of compact metric 
spaces. The inverse limit of T is the space 

皿(X,T) = {(xi)ご0I T（切＋1)=叩 foreach i EN} C XN 
which has the topology inherited as a subspace of the product space XN. If 

h: (X,T)→(Y, S) is a morphism of dynamical systems, then the map 
胆h：皿（X,T)→皿(Y,S)

is defied by加山（（叩）i)= (h（叩））dor（叩）iE ~(X, T). Note that if Tis a 
homeomorphism, then X竺皿(X,T).
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Now, we will introduce the notion of reconstruction space of dynamical 
systems. 

Definition 3.3. A compact metric space X is a reconstruction space of 
dynamical systems if there exists a G0-dense set E of C(X, X) x C(X皇）
such that for (T, J) E E, the infinite delay observation map 

I冗f:＝ I灼：（X,T)→（炉，CT)
satisfies the following conditions {1) and {2): 
(1) !r,J : [O(T)］竺 [O（びT,f)],whereびT,f= CTl/r,1(X), and 
(2)胚ITJ：皿（X,T)→匹(lr,J(X)，吋，f)is a homeomorphism. 

x 呈 IT,J(X)c 炉
↓T ↓びT,f ↓び

x 厚 IT,J(X)c 炉
Remark. In the above definition, (1) implies that we can understand the 
structure of orbits of (X, T) from the analysis of time series (I冗J(X)，叩），
and (2) implies that (lr,J(X)，びT,f)reflects topological and dynamical prop— 
erties of (X, T). Let P be any dynamical property such that (X, T) has P 
if and only if（皿（X,T)他汀） hasP; e.g. minimal, topological transitive, 
topological mixing, sensitive, etc. Then (X, T) has P if (lr,J(X)，びT,f)has 
P, because that we have the following commutative diagram of homeomor-
phisms: 

皿(X,T)
↓担T

胚(X,T)

胚IT,f
—• 

胚行，f

一

皿 (IT,J(X)，叩）

↓担四T,f

匹(IT,J(X)，叩）

In this article, we know that many compact metric spaces (e.g. PL-
manifolds, branched manifolds, Menger manifolds, Sierpinski carpet, Sierpinski 
gasket and many fractal sets) are reconstruction spaces of dynamical sys-
tems. Our result means that almost all dynamical systems (X, T) on a recon-
struction space X can be reconstructed from (observation) maps f: X→股
in the sense of'eventually equivalent orbits', and so it forms a bridge be-
tween the theory of nonlinear dynamical systems and nonlinear time series 
analysis. 

4. TRAJECTORY-EMBEDDINGS IN（炉，a)

In this section, we study some fundamental properties of trajectory-
embeddings. 

p roposition 4.1. Let (X, T) be a dynamical system and f : X→股 amap. 

Let k E N and suppose that 1 (O,l,..,k). v,  IDlk+l ; T,f :X→艮 isa trajectory-embedding. 
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Then the following properties (1)-(4) hold. 

(1) Th ere is the unique map u">;:';'"'~1 : (0,1,..,k). r(0,1,..,k) 
I 

(0,1,..,k) 
T,f T,f(X)→ IT,f (X) such that 

the following diagram is commutative: 

(0,1,..,k) 

x 仔L I(O,1,．．，K) 
T,f 

↓T ↓o 
(0,1,..,k) 

(X) C記＋1
(0,1,..,k) 
T,f 

X IT上 I(O,1,．．，K)
T,f (X) C酎＋1.

In other words, the mapび
(0,1,..,k) 
~j,·•,1cJ defined by (JTi(x)立。）卜→・ (JT¥x))}!l) (x E 

X) is well-defined. And 1 
(0,1,..,k) 
: (X,T)→ (0,1,..,k) r V¥  _(0,1,..,k) T,f(I冗f (X)，叶，f ）is a 

trajectory—isomorphism. In particular, I冗f:= 1幻： （X,T)→(Rい） isa 
trajecto内-monomorphism.

(2) Let P(o,1,..,k)：記→尉＋1be the projection defined by（叩）iENf-+（凸）ぐ＝o・

Then P(o,I,..,k) : (I冗1(X),CTT,f)→ （I訂’..，k)(X)，び訂’..,k))is an isomorphism 
of dynamical systems, i.e. , P(o,1,..,k) is a homeomorphism. 

(3) h(T) = h（叩） ＝ h（び訂’..,k)).
(0, 1,．．,K) （0,1,.．，K) （0, 1,．．，K) 

(4)迦IT,f ：皿（X,T)→皿(IT,f (X)，行，;'"'"'1)is a homeomor-
phism. 

By Proposition 4.1 and [Kat20, Theorem 3.1], we have the following result. 

Theorem 4.2. Let X be a compact metric space with dimX = dく ooand 

let T: X→X be a doubly 0-dimensional map with dim P(T) :S 0. Then 
there is a dense G0-set D of C(X晨） suchthat for all f E D, 

I冗f=T幻：（X,T)→（記，u)

satisfies the following conditions: 

(a) lr,1: [O(T)］竺 [O（びT,f)],
(b）皿h,f:口(X,T)→匹(Imf(X)，吋，f)is a homeomorphism, 
(c) h(T) = hびT,J)and 
(d) if x, y E X are trajecto可—separatedfor T, then 

l{i ENI Ir,1(x)i = lr,t(Y)i}Iさ2d.

5. RECONSTRUCTION THEOREM IN THE ONE-SIDED SHIFT（賊凡u)

Let X, Y be compact metric spaces and let cp : X→2Y U {0} be a set-
valued function, where 2Y denotes the set of all nonempty closed subsets of 

Y. Then cp: X→2Y U {0} is upper semi-continuous if for any x E X and 
any open neighborhood V of cp(x) in Y, there is an open neighborhood U of 
x in X such that cp(x') C V for any x'E U. 
Let (X, T) be any one-sided dynamical system. A point x E X is a 

chain recurrent point of T if for any E > 0 there is a finite sequence x = 
xo心1,・ ・ ・, Xm  = x (m 2 1) of points of X such that d(T（叩），叩＋1)< E for 
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each i = 0, 1, ・ ・ ・, m -1. Let CR(T) be the set of all chain recurrent points 
of T. Note that P(T) C CR(T), CR(T) is a nonempty closed subset of X 
and the set-valued function 

CR: C(X,X)→2叉Tf----t CR(T) 
is upper semi-continuous (see [BF85]). 
We will define the following class 0-'DCR of compact metric spaces. 

Definition 5.1. Let 0-'DCR be the class of all compact metric spaces X 
satisfying the following two conditions: 
(0-'D) The set of doubly 0-dimensional maps T : X →X is dense in 
C(X,X). 
(0-C冗） Theset of maps T : X →X with dim C R(T) = 0 is dense in 
C(X,X). 

Remark. Note that for a compact metric space X, both the set of 0-
dimensional maps T : X →X and the set of maps T : X →X with 
dimCR(T) = 0 are G6-sets of C(X,X) (e.g. see [KOU16]). So note that if 
X belongs to 0-VCR, then the set of all maps T : X→X such that T is a 
0-dimensional map with dimCR(T) = 0 is a dense G6-set of C(X,X). 

Let A be a (nonempty) closed subset of a compact metric space X. Here 
we need the following notion: D(A) < T/ if A can be decomposed into finitely 
many mutually disjoint closed sets Ai with diam(Ai) < TJ for each i, i.e. 
A=  LJiAi, diam(Ai) < TJ, and Ai n Aj = 0 for i-/= j. Note that dim A=  0 
if and only if D(A) < TJ for each T/ > 0. 
Modyfying the proof of [KM20, Lemma 3.11], we have the following. 

Lemma 5.2. (c.f. [KM20, Lemma 3.11]) Let TJ > 0 and k E N. Suppose 
that T: X→X is a doubly 0-dimensional map of a compact metric space 
X such that dim X = d < oo and D(cl[u!~ 戸(P(T))]) < T/・ Then T has p=O 

(k, ry)-TSP. 

Lemma 5.3. (A version of Borsuk's homotopy extension theorem, c.f. [Bor67, 
(8.l)Theorem] and [MilOl, Theorem 4.1.3]) Let X be a compact metric 

space and M a closed subset of X, and let maps f', g1 : M →記 satisfy
d(f',g') < E. If g: X→酎 isan extension of g', then f'h as an extension 
f:X→酎 suchthat d(f,g) < E. 

Let X be any compact metric space. For each o: > 0 and S C N a set of 
cardinarity 2d+ 1, let E(o:; S) be the subset of C(X, X) x C(X皇） consisting
of all pairs (T, f) such that I!j., f : X T,f →酎 isan o: trajectory-embedding (i.e., 

玲，f(x)-/=1芹，f(Y)whenever x, y EX  with d(TJ(x), TJ(y)）2: o: for all j E S). 
The main theorem is the following. 

Main Theorem 5.4. (Reconstruction theorem of dynamical systems) Let 
X be a compact metric space with dim X = d. Suppose that X belongs to 
the class 0-'DCR. Then the following assertions (1) -(3) hold. 
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(1) (a: trajectory-embedding) Let a > 0 and S C N a set of cardinarity 
2d + 1. Then the set E(a:; S) is a dense open set of C(X, X) x C(X皇）．
(2) (Trajectory-embedding) There exists a Gd-dense set E of C(X, X) x 

C(X良） suchthat if (T, J) E E, for any SC  N of cardinality 2d + 1 

応： X→酎
is a trajectory-embedding. 

(3) (Infinite delay observation) If E is the set as in the above {2), then for 
any (T, J) EE, 

ITJ =T朽：（X,T)→（炉，a)
satisfies the following conditions: 

(a) I冗f:[O(T) ］ ~[O （びT,f)],
(b血い：皿(X,T)→皿(IT,J(X)呵，f)is a homeomorphism, 
(c) h(T) = h（叩） and
(d) if x, y EX  are trajectory-separated for T, then 

l{i ENI Ir,1(x)i = lr,t(Y)i}Iさ2d.

In particular, X is a reconstruction space of dynamical systems. 

x 厚 IT,f(X)c 炉
↓T ↓呵，J ↓び

x 旱 fr,1(X)C 炉

6. THE CLASS 0-'DC'R 

In this section, we consider the following general problem. 

Problem 6.1. What kinds of compact metric spaces belong to the class 
0-VCR、?

We will show that PL-manifolds, some branched manifolds and some frac-
tal sets, e.g. Menger manifolds, Sierpinski carpet, Sierpi綽skigasket and 
dendrites, belong to the class 0-'DC'R. 
In [KOU16] Krupski, Omiljanowski and Ungeheuer defined the class 0-C'R 
which is the family of all compact metric spaces X such that the set C R(T) 
is 0-dimensional for a generic map TE C(X, X). They proved the following 
result. 

Theorem 6.2. ([KOU16, Theorem 5.1]) If X is a (compact) polyhedron, 
then XE  0-Cn. Moreover, if X is a compact metric space that admits an 
E -retraction r E : X→P onto a polyhedron P C X for each E > 0 (i.e., 
d(rE, idx) < E and rEIP = idp), then X E 0-C冗．

Now, we will consider the family 0-'D of all compact metric spaces X 
such that all doubly 0-dimensional maps on Xis dense in C(X, X). A map 
T:X→X is said to be a piecewise embedding if there is a countable family 
{ FihEN of closed subsets of X such that X = uiEN凡 andTIFi : Fi→ X 
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is injective for each i E N. Note that if a map T : X→X is a piecewise 
embedding, then T is doubly 0-dimensional because that dim r-1 (x) is a 

countable set for each x E X and 

dimT(A) = max{dimT(A n Fi) I i EN} ::s;〇

for any 0-dimensional closed set A of X (see the countable sum theorem for 
dimension [Eng95, Theorem 3.1.8]). 
A (compact) d-dimensional polyhedron P (d 2:: 1) is called a manifold 
with branch structures if p = ujEJ聞 UM,where 
(1) ｛Mふ Jis a finite family of mutually disjoint closed sets of P such that 
for each j E J, 

Mj = Nj u'Pa LJ{Nj,ala Eみ｝，

where J1 is a finite set, Nj, Nj,a (a E Jj) are d-dimensional manifolds with 
boundaries, and Mj is obtained from Nj by attaching Nj,a (a Eみ） via
locally embedding maps'Pa : N_ん→ 8Njfrom a (d -1)-dimensional (com-
pact) submanifold N_知of8Nj,a into 8Nj, i.e., Mj is the quotient space of 
the topological sum Nj IIaEJj Nj,a under the identifications x ~五（x)for 
X E N知C8Nj,a and the quotient map is denoted by qj : Nj IIaEJj Nj,a→ 
島(=Nj U LJ{qj(Nj,a)I a Eみ｝），
(2) M is ad-dimensional compact manifold in P with 

Mn  U{％（N似） ljEJ,aEJj}=0
and 

(3) p ¥ u｛やa（N知） ljEJ,aEみ｝ isa d-dimensio叫 (non-compact)man-
ifold. 

Remark. All PL-manifolds and some branched manifolds are manifolds 
with branch structures. The associated template of the well-know Lorenz 
attractor is a manifold with branch structures [GL02]. 

Proposition 6.3. Let P be a manifold with branch structures. Then the set 
of all piecewise embedding maps T : P→P is dense in C(P, P). In partic-
ular, P belongs to 0-'DCR. Hence P is a reconstruction space of dynamical 
systems. 

Many dynamical properties of Cantor sets have been studied by many 
authors. Now we consider dynamical properties of higher dimensional fractal 
sets. 
For O ::::; k < n, we will construct a space Lk in the n-simplex Mi。=＜
VO心1,…，％＞ byLefshetz's method (see [Chi96, p.129] and [Lef31]). We 
define a sequence {(M凸）｝iENof compact n-dimensional polyhedra Mi 
with triangulations Li inductively as follows. Let Mo be the n-simplex < 
vo, v1,…,Vn > with the standard simplicial complex structure Lo. Suppose 
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(M凸） hasbeen defined. Let 

Mi+l = LJ{St(v，笙（Li))I Vis a vertex of f3(L?)n 

and 

Li+1=,弘 |Mi+l・
Note that Mi+l may be regarded as a regular neighborhood of the k-skeleton 
of Li. Then {MふENis a decreasing sequence and we obtained a compact 
metric space 

Lk= nMi. 
iEN 
2d+l Note that L5 is a Cantor set andら(=μり iscalled the d-dimensional 

Menger compactum. Also LI is called the Sierpi閲skicarpet. A space X 
is a d-dimensional Menger manifold if X is compact and each point x of 
X has a neighborhood W of x in X such that Wis homeomorphic to the 
d-dimensional Menger compactum μd (for many geometric properties ofμ叫
see [Bes88]). 
Also the Sierpi丘skigasket can be constructed from an equilateral triangle 
by repeated removal of (open) triangular subsets: Start with an equilateral 
triangle. Subdivide it into four smaller congruent equilateral triangles and 
remove the central (open) triangle. Repeat this step with each of the remain-
ing smaller triangles infinitely. So we have a sequence { Xふ碍ofcontinua in 
the plane and the intersection X = niENふ iscalled the Sierpinski gasket. 
A compact connected metric space (=continuum) Xis said to be a den-
drite if X is a 1-dimensional locally connected continuum which contains no 
simple closed curve. 

Proposition 6.4. Let M be ad-dimensional Menger manifold. Then M 
belongs to 0-DCR and hence M is a reconstruction space. More precisely, 
there exists a G0-dense set E'of C(M, M) x C(M，民） suchthat if (T, f) E E', 
then for any S C N of cardinality 2d + 1, If/., f : M →酎 isan embedding T,f 
and so 

IT,f =T幻：（M,T)→（炉，u)
is an embedding. 

We show that the Sierpinski carpet belongs to 0-DCR. In [Why58, p.323], 
Whyburn proved that the Sierpinski carpet is homeomorphic to any S-curve 
X (=plane locally connected 1-dimensional continuum whose complement 
in the plane consists of countably many components with frontiers being 

mutually disjoint simple closed curves｛ふ｝iEN,and moreover, if K 1, K 2 are 
S-curves and Ci, C2 are frontiers of components of complements of Ki, K2 
in the plane記 respectively,then each homeomorphism of Ci onto C2 can 
be extended to a homeomorphism of Ki onto K2. Such simple closed curves 
｛ふ｝iENare called the rational circles of the S-curve X. The union of all 
these circles { Si hEN is called the rational part of X, and the remainder 

X ¥ (LJi;::::o Si) is called the irrational pa廿ofX. 
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Proposition 6.5. Let X = LI c配 bethe Sierpi屈skicarpet. Then X 
belongs to 0-VCR. 

Proposition 6.6. Let X be the Sierpi腿skigasket. Then X belongs to 0-

VCR. 

Proposition 6. 7. Let X be any dendrite. Then X belongs to 0-VCR. 

Finally, we obtain the following consequence. 

Theorem 6.8. Let X be one of the following spaces: PL-manifold, manifold 

with branch structures, Menger manifold, Sierpi麟skicarpet, Sierpinski gasket 
and dendrite. Then X is a reconstruction space of dynamical systems. 

7. APPLICATION: RECONSTRUCTIONS OF ONE-SIDED DYNAMICAL 

SYSTEMS FROM NONLINEAR TIME SERIES ANALYSIS 

There have been attempts to reconstruct dynamical models directly from 

data, and nonlinear methods for the analysis of time series data have been 
extensively investigated. This research is an inverse problem to the numeri-

cal analysis of dynamical systems model, in that it seeks to identify models 

that fit data. 
Time-delay embedding is well-known for nonlinear time series analysis, 

and it is used in several research fields such as physics, meteorology, infor-
matics, neuroscience and so on. In laboratories, experimentalists are striving 
to find principles of phenomenons from a lot of data and they use delay em-

bedding for reconstructing the dynamical systems from experimental time 
series. For smooth dynamical systems on manifolds, the celebrated Takens' 

reconstruction theorem ensures validity of the delay embedding analysis. 
Takens'theorem means that many dynamics theoretically can be recon-

structed by the delay coordinate system, more precisely almost all (two-

sided) dynamical systems can be reconstructed from observation maps (see 
Takens [Tak81, Tak02] and Sauer,Yorke and Casdagli [SYC91]). So Takens' 

theorem is the basis for nonlinear time series analysis and form a bridge 
between the theory of nonlinear differential dynamical systems on smooth 

manifolds and nonlinear time series analysis. 

However, unfortunately the systems may not to be two-sided and more— 
over, they may not be systems on manifolds. Recently we freqently en-
counter a situation where we have to study dynamical systems of spaces 

that cannot have differential structure. In natural sciences and physical 
engineering, there has been an increase in importance of fractal sets and 

more complicated spaces, and also in mathematics, the dynamical prop-
erties and stochastic analysis of such spaces have been studied by many 

authors. Our reconstruction theorem theoretically ensures validity of the 

delay embedding analysis for (topological) dynamical systems on such com-
plicated compact metric spaces, i.e., almost all one-sided dynamical systems 

(X, T) of spaces X belonging to 0-VCR can be reconstructed from observa— 
tion maps f : X→股 inthe sense of "trajectory embedding", i.e., the delay 
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observation map 

(0,1,2,・・・,k) 
I (0,1,2,・・・,k) r v¥  _(O,l,・・・k) 
T,f:（X,T)→ (IT,f (X)，0T,f) 

is a trajectory-embedding for a natural number k 2'. 2 dim X, and so the 
dynamical system 

(I(0,1,2,•••,K) （0,1,2,…，k) 
T,f(X)，叶f)

may reflect many dynamical and topological properties of the original dy-

namical system (X, T). Especially, 

and 

IT,f : ［O(T) ］ ~[O（び閃戸’...,k))]

皿h,f：匝（X,T)~皿（I尉'2,··•,k)(X)，び訂'2,···,k))

X 

↓T 

(0,1,2,...,k) 
I T,f 

一
(0,1,2,・・,k) 
I T,f (X)こ酎＋1

↓ 
(0,1,2,・・,k) o• T,f 

(0,1,2,・・.,k) 

X IT□ I(O,1,2,…，k) 
T,f (X) C記＋1.

In laboratories, experimentalists may understand how the system (X, T) 
will go in the future in the sense of orbital classification from the analysis 
of experimental time series and they understand the geometric properties of 

(X, T) by use of the inverse limit space皿(I(0,1,2,・ ••,K) （0, 1,2,・・ • K) 
T,f(X)，行，f'）． More

precisely, for x, y E X, if one can find a time n E N such that 

l{i ENI JTi(x) = JTi(y),O Si S n}I = 2dimX + 1, 
then TJ(x) = Tj(y) for j ~ n and hence［町（x)]=［町(y)].
For more general case where a d-dimensio叫 compactmetric space X does 

not belong to 0-DCR and (X, T) is any one-sided dynamical system, we have 
an extension (μ叫T')of (X, T), where μdis the d-dimensio叫 Mengercom-
pactum containing X and T :μ d → μ d: is an extension of T (see [Bes88]). 
By Proposition 6.4, there is a possibility to be able to investigate the ap-

proximate properties of the dynamical system (X, T) by use of time-delay 

embedding of the dynamical system (μ叫T').
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