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Convergence to non-minimal quasi-stationary 
distributions for one-dimensional diffusions and its 

application to Kummer diffusions 

Kosuke Yamato (Kyoto University) 

Abstract 

We summarize the following results of the author's recent work [17] without 
proof. For one-dimensional diffusions killed at the boundaries, the domain of at-
traction of non-minimal quasi-stationary distributions is studied. We give a general 
method of reducing the convergence to the tail behavior of the lifetime via a property 
which we call the first hitting uniqueness. We apply the result to Kummer diffu-
sions with negative drifts and clarify the domain of attraction of each non-minimal 
quasi-stationary distribution for the processes. 

1 Introduction 

For a stochastic process X on some state space S with its lifetime〈,aprobability distri-

bution v on S is called a quasi-stationary distribution if 

見［ふ Edx I (> t] = v(dx) for every t > 0, (1.1) 

where巳 denotesthe underlying probability measure of X with its initial distribution v. 

We say that for a quasi-stationary distribution v, a probability measure μ on S belongs 

to the domain of attraction of v if 

叫dx)：＝見［ふ Edx I (> t]―→ v(dx), 
t→OO 

(1.2) 

where the convergence is the weak convergence of probability distributions. 

It is known that for one-dimensional diffusions, one of the following holds (see e.g., [4, 
Chapter 6.2]): 

(i) There are no quasi-stationary distributions. 

(ii) There exists only one quasi-stationary distributions. 

(iii) There exists infinitely many quasi-stationary distributions. 

When the case (iii) holds, quasi-stationary distributions are naturally parametrized by 

an interval (0,入。],where入。 isthe bottom of the spectrum of the generator. Quasi-

stationary distributions are ordered by the stochastic order --< (recall that μ --< v means 

μ(x, oo) ~ v(x, oo) for every x > 0): 

V入--<VN (0 < A1 <入 :S>-a), (1.3) 
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where以 isthe quasi-stationary distribution corresponding to入． Wewill review existence 
and characterization of quasi-stationary distributions in Section 4. 

For the domain of attraction of the minimal quasi-stationary distribution v入。 (wealso 
call the only one quasi-stationary distribution for the case (ii) the minimal quasi-stationary 

distribution) there are many studies (e.g., Mandl [12], Cattiaux et al. [3] and Hening 
and Kolb [6]) and it is shown that the quasi-stationary distribution attracts all initial 
distributions with compact support under some mild assumptions on the process X. In 
contrary to this, there are few studies considering the domain on attraction of non-minimal 
quasi-stationary distributions. The author only knows two papers: Lladser and San 
Martin [11] and Martinez, Picco and San Martin [13]. 

In the present paper, we study the domain of attraction of non-minimal quasi-stationary 
distributions. Before going on to state our main results, let us fix a setting. We concentrate 
on the case when the killing only happens at the first hitting time at the boundaries of 

the state space although the same problem can be considered under more general killing 
(there are some studies considering the case (Steinsaltz and Evans [15] and Kolb and 

Steinsaltz [8])). As we will see in Section 4, for existence of non-minimal quasi-stationary 
distributions, it is necessary that one of the boundaries is natural in the sense of Feller. 
Hence we may assume without loss of generality that the state spece S = (0, oo) and the 
boundary O is regular or exit and the boundary oo is natural. Note that in this case the 
lifetime (= Ti。,where T。denotesthe first hitting time at 0. 

2 Main results 

We state our main results without the proof. For the proof, see [17]. One of our main 
results is a method of reducing the convergence (1.2) to the tail behavior of Ti.。.Fora 
class P of initial distributions, we say that the first hitting uniqueness holds on P if 

the map Pぅμ←→ IP'μ[T。Edt] is injective. (2.1) 

As the class P, we shall take 

Pexp = {μ E P(O, oo) I 1Pμ,[7;。Edt] =入e―入tdt （入＞ O)}, (2.2) 

the set of initial distributions with exponential hitting probabilities, where P(O, oo) de-
notes the set of probability distributions on (0, oo). The reason we consider the class Pexp 
is that if v is a quasi-stationary distribution, the distribution見[T。Edt] is exponentially 

distributed. Indeed,見［T。＞ t+slTc。>t]＝巳[Xt+s> 0| T。>t]=見［ふ＞ O]= 
已[T。>s].

The next theorem gives a general method to reduce the convergence (1.2) to the tail 
behavior of 7;。,providedthat the first hitting uniqueness holds on Pexp: 

Theorem 2.1 ([17, Theorem 1.1]). Let X be a~羞ーdi汀usion on (0, oo) and set 

い(dx)＝已［ふ Edx | T。>t]. (2.3) 
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Assume the first hitting uniqueness holds on Pexp and 

厄 [T。Edt]＝入e―入tdt for some入＞ 0and some以 EP(O, oo). (2.4) 

Then forμ E P(O, oo) and入＞ 0,the following are equivalent: 

(i) limt→00 
瓦[To>t+s]
恥 [To>t]

=e―入8(s>O).

(ii) lP'叫T。Eds]―→ .Xe―入8ds.
t→00 

(iii)いー→以・
t→(X) 

To study concrete sufficient conditions for the convergence (1.2), we introduce the 

class of processes we call Kummer diffusions with negative drifts. A Kummer diffusion 

y(o) = y(a,/3) (a> 0, /3 E股） isa diffusion on [O, oo) stopped upon hitting O whose local 

generator £(0) = £,い） on(0, oo) is 

d2 d 
£,(0) = £,(a,{3) = X—+ （-a+ 1 -f3x);-. (2.5) 

dx2 
紅）．

dx 

Note that the process y(o) = y(a,/3) is also called a radial Ornstein-Uhlenbeck process in 

some literature (see e.g., [2] and [5]). Write 

叫．x):=叩e―,TJO)l (, ~ 0), (2.6) 

which is the Laplace transform of the first hitting time of O for y(o) = y(a,(3）.Then g'Y is 

a 四—eigenfunction for £(0), i.e.,,C(0lg"I = "(g'Y (see e.g., [14, p.292]). We define a Kummer 
呻 usionwith a negative drift Y（"!) =Y(a,(3,"I) ('Y :;:, 0) as the h-transform of y(a,(3）by the 
function g"f, that is, the process y(a,(3，"I) is a diffusion on [O, oo) stopped at O whose local 

generator on (0, oo) is 

If we write 

か＝ ,e(a,/3,,)=上(,C(O)-"/)g,. 
g, 

Y(a,f3,T) ：= v'2Y(aふ），

then the local generator l,(a,/3,,) of y(a,/3,,) on (0, oo) is given as 

l,(a,/3,,) 1 d2, (1 -2a(3x 尻 d

=5戸＋（ 2x ―了＋戸）石'

(2.7) 

(2.8) 

(2.9) 

where祐（x)=え[e―1f。]denotes the Laplace transform of the first hitting time of O for 

y(o) starting from x. When a = 1/2 and'Y = 0, the process y(1/2,/3,D) is the Ornstein-

Uhlenbeck process and, when(3 ＝ 0, the process y(a,o,,) is the Bessel process with a 

negative drift (see e.g., [5]). 

A necessary and sufficient condition for existence of non-minimal quasi-stationary dis-

tributions for general one-dimensional diffusions will be given by Theorem 4.3. Applying 

the theorem to Kummer diffusions with negative drifts, we obtain the following: 
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Proposition 2.2 ([17, Proposition 5.1]). We classify yb) = y(a,f3,,) (a:> 0, f3 E股， 72 
0) into the following five cases by f3 and,: 

Case 1: (3 ＝0, , > 0. 

Case 2: fJ > 0, r ~ 0. 
Case 3: /3 ＜0, r > 0. (2.10) 

Case 1':(3 ＝0, , =0. 

Case 3':(3 ＜0, , =0. 

Then non-minimal quasi-stationary distributions exist if and only if one of the Case 1-3 
in (2.10) holds. 

The following theorem gives a class of initial distributions converging to each non-

minimal quasi-stationary distributions, where L尺I,v) denotes the set of integrable func-
tions on I w.r.t. the measure v. For the definition of quasi-stationary distribution 11入and
the spectral bottom副， seeSection 4. 

Theorem 2.3 ([17, Theorem 1.2]). Let X = Yり） ＝y(a,/3,,) (a > 0, (3 E股， '2:0) 

satisfying one of the Case 1-3 in (2.10) and letμ E P(O,oo). Then the following holds: 

(i) If the Case 1 holds and μ(dx) = p(x)dx for some p EL尺(0,oo), dx) and 

logp(x) ~ (8 -2巧）嘉 (x→oo) (2.11) 

for some O < 8 < 2J予 thenit holds 

µt-—• U入
t→OO 

with入＝ 1-町4E (0,入炉）， where亭＝ 1> 0 is the spectral bottom. 

(ii) If the Case 2 holds and 

μ(x, oo) ~ x―a-,//3＋%（x) (x→oo) 

(2.12) 

(2.13) 

for some O < 8 < a+"(/ /3 and some slowly varying function £ at oo, then it holds 

µt-—→以
t→OO 

(2.14) 

with入=(3（a-5) +'YE (0,入位）， where入屈＝ a(3十"(>0 is the spectral bottom. 

(iii} If the Case 3 holds and 

μ(x,(X)） ～ X―l+1IB+6l(x) （x → (X)） (2.15) 

for some O < 8 < lー ,//3andsome slowly varying function£ at oo. then it holds 

µt —• U入
t→OO 

(2.16) 

with入＝一/3(1-8) + 1 E (0，響）， where入炉＝―/3十 1> 0 is the spectral bottom. 

We will compare Theorem 2.3 with previous studies in Remarks 3.2 and 3.4. 
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3 Comparison with previous studies 

There are many studies on quasi-stationary distributions as we saw in Section 1. As 
far as the author knows, however, most of them studies the minimal quasi-stationary 
distributions and there are only two studies considering the domain of attraction of non-
minimal quasi-stationary distributions; Martinez, Picco and San Martin [13] and Lladser 
and San Martin [11]. 

Firstly, Martinez, Picco and San Martin [13] studied Brownian motions with negative 
drifts and showed convergence to non-minimal quasi-stationary distributions under the 
assumptions on tail behavior of the initial distribution: 

Theorem 3.1 ([13, Theorem 1.1]). Let Bt be a standard Brownian motion and let a> 0 
and consider the process 

Xt = Bt -at. (3.1) 

For an initial distributionμ on (0, oo) assumeμ(dx) = p(x)dx for some p E L1 ((0, oo), dx) 
satisfying 

logp(x) ~ -(a -8)x (x→oo) 

for some 8 E (0, a). Then it holds 

叩XtE dx I Ti。>t]―→以(dx),
t→OO 

with 

(3.2) 

(3.3) 

入＝ （a2 -炉）／2 and 以 (dx)= C入e―axsinh(xぷ亡五）dx (3.4) 

for the normalizing constant C入・

Remark 3.2. When a = 1/2,/3 ＝0 and 1 > 0, the process ~ is a Brownian 
motion with a negative drift -.../四． Hencethis theorem is generalized by (i) of Theorem 
2.3. 

Secondly, Lladser and San Martin [11] studied Ornstein-Uhlenbeck processes: 

Theorem 3.3 ([11, Theorem 1.1]). Let a > 0. Let X be the solution of the following 
SDE: 

dXt = dBt -aXtdt, (3.5) 

where B is a standard Brownian motion. For an initial distributionμ on (0,(X)）assume 
μ(dx) = p(x)dx for some p E L1((0,(X)）， dx) satisfying 

p(x) ~ X―2Hf(x) (x→oo) (3.6) 
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for some c5 E (0, 1) and a slowly varying function C at(X)．Then it holds 

叩XtE dx I Tc。>t]―→以(dx)
t→00 

with 

入＝ a(l-8) and 以 (dx)= C心→(x)e―aぉ2dx

(3.7) 

(3.8) 

for the normalizing constant C入， whereu =ゆ＿入 denotesthe unique solution for the 

following differential equation: 

1 d2 d -―u -a.t-U =—入u,
2 dx2 

lim~ u(x) = 0, 
dx の→＋0

d 
lim....:.:....u(x) = 

X→+o dx 
(x) = 1 (x E (0, oo)). 

Remark 3.4. In Theorem 2.3 (ii), if μ(dx) = p(x)dx for p E £1((0, oo), dx) and 

p(x) rv X―a-,/(3＋D-l£(x) (x→oo), 

(3.9) 

(3.10) 

for a slowly varying function£, then (2.13) holds from Karamata's theorem [1, Proposition 
1.5.8]. Hence (ii) of Theorem 2.3 is an extension of [11, Theorem 1.1]. 

4 Existence and characterization of quasi-stationary distribu-

tions 

Here we review some previous studies on quasi-stationary distributions. 

Let X be a -ifn羞ーdiffusionon I = [O, b) or [O, b] (0 < b ~ oo) stopped at 0. We assume 

巳閏＜ oo]> 0 (x EI¥ {O}, y E [O,b)), (4.1) 

where Ty denotes the first hitting time of y. We also assume that the boundary b is not 

exit in the sense of Feller and that the boundary b is reflecting when it is regular. Note 

that from (4.1), the boundary O is regular or exit. Define a function u =心入 asthe unique 

solution of the following equation: 

d d 

dmds 
u(x)＝入u(x), lim~ u(x) = 0, 

X→+0 

d 
lim-+u(x) = 1 (x E (0, b),入E艮）．

X→+o ds 
（） (4.2) 

Since the boundary O is regular or exit, the function心入 alwaysexists. The operator 

L=一土羞 definesa non-negative definite self-adjoint operator onび(I,dm):= {f: J→ 
股 If1 If l2dm < oo }. Here we assume the Dirichlet boundary condition at O and the 

Neumann boundary condition at b if the boundary b is regular. We denote the infimum 

of the spectrum of L by入。 20. 

When the boundary b is not natural, it is known that there is a unique quasi-stationary 

distribution (noting that Takeda [16] showed the corresponding result for general Markov 

processes with the tightness property): 
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Proposition 4.1 (see e.g., [10, Lemma 2.2, Theorem 4.1]). Assume the boundary b is 
not natural. Then it holds入。＞ 0and the functionゅ＿入。 isstrictly positive and integrable 
w. r. t. dm and, there is a unique quasi-stationary distribution given as 

叫 dx)＝入い。(x)dm(x), IP'v,,.。[T。Edt]＝入。e―入otdt. (4.3) 

Moreover, for every probability distributionμ on (0, b) with a compact support, it holds 

伍ー→以。．
t→OO 

We now assume the boundary b is natural. Then it holds 

and 

lP'ェ広く oo]= 0 (x E (0, b)), 

s(x) -s(O) 

s(M) -s(O) 
=lPx贔 <T0] (0 < x < M < b) 

(see e.g., Ito [7]). Taking limit M →b, we have from (4.5) 

s(x) -s(O) 

s(b) -s(O) 
= lPx[T。=oo].

Hence it follows 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

lP'x[T。<oo]= 1 for some / any x > 0 ⇔ s(b) = oo. (4.8) 

Since見[T。Edt] follows an exponential distribution, by (4.1) it holds IP'v [7;。=oo]< 1 
and therefore IP'』T。=oo]= 0, which implies s(b) = oo. We recall the following good 
properties for the function心入：

Proposition 4.2 ([4, Lemma 6.18]). Suppose the boundary b is natural and s(b) = oo. 
Then for入＞ 0the following hold: 

(i) For O <入こ入。， thefunctionゅ＿入 isstrictly positive on I¥ {O} and 

b 

1=入Jい (x)dm(x).

゜
(4.9) 

(ii} For入＞入。， thefunctionゅ＿入 changesigns on I. 

Now we state a necessary and sufficient condition for existence of non-minimal quasi-
stationary distributions: 
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Theorem 4.3 ([4, Theorem 6.34] and [9, Theorem 3, Appendix I]). Suppose the boundary 
b is natuml. Then a non-minimal quasi-stationary distribution exists if and only if 

入。＞ 0 and s(b) = oo. (4.10) 

This condition is equivalent to 

m(d,b)<oo forsomedE(O,b) and limsups(x)m(x,b)<oo. (4.11) 
X→b 

In this case, a probability measure v is a quasi-stationary distribution if and only if 

v(dx)＝入ゆ→(x)dm(x)＝：以(dx), JP,,入[T。Edt]＝入e→tdt for some O <入<袖

(4.12) 

Here we note that as [4] only dealt with the case the boundary O is regular, the proof 
also works in the c邸 ethe boundary O is exit. 
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