

TITLE:

On the existence of absolutely continuous σ -finite invariant measures for random dynamical systems (Research on the Theory of Random Dynamical Systems and Fractal Geometry)

AUTHOR(S):

Toyokawa, Hisayoshi

CITATION:

Toyokawa, Hisayoshi. On the existence of absolutely continuous o-finite invariant measures for random dynamical systems (Research on the Theory of Random Dynamical Systems and Fractal Geometry). 数理解析研究所講究録 2021, 2176: 132-137

ISSUE DATE: 2021-04

URL: http://hdl.handle.net/2433/264793

RIGHT:

On the existence of absolutely continuous σ -finite invariant measures for random dynamical systems

Hisayoshi Toyokawa

Department of Mathematics, Hokkaido University toyokawa@math.sci.hokudai.ac.jp

1 Introduction

Finding an absolutely continuous finite or σ -finite infinite invariant measure (σ -finite acim, for short) for a given system (described by a transformation or a Markov process) is one of the classical problems in ergodic theory. Thus, there are lots of previous researches for this problem (see for example [A97, DS66, Fog69, HK64, In12, In20, Sch95, Th80] and references therein). However, necessary and sufficient conditions for the existence of a σ -finite acim have still not been well-known. In this paper, for a given Markov operator over a probability space, we give some equivalent conditions for the existence of a σ -finite acim with certain support property. One of the equivalent conditions is weak almost periodicity of the jump operator with respect to some sweep-out set (which implies the Jacobs-de Leeuw-Glicksberg splitting theorem [E06]). Here the method of jump operators is generalization of the method of jump transformations established in [Sch95, Th80]. Because we consider general Markov operators, we can apply our setting not only to deterministic systems but also to random dynamical systems represented by null-preserving transition probabilities. Our result is applicable to certain one-dimensional random dynamical system arising from intermittent Markov maps with uniformly contractive part.

To be more precise, we consider a probability space (X, \mathscr{F}, m) and a Markov operator P defined on $L^1 = L^1(X, \mathscr{F}, m)$ into itself, i.e. P satisfies $Pf \ge 0$ and $\|Pf\|_1 = \|f\|_1$ whenever $f \in L^1_+ = \{g \in L^1 : g \ge 0\}$. The adjoint operator of P is denoted by P^* which is defined on L^∞ . Then a finite (resp. σ -finite) measure μ on (X, \mathscr{F}) is said to be a finite (resp. σ -finite) acim if μ is absolutely continuous w.r.t. m ($\mu \ll m$) and the Radon-Nikodym derivative $d\mu/dm$ is a (not identically zero) fixed point of P. Notice that the domain of P can be extended to the set of all non-negative measurable functions and the definition of a σ -finite acim makes sense even if μ is a σ -finite infinite measure. When we have a null-preserving transition probability $\mathbb{P}(x, A)$ for $x \in X$ and $A \in \mathscr{F}$ (i.e., $\mathbb{P}(x, N) = 0$ for a.e. x if m(N) = 0), which describes our system, the corresponding

Markov operator P is given by,

$$\int_A Pfdm = \int_X f(x)\mathbb{P}(x,A)dm(x)$$

for each $f \in L^1$ and $A \in \mathscr{F}$. If we consider a deterministic system, given by a nonsingular transformation $T: X \to X$ (i.e., $m \circ T^{-1} \ll m$), the corresponding transition probability is $\mathbb{P}(x, A) = \mathbb{1}_{T^{-1}A}(x)$. Then the Markov operator associated to a given non-singular transformation is called the Perron-Frobenius operator P given by

$$\int_X Pf \cdot g dm = \int_X f \cdot g \circ T dm$$

for $f \in L^1$ and $g \in L^{\infty}$. We will show the existence of a σ -finite acim for a Markov operator in the next section. That is, we can apply our results to both non-singular transformations and null-preserving transition probabilities.

2 Main Result

In this section, we present our main results. Our results Theorem 2.2 and Theorem 2.6 give equivalent conditions for the existence of a finite or σ -finite acim with the maximal support condition for a given Markov operator. Here, "the maximal support condition" means the support of the invariant measure contains a proper sweep-out set (see Definition 2.1). That is, almost all trajectories under the process will eventually concentrate on the support of the invariant measure. Throughout this section $\operatorname{supp}\mu$ denotes the support of μ , i.e., $\operatorname{supp}\mu = \{\frac{d\mu}{dm} > 0\}$.

In order to state Theorem 2.2, we need the following definition of a sweep-out set.

Definition 2.1 (A sweep-out set). For a Markov operator over $L^1(X, \mathscr{F}, m)$, a set $E \in \mathscr{F}$ is called a (P-) sweep-out set (w.r.t. m) if $\lim_{n\to\infty} (P^*I_{E^c})^n 1_X(x) = 0$ m-a.e. $x \in X$ where I_{E^c} denotes the restriction operator on E^c .

Recall that a Markov operator P is called *weakly almost periodic* if for any $f \in L^1$ the sequence of functions $\{P^n f\}$ is weakly precompact. In the following Theorem 2.2, weak almost periodicity of a Markov operator plays a key role as an equivalent condition for the existence of a finite acim with the maximal support condition.

Theorem 2.2 ([T]). Let P be a Markov operator over a probability space (X, \mathscr{F}, m) . Then the followings are equivalent.

- 1. There exists a finite acim μ for P s.t. supp μ is a sweep-out set;
- 2. $\{P^n 1_X\}_n$ is weakly precompact;
- 3. P is weakly almost periodic.

Remark 2.3. (1) The condition 1 in Theorem 2.2 can be paraphrased:

1'. There exists a finite acim μ for P s.t. $\lim_{n \to \infty} P^{*n} 1_{\text{supp}\mu}(x) = 1$ m-a.e. $x \in X$.

(2) The condition in 1 "supp μ is a sweep-out set" is a necessary condition of ergodicity of (P,m), where (P,m) is called ergodic if $E \in \mathscr{F}$ with $P^*1_E = 1_E$ implies $E = \emptyset$ or X (mod m).

We prepare the methods of inducing and jump to state Theorem 2.6, equivalent conditions for the existence of a σ -finite acim. The following definition of the induced operator or the jump operator is the generalization of the induced transformation or the jump transformation (see [A97, Fog69, In20, Sch95, Th80, T] for details).

Definition 2.4 (The induced operator/The jump operator). For a Markov operator P with a sweep-out set E, the induced operator P_E is defined by

$$P_E = I_E P \sum_{n \ge 0} \left(I_{E^c} P \right)^n,$$

and the jump operator \hat{P}_E is defined by

$$\hat{P}_E = PI_E \sum_{n \ge 0} \left(PI_{E^c} \right)^n.$$

Remark 2.5. (1) The induced operator P_E and the jump operator \hat{P}_E are also Markov operators over $L^1(X, \mathscr{F}, m)$ as long as E is sweep-out.

(2) When P is the Perron-Frobenius operator for some non-singular transformation, the restricted induced operator $P_E I_E$ (defined on $L^1(E, \mathscr{F} \cap E, m \mid_E)$) and the jump operator \hat{P}_E are the Perron-Frobenius operators corresponding to the induced transformation and the jump transformation, respectively.

The following theorem give equivalent conditions for the existence of a σ -finite (it might be infinite) acim with the maximal support condition. Equivalent conditions are characterized by the methods of induced operator and jump operator respectively.

Theorem 2.6 ([T]). Let P be a Markov operator over a probability space (X, \mathscr{F}, m) . Then the followings are equivalent.

- There exists a σ-finite acim µ for P s.t. suppµ contains a P-sweep-out set A w.r.t. m with µ(A) < ∞;
- 2. There exists a sweep-out set E s.t. the induced operator P_E admits a finite acim μ_E with $\operatorname{supp}\mu_E = E \pmod{m}$;
- 3. There exists a sweep-out set E s.t. the jump operator \hat{P}_E is weakly almost periodic.

Remark 2.7. We can apply Theorem 2.2 to the condition 3 in Theorem 2.6. That is, we only have to check weak precompactness of $\{\hat{P}_E^n \mathbf{1}_X\}_n$.

3 Example of Random Dynamical System

In this section, we apply Theorem 2.6 to certain one-dimensional random dynamical system. Our random dynamical system is random iteration of non-uniformly expanding maps which have uniformly contractive part on average. Throughout this section, our phase space $(X, \mathscr{B}(X), \lambda)$ is the unit interval with the Lebesgue measure.

Let I be an at most countable non-empty subset of \mathbb{N} and for each $i \in I$, J_i be also an at most countable non-empty subset of \mathbb{N} . We consider $\{T_i : i \in I\}$ a family of piecewise linear Markov maps on the unit interval X = [0, 1] with the Lebesgue measure λ satisfying:

(a-1) $T_i |_{X_n} \colon X_n \to X_{n-1}$ for $n \ge 2$ and $i \in I$, given by

$$T_i \mid_{X_n} (x) = \frac{n+1}{n-1}x - \frac{1}{n(n-1)};$$

(a-2) $T_i \mid_{X_1} : X_1 \to \bigcup_{k \in J_i} X_k$, a surjective and monotonically increasing map which is piecewise linear in the sense

$$T_i \mid_{X_1}' = \frac{\sum_{k \in J_i} \lambda(X_k)}{\lambda(X_1)}$$

whenever the derivative can be defined, for each $i \in I$

where $X_n = \left(\frac{1}{n+1}, \frac{1}{n}\right)$ is the cylinder of rank one for $n \ge 1$. Then the point 0 is the common fixed point for all T_i where the derivative of all T_i is one. We call a family of transformations $\{T_i : i \in I\}$ with the above conditions (a-1) and (a-2) piecewise linear intermittent Markov maps (with index $\{J_i\}_{i\in I}$).

By using piecewise linear intermittent Markov maps $\{T_i : i \in I\}$, we define our random dynamical system. For a given probability vector $\{p_i\}_{i \in I}$ (i.e., $p_i \ge 0$ and $\sum_{i \in I} p_i = 1$), the random iteration of piecewise linear intermittent Markov maps of $\{T_i, p_i : i \in I\}$ is given by the following transition probability:

$$\mathbb{P}(x,E) = \sum_{i \in I} p_i \mathbb{1}_E(T_i x) \quad (x \in X, \ E \in \mathscr{B}(X)).$$
(3.1)

That is, each transformation T_i will be chosen with probability p_i and the selected transformation will be applied to the system. For the transition probability given by (3.1), we can define the Markov operator P on $L^1 = L^1(X, \mathcal{B}, \lambda)$ since each transformation is non-singular w.r.t. λ , which is determined by

$$\int_A Pfd\lambda = \int_X f(x)\mathbb{P}(x,A)dm(x) \quad (A\in\mathscr{B}(X),\ f\in L^1).$$

Equivalently, the Markov operator associated to this random dynamical system is given by $P = \sum_{i \in I} p_i P_i$ where each P_i is the Perron-Frobenius operator corresponding to j

$$\sup_{\mathbf{X}\setminus U_0} \sum_{i\in I} \frac{p_i}{|T_i'|}(x) < 1$$
(3.2)

where U_0 is a small neighborhood of the indifferent fixed point 0. Indeed, if $1 \notin J_i$ for any $i \in I$ then the average of derivatives of $\{T_i, p_i : i \in I\}$ is obviously strictly less than one on X_1 .

Then by Theorem 2.6 we can show the existence of a σ -finite acim for random iterations of piecewise linear intermittent Markov maps:

Proposition 3.1. Any random iteration of piecewise linear intermittent Markov maps $\{T_i, p_i : i \in I\}$ admits a σ -finite acim.

Remark 3.2. If $\{T_i, p_i : i \in I\}$ satisfies expanding property on average in (3.2) sense, then the existence of a σ -finite acim was already shown in [In20] via the method of inducing. However, for random iterations of non-uniformly expanding maps which do not satisfy expanding property on average, statistical properties including the existence of a σ -finite acim are not well-studied. Therefore, our result could be interpreted as the first step toward the direction of non-uniformly expanding random maps with uniformly contractive part.

References

- [A97] J. Aaronson, An introduction to infinite ergodic theory, Mathematical Surveys and Monographs, 50. American Mathematical Society, (1997).
- [DS66] D. W. Dean, and L. Sucheston, On invariant measures for operators, Z. Wahrscheinlichkeitstheorie verw. Geb., 6 (1966), 1–9.
- [E06] E. Y. Emel'yanov, Non-spectral Asymptotic Analysis of One-Parameter Operator Semigroups, Operator Theory Advances and Applications, Vol.173 (2006).
- [Fog69] S. R. Foguel, The ergodic theory of Markov processes, Van Nostrand Mathematical Studies, No. 21. Van Nostrand Reinhold Co., New York-Toronto, Ont.-London, (1969).
- [HK64] A. Hajian, and S. Kakutani, Weakly wandering sets and invariant measures, *Trans. Amer. Math. Soc.*, **110** (1964), 136–151.
- [In12] T. Inoue, Invariant measures for position dependent random maps with continuous random parameters, *Studia Math.*, **208** (2012), 11–29.
- [In20] T. Inoue, First return maps of random map and invariant measures, Nonlinearity, 33 (2020), 249–275.

- [Sch95] F. Schweiger, Ergodic theory of fibred systems and metric number theory, Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, (1995).
- [Th80] M. Thaler, Estimates of the invariant densities of endomorphisms with indifferent fixed points, *Israel J. Math.*, **37** (1980), 303–314.
- [T] H. Toyokawa, σ -finite invariant densities for eventually conservative Markov operators, *Discrete Continuous Dynam. Systems A*, to appear.