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1 Introduction 

Finding an absolutely continuous finite or 四—finite infinite invariant measure(び-finite

acim, for short) for a given system (described by a transformation or a Markov process) is 

one of the classical problems in ergodic theory. Thus, there are lots of previous researches 

for this problem (see for example [A97, D866, Fog69, HK64, In12, In20, Sch95, Th80] 

and references therein). However, necessary and sufficient conditions for the existence 

of a a-ーfiniteacim have still not been well-known. In this paper, for a given Markov 

operator over a probability space, we give some equivalent conditions for the existence 

of aびーfiniteacim with certain support property. One of the equivalent conditions is 

weak almost periodicity of the jump operator with respect to some sweep-out set (which 

implies the Jacobs-de Leeuw-Glicksberg splitting theorem [E06]). Here the method of 

jump operators is generalization of the method of jump transformations established 

in [Sch95, Th80]. Because we consider general Markov operators, we can apply our 

setting not only to deterministic systems but also to random dynamical systems rep-

resented by null-preserving transition probabilities. Our result is applicable to certain 

one-dimensional random dynamical system arising from intermittent Markov maps with 

uniformly contractive part. 

To be more precise, we consider a probability space (X，ff, m) and a Markov operator 
P defined on L1 = L1(X芝，m)into itself, i.e, P satisfies Pf 2 0 and IIPJll1 = 111111 
whenever f E Lt = {g E L1 : g 2 O}. The adjoint operator of P is denoted by P* 
which is defined on L00. Then a finite (resp.び-finite)measureμ on (X芝） issaid to 
be a finite (resp. a--finite) acim ifμ is absolutely continuous w.r.t. m (μ ≪ m) and the 
Radon-Nikodym derivative dμ/dm is a (not identically zero) fixed point of P. Notice 

that the domain of P can be extended to the set of all non-negative measurable functions 

and the definition of a a-ーfiniteacim makes sense even ifμ is a a--finite infinite measure. 

When we have a null-preserving transition probability IP(x, A) for x E X and A E ff 
(i.e.，IP(x, N) = 0 for a.e. x if m(N) = 0), which describes our system, the corresponding 
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Markov operator P is given by, 

i Pfdm = L f(x)IP'(x, A)dm(x) 
for each f E L1 and A E ff. If we consider a deterministic system, given by a non-
singular transformation T : X→X (i.e., mo r-1 ≪ m), the corresponding transition 
probability is IP'(x, A) = lr-1A(x). Then the Markov operator associated to a given 

non-singular transformation is called the Perron-Frobenius operator P given by 

LP  f ・ gdm = L f ・go Tdm 

for f E L1皿 dg E L00. We will show the existence of a a-finite acim for a Markov 

operator in the next section. That is, we can apply our results to both non-singular 

transformations and null-preserving transition probabilities. 

2 Main Result 

In this section, we present our main results. Our results Theorem 2.2 and Theorem 

2.6 give equivalent conditions for the existence of a finite or a--finite acim with the 

m訟 imalsupport condition for a given Markov operator. Here, "the maximal support 

condition" means the support of the invariant measure contains a proper sweep-out set 

(see Definition 2.1). That is, almost all trajectories under the process will eventually 

concentrate on the support of the invariant measure. Throughout this section suppμ 

denotes the support ofμ, i.e., suppμ= { dμ dm > O}. 
In order to state Theorem 2.2, we need the following definition of a sweep-out set. 

Definition 2.1 (A sweep-out set). For a Markov operator overが(X芝，m),a set 
EE§ is called a (P-) sweep-out set (w.r.t. m) if limn→oo (P* I匹tlx(x) = 0 m-a.e. 
x E X where fee denotes the restriction operator on E竺

Recall that a Markov operator P is called weakly almost periodic if for any f E L1 

the sequence of functions { P汀｝ isweakly precompact. In the following Theorem 2.2, 
weak almost periodicity of a Markov operator plays a key role as an equivalent condition 

for the existence of a finite acim with the maximal support condition. 

Theorem 2.2 ([Tl). Let P be a Markov operator over a probability space (X，§,m). 
Then the followings are equivalent. 

1. There exists a finite acim μ for P s. t. suppμ is a sweep-out set; 

2. {P吋x}n is weakly precompact; 

3. P is weakly almost periodic. 

Remark 2.3. (1) The condition 1 in Theorem 2.2 can be paraphrased: 
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1'. There exists a finite acim μ for P s. t. nl~閃圧lsuppµ(x) = 1 m-a.e. x EX. 

(2) The condition in 1 "suppμ is a sweep-out set" is a necessary condition of ergod-

icity of (P,m), where (P,m) is called ergodic if EE  ff with P*lE = lE implies E = 0 
or X (mod m). 

We prepare the methods of inducing and jump to state Theorem 2.6, equivalent 

conditions for the existence of a a-finite acim. The following definition of the induced 

operator or the jump operator is the generalization of the induced transformation or the 

jump transformation (see [A97, Fog69, ln20, Sch95, Th80, T] for details). 

Definition 2.4 (The induced operator/The jump operator). For a Markov operator P 

with a sweep-out set E, the induced operator PE is defined by 

辟＝ JEPL(JEcP)凡
n2".0 

and the jump operator程 isdefined by 

凡＝ PJEL (PJEc)叫
n2'.0 

Remark 2.5. (1) The induced operator PE and the jump operator程 arealso Markov 
operators over L1(X，§, m) as long as E is sweep-out. 

(2) When P is the Perron-Frobenius operator for some non-singular transformation, 

the restricted induced operator凡IE(defined onが（E,§nE,mIE)) and the jump oper-
ator程 arethe Perron-Frobenius operators corresponding to the induced transformation 
and the jump transformation, respectively. 

The following theorem give equivalent conditions for the existence of a び—finite (it 

might be infinite) acim with the maximal support condition. Equivalent conditions are 

characterized by the methods of induced operator and jump operator respectively. 

Theorem 2.6 ([Tl). Let P be a Markov operator over a probability space (X，§,m). 
Then the followings are equivalent. 

1. There exists a a-finite acim μ for P s.t. suppμ contains a P-sweep-out set A w.r.t. 
m with μ(A) < oo; 

2. There exists a sweep-out set E s. t. the induced operator PE admits a finite acim 

咋 withsuppμE = E (mod m); 

3. There exists a sweep-out set E s. t. the jump operator凡 isweakly almost periodic. 

Remark 2.7. We can apply Theorem鱈 tothe condition 3 in Theorem 2. 6. That is, 

we only have to check weak precompactness of｛腔lx}か
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3 Example of Random Dynamical System 

In this section, we apply Theorem 2.6 to certain one-dimensional random dynamical 

system. Our random dynamical system is random iteration of non-uniformly expanding 

maps which have uniformly contractive part on average. Throughout this section, our 

phase space (X夏 (X)，入） isthe unit interval with the Lebesgue measure. 
Let I be an at most countable non-empty subset of N and for each i E I, Ji be 

also an at most countable non-empty subset of N. We consider {Ti : i EI} a family of 
piecewise linear Markov maps on the unit interval X = [O, 1] with the Lebesgue measure 
入satisfying:

(a-1) Ti lxn: Xn→Xn-l for n 2: 2 and i EI, given by 

n+l 1 
Ti lxn (x) = ~x-~; 

n-C n(n-l)' 

→ a surjective and monotonically increasing map which is (a-2) Ti lx1: X1 ---+ ukEJ;ふ， d
piecewise linear in the sense 

r; I'x1= 
江 EJ;入（ふ）
入(X1)

whenever the derivative can be defined, for each i E I 

where Xn =（占¼] is the cylinder of rank one for n ~ l. Then the point O is the 
common fixed point for all T, where the derivative of all T, is one. We call a family of 

transformations {T, : i E I} with the above conditions (a-1) and (a-2) piecewise linea'r 

inteTmittent M aTkov maps (with index { JふEl).
By using piecewise linear intermittent Markov maps {T, : i E I}, we define our 

random dynamical system. For a given probability vector {pふEI(i.e., Pi ~ 0 and 
LiEJPi = 1), the mndom itemtion of piecewise lineaT inteTmittent Ma,,-kov maps of 
{Ti,Pi : i EI} is given by the following transition probability: 

叩，E）＝LP心 (T;叫 (xEX, EE勿(X)). (3.1) 
iEI 

That is, each transformation Ti will be chosen with probability Pi and the selected trans-

formation will be applied to the system. For the transition probability given by (3.1), 

we can define the Markov operator P on じ＝じ(X没~,入） since each transformation is 
non-singular w.r.t.入， whichis determined by 

iPfd入＝LJ(x)lP'(x, A)dm(x) (A E妥(X),f ELり．
Equivalently, the Markov operator associated to this random dynamical system is given 

by P = I:iEI Pi?; where each Pi is the Perron—Frobenius operator corresponding to 
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Ti. We remark that the random iteration of piecewise linear intermittent Markov maps 

{TぃPi: i E I} may not satisfy expanding property on average in the following sense: 
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(3.2) 

where Ui。isa small neighborhood of the indifferent fixed point 0. Indeed, if 1 (/_ Ji for 
any i EI then the average of derivatives of {Ti,Pi : i EI} is obviously strictly less than 

one on X1. 

Then by Theorem 2.6 we can show the existence of a び—finite acim for random 

iterations of piecewise linear intermittent Markov maps: 

Proposition 3.1. Any random iteration of piecewise linear intermittent Markov maps 

{Ti,Pi : i EI} admits au-finite acim. 

Remark 3.2. If {11,Pi : i E I} satisfies expanding pmpe廿yon average in (3.2) sense, 

then the existence of a び—finite acim was already shown in [In20} via the method of 
inducing. However, for random iterations of non-uniformly expanding maps which do 

not satisfy expanding pmpe汎yon average, statistical pmperties including the existence 

of a u-finite acim are not well-studied. Therefore, our result could be interpreted as the 

first step toward the direction of non-uniformly expanding random maps with uniformly 

contractive part. 
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