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Estimate of martingale dimension revisited 
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Abstract 

The concept of martingale dimension is defined for symmetric diffusion processes 
and is interpreted as the multiplicity of filtration. However, if the underlying space 
is a fractal-like set, then estimating the martingale dimension quantitatively is a 
difficult problem. To date, the only known nontrivial estimates have been those for 
canonical diffusions on a class of self-similar fractals. This paper surveys existing 
results and discusses more-general situations. 

1 Introduction 

To date, various concepts of dimensionality have been introduced in diverse fields of 

analysis. The Hausdorff dimension dH is the most familiar and is related strongly to the 

geometry of the underlying space. The spectral dimension ds is a more analytic concept 

and appears in on-diagonal estimates of the fundamental solutions of the heat equations. 

The martingale dimension dm is associated with diffusion processes and indicates the 

multiplicity of filtration. We begin by explaining the dimensions ds and心 moreprecisely 

in the framework of Dirichlet forms. 

Let K be a locally compact separable metric space and letμ be a er-finite Borel measure 

on K with full support. Let Cc(K) denote the set of all real-valued functions on K with 

compact support. This is regarded as a normed space with the supremum norm. Suppose 

that we紅 egiven a strongly local regular Dirichlet form (£, F) onび(K,μ). In other 

words, F is a dense subspace ofび(K,μ),and£: F x F→恥 isa non-negative definite 

symmetric bilinear form that satisfies the following: 

• Closedness: If a sequence {fn}nEN in F and f Eび(K,μ) satisfy 

Fm sup £(Im -fn, fm -f砂＝ 0 and lim ||fn -f||戸 (K,μ)=0, 
N→00 m,n?_N,- --- -・ n→00 

then it holds that f E F and limn→oo E(fn -f, fn -f) = 0. 

This study was supported by JSPS KAKENHI Grant Number JP19H00643. 
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• Markov property: For any f E F, j := max{O, min{l, f}} belongs to F and satisfies 

E(j, f) ：：：：：： E(f, f). 

• Regularity: The space FnCc(K) is dense in both F and Cc(K). Here, the topology 

of Fis induced by the norm IIJIIF := (E(f, f) + llflll2(K,μ,))112. 

• Strong locality: If f, g E F and a E股 satisfyf ・ (g-a)= 0 μ-a.e., then E(f, g) = 0. 

Then, there exists uniquely a non-positive self-adjoint operator L onび(K,μ) such that 

the domain of ✓コ： is equal to F and 

E(f,g) = 1（ごf)（yCf,g)dμ for every f, g E F. 
K 

By letting Tt = etL fort ~ 0, {Tt}t;:,0 £ t t〉。 armsa strongly continuous contraction semigroup 
onび(K,μ). This extends to a semigroup on L 00 (K, μ) in the natural way, which is 

denoted using the same symbol. The Markov property of(£, F) induces that of {Tt}佗 o;
that is, 0さf::; 1 μ-a.e. implies that O ::; Ttf ::; 1 μ-a.e. for every t ~ 0. 

For a subset A of K, we define the 1-capacity Cap1(A) of A by 

Cap1 (A) =inf{£(!, f) + llf lli2(K,μ) I f E F, fミ1μ-a.e. on a neighborhood of A}. 

A function f of K is called quasi-continuous if there exists for every c > 0 an open set U 

of K such that Cap1(U) < c and flK¥U is continuous. A set AC  K with Cap1(A) = 0 
is called an exceptional set. A statement depending on each point x of K is said to hold 
quasi-everywhere (q.e.) if there exists an exceptional set N such that the statement holds 

for all x E K ¥ N. 
From the general theory of Dirichlet forms [6], (£, F) induces a diffusion process 

似｝t::>oon K with no killing inside. More precisely,｛ふ｝t::>ois defined on a filtered 
probability space (n, Foo, P, {Px}xEK△, ｛巧｝t::>o).Here, K△ :=KU｛△｝ is the one-point 
compactification of Kand {Ft}t;:,0 is the minimum complete admissible filtration of the 
process {X如 0. For any t > 0 and a bounded Borel function f on K, it holds that 
Ex[f（ふ）］ isa quasi-continuous modification of刀f(x).Here, Ex denotes the integration 
with respect to Px. 

If there exists an integral density (called the transition density) Pt(·,•) of Tt with 
respect to μ and, for some ds > 0 and c > 0, 

c―lt心／2::; Pt(.T,.T)::; ct心／2, x EK, t E (0, l], 

then we call d8 the spectral dimension associated with (£, F) or｛ふ｝t::>O・
In the following, we may assume without loss of generality that there exist shift op-

erators 0t : n→n for t ~ 0 that satisfy Xs o 0t = Xs+t for all s ~ 0. The lifetime of 

{X心）｝t::>ois denoted byく(w).
A [-oo, +oo]-valued function At(w) (tミ0,w E 0) is called an additive functional if 

• for each t ~ 0, At is Fcmeasurable; and 
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• there exist a set A E F00 and an exceptional set N C K such that Px(A) = 1 for 
all x E K ¥ N and 0tA C A for all t > O; moreover, for each w E A, A.(w) is right 

continuous and has the left limit on [O, ((w)), A0(w) = 0, A.(w) E賊 on[O, ((w)), 
A.(w) = Ac(w)(w) on [((w), oo), and 

At+s(w) = A.(w) + At(0.w) fort, s ~ 0. 

The aforementioned set A is called a defining set of A. Two additive functionals A and 

A'are identified if, for any t > 0, Px(At = Aり＝ 1for q.e. x. 

Let M denote the space of all martingale additive functionals with finite energy. That 

is, M is the totality of additive functionals M = { Mt}t::>o such that 

• M is a real-valued additive functional; 

• M.(w) is right continuous and has a left limit on [O, oo) for win a defining set of M; 

• Ex[Ml] < oo and Ex[Mt] = 0 for all t > 0 and q.e. x EK; and 

• the total energy e(M) of M, namely 

e(M) ＝sup]J止[Ml]μ(dx), 
t>0 2t k 

is finite. 

Then, the martingale dimension1心 (withrespect ~o (E,f")) is defined in [10] as t~e 

smallest number D such that there exist M(l),..., M(D) E M such that for every M E M 
there exist劃 Eび(K,μ) satisfying 

D 

Mt ＝区（砂 •M(J))t, tミ0. (1.1) 
J=l 

Here, cp • M is the stochastic integral in the sense of martingale additive functionals; see 

[6, Section 5.6] for its precise definition. Here we mention only that if cp E Cc(K), then it 

is given by the standard stochastic integral 

位 •M)t = 1t cp（ふ）dMs・

゜If there are no integers D satisfying the above, then dm is defined as +oo. 
Other than the case where the Dirichlet form is given by the L2-inner product of the 

"gradient of functions" with respect to a "Riemannian metric" with explicit information, 

determining the value of dm is a difficult problem in general. Martingale dimensions can be 
interpreted analytically as the "maximal effective dimensions of the virtual (co-)tangent 

spaces of K;" see [12, 13] for further details. 

1 Precisely speaking, this is called the "AF-martingale dimension" in [10], where AF represents "ad-
ditive functional." The concept of martingale dimension can be defined for general (not necessarily 
symmetric) diffusion processes in a similar but slightly different manner (cf. [21]), which we do not 
discuss here. 
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Figure 1: d-dirnensional Sierpinski gaskets (d = 2, 3) 

2 Survey of previous results 

In this section, we survey some known results for the dimensions in typical examples. 

Example 1 (Euclidean spaces). Let K =配 andμ be the d-dimensional Lebesgue 
measure. Define 

1 
£(!, g)：＝ぅJ艮d（▽f，▽g)dμ, f,g E F:＝が（配），

where H1（配） denotesthe first-order L2-Sobolev space on配． Thediffusion process 

｛ふ｝t2oassociated with (£, F) onび（記μ)is nothing but d-dimensional Brownian mo-
tion. The transition density Pt (x, y) is expressed explicitly as 

叫x,y)=~exp( Ix -yl2 (2冠）d/2exp(-~)-
In this case,向＝ ds= d, and furthermore dm = d. Indeed, we can take d as D and the 
jth component of Xt -X。asM戸forj = 1,..., d in (1. 1). 

Example 2 (Sierpinski gaskets). For d 2'.'. 2, the d-dimensional Sierpinski gasket K (Fig-
ure 1) is defined as the unique nonempty compact subset of配 suchthat 

d+l 

K=LJ切(K),
j=l 

where叱：配→配 (j= 1,..., d + 1) is given by叱(x)= (x＋の）／2and a1,..., ad+l E配
are given points that are affinely independent. The Hausdorff dimension dH is equal 
to log(d + 1) / log 2. There exists a canonical diffusion process ("Brownian motion") 

{X如 0[7, 17, 5] and the associated Dirichlet form(£, F) onび(K,μ),whereμ is the nor-
malized Hausdorff measure on K. Also, the continuous transition density Pt(x, y) exists 
and satisfies the sub-Gaussian estimate [5]: 

Pt(x, y) :::c::: ~ exp(— (|x- ye［加／d8)口贔1),tE(0,1], (2.1) 
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Figure 2: Examples of nested fractals 
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Figure 3: d-dimensional standard Sierpinski carpets (d = 2, 3) 

where ds = 2 log(d + 3)/log(d + 1) E (1, min{2, dH}). In particular, the inequality ds < 2 
implies that the process { X如 0is point recurrent. The martingale dimension dm was 

proved to be 1 in [18], which is the first nontrivial result in the problem of determining 

dm. 

Example 3 (Nested fractals). Nested fractals [20] are self-similar sets in Euclidean spaces 

with some good symmetries. Sierpinski gaskets are typical examples of nested fractals. 

See Figure 2 for other examples. In particular, they are finitely ramified, that is, they 

become disconnected by deleting appropriate finite points. The Hausdorff dimension dH 

is calculated easily from the general theory. As in Example 2, Brownian motion [20] 

and the associated Dirichlet form exist, and transition density exists and satisfies the 

quantitative estimate (2.1) with different constant ds E (1, min{2,心｝） （［16], see also [1]). 
The martingale dimension dm has been proved to be 1 in [9]. 

Example 4 (Sierpinski carpets). Sierpinski carpets are typical examples of self-similar 

fractals that are not finitely ramified, that is, infinitely ramified. See Figure 3. As in 

the previous examples, the Hausdorff dimension dH is calculated easily. Brownian motion 

exists [2, 19, 3, 4] and its transition density satisfies the estimate (2.1) with different 

constant ds E (1, dH), although the exact value of ds is unknown [2, 3]. It was proved in 
[11] that the martingale dimension dm satisfies the inequality 

1さdm::; ds. (2.2) 

In particular, if出く 2(that is, the process is point recurrent), then dm = 1 because dm 
is an integer or +(X)． 
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Note that the estimate (2.2) of dm is valid also in Examples 2 and 3. So far, nontrivial 
estimates of dm have been shown for only self-similar Dirichlet forms on self-similar sets 
as in the examples above. In the next section, we provide a nontrivial result about dm for 
more-general (not necessarily self-similar) spaces. 

3 Main result 

As before, let K be a locally compact separable metric space and let μ be a a-finite 
Borel measure on K with full support. Suppose that we are given a strongly local regular 

Dirichlet form (£, F) onび(K,μ). We introduce some more concepts associated with 
(£, F). For an open set U c K and h E F, we say that h is harmonic on U if 

E(h,h) = inf{E(f,f) If E F, f = h μ-a.e. on U}. 

For a Borel set V and an open set U in K with V C U, we define the relative capacity 
Cap(V, U) by 

Cap(V, U) = inf { E(g, g) 
g E. F, g -= 1 μ-a.e. o~~,a ~~eighborhood of V, ¥. 
and g = 0 μ-a.e. on k ¥ u } 

For f E F, we define the energy measure VJ of f as follows [6, Section 3.2]. If f is 
bounded, then町 isa positive finite Borel measure on K that is characterized by 

J cpd町 ＝ 2£(!伶 f)-E(cp,ド),cpE F n Cc(K). 
K 

For general f E F, the measure v1 is defined as町(A):= limn→oo町れ(A)for Borel sets 
A of K, where fn = max{-n, min{f, n }}. A Borel measure v on K is called a minimal 
energy-dominant measure [10] if 

(i) for every f E F, v1 ≪ v; 

(ii) if another a-finite Borel measure v'on K satisfies condition (i) with v replaced by 
v', then v ≪ゾ．

Such a measure always exists [10, Proposition 2. 7] and we assume it is fixed. We introduce 
the following assumption. 

Assumption 5. (i) There exists a family of open subsets｛叩｝kEN,nENof K such that 
the following hold. 

• For each n,｛叩｝kENare disjoint and (μ + v) (K ¥ LJkEN叩） ＝0. 

{ut+l)hEN is an essential subdivision of {ut)hEN in • For each n, the family { U 

the sense that, for each k, U 
(n+1) （n) 'UtT') C u~;') for some k'. 

• The a-field generated by {ut); k EN, n E N}U{all (μ+v)-null sets} includes 
the Borel a-field of K. 
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Figure 4: Examples of random recursive Sierpinski gaskets 

(ii) There exist a positive constant C and a compact subset v?) of ut) for each n and 

k, such that, for every n and k, 

• vh(Ut)) :::; Cvh(Vk(叫forevery h E F that is harmonic on ut); 

• for every f E F with f = 0 on K ¥ Vk(叫

llf lli00(K,μ) :::; C Cap(V?l, Ukn))-1£(!, J). (3.1) 

Theorem 6 ([14]). Under Assumption 5, dm = 1. 

The following are examples that satisfy Assumption 5. 

(i) Dirichlet forms associated with regular harmonic structures on post-critically finite 

self-similar sets [15], in particular, on nested fractals. Thus, Theorem 6 includes the 

corresponding result in Example 3. 

(ii) Canonical Dirichlet forms on random recursive Sierpinski gaskets [8] (Figure 4). This 
is an example in which the underlying space is a fractal set but not a self-similar 

one. 

We give two remarks on this theorem. 

• Inequality (3.1) corresponds to the case d8 < 2. Thus, the result is consistent with 

(2.2). 

• When ds > 2, we conjecture that the inequality (2.2) holds under Assumption 5 

with "L00(K, μ)" in (3.1) replaced by "L去 (K,μ/ μ(utl))" (possibly with suitable 
extra assumptions). Currently, we face some technical obstacles to handling the 

case ds ~ 2. 
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