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Non-i.i.d. random holomorphic dynamical systems

Takayuki Watanabe®
Graduate School of Human and Environmental Studies,
Kyoto University, Japan

Abstract

We consider non-i.i.d. random holomorphic dynamical systems whose choice of
maps depends on Markovian rules. We show that generically, such a system is stable
on average or chaotic with full Julia set. This generalizes a result for i.i.d. random
dynamical systems of rational maps. This is a joint work with Hiroki Sumi (Kyoto
University).

1 Introduction

We consider dynamical systems of rational maps on the Riemann sphere. Let C= CuU{oc}
be the Riemann sphere with the spherical distance d. Let Rat be the space of all rational
maps of degree two or more from C to itself with metric x(f, g) := sup, z d(f(2), 9(2)).

We are in particular interested in non-i.i.d. random dynamical systems, whose choices
of rational maps satisfy “Markov” rules. It is defined as follows, see [5].

Definition 1.1. Let m € N. Suppose that m? regular Borel measures (7;;); j=1,..m on
Rat satisfy Z;n:l 7;;(Rat) = 1foralli=1,...,m. We call 7 a Markov random dynamical
system (MRDS for short).

For a MRDS 7 = (7;;)i j=1,...m, we define a Markov chain on C x{1,...,m} whose
transition probability from a point (z,7) to a Borel set of the form B x {j} is defined by
7,;({f € Rat: f(z) € B}). This Markov chain is the main object of this article.

We realized “Markov” rules as the chain on the extended space C x{1,...,m}. This
enables us to analyze (random) dynamics more systematically. Also, Markov chain on
C x{1,...,m} describes the following random dynamical systems on C.

Let 7 = (745)ij=1,..m be @ MRDS. Fix an initial point z, € @, and choose ig = 1,...,m
(with some probability if you like). For each point (z,,%,) € C x{1,...,m}, define the
next point (zp41,%,4+1) € C x{1,...,m} randomly with transition probability induced by
7 for each n € Ny. As a consequence, it defines the random orbit {z, nen, of the form
Zn = fno--0 fyo fi(z0), where f, are chosen with respect to the probability measure
Tininer Tininss (Rat).
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One of our motivation is to generalize the theory of i.i.d. random dynamical systems.
MRDS defined above include the setting of i.i.d. RDS in the sense that if m = 1, then
T = (711) induces i.i.d. RDS on C.

We now mention some results about i.i.d. RDS. The first study of i.i.d. RDS of the
holomorphic maps was due to Fornaess and Sibony [1]. Sumi investigated more general
setting and found many new phenomena which cannot occur in the deterministic dynamics
[2, 3, 4]. These are called randomness-induced phenomena or noise-induced phenomena,
which are one of the main topics of the study of RDS.

Our goal of this article is to extend the generic dichotomy from i.i.d. RDS to Markov
RDS. On the i.i.d. case, it was shown in [3]. We consider the space of all MRDS, and
divide it into two types regarding the dynamical properties. One is stable on average and
the other is chaotic on the whole space.

2 Definition of mean stability locus and chaos locus

We consider MRDSs which are irreducible and compactly generated. In this section, we
define these concepts and basic notation, utilizing the notion of directed graphs.

.....

Definition 2.1. Let 7 = (745)i j=1,..m be a MRDS. We define the directed graph (V. E)
in the following way. We define the vertex set as V := {1,2,...,m} and the edge set as

E:={(i,j) € VxV: 1;(Rat) > 0}.

Define i : B — V (resp. t : E — V) as the projection to the first (resp. second) coordinate
and we call i(e) (resp. t(e)) the initial (resp. terminal) vertex of e € E. Also, for each
e = (i, ), we denote 7, = 7;;.

Definition 2.2. Let MRDS be the set of all Markov random dynamical systems 7 which
satisfy the following two condition.

e The directed graph (V, E) of 7 is strongly connected.
e For each e € F, the support supp 7. is compact in Rat.

We endow the space MRDS with the following topology. A sequence {7"},en converges
to 7 as n — oo if

e the directed graphs of 7" coincide that of 7 for sufficiently large n € N,
e 7" converges to 7. with weak*-topology for each ¢ € E and
e supp 7. converges to supp 7. for each e € E with respect to the Hausdorff metric.

In the following, let 7 € MRDS and let (V, E) be the directed graph of 7. We define
the Fatou sets and the Julia sets as follows.

Definition 2.3. (i) A word e = (ey,€y,...,ex) € EV with length N € N is said to be
admissible if t(e,) = i(e,q1) foralln = 1,2, ... N — 1. For this word e, we call i(e;)
(resp. t(ey)) the initial (resp. terminal) vertex of e and we denote it by i(e) (resp.

t(e)).
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(ii) For each i,j € V, we set

H/(S,):={fvo---ofaofi: NEN,e=(erey...,ex) € EV is admissible,
fn€suppt., (Vn=1,... N),i=i(e),t(e) =j}.

(iii) For each i € V, we denote by F;(S;) the set of all points z € C for which there
exists a neighborhood U in C such that the family Ujeva(ST) is equicontinuous
on U. F;(S;) is called the Fatou set of 7 at the vertex ¢ and the complement
Ji(S;) = C \F;(S;) is called the Julia set of T at the vertex i.

The Julia sets are the set of all initial points where dynamics sensitively depends.
Since the system contains rational maps of degree two or more, the Julia sets are not
empty. Thus, chaotic part always exists in this sense.

Compared to the dynamics of iteration of single map, the Fatou sets are not completely
invariant. However, these are forward invariant in the following sense.

Definition 2.4. We consider subsets L; C C indexed by ¢ € V, and regard it as the
family (L;)icv. We say (L;)iev is forward invariant if f(L;)) C Ly for each e € E and
f € supp 7.

Definition 2.5. Let F be the set of all forward invariant set (L;);ey whose element L;
is non-empty and compact in C. We say that (L;);ev is minimal if (L;);cy is a minimal
element of F with respect to the order C. Here, (L;)iey C (K)iev if L; C K; for all
1eV.

Definition 2.6. Define C as the set of all 7 € MRDS such that (C);cy is minimal and
Ji(S;) =Cforalli e V.

Note that the Julia set J;(.S;) is equal to the closure of all repelling fixed points of all
h € H}(S;). Thus, for each 7 € C, fixed points are dense in the minimal set C. It should
be noted that the meaning of terminology is slightly different from that of deterministic
dynamics.

We defined the chaos locus C. We next define the stablility locus A.

Definition 2.7. Define A as the set of all 7 € MRDS such that the following holds.
There exist N € N and non-empty open sets U; and W; for each i € V such that

(1) U; cU; ¢ W; CW; C Fy(S) for each i € V.
or each z € C and i € , there exist j € V an € H’ such that A(z) € W;.
IT) Fi h C and V, th Vand h € H] (S h that A W;

(ITII) For each admissible word e = (ey,...,ex) with length N and each f,, € suppe,
(n=1,...,N), we have fyo---o fi(Wie)) C Uye).

Each 7 € A is called mean stable. A mean stable system has marvelous contracting
property on average. More precisely, the following holds.

Proposition 2.8. Let 7 € A. Then there exists a < 0 such that for each z € (E, the
random Lyapunov exponent satisfies limsup,,_, . n~tlog|[|[D(f,0---0 fy0 f1)(2)| < « for
almost every admissible sequence. Here, Dg denotes the differential of a map g and || - ||
is the norm induced by spherical metric.



Remark that the Lyapunov exponent is positive (for almost every initial point with
respect to the Lyubich measure) in deterministic dynamics of iteration of a single map.

Definition 2.9. Let (L;);er be a minimal set of MRDS 7. We say that (L;);cy is attracting
if there exist NV € N and open sets U; and W; for each i € V' such that

(i) Ly cU; c U; C W; C W; C Fy(S) for each i € V.

(ii) For each admissible word e = (ey,...,ey) with length N and each f, € suppe,
(n=1,...,N), we have fyo---o fi(Wie)) C Uye).

Proposition 2.10. Let 7 € MRDS. Then 7 is mean stable if and only if every minimal
set is attracting.

3 Main Result

We present our main theorem of this article. In the previous section, we defined two loci
A and C. These two are completely opposite; the former is stable and the latter is chaotic.
The main result states that most systems are either of these.

Theorem 3.1. The disjoint union A UC is dense in the space MRDS. Also, A and C are
non-empty, and A is open.

In the following, we restrict our system to polynomial maps. Note that every polyno-
mial map has an (super)attracting fixed point at infinity, and hence the Fatou set contains
a neighborhood of point at infinity. Let Poly be the space of all polynomial maps of degree
two or more.

Corollary 3.2. Define PMRDS as the set of all 7 whose supports consist of polynomials,
in the sense that supp . C Poly for each e € E. Then AN PMRDS is dense in PMRDS
and C N PMRDS is empty.

The key of proof is the classification of minimal sets. Every minimal set of a Markov
random dynamical system satisfies one of the following three condition; minimal set in-
tersects with the Julia set, intersects with some rotation domain of a map or is attracting.
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