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On Possible Limit Functions on a Fatou Component in 
non-Autonomous Iteration 

Mark Comerford 

University of Rhode Island 

Abstract 

Christopher Staniszewski 

Framingham State University 

The possibilities for limit functions on a Fatou component for the iteration of a single poly-

nomial or rational function are well understood and quite restricted. In non-autonomous 

iteration, where one considers compositions of arbitrary polynomials with suitably bounded 

degrees and coefficients, one ought to observe a far greater range of behaviour. We show this 
is indeed the case and we exhibit a sequence of quadratic polynomials which has a bounded 

Fatou component on which one obtains as limit functions every member of the classical 

Schlicht family of suitably normalized univalent functions on the unit disc. The main idea 
behind this is to make use of dynamics on Siegel discs where high iterates of a single poly-

nomial with a Siegel disc approximate the identity arbitrarily closely on compact subsets of 

the Siegel disc. 

1 Introduction 

1.1 Non-Autonomous Iteration 

We are concerned with non-autonomous iteration of bounded sequences of polynomials, a 

relatively new field in complex dynamics. In classical complex dynamics, one studies the 

iteration of a (fixed) rational function on the Riemann sphere. Often in applications of dy-

namical systems, noise is introduced, and thus it is natural to consider iteration where the 

function at each stage is allowed to vary. Here, we study the situation where the functions 

being applied are polynomials with appropriate bounds on the coefficients and degrees. 

Let d?: 2, M?: 0, K?: 1, and let {Pm}~ ~}~=l be a sequence of polynomials where each 

凡 (z)= a心，m凸＋a凸 1,m砂m-1+..・・・・十a1,mZ+ ao,m 

is a polynomial of degree 2 <::: dm <::'. d whose coefficients satisfy 

7(<::: la心，ml<:::K, mミ1, lak,ml <::'. M, mミ1,0 <::: k <::: dm — 1. 

Such sequences are called bounded sequences of polynomials or simply bounded sequences. For 

each O <::: m, we let佐 bethe composition Pm゚・ • • • • • o P2 o Pi and, for each O <::: m < n, 
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we let Qm,n be the composition Pn o ・ ・ ・ ・ ・ ・ o Pm+2 o Pm+l• For each m 2 0 define the mth 
iterated Fatou set or simply the Fatou set at time m,瓦m，by

瓦;,,={zEC:{Qm,n}~=m is a normal family on some neighborhood of z} 

where we take our neighborhoods with respect to the spherical topology on C and let the 
mth iterated Julia set or simply the Julia set at time m,ふ， tobe the complement C ¥瓦m・

1.2 The Schlicht Class 

The Schlicht class of functions, commonly denoted by S, is the set of univalent functions 

defined on the unit disk such that, for all f E S, we have f(O) = 0 and f'(O) = 1. This 
is a well-studied class of functions for which many useful results are known (see [2, 7]). By 
rescaling, one can often apply these results to an arbitrary univalent function, making the 
knowledge of this class quite useful in practice. 

1.3 Statement of the Main Theorem 

Our main goal is to prove the following result: 

Theorem 1.1 There exists a bounded sequence of quadratic polynomials {Pm}::;:=1 and a 
bounded Fatou component V for this sequence such that, for all f E S, there exists a subse-

quence {Pmk}芦Iof｛凡｝::;:=Isuch that { Qmぷ~1 converges locally uniformly to f on V. 

The strength of this statement is that every member of S is a limit function on the same 
Fatou component for the same polynomial sequence. 

2m(J5— 1) 

The proof relies on a scaled version of the polynomial P.入(z)＝入z(l-z) where入＝ e 2.  
As P.入isconjugate to an irrational rotation on its Siegel disk about 0, which we denote by [Jふ
we may find a subsequence of iterates which converges uniformly to the identity on compact 

subsets of U入． Wewill rescale P.入sothat K, the filled Julia set for the scaled version P of 
p入， iscontained in a small disc about 0. This is done so that, for any f ES, we can use the 
distortion theorems to control|『|ona relatively large hyperbolic disk inside U, the scaled 
version of U>,. 

The initial inspiration for this proof came from Lowner chains (see e.g. [3, 7]), particularly 
the idea that a univalent function can be expressed as a composition of many univalent func-

tions which are close to the identity. Given our remarks above about iterates of凡 which
converge to the identity locally uniformly on U入， thisencouraged us to think we might be 
able to approximate these univalent functions which are close to the identity in some way 
with polynomials and then compose these polynomials to get an approximation of the desired 
univalent function on some suitable subset of U入， aprinciple which we like to summarize as 
'Do almost nothing and you can do almost anything'. 
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Figure 1: The filled Julia Set for凡 withSiegel Disc highlighted. 

The proof of Theorem 1.1 will follow from an inductive argument, and each step in the 
induction will be broken up into two phases: 

• Phase I: Construct a bounded polynomial composition which approximates given func-
tions from S on a subset of the unit disk, with arbitrarily small error. 

• Phase II: Construct a bounded polynomial composition which corrects the error of the 
previous sequence to arbitrary accuracy on a slightly smaller subset. 

Great care is needed to control the error in the approximations and to ensure that the domain 

loss that necessarily occurs in each Phase II eventually stabilizes, and that we are left with 
a non-empty region upon which the desired approximations hold. 

To create our polynomial approximations, we use what we call the Polynomial lmplementa— 

tion Lemma. Suppose we want to approximate a given univalent function f with a polynomial 
composition. Let I and r be two analytic Jordan curves outside JC such that I is inside r 
while f (1) is still inside r. We construct a homcomorphism of the sphcre as follows: define 
it to be f inside 1, the identity outside r and extend by interpolation to the region between 
1 and r. The homeomophism can be made quasiconformal, with non-zero dilation (possibly) 
only on the region between I and r. If we then pull back with a high iterate of P, the sup-
port of the dilation becomes small, which will eventually allow us to conclude, that when we 
straighten, we get a polynomial eomposition that approximates f closely on a large compact 
subset of U. 
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In Phase I, we use the Polynomial Implementation Lemma to create a polynomial compo-

sition which approximates a finite set of functions from S. In Phase II, we wish to correct 
the error from the Phase I composition. This error is defined on a subset of the Siegel disk, 

but in order to apply the Polynomial Implementation Lemma to create a composition which 

corrects the error, we need the error to be defined on a region which contains K. 

To get around this, we conjugate so that the conjugated error is defined on a region which 

contains JC. This introduces a further problem, namely that we must now cancel the con-
jugacy with polynomial compositions. A key element of the proof is viewing the expanding 

map, that is the part of the conjugacy which maps a suitably chosen (and relatively large) 

subset of U to a set containing JC, as a dilation in the correct conformal coordinates. An 
inevitable loss of domain occurs in using these conformal coordinates, but we are, in the 
end, able to create a Phase II composition which corrects the error of the Phase I approx-
imation on a (slightly smaller) compact subset of U. What allows us to control the loss 

of domain, is that, while the loss of domain is unavoidable, the accuracy of the Phase II 
correction is completely at our disposal. This ultimately allows us to control loss of domain. 

We then implement a fairly lengthly inductive argument to prove the theorem, getting bet-

ter approximations to more functions in the Schlicht class with each stage in the induction, 

and ensuring that the region upon which the approximation holds does not shrink to nothing. 

2 Useful Tools 

Two of the more well-known tools we use are distortion theorems for univalent mappings 

[2, 7] and the Caratheodory topology for pointed domains [1, 4, 5, 8]. A lesser known tool is 
the hyperbolic derivative (see [9]). Ordinary derivatives are useful for estimating how points 
move apart under iteration when using the Euclidean metric. In our case, we need a notion 
of a derivative taken with respect to the hyperbolic metric. 

Let R, S be hyperbolic Riemann surfaces with metrics 

如＝びR(z)ldzl,

dps = rJs(z)ldzl, 

respectively, and let f : W C R→S be analytic. Define the hyperbolic derivative: 

応 (z):=『（z)びsU(z)) z ER  
6バz)'

Note that the hyperbolic derivative satisfies the chain rule, i.e. if R, S, T, are hyperbolic 

Riemann surfaces with f defined on a set WC  Rand g defined on a set X C f(W) CS  and 

mapping X into T, then 

(go J)~,T = (g知0J) ・ fk,s 



61

Let K C W be a relatively compact subset of R. Define the hyperbolic Lipschitz bound as 

1111,sllK := su~ 111,s(z)I. 
zEK 

3 The Polynomial Implementation Lemma 

Let K > 1 be a scaling factor and set P(z)＝リ凡（代z).Let U be the Siegel Disc for P. Let 
n, !:1'c C be the Jordan domains with the analytic boundary curves, and r (defined earlier), 
respectively, and such that JC c n c TT c !:1'. Suppose f is univalent on a neighborhood of 
TT and recall that fb) is still insider. 

Lemma 3.1 (The Polynomial Implementation Lemma) Let P.入， Uふ K,P, U, {n虞恥 n,
訊 1,r, and f be as above. Suppose A c U is open and relatively compact. Then for all M, 
E, o positive, if A is a o-neighborhood of A with respect to Pu as above and||『||A:S: M, there 
exists k。2::1 (depending on M, E, A, and o) such that for each k1 2='. k。thereexists a (17+K)-
bounded finite sequence of quadratic polynomials { P,炉｝:~1 such that Q悶isunivalent on 
A and 

1. Pu(Q悶(z),f(z)) < E for all z EA, 

2. ll(Q悶）月IA:S: M(l + c), 

3. Q悶(0)= 0. 

The idea of the proof is as follows: suppose we want to approximate f with a polynomial 
composition. Define 

F(z) ＝ { f(z) Z E豆
zEC¥rl' 

and extend F to a quasiconformal homeomorphism of C using interpolation (e.g., using 
conformal coordinates). If we precompose this with a high iterate of P and pull back, the 
area of the region between the preimage of 1 and r becomes small, while the support of the 
pullback of the dilatation is contained in the preimage of the conformal annulus r2 ¥ IT, as the 
figure below illustrates: 
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When we straighten, this allows us to conclude that the solution to the Beltrami equation at 
N time 0,心。， convergeslocally uniformly to the identity on C (as does（崎）ー1)as N→00. 

Further, as Pis conjugate to an irrational rotation on the Siegel disc, denoted U, we have that 
there exists a subsequence of iterates { P゚nk}which converges locally uniformly to the identity 
on U. This eventually allows us to approximate the map f with a polynomial composition 
on a (large) compact subset of the Siegel disc, along the lines of the diagram below: 

ponk s::, Jd 

蛉k ""Id F=fonU 

Q悶""f

The Polynomial Implementation Lemma approximates a single univalent function on a com-
pact subset of the Siegel disc U, and can thus be seen as a weak version of our main result 
(Theorem 1.1). 

4 Phase I 

For any R > 0, define UR:= {z E IC : pu(O,z) < R}. Choose O < r-0 < R。:S~ and restrict 
ourselves to R E [r。,R0].The upper bound ~ is chosen so that the disc UR as well as its 
image under any conformal mapping whose domain of definition contains U is star-shaped 
(see [6] Lemma 2.10 for details). 

Lemma 4.1 (Phase I) Let P.入， Uふ"',P, and U be as above. Let凡＞ 0be given and let 
URo also be as above. Then, for all E > 0, and NE  N, if {fi}t'.,1;1 i i}):-r is a collection of mappings 
with fi E S for i = 0, 1, 2, ・ ・ ・, N + 1 with fo = fN+i = Id, there exists "'o = "'o(Ro) > 0, 
島＝島(E,N) E N, such that for all氏 2:"'o, there exists a (1 7+t.,)-bounded finite sequence 
of quadratic polynomials {Pm} 

(N+l)MN 
m m=1 such thatfor all 1ごiごN+ 1, 

1. QiMN(O) = 0, 

2. QiMN is univalent on U2Ro, 

3. QiMN(U2Ro) Cu伽！

4-Pu(f;(z), QiMN(z)) < E on U2R0, 

5. ||Q恥lluR。:S7. 
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Using the Polynomial Implementation Lemma multiple times, we construct a single polyno-

mial composition that approximates each Ji at a prescribed iterative time on U恥・

We remark that one can view Phase I as a weak form of our main theorem in that it allows to 

to approximate finitely many elements of S with arbitrary accuracy using a finite composition 
of quadratic polynomials. Phase I is thus intermediate in strength between the Polynomial 

Implementation Lemma and our main result. 

5 Phase II 

Let G(z) be the Green's function for P, and fix h。E(0, oo), where in practice h。isan upper 
bound on the values of the Green's function G (again, see [6] Lemma 2.10 for details). 

Lemma 5.1 (Phase II) There exist an upper bound E1 > 0 and a function c5: (0,ら］→(0,閉），
with b(x)→O+ as x→O+, both of which depend on the choice of"', h。， andthe bounds r0, 
Ro for R, such that, for all E1 E (0,臼],there exists an upper bound E2 > 0, depending on釘，
"', h。,andr0, R。,suchthat, for all E2 E (0,伍],RE  [ro,R。]， andall functions £ univalent 
on UR皿th£(0) = 0 and Pu(E(z), z)＜釘 forz E UR, there exists a (17 + "')-bounded 
composition Q of quadratic polynomials such that 

1. Q is univalent on a neighborhood of UR-o(e,), 

2. 

Pu(Q(z), E(z)) < E2, for all z E UR-o(e,), 

3. Q(O) = 0. 

Because we will be using the Polynomial Implementation Lemma repeatedly to construct our 

polynomial composition, we need to interpolate functions outside of JC. However, e is only 
defined on a subset of U and hence we will need to map a suitable subset of U on which e is 
defined to a domain which contains JC, and correct the conjugated error using the Polynomial 
Implementation Lemma. The trick to doing this is that we choose our subset of U such that 

the mapping to blow this subset up to U can be expressed as a high iterate of a map which 

is defined on the whole of the Green's domain Vh, where Vh := {z EC  : G(z) < h}, not 
just on this subset. This will allow us to interpolate outside JC.恥rther,we will then use 
the Polynomial Implementation Lemma once more to'undo'the conjugating map and its 

inverse. The two key considerations in the proof are as follows: 

• Controlling loss of domain (measured by the function o in the statement above). 

• Showing that the error in our polynomial approximation to the function e (measured 
by the quantity E2 above) is mild. 
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In controlling loss of domain, one main difficulty will arise in converting between the hyper-

bolic metrics of different domains, U and鳳 where怜h := {z E (C : G(z) < 2h}. The 
techniques for controlling loss of domain will be the so-called Target and Fitting Lemmas 

(see [6] for full details), and the fact that（崖0)→（U, 0) in the Caratheodory topology 
as h→O+. To approximate & itself rather than this conjugated version, we then wish to 
'cancel'the conjugacy, so'During'is bookended by'Up'and'Down'portions, in which we 

apply the Polynomial Implementation Lemma to get polynomial compositions which are ar-

bitrarily close to the conjugating map and its inverse. 

One of the most crucial features of the proof is viewing the expanding portion (in'Up') of 

the conjugacy as a dilation in the correct conformal coordinates. Defineゆ2hto be the unique 
conformal map虹：怜h→ ]]))， normalized so that丘 (0)= 0 and叫 (0)> 0. We letぬ be
如 largestconformal disc (measured using the hyperbolic metric of ½h) about O such that 
怜hC UR・'!'he expanding map in the conjugacy is then defined to be the un~que conformal 
map l.(J2h:狐→狐， normalizedso that ~2h(O) = 0 andふ(0)> 0. As怜hi is round in 
the conformal coordinates of狐， i.e.,虹（狐） isa disc (about 0), we may view i.p2h as a 
composition of many smaller dilations. These (conjugated) dilations can be chosen so small 

so that they are defined on (a neighbourhood of) ¼, which in particular contains the filled 
Julia set /C, while the dilated V h is still inside怜h・ This is what allows us to approximate 
a small dilation using the Polynomial Implementation Lemma (Lemma 3.1) and eventually 

approximate l.(J2h. The'Down'portion of the conjugacy turns out to be easier. See [6] for full 

details. 

6 Proof of Main Result 

We use皿 inductive紅 gumentto prove the following lemma, from which our main result 

(Theorem 1. 1) follows quickly: 

Lemma 6.1 There exists a sequence of quadratic polynomials {Pm}；；；=1 such that the follow-
ing hold: 

1. {Pm}；；；＝1 is {17+t£0)-bounded, 

2. Qm（万A)C U -h for infinitely many m, 
20'10  

3. For all f E S, there exists a subsequence｛叫｝k=lsuch that Q叫 ⇒fon U命 as
K →00. 

As S is a normal family, we can approximate it locally on lDl with a finite net of functions 

{fぷ幻 ES,with Jo= fN+i = Id. The base c邸 eof the induction begins with an application 
of Phase I (Lemma 4.1) (which we can view as preceded by a trivial application of Phase II 

since there is as yet no error to correct) in which we approximate a finite net of functions from 

Son a re邸 onablylarge relatively compact subset of the Siegel disc U. In the induction step, 
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we then apply Phase II to correct the error in the previous approximation to arbitrary (finer) 

accuracy (i.e., the accuracy of this correction does not depend on the error in the Phase I 
step preceding it) on a slightly smaller subset of U. As the process is repeated ad infinitum, 

we must ensure that this loss of domain eventually stabilizes. Crucial to controlling the loss 
of domain is the fact that as the size of the incoming error (E1 in the statement of Phase II) 
goes to zero, so too does the loss of domain (measured by the quantity 6(E1) in the statement) 
that occurs in a Phase II application. The error in our new polynomial approximation (E2 in 
the statement of Phase II) must then pass through the subsequent Phase I in the course of 
which we also pick up a new error. However, due to the estimate on the hyperbolic derivative 
in Part 5. of the statement of Phase I (Lemma 4.1) and the fact that the error bound E in 
Phase I is as small as desired, the total error and thus the loss of domain in the Phase II for 
the next step can be made as small as we wish. Continuing in this way, we are eventually 
able to prove our main result. 
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