
RIGHT:

URL:

CITATION:

AUTHOR(S):

ISSUE DATE:

TITLE:

Zero Trust Federation: Sharing
Context under User Control
towards Zero Trust in Identity
Federation

Hatakeyama, Koudai; Kotani, Daisuke; Okabe,
Yasuo

Hatakeyama, Koudai ...[et al]. Zero Trust Federation: Sharing Context under User Control towards Zero Trust in Identity
Federation. 2021 IEEE International Conference on Pervasive Computing and Communications Workshops and other
Affiliated Events (PerCom Workshops) 2021: 514-519

2021-3-22

http://hdl.handle.net/2433/264254

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective.; This is not the published version. Please cite only the published version. この論文は出版社版で
ありません。引用の際には出版社版をご確認ご利用ください。



Zero Trust Federation: Sharing Context under User
Control towards Zero Trust in Identity Federation

Koudai Hatakeyama
Kyoto University

Kyoto, Japan
hatakeyama@net.ist.i.kyoto-u.ac.jp

Daisuke Kotani
Kyoto University

Kyoto, Japan
kotani@media.kyoto-u.ac.jp

Yasuo Okabe
Kyoto University

Kyoto, Japan
okabe@media.kyoto-u.ac.jp

Abstract—Perimeter models, which provide access control for
protecting resources on networks, make authorization decisions
using the source network of access requests as one of critical
factors. However, such models are problematic because once
a network is intruded, the attacker gains access to all of its
resources. To overcome the above problem, a Zero Trust Network
(ZTN) is proposed as a new security model in which access
control is performed by authenticating users who request access
and then authorizing such requests using various information
about users and devices called contexts. To correctly make
authorization decisions, this model must take a large amount
of various contexts into account. However, in some cases, an
access control mechanism cannot collect enough context to make
decisions, e.g., when an organization that enforces access control
joins the identity federation and uses systems operated by other
organizations. This is because the contexts collected using the
systems are stored in individual systems and no federation exists
for sharing contexts. In this study, we propose the concept of a
Zero Trust Federation (ZTF), which applies the concept of ZTN
under the identity federation, and a method for sharing context
among systems of organizations. Since context is sensitive to user
privacy, we also propose a mechanism for sharing contexts under
user control. We also verify context sharing by implementing a
ZTF prototype.

Index Terms—Access controls, Identity Federation, Zero Trust,
User Managed Access

I. INTRODUCTION

To securely restrict access to information systems and
resources, organizations need access control to determine who
can gain access to what resources. The perimeter model [1] is
currently popular for access control. In this model, a network
is divided into zones based on levels of trust. These levels of
trust in the source networks of access requests are a critical
factor for authorization decisions.

However, this model cannot address some problems that
have recently surfaced. Due to the wide dissemination of
mobile devices and remote work, internal systems are accessed
not only from an organization’s internal network but also from
the internet. Access requests to resources can no longer be
assumed to originate from an internal network. Technologies
like VPNs partly solve this problem. However, with cloud
computing, resources owned by organizations are now located
outside such internal networks as the internet, and the need to
use VPN to access the internal network is lower than before
popularization of the cloud. Furthermore, once a resource

inside the perimeter is hijacked, the attacker can freely access
any resources in the same zone.

To address these problems, a new access control model
called a Zero Trust Network (ZTN) has been proposed [2]
[3]. This model does not assume such trustworthy attributes
as source networks. Instead, it verifies and evaluates whether a
user who requests access is trustworthy at every access request.
Based on evaluation results, the decision whether to permit
access is contemplated.

When verifying and evaluating an access request, the access
control mechanism uses “context,” which is information about
the entity making an access request: information about the
user, the device being employed by her, the network to which
her device is connected, the physical environment surrounding
her, etc. The context includes both such static information as
user IDs and device vendors and dynamic information based
on past behavior, such as what device was used for recent
access and where it was accessed.

A various, large amount of context must be collected to
perform context-based access control in ZTN. However, an
access control mechanism cannot collect enough context to
make decisions in some cases, e.g., when an organization that
enforces access control joins the identity federation and uses
systems operated by other organizations. This is because the
contexts collected using other systems are stored in individual
systems and no federation for sharing contexts exists.

Under the identity federation, an Identity Provider (IdP)
cannot provide contexts with attributes like user’s age. This is
because a simple IdP cannot collect such contexts as detailed
information whether the device is vulnerable and because an
IdP cannot treat dynamically changing attributes like contexts
in the same way as conventional static attributes. Even if
an IdP can provide contexts in addition to an identity, an
organization that enforces access control using these contexts
and identities cannot comply with the ZTN concept because
the organization relies on the trust of a single IdP. Contexts
are also sensitive to user privacy and cannot simply be shared
without user consent. Context must be collected from various
systems operated by organizations, not just from a system
operated by a single organization that enforces access con-
trol. Current ZTN implementations can only handle as much
context as a single system can collect.

This study proposes a federation that shares contexts as

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



well as a method that shares context among systems operated
by multiple organizations. We also propose a mechanism for
sharing context under user control to protect user privacy.
We design and implement a mechanism that shares context
based on the scheme of a protocol for security-event shar-
ing called Continuous Access Evaluation Protocol, which is
currently being standardized by Shared Signals and Events
WG of OpenID Foundation1. Access to contexts by systems
is managed by an access control management protocol called
User Managed Access [4] [5], which extends an authorization
delegation protocol called OAuth2.0.

The main contribution of this study is that it proposes the
idea of Zero Trust Federation (ZTF), which applies the ZTN
concept under the identity federation, and shows how ZTF can
share contexts under user control.

The following is the structure of this paper. Section 2
describes the background, and Section 3 describes the concept
of Zero Trust Federation (ZTF). Section 4 proposes a system to
share context under user control in ZTF. Section 5 describes its
evaluation with a use case using a prototype that implements
it. Finally, Section 6 summarizes this paper.

II. BACKGROUND

A. Zero Trust Network (ZTN)

ZTN is an access control model whose core principle
is “Never Trust, Always Verify.” ZTN does not rely on
trustworthy attributes for access control like source networks
in traditional perimeter models (“Never Trust”). Instead, it
verifies every single access request. “Context” is used for
this verification. A context is a set of information about the
requesting entity, which includes various data about the user
who requested access, about the device being employed by the
user, and so on.

1) ZTN Architecture: According to Gilman [6], ZTN Archi-
tecture consists of control and data planes. The control plane,
which must determine whether to allow access to protected
resources, is also called a Policy Decision Point (PDP) [3].
A data plane is the place where a user communicates with
a resource and where access control is enforced. An access
control enforcement point is also called a Policy Enforcement
Point (PEP) [3].

2) ZTN Implementation Example: BeyondCorp is Google’s
implementation of ZTN in its internal network, whose concept
has been summarized in several white papers [7] [8] [9]. This
implementation is unique because it implements an access
proxy [9] that combines PEP and PDP to enable ZTN access
control. This (reverse) proxy, also known as an Identity-Aware
Proxy (IAP) 2, assumes the responsibility of verifying access
requests and enforcing authorization decisions. When access is
granted, the IAP establishes a secure communication channel
between the user and the protected resource. If denied, the
IAP blocks access.

1https://openid.net/wg/sse/
2https://cloud.google.com/iap/

By combining PEP and PDP, policy changes can be applied
quickly and consistently [9]. On the other hand, technical and
administrative challenges remain when systems being operated
by different organizations try to use IAPs together to collect
sufficient context to determine authorization decisions. The
technical challenges include an IAP, which might cause a
single point of failure and a performance bottleneck because
these systems communicate with users by a single IAP. The
administrative challenges include managing the security poli-
cies of different organizations in one place.

B. Context-based Authentication and Authorization

As mentioned in the previous section, ZTN uses contexts
to verify every access request to authenticate the user who
requested access and to authorize it.

Context-based authentication is sometimes called risk-based
authentication. Examples using context include IP addresses
[10], mouse movements, and keystrokes [11]. In addition
to using context, these authentications are characterized by
continuously verifying the user’s identity [11]. This is also
called Continuous Authentication [12]. For example, an au-
thentication authority, which collects the operation history of
a touchscreen and continues to verify those who are currently
operating it, has the same characteristics as in the previous
history [12]. In addition to one-to-one authentication between a
user and an authentication authority, continuous authentication
under identity federation has also been studied [13] [14].

As an example of context-based authorization, perhaps only
the staff members who are currently at headquarters are
allowed to access a database [15]. Authorization is based on
the actual environment in which a device is located [16].

C. Identity Federation

Identity federation (IdF) is a mechanism that shares user
identities among organizations. Here identity is the set of
information about a user, such as her ID and any affilia-
tions/organizations to which she belongs, like a university
or workplace. In the federation, an authentication authority,
sometimes called an identity provider, authenticates users and
issues assertions which include user identity and an authority
signature. Such an entity, which employs user identities in a
federation called a service provider or a Relying Party (RP),
verifies the integrity of assertions and uses them to securely
identify users.

An example of an inter-university IdF is Gakunin 3 through
which users can seamlessly access services provided by dif-
ferent universities without having to register as a new user, for
example, connecting to wireless LANs at different universities
without registration.

Shibboleth 4 using SAML [17] or OpenID Connect [18] are
technologies that establish identity federations.

3https://www.gakunin.jp/
4https://www.shibboleth.net/

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



D. Continuous Access Evaluation Protocol

Continuous Access Evaluation Protocol (CAEP), introduced
by Google, is a new event-sharing protocol for Continuous
Authentication in IdF [14]. With CAEP, the RP can share
internally generated events about users with the IdP that
authenticates them. The event includes a change of the network
being used or a vulnerability that is discovered in the device
being used. In other words, IdP can sense updates for user
contexts that occurred at the RP with this protocol and manage
continuous authentication based on these notified contexts. In
addition, IdP can notify RPs of the authentication results and
such additional information as events about Authenticator As-
surance Level (AAL) 5) changes due to stronger authentication
for other RPs. RPs make authorization decisions using contexts
about the user based on this information.

This protocol is currently being standardized in the Shared
Signals and Events Working Group in the OpenID Founda-
tion6.

E. User Control in Federation

Sharing a user’s personal information must fall under the
rubric of user control. For example, Gakunin can share the
attributes of users as well as their pseudonymous IDs. Such
user attributes as email addresses or employment/university
affiliations are examples of personal information. With uAp-
proveJP [19], since user attributes can be shared with a user’s
consent in the IdF, sharing user attributes under user control
is enforced in Gakunin.

OAuth2.0 [20], which is a protocol for authorization delega-
tion, allows a third party (a Client) to access a resource server
on behalf of the resource owner who provides authorization
within a limited access scope. On a resource server, the
resource owner deploys its resources and is protected by
an authorization server, which asks the resource owner for
an authorization decision for resource access requests from
clients. When the resource owner approves, the authorization
server issues an access token to the Client, which presents
the access token to the resource server, which verifies it and
determines the validity of the access. In this way, the resource
owner can delegate authorization to the Client with OAuth2.0.

III. ZERO TRUST FEDERATION

This section defines the Zero Trust Federation and proposes
its design and implementation.

A. Problem

Assume an organization controls access to its systems based
on the Zero Trust Network (ZTN) concept. The organization
uses an Identity Provider (IdP) operated by another organi-
zation and ensures security by introducing various Software
as a Service (SaaS), such as Mobile Device Management
(MDM) and Endpoint Detection and Response (EDR), which
are operated by outside organizations.

5https://pages.nist.gov/800-63-3/sp800-63b.html
6https://openid.net/wg/sse/

To perform zero-trust access control, the access control
mechanism of an organization’s system must use a sufficient
amount of contexts when making authorization decisions. For
example, when the EDR detects a malware infection on a
device, the EDR service immediately notifies the system’s
access control mechanism, which recalculates the trust level
of the access request from that device. When MDM detects
unmanaged devices as access sources, the access control
mechanism must restrict access based on its security policy.
When another system, which is not directly related to this
organization but under the same identity federation, detects
suspicious behavior, the access control mechanism restricts
access based on that information.

A federation that shares contexts among organizations is
essential for zero-trust access control in the identity federation.
Therefore, in this study, we consider a federation among
systems operated by different organizations to achieve ZTN
in their systems and propose Zero Trust Federation and its
design.

B. Zero Trust Federation

We define Zero Trust Federation (ZTF) as a federation
that allows each RP to perform zero-trust access control by
federating with IdP and CAP (Fig. 1). Identity Provider (IdP)
is an entity that identifies and authenticates users and provides
authentication assertions to entities under the identity federa-
tion. Context Attribute Provider (CAP) collects and manages
contexts about a user and provides context information to
entities. A Relying Party (RP) controls access using assertions
from IdP and contexts from CAP. RP is also where a user
requests access.

Fig. 1. RPs in ZTF

For example, an EDR is a CAP. The anomalies detected
by EDR (e.g., malware detection) are reported to the RP as
a context. The RP then recalculates the access request’s trust
level from the device where the anomaly was detected and
denies or restricts access based on the new trust level and the
policy.

ZTF allows multiple RPs to share contexts among multiple
RPs (Fig. 1). Consider a CAP that logs the network to which
a device is connected. This service can determine whether the

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



devices are in the same network as the one usually employed
by the user. Suppose she regularly uses RP1 and infrequently
uses RP2, for example, once a year. In ZTF, the RP2 can share
with RP1 through CAP the context that includes whether the
user accessed the network from devices connected to it that
she usually uses. Without this federation, such information is
unknown. Control access can be based on this context.

C. Context Attribute Provider

ZTF introduces a new entity called CAP, which 1) collects
contexts from users and 2) provides contexts to RPs.

Contexts can be collected in two ways: by installing an
agent on devices used by users and directly gathering them
or indirectly doing so from RPs. The former collects more
detailed information. For example, when a CAP is an EDR,
the CAP has an agent installed on a device to audit the device’s
health. But it is not always possible to deploy agents to every
device. In that case, the CAP collects as much context as
the RPs because they communicate directly with users more
frequently. Some contexts managed by the CAP, such as EDR,
can only be collected by deploying agents to the user side.

A context is provided in the following way. An RP requests
a CAP to provide contexts of a user who has requested access.
Upon receiving the request, the CAP identifies the user and
provides her contexts to the RP. When the CAP detects that
user’s contexts has been updated, it provides the updated
context to the RP.

D. Access Flow in ZTF

Figure 2 shows the flow in the ZTF from the user’s
viewpoint from when an access request is made to RP1 until
a decision is made. We assume that a user has previously
accessed RP2 and that the context is indirectly collected from
RPs.

Fig. 2. Access flow in ZTF

1) The user tries to access RP1;
2) The user provides an identity (id) to RP1 using IdP;
3) The user provides a context (ctx) to RP1 using CAP;
4) The RP1 determines an authorization decision based on

the given context and identity;

5) The RP1 monitors the behavior of the End-User, and if
the context has changed, notifies the CAP, which shares
the notified context with other RPs.

E. ZTF Implementation

Mechanisms for providing identities and sharing contexts
are necessary to implement ZTF. In this study, we assume that
OpenID Connect [18] is used for an identity federation and
CAEP [14] is used for context sharing. However, since CAEP
has not been standardized yet and has no specifications, we
implemented it based on the assumption that specifications will
eventually be developed based on the current designs being
discussed.

1) Providing Identity: An identity representing users is
provided for the CAP and RP from the IdP that authenticated
them. A user does not necessarily provide the same identity
to the CAP and RP using the same IdP. However, when the
context is shared by RP and CAP, the user must be identifiable
by sharing the same identifier using a single IdP to transmit
and receive contexts without involving her.

Therefore, we need an IdP that provides at least one
identifier shared by RP and CAP. In this implementation, we
prepared different IdPs for RPs shared by RPs and CAP, and
for CAP.

2) Sharing Context: Two communication channels are pro-
vided for sharing contexts: 1) an RP (or a CAP agent) provides
contexts to CAP and 2) a CAP provides contexts to RPs.
These channels are established with CAEP, and contexts are
transmitted and received on channels.

A context is represented by an extended JWT7 called SET8,
as proposed in CAEP.

CAEP is also based on an IETF draft called “Management
API for SET Event Streams” [21]. In CAEP, contexts are trans-
mitted over Event Streams. The context’s receiver provides
such configuration information as the target-user identifier by
the Event Stream Management Endpoint and requests that a
stream be established. The transmitter configures a stream
based on the configuration information and transmits the
context.

IV. SHARING CONTEXT UNDER USER CONTROL

This section describes a mechanism for sharing context
under user control in ZTF.

A. Problem

In ZTF, RPs are provided with the context from the CAP
and can perform zero-trust access control. CAPs can also
collect contexts from RPs and manage them. However, since
contexts are information that includes user privacy, contexts
must be shared under user control. Therefore, we investigate
a mechanism in which user authorization is mandatory to
establish context sharing.

7https://tools.ietf.org/html/rfc7519
8https://tools.ietf.org/html/rfc8417

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



B. Design

1) What users should control: Contexts can be shared or
provided in three ways:

• from a CAP to a RP;
• from a RP to a CAP;
• from a CAP agent to a CAP.
The purpose of this study is to share contexts across

systems managed by different organizations under user control.
Therefore, we consider providing contexts from a CAP to a
RP and from a RP to a CAP. Since the only difference between
these two flows is that the CAP and RP roles are reversed, we
investigate a mechanism that provides contexts from a CAP
to an RP under user control.

2) Control Flow: Sharing contexts under user control
means that the CAP provides the RP with limited contexts
authorized by the user when the latter requests a context from
the former.

The flow of user authorization and context sharing from
CAP to RP is shown in Fig 3.

Fig. 3. Access flow in ZTF

1) An RP requests (req) a context sharing (ctx) from a CAP.
2) The CAP verifies that the RP is authorized by the user,

and if not, responds (resp) that the RP must be granted
authorization (authZ) by the user.

3) The RP requests the user to get authorization.
4) The user checks what contexts the RP wants and autho-

rizes the RP to get them.
5) The RP requests ctx again.
6) The CAP verifies that the RP is authorized by the user

and determines whether to establish a context sharing
based on the authorization results.

C. Implementation

In this study, we used the User Managed Access protocol
(UMA) [4] [5] that extends OAuth2.0.

1) User Managed Access: User Managed Access is a
protocol based on OAuth2.0. It extends OAuth2.0 from the
following two points. In OAuth2.0, the Client is operated
by a resource owner who can make authorization decisions.
But in UMA, the Client is operated by an entity called a

Requesting Party that requests access to resources, which is
not always a resource owner. In some cases no entity involved
in the authorization delegation flow can make authorization
decisions. For this reason, UMA extends the authorization
server to make authorization decisions depending on the policy
set by the resource owner in advance. These extensions allow
a Requesting Party to access the resource server within the
range defined by the resource owner in its policy.

The following are two advantages of using UMA in ZTF: 1)
the authorization server can centrally manage which RPs are
allowed to share contexts and to what extent; 2) the policies
based on RP attributes can be written in the authorization
server to grant authorization to the RPs without a consent
action each time to establish a context sharing with a new RP.

2) Where the authorization server should be located: Since
the UMA also proposed a protocol to loosely couple a resource
server and an authorization server, the authorization server is
not necessarily managed by the CAP. In this implementation,
the authorization server is managed by an IdP, which provides
the identity used for the RP and CAP to share contexts.

V. USE CASES AND CONSIDERATIONS

A. Prototype

We prepared a prototype that satisfies the implementations
shown in Sections 3 and 4.

The prototype was created using Golang9, with Golang stan-
dard packages, JWT libraries10 and HTTP utility libraries11 as
external libraries. The source code is available on GitHub12.

B. Use Cases

Using the prototype, we confirmed that the context can be
shared in the following use cases. We assumed a situation with
three entities, CAP, RP1, and IdP, and a user. We also prepared
a program that mimics CAP’s agent that detects user context
updates and notifies the CAP.

1) The user makes an access request to RP1.
2) The RP1 requests the authorization server (AuthZSrv)

to get authorization (authZ).
3) Since the AuthZSrv has no RP1 policy, it asks the user

to authorize access to her contexts from RP1.
4) The user sets a policy that allows partial contexts to be

provided to RP1.
5) AuthZSrv issues an authZ token based on that policy to

the RP1.
6) The RP1 requests the CAP to provide contexts with a

token.
7) The CAP verifies the token and shares partial contexts

granted by the policy.
8) The RP1 receives the contexts provided from the CAP

under user control.
9) The agent detects context updates and notifies the CAP

of them.

9https://golang.org/
10https://github.com/lestrrat-go/jwx
11https://github.com/gorilla/
12https://github.com/hatake5051/ztf-prototype/tree/percom

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



10) The RP1 shares updated contexts by CAP.

Using this scenario, we confirmed that RP1 can get contexts
that would be unknown if it had not participated in the ZTF
and that the contexts sent to the RP1 are within the allowable
scope. A description of the use case is available on Github13.

C. Considerations

As seen in the previous section, our proposal allows users
to control their context sharing. Considering contexts as user
attributes, we can compare our proposal with uApproveJP,
which is an attribute information federation system with user
consent. Although both uApproveJP and our proposal have the
same mechanism for providing contexts (user attributes) with
user authorization, there are differences in the meaning of the
granted authorization and the frequency at which information
is updated. For the authorization method, uApproveJP assumes
that the user grants authorization by pushing a consent button.
On the other hand, our proposal allows users to set a policy,
freeing them from the burden of bestowing consent every time
a new context sharing occurs. This is an example how our
proposal improves the user experience. In our proposed ZTF,
the context shared between RP and CAP is expected to be
frequently changed. Since uApproveJP assumes that the values
of the user attributes are not updated frequently, uApproveJP
has a mechanism that requests consent again whenever the
attribute values are changed. The user’s convenience is re-
duced when uApproveJP is used in ZTF. In our proposal, the
responsibility for revoking the granted authorization is left to
the user.

VI. CONCLUSION

We proposed the concept of Zero Trust Federation (ZTF),
which applies the concept of ZTN under the identity federa-
tion. We proposed a mechanism for sharing contexts among
organizations under user control in ZTF and verified context
sharing by implementing a ZTF prototype.

In a federation that shares contexts, two aspects are impor-
tant: reactively sharing context updates and context sharing
that is under user control. For the former, we designed a
mechanism to transmit and receive contexts using a protocol
called CAEP, which is currently being standardized by Shared
Signals and Events WG of OpenID Foundation as of this
paper’s writing. For the latter, we designed a user control
mechanism with a user-centric access control protocol called
UMA and confirmed that our proposed method can be used in
ZTF to share contexts among organizations under user control.

Future work will address the following problems: 1) stan-
dardizing the format and the semantics of contexts in ZTF; 2)
operating the authorization server, e.g., how to write policies
and where to deploy them; and 3) which identifier to use when
sharing contexts.

13https://github.com/hatake5051/ztf-prototype/blob/percom/example/
usecase.md

REFERENCES

[1] S. Northcutt et al., Inside Network Perimeter Security (2nd Edition).
USA: Sams, 2005.

[2] J. Kindervag, “Build Security Into Your Network’s DNA: The Zero Trust
Network Architecture,” 2010.

[3] S. Rose, O. Borchert, S. Mitchell, and S. Connelly, “Zero Trust Archi-
tecture,” NIST SP 800-207, 9 2019.

[4] E. Maler et al., “User-Managed Access (UMA) 2.0 Grant for OAuth 2.0
Authorization,” Kantara Initiative, Jan 2018.

[5] M. Machulak and J. Richer, “Federated Authorization for User-Managed
Access (UMA) 2.0,” Kantara Initiative, Jan 2018.

[6] E. Gilman and D. Barth, Zero Trust Networks Building Secure Systems
in Untrusted Networks. O’Reilly Media, 2017.

[7] R. Ward and B. Beyer, “BeyondCorp: A New Approach to Enterprise
Security,” USENIX ;login:, vol. Vol. 39, No. 6, pp. 6–11, 2014.

[8] B. Osborn et al., “BeyondCorp: Design to Deployment at Google,”
USENIX ;login:, vol. 41, pp. 28–34, 2016.

[9] B. Spear et al., “Beyond Corp: The Access Proxy,” USENIX ;login:,
2016.

[10] N. N. Diep et al., “Contextual Risk-Based Access Control,” Security
and Management, vol. 2007, pp. 406–412, 2007.

[11] I. Traore et al., “Combining Mouse and Keystroke Dynamics Biometrics
for Risk-Based Authentication in Web Environments,” in 2012 Fourth
International Conference on Digital Home, Nov 2012, pp. 138–145.

[12] M. Frank et al., “Touchalytics: On the Applicability of Touchscreen
Input as a Behavioral Biometric for Continuous Authentication,” IEEE
Transactions on Information Forensics and Security, vol. 8, no. 1, pp.
136–148, Jan 2013.

[13] D. Preuveneers and W. Joosen, “SmartAuth: Dynamic Context Finger-
printing for Continuous User Authentication,” in Proceedings of the 30th
Annual ACM Symposium on Applied Computing, 2015, p. 2185–2191.

[14] A. Tulshibagwale, “Re-thinking federated identity with the Continuous
Access Evaluation Protocol,” https://cloud.google.com/blog/products/
identity-security/re-thinking-federated-identity-with-the-continuous-
access-evaluation-protocol, 2 2019.

[15] K. Minami and D. Kotz, “Secure context-sensitive authorization,” Per-
vasive and Mobile Computing, vol. 1, no. 1, pp. 123 – 156, 2005.

[16] M. J. Covington et al., “Securing Context-Aware Applications Using
Environment Roles,” in Proceedings of the Sixth ACM Symposium on
Access Control Models and Technologies, 2001, p. 10–20.

[17] OASIS Security Services TC, “Security Assertion Markup Language
(SAML) v2.0,” http://docs.oasis-open.org/security/saml/v2.0/sstc-saml-
approved-errata-2.0.pdf, 3 2005.

[18] N. Sakimura, J. Bradley, M. Jones, B. de Medeiros, and C. Mortimore,
“Final: OpenID Connect Core 1.0 incorporating errata set 1,” OpenID
Foundation, 11 2014.

[19] T. Orawiwattanakul et al., “User consent acquisition system for Japanese
Shibboleth-based academic federation (GakuNin),” International Jour-
nal of Grid and Utility Computing, vol. 2, no. 4, pp. 284–294, 2011.

[20] D. Hardt, “The OAuth 2.0 Authorization Framework,” RFC 6749, Oct.
2012.

[21] M. Scurtescu et al., “Management API for SET Event Streams,” Internet
Engineering Task Force, Jun. 2017.

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp




