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SYMMETRY AND INTERPOLATION OF ESTIMATES FOR THE 
COMPLEX GREEN OPERATOR 

SEVERINE BIARD 

ABSTRACT. This note is a summary of a lecture on the results of [8] about estimates for the 
complex Green operator, given by the author in the occasion of the conference: "Topology 
of pseudoconvex domains and analysis of reproducing kernels" on November 20-22nd, 2017, 
in RIMS, Kyoto, Japan. The results of this note are contained in [7] and [8]. 

1. INTRODUCTION 

A CR-manifold M of en is of hypersurface type if the real codimension of the complex 
tangent space inside the real tangent space is one. We will assume that M is compact, closed, 
and orientable. A particular case of such CR-manifold is the boundary of pseudoconvex 
domains in en. As such, a well-behaved £ 2-theory holds for the tangential Cauchy-Riemann 
operator and the £ 2-Sobolev theory of its associated complex Green operator - inverse of the 
Kohn Laplacian - may then be compared to that of the 8-Neumann operator on pseudoconvex 
domains. For a survey on the sufficient conditions for compactness estimates and Sobolev 
estimates for the complex Green operator, we refer to [7]. However, compactness estimates for 
the 8-Neumann operator failed to hold simutaneously at symmetric bidegrees (see [12]), while 
the compactness estimates for the complex Green operator are known to hold simultaneously 
at symmetric bidegrees (p, q) and (p, m- l-q) ([18, 16, 7]), where m-1 is the CR-dimension 
of M. The first result presented in this note is the fact that Sobolev estimates for the complex 
Green operator also hold simultaneously at symmetric bidegrees (p, q) and (m- p, m - q-1) 
(Theorem 1). On the other hand, while the compactness estimates for the 8-Neumann 
operator percolate up to the 8-complex on pseudoconvex domains, i.e. if the compactness 
estimates hold for (p, q)-forms then the compactness estimates hold for (p, q + 1)-forms, the 
compactness estimates for the complex Green operator do not. One of the main theorems, 
presented in this note is to give an alternative to the percolation for the complex Green 
operator on M, an interpolation result (Theorem 2). A similar result was proved recently in 
[15] when M is an actual hypersurface. 

The purpose of this note is to give a survey of the joint work with E. Straube [8]. After 
recalling some fundamental properties on the tangential 8-operator and the definition of 
the complex Green operator, we give a short review of the properties of the complex Green 
operator such as compactness estimates in Section 3. In Section 4, we state the Sobolev 

Key words and phmses. Complex Green operator, BM, CR-submauifolds of hypersurface type, compact­
ness estimates, Sobolev estimates, form level symmetry aud percolation. 

2000 Mathematics Subject Classification: 32W10, 32V20. 



73

estimates for forms of symmetric bidegrees and give the idea of the proof. In Section 5, we 
state the interpolation of compactness estimates for the complex Green operator that relies 
on the microlocalization introduced and used in [17, 23]. We end this note by mentionning 
a series of interesting remarks, including an open question related to the note. 

2. PRELIMINARIES AND NOTATIONS 

We keep the notations from [8]; it is fairly standard. Let M be a smooth compact CR­
submanifold in en, without boundary. Define m via dime Tc M = ( m - 1), where Tfi M 
denotes the complex tangent space at P, i.e. TpM n JTpM, where TpM is the real tangent 
space to Mand J the complex structure map on en (i.e. multiplication by i). This dimension, 
called the CR-dimension of Mis independent of P. 

M is said to be of hypersurface type if, at each point P E M, TfiM has real codimension 
one in TpM. Note that the real dimension of Mis then 2m -1. Indeed, CR-submanifolds of 
hypersurface type can be represented locally as a graph over an actual hypersurface in cm, 
m :S: n. We refer to [7] for sketches. 

A vector field X(z) = L7=i aJ(z)8/8zJ (on an open set of en or of M) is called of type 
(1, 0), while a field Y(z) = L7=l bj(z)8/8zj is of type (0, 1), as usual. Xis tangential to M 
if and only if (a1 (z), ... , an(z)) ET; M, for all z; similarly, Y(z) is tangential if and only if 
(b1 (z), ... ,bn(z)) E T;M, for all z. We say that XE T 1•0 M, YE T 0•1M (T1,0M and TcM 
are thus naturally isomorphic). For detailed information on CR-( sub )manifolds, the reader 
may consult [10, 5]. 

We assume from now that M is orientable, then there exits a purely imaginary vector 
field T on M of unit length that is orthogonal to Tc M at all points. Let T/ be the form 
dual to T, that is r,(T) = 1, and T/ = 0 on T 1,0 M 9 T 0•1 M. Denote by Lm the vector field 
Lm := (1/v'2)(T - iJT) defined on M; Lm is of type (1, 0) and has length one. Near a 
point P E M, choose an orthonormal basis {£1, ... , Lcm-i)} of T 1•0 M. Choose (1, 0)-forms 
{w1 , ... , wm} that at each point vanish on {£1, ... , Lm}..L and so that wk(LJ) = okJ, where 
Okj is the Kronecker o. These are the usual local frames. 

An important point that plays a role in Section 3 is the following: when we restrict Wm 

to Mas a form, this restriction does not equal r,; rather, we have wmlM = (1/v'2)r, (see for 
example [25], ch. III.3 for a discussion of the Hermitian structure on en that pays attention 
to norms of the dzj, etc.). 

The space of (p, q)-forms on Mat P, Ap,qTpM, is defined as those forms in Ap,qT;,en that 
have the form 

(1) u = I:' uuw1(P) /\ wJ(P), I<;;; {l, ... , m}, J <;;; {l, ... , m -1}. 
IIl=p,IJl=q 

The notation L' indicates summation over strictly increasing multi-indices. This definition 
is independent of the choice of orthonormal basis { £ 1 , ... , Lcm-l)} of T 1•0 M near P ( Lm is 
defined globally, and therefore, so is wm)-

We remind the extrinsic tangential Cauchy-Riemann operator, defined in the usual way. 
Locally, we represent a (p, q)-form as in (1). Extend u coefficientwise to a form u defined 
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in a full neighborhood in en (note that the local frame 'lives' in such a full neighborhood). 
Then from the 8-operator in en, we define 

(2) 

where tM : AP,qT;,en --+ Ap,qTJ,M is the orthogonal projection, for P E M (that is tM gives 
the tangential part of a form). This definition is independent of the local frame and/or the 
extension chosen, so that 3M is well defined by (2). The tangential BM-operator inherits 
from the 8-operator on en, the property to be a complex. It is useful to have the following 
expression for aM in a local frame: 

(3) 
m-1 

8Mu= L L' Lk(uu)wk/\w1 /\wJ+termsoforderzero. 
k=l lll=p,IJl=q 

Here, terms of order zero' means terms where the coefficients of u are not differentiated. We 
refer to [10, 7] for more details. 

The pointwise inner product between (p, q)-forms at PE M, 
I 

< u,v > = L UJJVJJ (4) 
lll=p,IJl=q 

is independent of the choice of the local othonormal frame. It provides an £ 2-inner product 
on M by integrating against the (Euclidean) volume element on M, as usual: 

(5) (u, v)L2 (M) = r < u(z), v(z) > dVM(z). 
(p,q) JM 

L(p,qi( M), 0 ::; p ::; m, 0 :::; q ::; ( m - 1) denotes the completion of AP,qT• M under the norm 
induced by this inner product, that we also denote by 11-11 for short. 

The tangential 8-operator BM: L~,q)(M)--+ L(p,q+l)(M) extends to an unbounded operator 
on L(p,qi(M) acting in the sense of distributions, with the maximal domain of definition 

dom(8M) = {u E L(p,qi(M) I 8Mu E L(p,q+i/M)}, where 3M act~ in a local frame as in (3). 
As a closed and densely defined operator on L~,qi(M), 1 :::; q ::; m - 1, 8M has a Hilbert 

space adjoint, denoted by 8M. In a local frame, integration by parts gives 
m-1 

(6) 8Mu = - L L 1 LJ(u1JK)w1 I\ WK+ terms of order zero. 
j=l lll=P,IKl=q-1 

We say that a CR-submanifold of hypersurface type is pseudoconvex if the Levi form >. 
that appears in the commutator between two vector fields X, YE T}0 (M) at a point PE M, 

[X, Y]p = Ap(X, Y)Tp mod T}0 M EB T~• 1 M, 

is positive semi-definite at each point P of M. Because Tis chosen to be purely imaginary, 
A is a Hermitian form. 

Orientable, smooth, compact and pseudoconvex CR-submanifolds M of hypersurface type 
of en can be considered as a natural generalization of boundary of pseudoconvex domains. 
Indeed, Baracco [1] proved that M has one-sided complexification to a complex submanifold 
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M of en, called a "strip" so that M is the connected pseudoconvex component of the bound­
ary of M. He then proved that M bounds a complex manifold in the C00 sense [2, 3]. We 
also refer to [30]. 

The crucial property is that BM, hence BM, have closed range in L(O,q)(M), 0:::; q:::; m -1. 
This was first proved by Nicoara [23] for m 2: 2 by microlocal methods and improved by 
Baracco [3] form 2: 11• From a well-behaved £ 2-theory for the BM-operator and its associated 
Hodge decomposition, we get the corresponding £ 2-estimate: 

(7) llull;,2 (M) ~ IIBMull;,2 (M) + IIBMull;,2 (M) + IIHp,qull;,2 (M) , 
(p,q) (p,q+l) (p,q-1) (p,q) 

where Hp,q: L(p,q)(M)--+ 1-l.p,q(M) := ker(BM) n ker(8~) is the orthogonal projection. 
Let 1 :::; q :::; (m - 2). The complex Laplacian on L(p,q)(M), denoted by • (p,q), is defined 

as BMBM + BMBM; its domain dom(D(p,q)) is understood to be the set of forms where this 
expression makes sense. This operator is the unique self-adjoint operator associated to the 
quadratic form Qpq(u, u) = (BMu, BMu)L2 (M) + (8Mu, BMu)L2 (M), via 

' (p,q+l) (p,q- 1) 

(8) Qp,q(u, u) = (• p,qU, u)Lfp,q)(M) , u E dom(Dp,q) . 

We denote ker(D(p,q)) = 1-1.(p,q)(M), the harmonic (p, q)-forms on M with £ 2-coeflicients. The 
dimension of 1-1.(p,q)(M) is known to be finite when 1 :::; q:::; (m - 2) ([23, 13]). It is reflected 
in a version of the basic l2-estimate of (7) where the norm of the harmonic component of a 
form u is replaced by llullw-1, the dual of the L2-Sobolev space W 1 (see [30], estimate 7,[7], 
Lemma 5): 

(9) llulli2 (M) ~ ll8Mulli2 (M) + 11a~ulli2 (M) + llull~-1 (M) ' 
(p,q) (p,q+I) (p,q-1) (p,q) 

u E dom(BM) n dom(B~), 0:::; p:::; m, 1:::; q:::; (m - 2). 

Because the range of BM is closed, so is that of •. Also, • (p,q) maps 1-1.(p,q)(M).l onto itself. 
The complex Green operator, Gp,q is defined to be the inverse operator of the restriction 

of D(p,q) to 1-l.(p,q)(M).1. It is convenient to extend it to all of L(p,q)(M) by setting it equal 
to zero on 1-1.(p,q)(M). Gp.q is a bounded self-adjoint operator. A detailed discussion of these 
matters may be found in [7, 11]. 

3. ESTIMATES FOR THE COMPLEX GREEN OPERATOR 

We keep the previous notations and M is a smooth compact orientable and pseudoconvex 
CR-submanifold of hypersurface type in en and of CR-dimension m - 1. 

Like the B-Neumann operator, the complex Green operator verifies a couple of properties 
that makes its study very interesting. For example, the complex Green operator gives the 
minimal solution ( also called the Kohn solution) to the inhomogeneous tangential Cauchy­
Riemann equation. Indeed if f is a (p, q)-form BM-closed and orthogonal to 1-l.p,q(M), then 

1 = BMBMcp,qf + BMBMcp,qf = BM(aMcp,qf), 

1This property holds in Lfp,q) ( M) since the holomorphic part is not getting involved in the proofs. 
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since a;v/'JMGp,qf E ker(EJM) by default and EJMEJMGp,qf E 1-l;,q(M). Hence, u = EJ!vfcp,qf E 

1-lp,q-i(Ml and verifies 8Mu = f. 
Let Jp,q: 1-lp,q(M)J_ n dom(EJM) n dom(8M) Y 1-lp,q(M)J_ be the imbedding and we set 

Qp,q(u, u) = i18Mulli2 (M) + ll8Mulli2 (M)' 
(p,q+l) (p,q-1) 

also called the graph norm. With respect this norm, 1-lp,q(M)J_ n dom(8M) n dom(8M) is 
a Hilbert space that makes Jp,q continuous and so its adjoint J;,q. When we study the 
compactness estimates for Gp,q, the following expression is very useful. We refer to [7], 
Lemma 4 for a proof. 

Lemma 1. 
G . . (. )* p,ql1, (M)j_ = Jp,q O Jp,q . 

p,q 

The interest of the compactness of the complex Green operator is as important as the 
compactness of the 8-Neumann operator. From compactness estimates, we recover a well­
behaved L2-theory for EJM, Moreover, compactness estimates imply Sobolev estimates. The 
following Lemma gives useful characterizations of compactness of Gp,q· We refer to [7], 
Lemma 6 for a proof. 

Lemma 2. Let 1 :Sq :S (m - 2). The following properties are equivalent: 

a} The complex Green operator Gp,q is compact. 
b) Jp,q is compact. 
c) EJM verifies the following compactness estimate: for all E > 0, there exists a constant 

C0 > 0 such that 

(10) llulli2 (M) :SC (11aMulli2 (M) + ll8Mulli2 (M)) + Cellull~-1 (M) 
(p,q) (p,q+I) (p,q-1) (p,q) 

u E dom(EJM) n dom(EJ~). 

The Lemma 2 holds when M is not orientable since compactness estimates are local, as 
proved by [28] using the fact that locally M is CR-equivalent to a hypersurface. 

The property c) is also referred to as compactness estimates for Gp,q• Note that by fixing 
c in (10), we have (9) and we get the finite dimension of the harmonic space 1-lp,q(M) for 
1 :S q :S m - 2. As mentioned previously, the compactness estimates imply the L2-theory 
discussed in Section 2. In particular, EJM and EJM have dosed range. 

Since M has no boundary, subelliptic and compactness estimates for the complex Green 
operator hold at symmetric levels i.e, Go,q is compact if and only if Go,m-q-l is compact. 
Compactness estimates are local, it is then enough to work on smooth forms supported in a 
local coordinate chart via a partition of unity. The idea, from Koenig [16], is to construct an 
operator denoted Tq that acts on a (0, q)-form u as follows 

(11) Tq(L1 
UJWJ) 

IJl=q IJl=q,IKl=(m-1-q) 

E:JK U W (l, ... ,m-1) J K , 
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where sf1~ .. ,m-l) is the Kronecker symbol. Then, 

T(m-1-q)Tqu = (-l)q(m-l-q)U 

(12) 

and 

(13) 

This operator Tq intertwines aM and aM up to terms of order zero. Those terms are absorbed 
in the compactness estimates. For more details, we refer to [16]. 

As we mentioned in the introduction, the compactness estimates for the 8-Neumann oper­
ator do not hold at symmetric levels on pseudoconvex domains. Let M be the boundary of a 
smooth bounded convex domain in en. It was proved by [12] that the 8-Neumann operator 
No,q is compact on the domain if and only if there is no q-dimensional complex variety on M 
nor higher dimensional variety. If n 2: 5 and M contains an analytic disc, then N0,1 is not 
compact, but No,n-1 is. 

4. SYMMETRY 

Let M be a smooth compact orientable pseudoconvex CR-submanifold of hypersurface 
type in en of CR-dimension m - 1. 

Koenig's operator (11) does not work anymore to obtain Sobolev estimates at symmetric 
levels, since the terms of order zero in (12) and (13) cannot be absorbed in Sobolev norms. 
We wish then to construct an operator that intertwines [)M and BM without terms of order 
0, similar to the Hodge-* operator that maps a (p, q)-form into (m - p, m - q - 1)-form. 
However, the operator that we build is slightly different from the Hodge-* operator since the 
pointwise inner product (4) between two forms in Ap,qTj,M does not necessarily agree with 
the inner product of their restrictions to M at P. This is due to the' orthonormal frame in 
Section 2: the unit form wm(P) E A1•0Tj,M restricts to (l/\1'2)71 E CTj,M, a form of norm 
(1/\1'2). 

In order to rectify this situation, we change the metric on CT M, hence on CT* M by 
declaring, at each point PE M, {w1, ... ,w(m-lJ,W1, ... ,W(m-l), (l/\1'2)71} to be an orthonor­
mal basis. In other words, we rescale in the direction of 7/ by a factor of v'2 ( equivalently, by 
a factor of 1/\1'2 in the direction of T). When we equip M with this new Riemannian struc­
ture, the restriction of forms in Ap,qTj,M to M (restriction as forms) becomes an isometry 
(at the point P). We use*, < , >~, and dV to denote, respectively, the Hodge-* operator, 
the pointwise inner product on forms, and the volume element on M with respect to this 
new Riemannian structure. All properties of the Hodge-* operator that we will use can be 
found in [25], section III.3.4 and/or in [21], section 4.1 (c). 
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This operator, denoted Ap,q is a conjugate linear operator Ap,q: L(p,q)(M) • L(m-p,m-I-q)(M), 
defined via 

(14) (v, Ap,qu) := V2 Lu I\ V, u E L~,qi(M), VE L(m-p,m-l-q)(M), 

0 :e::; p :e:; m, 0 :e::; q :e:; (m - 1) . 

This definition is analogous to the one in the appendix of [24]. It will be convenient to express 
Ap,q with the help of*· We have 

(15) (v, Ap,qu) = V2 JM u I\ v = V2 L (tt(ulM)) /\ v = V2 j * (*(ulM)) /\ v 

= V2 JM v /\* (*(ulM)) = V2 JM < vlM, *(ulM) >~ dV = JM < v, *(ulM)) > dV. 

Therefore, 

(16) 

in the sense that Ap,qU equals the unique form in Lfm-p,m-l-q)(M) whose restriction to M 

equals *(ulM) (that is, 7J is replaced by Wm)- We' are then able to prove 

Theorem 1. Let M be a smooth compact pseudoconvex orientable CR-submanifold of en of 
hypersurface type, of CR-dimension m - 1. Let O :e:; p :e:; m, 1 :e::; q :e:; (m - 2). Then Gp,q is 
regular in Sobolev norms (respectively globally regular) if and only if Gm-p,m-l-q is. 

Note that by regular in Sobolev spaces, we mean Gp,q satisfy the Sobolev estimates 
IIGp,qulls :e::; C.llulls, where 11 · lls denotes the L2-Sobolev norm of order s > 0. We say 
that Gp,q is globally regular if it maps (C00 ) smooth forms to smooth forms. 

Proof The expression of Ap,q in terms of the Hodge-* operator shows that Ap,q is continuous 
in L2 but also in Sobolev norms. Hence, it is enough to prove that Ap,q commutes with Gp,q· 
We resume the properties of this operator in the following proposition: 

Proposition 1. Let O :e:; p :e:; m, 0 :e::; q :e:; (m - 1). Then 

(17) 

(18) 

Ap,q: L(p,qi(M)--+ L(m-p,m-l-q)(M) is an isometry, 

Am-p,m-q-lAp,qU = u, Vu E Li,q)(M) . 

Let O :e:; p :e:; m, 1 :e::; q :e:; (m - 2). Then 

(19) 

(20) 

(21) 

(22) 

- 2 
Vu E dom(BM) <;;; L(p,q-l)(M), 

Vu E dorn(• p,q) <;;; L(p,q)(M) , 
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(23) Ap,q(H(p,q)(M)) = H(m-p,m-1-q)(M) · 

Proof of the Proposition. It suffices to prove all the statements for smooth forms; they are 
dense in Lzp,q)(M) and in the graph norms of both fJM and 8~. We remind that there is no 
boundary conditions when we integrate by parts that makes things work perfectly. (17) and 
(18) are immediate from (16) and the fact that* is an isometry in the modified metric on M, 
and that ttu = u (there is a factor (-l)(p+q)(2m-l-p-q); however, (p + q)(2m - 1 - p- q) = 
0mod2). 

To verify the crucial intertwining properties (19), (20), let us look at (20). The computation 
is as follows. Let U E Ap,q-lT• M, VE Am-p,m-l-qr• M. Note that 

(24) L 8Mu/\v= L(aM+fJM)u/\v= L du/\v 

(L aMu I\ v = 0, because at least one of the wj, 1 :S j :S m, will appear twice, or there will 

be an wi with j > m; in either case, the integral over M vanishes). Integration by parts 
therefore gives 

(25) (v,Ap,q8Mu)L2 (M) = V2 r 8Mu/\v = (-l)P+qy12 r u/\fJMV 
(m-p,m-1-q) } M } M 

= (-l)p+qy12 JM *(*ulM) I\ 8Mv = (-l)P+qy12 L 8Mv I\ *(*ulM). 

We have also used that* is real, so that *(*ulM) = ulM• Using* to mediate between wedge 
products and inner products gives 

(26) V2 /M 8Mv I\ *(*ulM) = V2 /M < 8Mv!M, TulM >~ dV 

= (8Mv,TulM)L2 (M) = (v,8~Ap,q-1u)L2 (M). 
(m-p,m-q) (m-p,m-1-q) 

In the second equality, we use that V2 <, >~ dV = <, > dV, as well as (16). (25) and (26) 
now imply (20). 

The remaining properties easily follow from (20), (17) and (18). D 

5. INTERPOLATION 

Let M be as in Section 4. We mentionned previously that subelliptic and compactness 
estimates for the 8-Neumann operator percolate up the 8-complex on pseudoconvex domains 
in en: if these estimates hold for (p, q)-forrns then they hold for (p, q + 1)-forrns. See for 
example [27] Proposition 4.5. The question of what happens for the complex Green operator 
on the boundary of those domains arises naturally. Since compactness estimates for Gp,q 
hold at symmetric levels, if such percolation property holds, then the compactness of Gp,q 
would imply the compactness estimates for all forms. That is, unfortunately, too good to be 
true as the following example witnesses: Similar to the property of the 8-Neumann operator 
on convex domains, in [24], Theorem 1.5, the authors proved that if M is the boundary 
of a smooth bounded convex domain in en, then Gp,q is compact if and only if M has no 
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q-dimensional nor (n -1- q)-dimensional complex varieties. Again, if n ~ 5 and M contains 
an analytic disc but no higher dimensional complex variety, then by this property, all the 
complex Green operators G0,2 , ••. Go,n-3 are compact but Go,1 and Go,n-z are not. There is 
no percolation of compactness estimates from (0, n - 3)-forms to (0, n - 2)-forms. 

However, we obtain a substitute of the percolation, that is analogous to an interpolation: 

Theorem 2. Let M be a smooth compact pseudoconvex orientable CR-submanifold of Cn of 
hypersurface type, of CR-dimension m - 1, let 0 S p S m and 1 S q1 S q2 S (m - 2). If 
Gp,q, and Gp,q2 are compact, then so is Gp,r for q1 Sr S q2. 

To prove this result, we use the microlocalization from [17, 19] and an idea from [22]. Since 
compactness estimates are local, we choose a good cover of M by local coordinate charts and 
work with smooth forms supported in such chart. The microlocalization allows to decompose 
the complex Green operators into 3 pseudodifferential operators p± and P 0 supported in 3 
different cones: Gp,qU = p+cp,qU + P 0Gp,qU + p-cp,qU- To prove the compactness of Gp,q 
is then equivalent to prove the compactness of p±cp,q and P 0Gp,q• But Pi, j E { -, +, 0} 
are bounded in L(p,qi(M) and in particular, P 0Gp,q is always compact because of elliptic 

estimates for 3M EB 8~ on that part of the microlocalization, so only p+cp,q and p-cp,q are 
relevant for the question of compactness of Gp,q· The key result is the fact that p+cp,q and 
p-cp,q do percolate. However, while for p+cp,q, percolation is indeed up the BM-complex, 
for p-cp,q it is down the complex. Theorem 2 is then just a corollary: if Gp,q is compact at 
two levels (p, q1) and (p, q2), q1 S q2, then both p+cp,qj and p-c;,qj are compact, j = 1, 2, 
and percolation (up from p+cp,qu down from p-cp,q2 ) implies that at the intermediate form 
levels (p, r), q1 Sr S q2, both p+cp,r and p-cp,r are compact. Hence so is Gp,r• 

The meaning of compactness of those operators is given by the following Lemma. We refer 
to [8], Lemma 1 for the proof. 

Lemma 3. Let 0 S p S m, 1 S q S (m - 2), k E {+, -,0}. Then the following are 
equivalent: 

(i} pkQp,q is compact. 

(ii} pkJp,q: dom(8M) n dom(8~) n H(p,q)(M)1--+ L~,qi(M) is compact. 
(iii} For all E: > 0, there is a constant C0 > 0 such that 

(27) 11Pkull 2 s C (11aMull 2 + 11a~ull2)+co11ull~-l 'u E dom(8M)ndom(8~)nH(p,q)(M)J_. 

(iii}* For all E: > 0, there is a constant C0 such that 

(28) 11Pkull2 S c (118Mull 2 + ll8~ull 2) + Cg llull~-, , u E dom(8M) n dom(8~) . 

Note that the dimension m ~ 3 is required since we invoke the finite dimension of 1ip,q(M) 
to obtain the equivalence between (iii) and (iii)*. The property (iii)* is the one we will use. 

So the most important result of this section is the following: 

Theorem 3. Let M be a smooth compact pseudoconvex orientable CR-submanifold of e,n of 
hypersurface type, of CR-dimension m - 1, let OS p S m. We have: 
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(i) if p+Gp,q is compact, then so is p+cp,q+l, l:::; q:::; (m - 3). 
(ii) if p-cp,q is compact, then so is p-cp,q-i, 2:::; q:::; (m - 2). 

We give below the idea of the proof for (i), the proof of (ii) working with similar arguments. 
We refer to [8] for the details. 

Proof Since smooth forms are dense in dom(BM) n dom(8~) by the Friedrichs Lemma, via a 
partition of unity argument, it is enough to work with smooth forms supported in a special 
boundary chart. We define pj by use of the microlocalization from [17, 19]. Let X, x+, x-, x0 

be functions with compact support in a neighborhood of such chart and define 

(29) 

where u = Fu is the Fourier transform on J1t2m-l and the operators act coefficientwise with 
respect to a fixed (chosen) frame {w1 , ... ,wm}- Then p± and P0 also act coeffi.cientwise, as 
pseudo-differential operators of order zero. Note that p+u + p-u + P 0u = u. 

By assumption, for any v E L~,qi(M), p+cp,qV is compact. We want to obtain the 
compactness estimates (iii)* for a form (p, q + 1)-form u in dom(8M) n dom(8M)- The idea 
is to build, from any smooth (p, q + 1)-form u, a set (p, q)-forms Vk whose norms control that 
of u, for which the compactness estimate (iii)* are satisfied, in such away that the resulting 
right hand sides can be estimated by the corresponding right hand side for u. The first part 
is standard (but see [27], proof of Proposition 4.5). 

VJ,= LI UJkKWJ I\ WK. 

IIl=p,IKl=q 
Since p+ acts coefficientwise, observe that 

m-1 

IIP+ull 2 = ~l L IIP+vkll 2 , 
q+ k=l 

(30) 

where 11-11 holds for II-IIL2(M)· The norms being equivalent, the idea is to get (iii)* in terms of 
u by estimating IIP+vkll- However, there is here a difference from [27], applying directly the 
compactness estimates (iii)* on Vk will make appear 8MVk and a~vk. While a~vk is easily 
related to 8~u, the same is not true for 8Mvk and 8Mu. To address this difficulty, we note 
that p+ is essentially a projection, so ll(P+)2vk - p+vkll ;S ll(P+)2u - p+ull and then we 
can invoke the microlocal ellipticity of aM EE) a~ on the support of (x+) 2 - x+ (since this 
support stays away from the direction dual to the "bad", or T direction). We get 

(31) ll(P+)2u - p+ull ;SC (11aMull + IIB~ull) + Cellullw-1 . 
More needs to be precised and some care is required here but we refer to [8] p. 10 for the 
details. Hence, by using (31), we obtain 

IIP+vkll 2 ;S ll(P+)2vk - p+vkll 2 + ll(P+)2vkll 2 

(32) ;SC (11aMull 2 + 11a~ull 2) + Ccllull~-1 + ll(P+)2vk11 2. 
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Only the last term of (32) is left to estimate. We then invoke the assumption that p+ is 
compact on (p, q)-forms P+vk and we obtain from (iii)* of Lemma 3, 

ll(P+)2vkll 2 ~ E (11aM(P+vk)ll 2 + ll8~(P+vk)ll 2 ) + CollP+vklliv-1 

(33) ~ E (11aM(P+vk)ll 2 + 11p+a~vkll 2 + llvk112) + CollP+vklliv-1 

(34) ;SE (\l8M(P+vk)ll 2 + \\B~u\\2 ) + Collulliv-1. 

In (33), we have commuted p+ with 8~, and used that the commutator is an operator of 
order zero. As we mentionned earlier, we have used in (34) that 8~vk is related to 8~u like 
it is done in [27], p. 79-80 (see also [8]). Note that p+ is of order zero, the last term in (33) 
is not a problem: \\P+vkllw-1 ;S \\v1<llw-1 ;S \lu\\w-1. It suffices to estimate \l8M(P+vk)ll 2 in 
terms of u. 

To do that, we use the local expression (3) of a by noting that via a partition of unity, we 
can work on a good boundary chart where L1 , · · · , Lm-l are defined. We get 

m-1 

(35) \IBM(P+vk)ll 2 ;SL I:' \\LjP+(uu)l\ 2 + IIP+ull 2 -

j=l lll=p,IJl=q+l 

Because of the presence of p+, it turns out that the Lrderivatives of P+u on the right-hand 
side of (35) can be estimated by ll8M(P+u)I\ + ll8~(P+u)II (plus the benign term \\P+ull); 
thanks to the usual formula, obtained from integration by parts (see for example the proof 
of Theorem 8.3.5 in [11]), 

m-1 m-1 

= L I:' IILj(P+u1J)l\ 2 + I:' L ([Lj, Lk]P+UJjK, p+UJkKt2 (M) 

j=l lll=P,IJl=q+l lll=P,IKl=qj,k=l (p,q+l) 

+ o (IIP+ull (IIL(P+u)I\ + \IL(P+u)I\) + I\P+ull 2) , 

m-1 

where IIL(P+u)ll 2 = L I:' 11Lj(P+uu)ll 2 • Note that 
j=l lll=p,IJl=q+l 

[Lj, Lk] = CjkT mod T 1•0 Af E9 r 0,1 M, 

where (cjk) the matrix of the Levi form in the basis L 1 , ... , Lm-l· 
The presence of p+ in the second term of the right-hand term of (36) and the pseudo­

convexity allow to conclude: commuting T with F-1 (from p+) makes appear the positivity 
required to apply Carding's inequality (see.for example [19], Lemma 2.5, [20], Theorems 3.1, 
3.2) on this term: 

(37) Re ( I:' I: (cjkT(P+uijK), p+uikK)) ~ -\lull 2 . 

IIl=p,IKl=q J,k=l 
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Combining (37) with the real part of (36), we obtain 

m-1 

(38) L 
j=l IIl=p,IJl=q+l 

Finally, combining (38) with (35), inserting the result together with (34) into (32) gives the 
desired estimate for IIP+vkll 2 as in (iii)* of Lemma 3. 

The proof of (ii) is similar in terms of arguments, ·however instead of building a (p, q)-form 
from a (p, q + 1)-form, we build a (p, q)-form from (p, q - 1)-form u as follows: 

(39) "'' Vk= L UIJWk/\W1/\WJ=Wk/\U. 

IIl=p,IJl=q-1 

Now, contrary to (i), 8Mvk is easily related to 8Mu, but relating a~vk to a~u plus benign 
terms requires work. The arguments are analogous, but with an additional twist. 8~ pro­
duces Li terms, rather than Li terms, and one has to first integrate by parts to convert these 
to barred terms. This has the effect that instead of the Levi matrix (cjk) in (37), the matrix 
( Cjk - q~l 8jktr( Crd)) appears, where tr( Crd) denotes the trace of the Levi matrix. This matrix 
is no longer positive semi definite, but it still has the property that the sum of any (q - 1) 
eigenvalues is nonnegative. This suffices to make the argument with Carding's inequality 
work. We refer to [8] p. 13-14 for the details. D 

6. FURTHER CURIOSITIES 

In this section, we present an open problem, that is not new but which is related to the 
theory of foliations and fits with the general interest of the conference. We will end with a 
result obtained by Haslinger [14] that shows that the interpolation of compactness estimates 
holds when the percolations fails for the 8-Neumann operator. 

In [30], Straube and Zeytuncu give a sufficient condition for Sobolev estimates for the 
complex Green operator on a smooth compact orientable and pseudoconvex CR-submanifold 
of hypersurface type of en in terms of the negative Lie derivative of the form 'f/, introduced 
in Preliminaries, in the direction of T that is denoted by a := -£rrJ- Note that this form a 
acts on the null space of the Levi form, denoted Nz at a point z E M as follows: 

-£rrJ(L) = rJ([T, L]), VL E Nz, 
since rJ(L) = 0. a is then on N 2 the T-component of the commutators [T, L] mod Tj,0 M EB 
TJ, 1 M, which needs to be controlled to obtain Sobolev estimates. We refer to [30] for the 
details and to [7] for the idea. This form a is closed on the null space, i.e, dalNz = 0 for any 
z E M. In particular, if S is a complex submanifold of M, [a1sl defines a De Rham class of 
cohomology in H 1 (M). To obtain Sobolev estimates, the sufficient condition given in [30] is 
the exactness of a on Nz, z EM, i.e, 

::lh E C00 (M), dh(L)(z) = a(L)(z), VL E Nz, z EM. 
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It was proved in the same paper, that this condition happens if M is given by a set of 
defining plurisubharmonic functions or if M is strictly pseudoconvex except on a smooth 
complex submanifold S such that [a1 8 ] = 0. Note that [a1 8 ] = 0 if S is simply connected. 
However, [a1 8 ] may vanish when S is not simply connected, for example in an annuli in the 
boundaries of certain Hartogs domains in C2 (see [9]). In such domains that are in particular 
"nowhere wormlike", the Bergman projection is regular. Here is then the open question: 

Open Problem. Assume that the complex Green operator Go,1 satisfies Sobolev estimates 
or is globally regular on a smooth orientable compact pseudoconvex CR--submanifold M of 
hypersurface type of <Cn that is strictly pseudoconvex except on a smooth complex submanifold 
S of M. Do we have [a1sl = O? 

If S is a flat piece that is foliated by complex submanifolds, then the question is equivalent 
to proving that a is d--exact on each leaf £ of the foliation, i.e, °'le = dh1c. This is also 
equivalent to saying that the foliation is globally defined by a closed one form, which is 
a crucial matter in the theory of foliation. The same problem occurs for the 8--Neumann 
operator on pseudoconvex domains and is still open. We refer to [29], Proposition 2 for more 
on this connection, also to [27], Section 5.11 and [4], Section 3.6. 

In [14], Haslinger studies the sufficient assumption for the compactness of the 8--Neumann 
operator in the weighted £ 2--space L2(Cn, 'P), that is on the plurisubharmonic weight function 
'P· However, Berger and Haslinger in [6] show that something remarkable happens when we 
consider a particular weight, said "decoupled weight" that is of the form 'P(z1 , ... , Zn) = 
'Pi(z1) + ··· + 'Pri(zn) where each 'Pj, j E {1, ... ,n} is smooth and subharmonic on C 
and b.ipj is a nontrivial doubling measure (see Definition p.4 in [6]): the 8--Neumann op­
erator N;f,q fails to be compact for O :::; q ::; n - 1 but N;f,n is compact if and only if 
limz---Hoo JB,(z) tr((i88ip(z)))d>.. = +oo where B1(z) is the unit ball in en. The percola­
tion of compactness estimates between N'rf n-I and N'rf n fails. The decoupled weights are an 
obstruction to the compactness. However, 'they pointed out that for a variation of decoupled 
weights such as, 

the weighted 8--Neumann operator N:f'f. is compact for q ::; k ::; n. When percolation fails, 
an interpolation result holds. ' 
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