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NISHINO'S RIGIDITY, LOCALLY 
PSEUDOCONVEX MAPS, AND 

HOLOMORPHIC MOTIONS 

TAKEO OHSAWA 

1. INTRODUCTION 

Function theory of several complex variables ( =SCV) was 
born in the 19th century, when the profound theory of al
gebraic functions in one variable was established after the 
discovery of elliptic functions. The principal motivation 
for SCV was to clarify the nature of periodic functions in 
n complex variables. 

In SCV, the nature of analytic functions differs from that 
of one variable at the point that poles and zeros of analytic 
functions are never isolated. By this reason, a large por
tion of the basic theory of SCV had to be built on the no
tions absent in the classical one variable theory. They are 
pseudoconvexity and coherence, whose essential feature was 
clarified by Oka [0-1,2,3,4,6] and Cartan [C-1,2,3] through 
a geometric characterization of holomorphic convexity and 
basic existence theorems on Stein manifolds. 

Stein manifolds and compact complex manifolds are two 
extreme classes of complex manifolds. Hopf [H] found a 
class of compact complex manifolds without nonconstant 
meromorphic functions and Kodaira [K-1] characterized pro
jective algebraic manifolds by a differential geometric con
dition. With these backgrounds, the basic theory of SCV 
has been generalized on complex manifolds and analytic 
spaces by various methods (cf. [G-1,2,3], [K-N], [A-V], 
[Ho]) and provides a sound foundation for the studies of 

2010 Mathematics Subject Classification. Primary 32E40; Secondary 32T05 . 



28

TAKEO OHSAWA 

automorphic functions ( cf. [S]). As a result, SCV is now 
related to many different fields such as partial differential 
equations, algebraic geometry, diferential geometry, num
ber theory, mathematical physics, representation theory, 
and dynamical systems. 

On the other hand, there was also a remarkable develop
ment in the one variable theory, particularly in the value 
distribution of meromorphic functions after the disovery of 
theorems of Picard that improved the Casorati-Weierestrass 
theorem. Stimulated by this progress, Nevanlinna's esti
mates for the order functions and Ahlfors's geometric ap
proaches have been successfully extended to several vari
ables (cf. [K-0], [C-G], [K-2], [D-2]). Value distribution 
theory studies the relations between various defect chara
teristics of transendental functions. Since it is done sub
stantially by estimating the distributions of the preimages 
of the values, the idea has been naturally carried over to 
the case of several variables. 

Nishino [N-1, 2, 3, 4, 5] initiated the classification theory 
of entire functions of two variables from this viewpoint of 
analyzing their level sets and clarified a link between SCV 
and one complex variable. The key to Nishino's theory 
is the following rigidity theorem which was called "lemme 
fondamental" in [N-2]. 

Theorem 1.1. Let 1r be a holomorphic submersion from a 
two dimensional Stein manifold D onto the unit disc I[]) such 
that 1r-1 ( c) ( c E ill)) are all biholomorphically equivalent 
to C. Then 1r : D -+ I[]) is equivalent to the projection 
pr2 : C x IO) -+ !D), i.e. there exists a biholomorphic map 
a : D -+ C x IO) satisfying pr2 o a = 1r. 

The purpose of the present article is to discuss a rela
tion between the notions of holomorphic motion and locally 
pseudoconvex maps, which the author considers to be ba
sic for the study of deformations of non-compact manifolds, 
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from a viewpoint suggested by Theorem 1.1. For that, we 
shall first review the proof of Theorem 1.1 at first, basically 
following [N-2] but in a more concise form. The author's in
tention is to make the points more directly accessible to the 
readers of modern text books such as [ G-R], [W], and [F], 
because he believes that Theorem 1.1 and its proof deserve 
to be better known. 

Then, after giving some expository accounts on locally 
pseudoconvex maps and holomorphic motions, we shall dis
cuss questions on the deformations of non-compact mani
folds. Some results will be given in special cases. 

2. PREPARATIONS FOR THE PROOF OF THEOREM 1.1 

Step 1 ~ Defining cp : D • C. By an analytic family 
we shall mean a holomorphic map f from an irreducible 
analytic space X onto a reduced analytic space T. We shall 
also say then that X is an analytic family over T and call f 
the projection. We say that an analytic family f : X • T 
is closable if X is densely contained in an analytic space 
X in such a way that f is holomorphically extendable to a 
proper map from X to T. 

Let D and 1r be as in Theorem 1.1. Since the principal 
AutC bundles over II» are trivial, the existence of a will 
follow from the local triviality of the family. Hence we may 
assume in advance that the family has a section, i.e. there 
exists a holomorphic maps : II» • D satisfying 1r o s = idIDJ. 

Let us fix a holomorphic vector field~ on a neighborhood 
of s(II») which is nowhere zero and satisfies 1r*~ = 0. For 
each c E II», let 'Pc : 1r-1 • (C be a biholomorphic map 
satisfying 

(2.1) 'Pc(s(c)) = 0 

and 

(2.2) ~('Pc)(s(c)) = 1. 
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Since <f)e is uniquely defined by these conditions, a map 
<p : D --+ CC is defined by r.pl7r-1(e) = <f)e-

Step 2 - Continuity of r.p. Let p E D be any point. We 
are going to show that <p is continuous at p. For that, we 
may assume that 1r(p) = 0 in advance. Since D is Stein, 
one has a holomorphic extension w of r.p0 satisfying 

(2.3) w Os= 0. 

We shall denote 1r-1 (c) by De for simplicity. Note that 
dw has no zeros on a neighborhood of D0 , say U. Hence, 
for any sequence Cn E ]J) (n = 1, 2, ... ) converging to 0, 
there exists a sequence Mn of positive numbers such that 
Wn := wlncnnw-l(Afn.]l])) are biholomorphic maps to Mn . ]IJ)_ 

By (2.1) and (2.3), 

(2.4) lim 1Pen o w~1(0) = 0 
n • oo 

and by (2.2) and (2.3) 

(2.5) 

Therefore, by the following lemma <{)en o w~ 1 locally con
verges to idc uniformly, so that we obtain 

lim r.p( q) = r.p(p) 
q• p 

for any p ED. 

Lemma 2.1. For any sequence Mn with limn-too Mn = CX) 

and for any sequence fn of holomorphic injections from Mn· 
]IJ) to CC satisfying fn(O) = 0 and f~(O) = 1, fn converges to 
idc locally uniformly on CC. 

Proof. By Koebe's distorsion theorem (cf. [A], p.84) one 
has 

lzl lzl 
( )2 < lfn(z)I < ( )2· 
1+M 1-M 

Mn Mn 
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Hence the desired conclusion follows from the Schwarz lemma. 

• 
Step 3 - A lemma for the analyticity of <.p. It remains 
to show the analyticity of <.p. Let D, 1r, U and w be as 
before. Then <.p can be expanded in a neighborhood of 
(z, w) = (0, 0) into a series 

00 

<.p(z, w) = w + L ak(z)wk, 
k=2 

where ak(z) are all continuous. It suffices to show that there 
exists a neighborhood of 0 on which ak(z) are holomorphic, 
since the analyticity of <.p will follow from its definition and 
continuity shown as above. 

In order to prove the analyticity of ak(z), the following 
subtle preparation is necessary. 

Lemma 2.2. ( cf. [N-2, Lemme 6]) Any continuous func
tion f on the closed disc 1D) satisfying the fallowing condition 
is holomorphic on 1D). 

For any two positive numbers E and TJ, one can find a fi
nite set r c ill) and a holomorphic function hr(t) on the 

~ 

universal covering IO) \ r = I[)) = { t E CC; !ti < 1} such that 

(2.6) sup IJ(z(t)) - hr(t)I < E. 
[t[<l-17 

Proof The harmonicity of f will be shown at first. Since 
z(t) is a bounded holomorphic function on ill), by a theorem 
of Fatou the radial limit of z(pei8 ) exists as p /' 1 on 8IlJ) 
almost everywhere ( cf. [R], [A-O-S]). Moreover, it is clear 
from the definition of z(t) that 

(2.7) I lim z(pei0 ) I = 1 
p/l 

a.e. 
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Therefore, 

(2.8) lim -2
1 f 2

1r l(cr(z(pei0 ))d0 = l(cr(z(O))) 
p/'l 1r lo 

holds for any er E AutIDl. Hence 1 is harmonic. 
Since 12 and (1 + z ) 2 also satisfy the assu:rhption, one has 

88(1(z)2) = 2818~ = 0 
8z 8z 

and 

- (81 ) 81 88(1(z)+z)2= 82 +1 82 =0, 

whence 
81 
8z = 0· 

3. PROOF OF THEOREM 1.1 

Let us prove the analyticity of ak(z) by using Lemma 2.2. 
First we note that the existence of a is clear if 1r is a closable 
projection, because the Riemann sphere is rigid. In this 
case ak(z) are obviously holomorphic. The general analytic 
family in question will be approximated by this special one. 
To realize a situation where Lemma 2.2 can be applied, we 
need some coordinates to describe the approximation. 

Proposition 3.1. Let 1r : D -+ ill) be as in Theorem 1.1. 
Then there exists a holomorphic submersion u : D -+ C 
with one dimensional fibers. 

Proof. Since D is a contractible Stein manifold, there exists 
a holomorphic 1-form, say w, on D whose restriction to De 
(as a differential form) are all zero free. The map defined 
by integrating w from s(IDJ) along the paths contained in 
the fibers satisfies the required property. • 
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Proposition 3.2. For any M > 0) there exist a clos
able analytic family 1r M : D M ---+ ]I)), a holomorphic map 
UM : DM ---+ C, and a biholomorphic map !3M from OM := 

c.p- 1(M • ]I))) n 1r-1 (½ • ]I))) into DM satisfying the following 
properties. 

1) 7rM o /3M((, z) = z, ((,z) EM .]I)) x ½ •illl. 

Proof. Since D is a Stein manifold of dimension 2, there 
exist holomorphic functions f j : D ---+ (C ( 1 < j < 4) such 
that the map 

is a proper embedding (cf. [F], Theorem 8.2.4). Since the 
image of ( F, u) is defined by three entire functions (cf. [F -
R]), say 91 , 92 and 93, it can be approximated by algebraic 
sets on compact subsets of (C5 . 

Hence one can approximate (F, n, u)(D) by an algebraic 
set, which may be regarded as an approximation of F by a 
multivalued analytic function in (z, u) which depends alge
braically in u. 

Let DM be the graph of such a map, let 7rM and UM be 
respetively the restrictions of the projections 

Z : (C4 X lI)) X (C ---+ ill) 

and 

U : (C4 X lI)) X (C ---+ (C 

to D M, and let /3M be the inverse of the restriction of a 
holomorphic retraction to (F, n, u)(D) t'V D defined on a 
tubular neighborhood of (F, 1r, u)(D) in (C4 x lI)) x C. Then 
DM is closable by the algebraicity property and, since QM 
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is relatively compact in D, UM and /3M satisfy the require
ments by choosing the defining polynomials of D M suffi
ciently close to g1, g2 and g3. • 

Proof of the analyticity of ak(z). By Proposition 3.2, for 
any Mo> 0 and ro <½,the map (uM,7rM) is a local home
omorphism from f3M(cp- 1(Mo-]D)) n1rNl(ro ·]D))) to CC x JD) for 
sufficiently large M. Hence, in this part, DM is nonsingular 
and the restrictions of UM to the fibers of 7rM do not have 
ramification points. 

Let VM : DM --+ D M be the normalization of D M and 
put uM = UM o VM, 1r1v1 = 7rM o VM. Let ~M C DM be 
the set of points around which the map ( uM, 1r1v1) is not a 
homeomorphism, and let r M be the image by 1rM of the set 
of points around which 7rM I I:M is not a homeomorphism. 
Then, r M n r0 · ]D) is a finite set by the definition of DM. 

We Eestrict the analytic family DM over r0 · ]D) \ r M, let 
if-M : DM --+ ]D) be its lift to the universal covering JD) of r0 · 

]D)\f M, and let UM be the lift of uM to DM. Then a ramified 
covering space (if-M, UM) : DM --+ ]D) x CC is obtained. This 
covering space can be modified by making a slit at first 
on each fiber of WM along curves eminating from the lift of 
~M \ 1r-;,/(r M ), lying over the curves on the UM plane which 
reach oo by avoiding the ramification points, and then by 
gluing the sheets along the slits in such a way that the 
resulting analytic cover 

induces a closable analytic family irM : DM --+ ]D) which has 
simply connected fibers. 

This "surgery" can be operated without touching the part 
corresponding to/3M( <p-1 (Mo · ]D)) n 1rNl(ro · ]D)) ), so that the 
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properties of /3M and UM described in 1) and 2) of Proposi
tion 3.2 are carried over. DM is closable beause so is DM. 
The Steiness is obvious because ( irM, UM) is proper. 

For the family iJ M, let ({) M be the map defined similarly 
as ({) corresponding to /3M o s and (/3M )*t Then ({) M is 
holommorphic because iJ M is closable. Moreover, as M • 
oo, ( ({), 7T) o /3il o ( ({) M, ii" )-1 converges to the identity map 
uniformly on compact subsets of M 0 · II)) x II))_ 

This implies that ak ( z) can be approximated by holomor
phic functions in the sense of Lemma 2. 2 so that they are 
holomorphic. Hence one may put a = ( ({), 7T). D 

Remark 3.1. Combining the above proof with Osgood's 
separate analyticity theorem, it is clear that a holomor
phic submersions from a Stein manifold with fibers rv CC 
are analytic fiber bundles. Since AutCC = { az + b ; a E 
CC\ {O} and b E C}, they are affine line bundles. 

Remark 3.2. Proposition 3.1 can be generalized as a relative 
version of a theorem of Gunning and Narasimhan. (cf. [G
N] and [Nm]). 

Remark 3.3. As a corollary of Theorem 1.1, one knows that 
locally Stein families of finite Riemann surfaces are closable 
if the Betti numbers of the fibers are locally bounded. It is 
likely that the latter property is also a consequence of the 
Steinness. For a related extension of Nishino's theoty, see 
[Y], [C] and [Oh-3], where alternate proofs of Theorem 1.1 
are given. 

4. WEAKLY 1-COMPLETE MANIFOLDS AND LOCAL 

PSEUDOCONVEXITY 

Theorem 1.1 and its proof suggest further studies on an
alytic families in a larger class of manifolds including Stein 
manifolds and compact manifolds, since compactification, 
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modification and covering spaces naturally enter the argu
ments of Nishino. So, before going into specific questions 
lying in this direction, let us first give expository accounts 
on some basic notions. 

A complex manifold X is said to be weakly I-complete, 
or weakly pseudoconvex in the terminology of [D-1], if X 
admits a C 00 plurisubharmonic exhaustion function, say 
\JI : X • [O, oo). X is said to be I-complete if a strictly 
plurisubharmonic function can be chosen as \JI. By a the
orem of Grauert [G-1], Xis I-complete if and only if Xis 
Stein. 

A holomorphic map 'ljJ : X • Y will be said to be locally 
pseudoconvex if every point y E Y has a neighborhood U 
such that 'lj)-1 (U) is weakly I-complete.In this situation, we 
shall also say that X is locally pseudoconvex over Y. 1b 
find a passage from local to global is the principal question 
in this context. As is well known, the following is the first 
decisive answer in this direction. 

Theorem 4.1. (cf.[O-j,6]) A complex manifold X is 1-
complete if there exists a 1-complete manifold Y and a lo
cally pseudoconvex submersion 'ljJ : X • Y with 0-dimensional 
fibers. 

By Grauert's theorem it is easy to see from Theorem 1.1 
that locally pseudoconvex maps with fibers t"V C are affine 
line bundles. 

Theorem 4.1 is known to be a solution of the Levi prob
lem. A generalized Levi problem asks conditions for X to 
be weakly I-complete when a locally pseudoconvex map is 
given from X to a weakly I-complete manifold Y. Let us 
recall some cases where affirmative results hold. 

Theorem 4.2. ( cf. [T], [S], [El) Let D be a relatively com
pact domain in a Kahler man if old with semipositive holo
morphic bisectional curvature. Then - log dist ( x, a D) is 
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a continuous plurisubharmonic exhaustion function on D. 
Here dist(x, 8D) denotes the distance from x E D to the 
boundary 8D of D. 

Theorem 4.3. ( cf. [U]) Let Y be a compact Kahler man
ifold and let f : X • Y be a locally pseudoconvex map 
whose fibers are (['.. Suppose moreover that f is topologi
cally equivalent to the projection (['. x Y • Y. Then X is 
weakly 1-complete. 

The proof of Theorem 4.3 will be given in section 6. 

Remark 4.1. Theorems 4.2 and 4.3 are false without the 
Kahler condition. Analytically nontrivial Il])-bundles and C
bundles over Hopf manifolds are counterexamples ( cf. [D-F] 
and [Oh-5]). 

Remark 4.2. An elementary proof of Theorem 4.2 is given 
in [Oh-3]. 

5. HOLOMORPHIC MOTIONS 

From now on, let us consider analytic families J : X • 
T where X and T are nonsingular and f is differentiably 
locally trivial. In this situation, we shall say that f is a 
holomorphic motion if X is locally foliated by holomorphic 
sections. In other words, f : X • T is a holomorphic 
motion if every point t E T has a neighborhood U such that 
there exists a continuous retraction p : 1-1(U) • 1-1 (t) 
whose preimages are the graphs of holomorphic sections 
over U. If p can be chosen to be of class Ck, f is called a 
Ck-holomorphic motion. By an abuse of language, we shall 
also say that f, as well as X, is a holomorphic motion of 
the fibers of f. 

Theorem 5.1. (cf. [Ku]) f : X • T is a real analytic 
holomorphic motion if f is proper. 
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Corollary 5.1. Every covering space of an analytic family 
of a compact Riemann surface is locally pseudoconvex. 

Theorem 5.2. ( cf. [Sl]) A holomorphic motion f : X • T 
is foliated by holomorphic sections over T if dim X = 2 and 
T = ]]])_ 

Corollary 5.2. Holomorphic motions of Riemann surfaces 
over ]]]) are holomorphically convex. 

Remark 5.1. Corollary 5.1 and Corollary 5.2 have been no
ticed in [Oh-2] and [Oh-1], respectively. 

Remark 5.2. Since Xis Stein if f: X • Tis a fiber bundle 
with Stein I-dimensional fibers and Stein base T ( cf. [M]), 
it seems natural to ask if a holomorphic motion is Stein 
under the same assumptions on the fibers and the base. 

Remark 5.3. Combining Theorem 5.1 with an example of 
Nakamura in [N], one sees that holomorphic motions of a 
Stein manifold of dimension > 3 are not necessarily locally 
pseudoconvex. Fot Stein surfaces, local pseudoconvexity of 
their holomorphic motions does not seem to be known. 

6. BUNDLES OVER COMPACT KAHtER MANIFOLDS 

Let f : X • T be as before. From now on we shall 
restrict ourselves to the cases where the fibers off are ana
lytic fiber bundles over compact complex manifolds whose 
fibers are either CC or the unit disc ]]]), since interesting 
weakly I-complete manifolds arise in such forms. 

First we recall when such bundles become weakly I-complete. 
Since Aut(CC) consists of polynomials of degree one, an
alytic C-bundles are those fiber bundles whose transition 
functions are of the form (j = ajk(z)(k + bjk(z) with re
spect to an open covering M = U j [}_j. Here (j denotes the 
fiber coordinate over Uj and z E [}_j n Uk. We shall denote 
by L0 the line bundle associated to the 1-cocyle ajk· 



39

NISHINO'S RIGIDITY THEOREM 

Proposition 6.1. Let M be a compact complex man if old 
and let L • M be an analytic fiber bundle whose fibers are 
C. Then Lo is weakly 1-complete if Lo is seminegative. 

Here a line bundle is said to be seminegative if it admits a 
fiber metric hj whose curvature form -88 log hj is semineg
ative. The proof of Proposition 6.1 is straighforward from 
the definition. Indeed, l(jJ 2hj is then a plurisubharmonic 
exhaustion function on L0 . As for the converse, Grauert 
[G-3] proved that the zero section of a holomorphic line 
bundle over a compact complex manifold admits a strongly 
pseudoconvex neighborhood system if and only if the bun
dle is negative. Although the seminegative case has not 
been discussed in the literature, the following result for the 
one-dimensional case is implicitly contained in [U]. 

Theorem 6.1. If dim M = 1, L is weakly 1-complete if 
and only if L 0 is seminegative. 

The proof of Theorem 6.1 can be generalized without 
difficulty to obtain Theorem 4.3, which can be stated in 
this context as follows. 

Theorem 6.2. Topologically trivial analytic affine line bun
dles over compact Kahler manifolds are weakly 1-complete. 

Proof. Let M be a compact Kahler manifold, let L • M 
be a topologically trivial analytic affine line bundle. Then, 
since M is Kahler, one can find an open covering { Uj} of 
M and local trivializations of L such that the transition 
relations are of the form (j = eA01k(k + ajk(z) for some 
0jk E IR and ajk E O(U,j n Uk), where O(U) denotes the set 
of holomorphic functions on U (by a standard application 
of the 88-lemma). Applying the Kahler condition again, 
by replacing { Uj} by its refinement if necessary, one can 
find aj, bj E O(Uj) such that 

- -b ,;=Ie k( -b ) ajk - aj + j - e 1 ak + k 
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holds on U1 n Uk. This is also a consequence of the 88-
lemma (cf:_ [D-Oh-1], Lemma 2). For simplicity we put 
h1 = a1 + b1. The system h_7 is naturally identified with a 
pluriharmonic section of the bundle L • M. 

Then it is straightforward that the function 

<[) = l(j - hjl2 

is a well defined plurisubharmonic exhaustion function on 
L. The plurisubharmonicity of<[) can be seen from 

88<"[) = d1 ·d1 . - d1 -ah· - d1 .ah· + ah -ah· + 8h -ah· ~J ~ J ~J J ~ J J J J J J 

• 
Inspired by Theorems 6.1 and 6.2,the following was ob

tained in [D-Oh-2) . 

Theorem 6.3. Analytic "SD-bundles over compact Kahler 
manifolds are weakly 1-complete. 

By these results, a similarity is apparent between the di
visors with topologically trivial normal buhdle and Levi 
flat hypersurfaces. In [Oh-5) and [Oh-4], Theorem 6.2 artd 
Theorem 6.3 are complemented respectively by the follow
ing results where the similarity still persists. 

Theorem 6.4. Let X be a compact Kahler manifold and let 
Y be an effective divisor of X whose normal bundle is topo
logically trivial. Then the complement of the support of Y 
does not admit a C00 plurisubharmonic exhaustion function 
whose Levi farm has at least 3 positive eigenvalues every
where outside a compact set. 

Theorem 6.5. Let X be a compact Kahler manifold and 
let ~ C X be a real analytic Levi fiat hypersurface. Then 
X \ I: does not admit a C00 plurisubharmonic exhaustion 
function whose Levi form has at least 3 positive eigenvalues 
everywhere outside some compact subset of X \ I:. 
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For the families of affine line bundles, the following was 
proved in [Oh-7]. 

Theorem 6.6. Let T be a complex manifold) let p: S • T 
be a proper holomorphic map with smooth one-dimensional 
fibers, and let q : .C • S be an analytic affine line bundle. 
Then po q : .C • T is locally pseudoconvex if one of the 
fallowing conditions is satisfied. 

(i) Fibers Lt (t E T) of po q are of negative degrees over 
the fibers St of p. 

(ii) Lt are topologically trivial over St and not analytically 
equivalent to line bundles. 

(iii) .C • S is a U(l)-fiat line bundle. 

For the families of [))-bundles, we have shown in advance 
to Theorem 6.6 its counterpart in the following form. 

Theorem 6. 7. ( cf. [ Oh-6]) Let p : S • T be as in Theo
rem 6. 6 and let D be an analytic [))-bundle over S. Then 
V is weakly 1-complete if T is Stein. 

The parallerism between C-bundles and ]J)_ bundles stops 
here because it turned out that one cannot drop the as
sumptions in Theorem 6.6. At this point, which will be 
discussed below, the so-called Ohsawa-Takegoshi theorem 
entered the argument unexpectedly. 

7. A COUNTEREXAMPLE 

Let A be a complex torus of dimension one (i.e. an elliptic 
curve), say A= (C\{0}/Z), wheretheactionofZonC\{0} 
is given by z f--t em z for m E Z. Over the product A x C as 
an analytic family of compact Riemann surfaces over C, we 
define an affine line bundle F • Ax C as the quotient of the 
trivial bundle ((C\ {0} x C) x C) x C • (C\ {0} x C)by the 
action of Z defined by (z, t, () f--t (emz, t, (+mt). Suppose 
that F is locally pseudoconvex with respect to the map 
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1r : F-+ (['. induced by the projection to the second factor 
of Ax C. Then there will exist a neighborhood V :=, 0 such 
that 1r-1 (V) is weakly I-complete. Then, since the canoni
cal bundle of F is obviously trivial, holomorphic functions 
on 1r-1(t) must be holomorphically extendable by the £ 2 

extension theorem in [Oh-3]. (See also [Oh-T].) But this 
will mean that 1r-1(0) can be blown down to (['. in F be
cause the other fibers of 1r are equivalent to (C\ {O} )2. This 
contradicts that the normal bundle of the divisor 1r-1 (0) is 
trivial. 

Rema,k 7.1. The above counterexample can be generalized 
to any non-trivial analytic family of C-bundles over a com
pact Riemann surface that deforms the trivial bundle, be
cause one can apply the £ 2 extension theorem in the same 
way on the total space of the anti-canonical bundle of the 
family. 

8. PROOF OF THEOREM 6.6 

Since the conclusion is obvious when (i) or (iii) is the case, 
let us assume (ii). Then, as in the proof of Theorem 2.2, 
one can find a system of fiber coordinates (j of the bundle 
over S and a system of C 00 functions hj which are harmonic 
on the fibers of S -+ T such that I (j - hj I is globally defihed 
on £. Note that hj are nonconstant on the fibers of p by 
assumption. Then it is easy to see that, for any Stein open 
set V C T, there exist a C 00 positive plurisubharmonic 
exhaustion function 1/; on V and a positive C 00 function <p 

on q-1(p-1 (V)) satisfying <p < 'lj)opoq such that c.p+l(j-hjl 2 

is strictly plurisubharmonic on each fiber of po q. Then it 
is easy to verify by a direct computation that one can find 
a convex increasing function >. on JR such that 

(1 + <p + l(j - hj 12 ) . >.01/; 0 p O q 

is strictly plurisubharmonic everywhere. 
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