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Chandrasekhar polynomials - A brief review 
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E-mail address: machida@hama-med.ac.jp 

Abstract. A review on the Chandrasekhar polynomials is given. The polynomials 
often appear in transport theory. The relation to the method of rotated reference 
frames for the three-dimensional radiative transport equation is clarified. 

1. INTRODUCTION 

The Chandrasekhar polynomials play an important role in one-dimensional trans­
port theory (see [5, 9] and references therein). Recently, the appearance of the 
polynomials has been recognized even for the three-dimensional radiative transport 
equation [10, 11]. 

We begin with the one-dimensional transport equation. Let µt, µ 8 be constants 
such that µt > µ 5 ~ 0. Let µ be the third component of vector 0 E § 2 , i.e., µ is the 
cosine of the polar angle of 0. Let n be an interval on the real axis. We write the 
transport equation as 

(µ :z + µt) I(z, 0) = µ8 fs
2 

p(0, 0')I(z, 0') d01 , (z, 0) E O x § 2 . 

The solution I(z, 0) will be uniquely determined if suitable boundary conditions 
are imposed. We assume that the scattering phase function p(0, 0') is given by 

L L I 

p(0,0')= 4~L,f31P1(0·0')=L, L, 2l~lYim(0)Yi:r,(0'), 
1=0 1=0 m=-1 

where P1 are Legendre polynomials, Yim are spherical harmonics, and the symbol * 
means complex conjugate. The coefficient /3o = 1 and for 1 :S: l :S: L, l/31 I < 2l + 1. 
Using associated Legendre polynomials P1m (µ), spherical harmonics are given by 

(0) 2l + 1 (l - m)!Pm( ) im<p 
Yim = 41r (l + m)! I µ e ' 

where cp E [0, 21r) is the azimuthal angle of 0. We note that this p(0, 01) implies 
scatterers are spherically symmetric. In optics, coefficients /31 are often given by 
/31 = (2l + 1 )g1 with the anisotropy factor g E ( -1, 1) [3]. 

By changing the spatial variable as x = µtz, we can rewrite the transport equa­
tion as 

(µ:x + 1) 't/J(x,0) = w fs
2

p(0,0')'t/J(x,0')d0', (x,0) En x § 2 , 

where w = µ8 / µt E [0, 1) is called the albedo for single scattering and 't/J(x, 0) 
I(x/ µt, 0). Chandrasekhar's polynomials appear when the solution 't/J(x, 0) to the 
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homogeneous equation is sought assuming the form 

oo l 

'l/J(x, 0) = L L fzm(v)Yim(0)e-xfv, 
l=O m=-l 

where v E IR is a parameter and fzm(v) are coefficients which will be later related 
to Chandrasekhar's polynomials. See [1] for the equivalence between the method 
of discrete ordinates and the spherical-harmonic expansion. 

Let us introduce hz as 

_ {2l + 1 - w,Bz, 0 '5. l '5. L, 
hz - 2l + 1, l 2 L + 1. 

We note the relation 

11 m() m() 2 (l+l+m)! 2 (l+m)! 
-lµPz µPz, µ dµ= 4(l+1) 2 -1 (l-m)! ()l+l,l'+4l2 -l(l-1-m)! 61-l,l'· 

By substituting the assumed form of 'l/J(x, 0) into the homogeneous transport equa­
tion, we obtain 

CX) l' CX) l' 
~ ~ ~ ~ hz, 

µ L., L., fz,m 1 (v)Yi 1m1 (0) - V L., L., 2z, + l fz,m 1 (v)Yi 1m1 (0) = 0. 
l'=Om'=-l' l'=Om'=-l' 

Then by multiplying Yi;',, ( 0) and integrating over 0, we obtain 

oo ✓z2-m2 vhz oo L 4z2 -1 ()z-1,z 1 fl'm(v)- 2l + l fzm(v)+ L 
l'=lml l'=lml 

(l + 1)2 - m 2 

4(l + l) 2 _ 1 6z+1,z1 fz,m(v) = 0. 

Let us define fzm(v) = 0 for l < 1ml. If we multiply ✓2l + 1 in the above equation, 
we obtain 

~ vhz y 2f="1 fz-1,m(v) - v'2[+Ifzm(v) + 
(l+1) 2 -m2 

2(l + l) + 1 fz+1,m(v) = 0. 

2. CHANDRASEKHAR POLYNOMIALS 

Let x E R Chandrasekhar introduced polynomials G1 (x) which satisfy the 
following three-term recurrence relation [2, 4]. 

(l + m)G~1 (x) - hzxG1(x) + (l - m + l)Gi+-1 (x) = 0, l 2 m 2 0, 

with G~(x) = (2m - 1)!!. See [8] for the case m = 0. 
Then the normalized Chandrasekhar polynomials g1 (x) (l 2 1ml) were intro­

duced [6, 7]. By setting [15] 

gf'(x) = 
(l-m)! m 
(l +m)!Gz (x), 

we see that g1 satisfy the following three-term recurrence relation. 
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Indeed, the three-term recurrence relation for fzm is recovered if we put g1 
fzm/ ✓2z + 1. We set the initial term as 

m(x) = (2m - 1)!! = ~ 
gm ~ 2mm!, m ~ 0. 

Moreover, g1m(x) and g1 (-x) are related to g1 (x) as 

g1m(x) = (-l)mg["(x), g["(-x) = (-1/+mgz'(x). 

3. EIGENPROBLEM 

To avoid tedious calculations, in this section we assume m is nonnegative: m = 
0, 1, .... It is straightforward to extend results below to the case of negative m. 
It is also possible to write p(0, 0') only with m ~ 0 making use of the formula 

P1-m(µ) = (-l)mg~:j:Pt(µ). Let us introduce 

and 

µthl 
O"z = 2l + 1' 

yz'(x) = J(2l + l)O"zgz'(x). 

Using the new notation, the three-term recurrence relation for g1 becomes 

bz(m)yf:._1(x) - !_yz'(x) + b1+1(m)yrt1 (x) = 0, 
µt 

where 

bz(m) = 
z2 -m2 

(4l2 - l)O"zO"z-1. 

By imposing the truncation condition 

M = lmax + m or lmax, 

where M determines the highest degree of Pzm used to express 7/J(x, 0), we arrive at 
the eigenproblem 

B(m)Y~(m) = i_y~(m), 
µt 

where Y~(m) = (y::(l),Y::+i(l), ... ,iI}(l))T. The tridiagonal matrix B(m) is 
given by [12, 14] 

{B(m)}u, = b1(m)61 1 ,1-1 + b1 1 (m)61 1 ,l+1· 

In the method of rotated reference frames [12, 14], eigenmodes are labeled by eigen­
values of B(m). The number of rows and columns of B(m) is lmax + 1 when 
M = lmax + m and is lmax - m + 1 when M = lmax• Since B(m) is a sym­
metric tridiagonal matrix with nonzero off-diagonal elements, its eigenvalues are 
distinct. Also if U µt is an eigenvalue for y["(l), then -l/ µt is another eigenvalue 
and y1 (-l) = (-1)1y1 (l) [12]. Essentially the same tridiagonal matrix W was in­
troduced in [15]. Elements of Ware given by {W}ll' = wz(m)6z',l-l +wz,(m)6z,,z+1, 
where wz(m) = J(l 2 - m2)/(hzhz-1). Let ~j/ µt (j = 1, ... , lmax + 1) denote eigen­
values of B(m). We note that {lj} are eigenvalues of W. 
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For simplicity, hereafter, we suppose M = lmax + m and lmax ?: 1 is an odd 
integer. There are (Zmax + 1)/2 positive eigenvalues and Umax + 1)/2 negative 
eigenvalues for each m. Then we can write eigenvalues as 

6 > 6 > ... > l!..tnaci2 > 0 > l~+l > ... > 6 +1, 2 2 max 

and 6max+2-j = -lj (j = 1, ... , (lmax + 1)/2). 
The following lemmas hold. 

Lemma 3.1 (Orthogonality [13, 15]). We have 

l lmax+m 
z. L Yz(li)Yi(lJ)=6ij, i,j=l,2, ... ,Zmax+l, 

J l=m 

where z. _ "lmax+m[ym(t·)]2 
J - Dl=m l ',,J • 

Proof. Eigenvectors corresponding to two distinct eigenvalues of a symmetric real 
matrix are orthogonal. • 

Lemma 3.2 (Completeness [13, 15]). We have 

lmax+l l 
L z.Yi(lJ )y,;'(lJ) = 8ll', l, l' = m, m + 1, ... , m + lmax, 
j=l J 

where z. = "lmax+m[ym(t·)]2 
J Dl=m l ',,J • 

Proof. Let us introduce vectors XJ = Y(j (m)/ .jZ; and matrix X =(Xi, ... , X1max+1)­
Then X is an orthogonal matrix: x-1 = xr. Next we introduce matrices Z = 
diag( ✓,z;-, ... , JZ1max+1) and Y = (YE, (m), ... , ~lmax+l (m)). The matrix Y is 
expressed as Y = X Z. 

Let us consider 

lmax+l 
L DJYv(lJ) = 8u,, l, l' = m,m + 1, ... , m + lmax· 
j=l 

To find DJ (j = 1, ... ,lmax + 1), we introduce vectors D = (D1, ... ,Dzmax+1)T 
and F = (8m,l,8m+1,l,···,8m+lmax,l)T, and write the relation as YD= F. Since 
D = z-1 xr F, we obtain 

This completes the proof. • 

Remark 3.3. Ifwe define IY(j(m)) = ~j(m)/.jZ; and (ZIY(j(m)) = Yi(lJ)/.jZ;, 
then the orthogonality and completeness in Lemma 3.1 and Lemma 3.2 are equiv­
alently expressed as 

lmax+l 

(y(,(m)IY~j(m)) = 8iJ, L IY~j(m)) (y~j(m)I = 1. 
j=l 
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4. CONCLUDING REMARKS 

In this paper, we focused on the case µa > 0, i.e., r:v < 1. It is possible to consider 
the conservative (nonabsorbing) case µa = 0 but it must be done separately. When 
r:v = 1, O"o = 0 and the element b1 ( 0) becomes infinity. In this case, we need to 
remove the top left part of B(O). 

In application, the numerical evaluation of the Chandrasekhar polynomials is 
important. Various numerical techniques have been developed [5, 6, 7]. 
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