TITLE：

Chandrasekhar polynomials－A brief review（Analysis of inverse problems through partial differential equations and related topics）

AUTHOR（S）：
Machida，Manabu

[^0]
Chandrasekhar polynomials - A brief review

Manabu Machida
Institute for Medical Photonics Research, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
E-mail address: machida@hama-med.ac.jp

Abstract

A review on the Chandrasekhar polynomials is given. The polynomials often appear in transport theory. The relation to the method of rotated reference frames for the three-dimensional radiative transport equation is clarified.

1. Introduction

The Chandrasekhar polynomials play an important role in one-dimensional transport theory (see [5, 9] and references therein). Recently, the appearance of the polynomials has been recognized even for the three-dimensional radiative transport equation $[10,11]$.

We begin with the one-dimensional transport equation. Let μ_{t}, μ_{s} be constants such that $\mu_{t}>\mu_{s} \geq 0$. Let μ be the third component of vector $\theta \in \mathbb{S}^{2}$, i.e., μ is the cosine of the polar angle of θ. Let Ω be an interval on the real axis. We write the transport equation as

$$
\left(\mu \frac{\partial}{\partial z}+\mu_{t}\right) I(z, \theta)=\mu_{s} \int_{\mathbb{S}^{2}} p\left(\theta, \theta^{\prime}\right) I\left(z, \theta^{\prime}\right) d \theta^{\prime}, \quad(z, \theta) \in \Omega \times \mathbb{S}^{2}
$$

The solution $I(z, \theta)$ will be uniquely determined if suitable boundary conditions are imposed. We assume that the scattering phase function $p\left(\theta, \theta^{\prime}\right)$ is given by

$$
p\left(\theta, \theta^{\prime}\right)=\frac{1}{4 \pi} \sum_{l=0}^{L} \beta_{l} P_{l}\left(\theta \cdot \theta^{\prime}\right)=\sum_{l=0}^{L} \sum_{m=-l}^{l} \frac{\beta_{l}}{2 l+1} Y_{l m}(\theta) Y_{l m}^{*}\left(\theta^{\prime}\right)
$$

where P_{l} are Legendre polynomials, $Y_{l m}$ are spherical harmonics, and the symbol * means complex conjugate. The coefficient $\beta_{0}=1$ and for $1 \leq l \leq L,\left|\beta_{l}\right|<2 l+1$. Using associated Legendre polynomials $P_{l}^{m}(\mu)$, spherical harmonics are given by

$$
Y_{l m}(\theta)=\sqrt{\frac{2 l+1}{4 \pi} \frac{(l-m)!}{(l+m)!}} P_{l}^{m}(\mu) e^{i m \varphi}
$$

where $\varphi \in[0,2 \pi)$ is the azimuthal angle of θ. We note that this $p\left(\theta, \theta^{\prime}\right)$ implies scatterers are spherically symmetric. In optics, coefficients β_{l} are often given by $\beta_{l}=(2 l+1) \mathrm{g}^{l}$ with the anisotropy factor $\mathrm{g} \in(-1,1)[3]$.

By changing the spatial variable as $x=\mu_{t} z$, we can rewrite the transport equation as

$$
\left(\mu \frac{\partial}{\partial x}+1\right) \psi(x, \theta)=\varpi \int_{\mathbb{S}^{2}} p\left(\theta, \theta^{\prime}\right) \psi\left(x, \theta^{\prime}\right) d \theta^{\prime}, \quad(x, \theta) \in \Omega \times \mathbb{S}^{2}
$$

where $\varpi=\mu_{s} / \mu_{t} \in[0,1)$ is called the albedo for single scattering and $\psi(x, \theta)=$ $I\left(x / \mu_{t}, \theta\right)$. Chandrasekhar's polynomials appear when the solution $\psi(x, \theta)$ to the
homogeneous equation is sought assuming the form

$$
\psi(x, \theta)=\sum_{l=0}^{\infty} \sum_{m=-l}^{l} f_{l m}(\nu) Y_{l m}(\theta) e^{-x / \nu}
$$

where $\nu \in \mathbb{R}$ is a parameter and $f_{l m}(\nu)$ are coefficients which will be later related to Chandrasekhar's polynomials. See [1] for the equivalence between the method of discrete ordinates and the spherical-harmonic expansion.

Let us introduce h_{l} as

$$
h_{l}=\left\{\begin{aligned}
2 l+1-\varpi \beta_{l}, & 0 \leq l \leq L, \\
2 l+1, & l \geq L+1 .
\end{aligned}\right.
$$

We note the relation

$$
\int_{-1}^{1} \mu P_{l}^{m}(\mu) P_{l^{\prime}}^{m}(\mu) d \mu=\frac{2}{4(l+1)^{2}-1} \frac{(l+1+m)!}{(l-m)!} \delta_{l+1, l^{\prime}}+\frac{2}{4 l^{2}-1} \frac{(l+m)!}{(l-1-m)!} \delta_{l-1, l^{\prime}} .
$$

By substituting the assumed form of $\psi(x, \theta)$ into the homogeneous transport equation, we obtain

$$
\mu \sum_{l^{\prime}=0}^{\infty} \sum_{m^{\prime}=-l^{\prime}}^{l^{\prime}} f_{l^{\prime} m^{\prime}}(\nu) Y_{l^{\prime} m^{\prime}}(\theta)-\nu \sum_{l^{\prime}=0}^{\infty} \sum_{m^{\prime}=-l^{\prime}}^{l^{\prime}} \frac{h_{l^{\prime}}}{2 l^{\prime}+1} f_{l^{\prime} m^{\prime}}(\nu) Y_{l^{\prime} m^{\prime}}(\theta)=0 .
$$

Then by multiplying $Y_{l m}^{*}(\theta)$ and integrating over θ, we obtain

$$
\sum_{l^{\prime}=|m|}^{\infty} \sqrt{\frac{l^{2}-m^{2}}{4 l^{2}-1}} \delta_{l-1, l^{\prime}} f_{l^{\prime} m}(\nu)-\frac{\nu h_{l}}{2 l+1} f_{l m}(\nu)+\sum_{l^{\prime}=|m|}^{\infty} \sqrt{\frac{(l+1)^{2}-m^{2}}{4(l+1)^{2}-1}} \delta_{l+1, l^{\prime}} f_{l^{\prime} m}(\nu)=0 .
$$

Let us define $f_{l m}(\nu)=0$ for $l<|m|$. If we multiply $\sqrt{2 l+1}$ in the above equation, we obtain

$$
\sqrt{\frac{l^{2}-m^{2}}{2 l-1}} f_{l-1, m}(\nu)-\frac{\nu h_{l}}{\sqrt{2 l+1}} f_{l m}(\nu)+\sqrt{\frac{(l+1)^{2}-m^{2}}{2(l+1)+1}} f_{l+1, m}(\nu)=0
$$

2. Chandrasekhar polynomials

Let $x \in \mathbb{R}$. Chandrasekhar introduced polynomials $G_{l}^{m}(x)$ which satisfy the following three-term recurrence relation [2, 4].

$$
(l+m) G_{l-1}^{m}(x)-h_{l} x G_{l}^{m}(x)+(l-m+1) G_{l+1}^{m}(x)=0, \quad l \geq m \geq 0
$$

with $G_{m}^{m}(x)=(2 m-1)!!$. See [8] for the case $m=0$.
Then the normalized Chandrasekhar polynomials $g_{l}^{m}(x)(l \geq|m|)$ were introduced [6, 7]. By setting [15]

$$
g_{l}^{m}(x)=\sqrt{\frac{(l-m)!}{(l+m)!}} G_{l}^{m}(x),
$$

we see that g_{l}^{m} satisfy the following three-term recurrence relation.

$$
\sqrt{l^{2}-m^{2}} g_{l-1}^{m}(x)-h_{l} x g_{l}^{m}(x)+\sqrt{(l+1)^{2}-m^{2}} g_{l+1}^{m}(x)=0, \quad l \geq|m| .
$$

Indeed, the three-term recurrence relation for $f_{l m}$ is recovered if we put $g_{l}^{m}=$ $f_{l m} / \sqrt{2 l+1}$. We set the initial term as

$$
g_{m}^{m}(x)=\frac{(2 m-1)!!}{\sqrt{(2 m)!}}=\frac{\sqrt{(2 m)!}}{2^{m} m!}, \quad m \geq 0
$$

Moreover, $g_{l}^{-m}(x)$ and $g_{l}^{m}(-x)$ are related to $g_{l}^{m}(x)$ as

$$
g_{l}^{-m}(x)=(-1)^{m} g_{l}^{m}(x), \quad g_{l}^{m}(-x)=(-1)^{l+m} g_{l}^{m}(x) .
$$

3. Eigenproblem

To avoid tedious calculations, in this section we assume m is nonnegative: $m=$ $0,1, \ldots$. It is straightforward to extend results below to the case of negative m. It is also possible to write $p\left(\theta, \theta^{\prime}\right)$ only with $m \geq 0$ making use of the formula $P_{l}^{-m}(\mu)=(-1)^{m} \frac{(l-m)!}{(l+m)!} P_{l}^{m}(\mu)$. Let us introduce

$$
\sigma_{l}=\frac{\mu_{t} h_{l}}{2 l+1},
$$

and

$$
y_{l}^{m}(x)=\sqrt{(2 l+1) \sigma_{l}} g_{l}^{m}(x) .
$$

Using the new notation, the three-term recurrence relation for g_{l}^{m} becomes

$$
b_{l}(m) y_{l-1}^{m}(x)-\frac{x}{\mu_{t}} y_{l}^{m}(x)+b_{l+1}(m) y_{l+1}^{m}(x)=0
$$

where

$$
b_{l}(m)=\sqrt{\frac{l^{2}-m^{2}}{\left(4 l^{2}-1\right) \sigma_{l} \sigma_{l-1}}} .
$$

By imposing the truncation condition

$$
g_{M+1}^{m}(\xi)=0, \quad M=l_{\max }+m \quad \text { or } \quad l_{\max }
$$

where M determines the highest degree of P_{l}^{m} used to express $\psi(x, \theta)$, we arrive at the eigenproblem

$$
B(m) Y_{\xi}(m)=\frac{\xi}{\mu_{t}} Y_{\xi}(m)
$$

where $Y_{\xi}(m)=\left(y_{m}^{m}(\xi), y_{m+1}^{m}(\xi), \ldots, y_{M}^{m}(\xi)\right)^{T}$. The tridiagonal matrix $B(m)$ is given by $[12,14]$

$$
\{B(m)\}_{l l^{\prime}}=b_{l}(m) \delta_{l^{\prime}, l-1}+b_{l^{\prime}}(m) \delta_{l^{\prime}, l+1}
$$

In the method of rotated reference frames [12, 14], eigenmodes are labeled by eigenvalues of $B(m)$. The number of rows and columns of $B(m)$ is $l_{\max }+1$ when $M=l_{\max }+m$ and is $l_{\max }-m+1$ when $M=l_{\max }$. Since $B(m)$ is a symmetric tridiagonal matrix with nonzero off-diagonal elements, its eigenvalues are distinct. Also if ξ / μ_{t} is an eigenvalue for $y_{l}^{m}(\xi)$, then $-\xi / \mu_{t}$ is another eigenvalue and $y_{l}^{m}(-\xi)=(-1)^{l} y_{l}^{m}(\xi)$ [12]. Essentially the same tridiagonal matrix W was introduced in [15]. Elements of W are given by $\{W\}_{l l^{\prime}}=w_{l}(m) \delta_{l^{\prime}, l-1}+w_{l^{\prime}}(m) \delta_{l^{\prime}, l+1}$, where $w_{l}(m)=\sqrt{\left(l^{2}-m^{2}\right) /\left(h_{l} h_{l-1}\right)}$. Let $\xi_{j} / \mu_{t}\left(j=1, \ldots, l_{\text {max }}+1\right)$ denote eigenvalues of $B(m)$. We note that $\left\{\xi_{j}\right\}$ are eigenvalues of W.

For simplicity, hereafter, we suppose $M=l_{\max }+m$ and $l_{\max } \geq 1$ is an odd integer. There are $\left(l_{\max }+1\right) / 2$ positive eigenvalues and $\left(l_{\max }+1\right) / 2$ negative eigenvalues for each m. Then we can write eigenvalues as

$$
\xi_{1}>\xi_{2}>\cdots>\xi_{\frac{l_{\max }+1}{2}}>0>\xi_{\frac{l_{\max }^{2}+1}{2}+1}>\cdots>\xi_{l_{\max }+1}
$$

and $\xi_{l_{\max }+2-j}=-\xi_{j}\left(j=1, \ldots,\left(l_{\max }+1\right) / 2\right)$.
The following lemmas hold.
Lemma 3.1 (Orthogonality [13, 15]). We have

$$
\frac{1}{Z_{j}} \sum_{l=m}^{l_{\max }+m} y_{l}^{m}\left(\xi_{i}\right) y_{l}^{m}\left(\xi_{j}\right)=\delta_{i j}, \quad i, j=1,2, \ldots, l_{\max }+1
$$

where $Z_{j}=\sum_{l=m}^{l_{\text {max }}+m}\left[y_{l}^{m}\left(\xi_{j}\right)\right]^{2}$.
Proof. Eigenvectors corresponding to two distinct eigenvalues of a symmetric real matrix are orthogonal.

Lemma 3.2 (Completeness $[13,15])$. We have

$$
\sum_{j=1}^{l_{\max }+1} \frac{1}{Z_{j}} y_{l}^{m}\left(\xi_{j}\right) y_{l^{\prime}}^{m}\left(\xi_{j}\right)=\delta_{l l^{\prime}}, \quad l, l^{\prime}=m, m+1, \ldots, m+l_{\max }
$$

where $Z_{j}=\sum_{l=m}^{l_{\text {max }}+m}\left[y_{l}^{m}\left(\xi_{j}\right)\right]^{2}$.
Proof. Let us introduce vectors $X_{j}=Y_{\xi_{j}}(m) / \sqrt{Z_{j}}$ and matrix $X=\left(X_{1}, \ldots, X_{l_{\max }+1}\right)$. Then X is an orthogonal matrix: $X^{-1}=X^{T}$. Next we introduce matrices $Z=$ $\operatorname{diag}\left(\sqrt{Z_{1}}, \ldots, \sqrt{Z_{l_{\max }+1}}\right)$ and $Y=\left(Y_{\xi_{1}}(m), \ldots, Y_{\xi_{l_{\max }+1}}(m)\right)$. The matrix Y is expressed as $Y=X Z$.

Let us consider

$$
\sum_{j=1}^{l_{\max }+1} D_{j} y_{l^{\prime}}^{m}\left(\xi_{j}\right)=\delta_{l l^{\prime}}, \quad l, l^{\prime}=m, m+1, \ldots, m+l_{\max }
$$

To find $D_{j}\left(j=1, \ldots, l_{\max }+1\right)$, we introduce vectors $D=\left(D_{1}, \ldots, D_{l_{\max }+1}\right)^{T}$ and $F=\left(\delta_{m, l}, \delta_{m+1, l}, \ldots, \delta_{m+l_{\text {max }}, l}\right)^{T}$, and write the relation as $Y D=F$. Since $D=Z^{-1} X^{T} F$, we obtain

$$
D_{j}=\frac{1}{Z_{j}} y_{l}^{m}\left(\xi_{j}\right)
$$

This completes the proof.
Remark 3.3. If we define $\left|y_{\xi_{j}}(m)\right\rangle=Y_{\xi_{j}}(m) / \sqrt{Z_{j}}$ and $\left\langle l \mid y_{\xi_{j}}(m)\right\rangle=y_{l}^{m}\left(\xi_{j}\right) / \sqrt{Z_{j}}$, then the orthogonality and completeness in Lemma 3.1 and Lemma 3.2 are equivalently expressed as

$$
\left\langle y_{\xi_{i}}(m) \mid y_{\xi_{j}}(m)\right\rangle=\delta_{i j}, \quad \sum_{j=1}^{l_{\max }+1}\left|y_{\xi_{j}}(m)\right\rangle\left\langle y_{\xi_{j}}(m)\right|=1 .
$$

4. Concluding remarks

In this paper, we focused on the case $\mu_{a}>0$, i.e., $\varpi<1$. It is possible to consider the conservative (nonabsorbing) case $\mu_{a}=0$ but it must be done separately. When $\varpi=1, \sigma_{0}=0$ and the element $b_{1}(0)$ becomes infinity. In this case, we need to remove the top left part of $B(0)$.

In application, the numerical evaluation of the Chandrasekhar polynomials is important. Various numerical techniques have been developed [5, 6, 7].

Acknowledgements

The author acknowledges support from JSPS KAKENHI Grant No. 17K05572, 18K03438.

References

[1] Barichello L B and Siewert C E 1998 On the equivalence between the discrete ordinates and the spherical harmonics methods in radiative transfer Nucl. Sci. Eng. 130 79-84
[2] Benassi M, Garcia R D M, Karp A H and Siewert C E 1984 A high-order spherical harmonics solution to the standard problem in radiative transfer Astrophys. J. 280 853-864
[3] Bigio I and Fantini S 2016 Quantitative Biomedical Optics (Cambridge: Cambridge University Press)
[4] Chandrasekhar S 1960 Radiative Transfer (New York: Dover)
[5] Ganapol B D 2014 Chandrasekhar polynomials and the solution to the transport equation in an infinite medium J. Comp. Theor. Trans. 43 433-473
[6] Garcia R D M and Siewert C E 1989 On discrete spectrum calculations in radiative transfer J. Quant. Spec. Rad. Trans. 42 385-394
[7] Garcia R D M and Siewert C E 1990 On computing the Chandrasekhar polynomials in high order and high degree J. Quant. Spec. Rad. Trans. 43 201-205
[8] Inönü E 1970 Orthogonality of a set of polynomials encountered in neutron transport and radiative transfer theories J. Math. Phys. 11 568-577
[9] Kuščer I and McCoormick N J 1991 Some analytical results for radiative transfer in thick atmospheres Trans. Theo. Stat. Phys. 20 351-381
[10] Machida M 2014 Singular eigenfunctions for the three-dimensional radiative transport equation J. Opt. Soc. Am. A 31 67-74
[11] Machida M 2015 An F_{N} method for the radiative transport equation in three dimensions J. Phys. A: Math. Theor. 48325001
[12] Markel V A 2004 Modified spherical harmonics method for solving the radiative transport equation Waves Random Media 14 L13-L19
[13] McCormick N J 1995 Identities for the Chandrasekhar polynomials in the spherical harmonics radiative transfer method J. Quant. Spec. Rad. Trans. 54 851-856
[14] Panasyuk G, Schotland J C and Markel V A 2006 Radiative transport equation in rotated reference frames J. Phys. A: Math. Gen. 39 115-137
[15] Siewert C E and McCormick N J 1997 Some identities for Chandrasekhar polynomials J. Quant. Spec. Rad. Trans. 57 399-404

[^0]: CITATION：
 Machida，Manabu．Chandrasekhar polynomials－A brief review（Analysis of inverse problems through partial differential equations and related topics）．数理解析研究所講究録 2021，2174：88－92

 ISSUE DATE：
 2021－02
 URL：
 http：／／hdl．handle．net／2433／263958
 RIGHT：

