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On unilateral contact problems with friction 
for an elastic body with cracks 

Alexey I. Furtsev, Hiromichi Itou, Victor A. Kovtunenko, 
Evgeny M. Rudoy and Atusi Tani 

Abstract 

This expository article deals with contact problems with friction 
for a linearized ( visco )elasticity in two dimension, which are arising 
from a wide variety of phenomena in mechanical engineering and con
cerning with some inverse problems and control problems. Contact 
conditions for cracks are so-called non-penetration conditions defined 
as unilateral conditions on the displacements of bodies to exclude non
physical phenomenon such as mutual penetration of crack faces, see 
[11] for the details. In the present paper, mathematical results ob
tained in [9] and [5] are introduced and moreover, dynamic unilateral 
contact problems are discussed. 

1 Introduction 

Friction problems are very important issues and appearing a lot of phenom
ena occurring around us. Especially, in material sciences, it is recognized a 
discipline as "tribology". Tribology encompasses with several science fields 
of Adhesion, Friction, Lubrication and Wear. One of pioneer of tribology 
is Leonardo da Vinci who discovered a classical law of friction in 1493. Af
ter that Guillaume Amontons and Charles-Augustin Coulomb established a 
classical laws of friction as follows. 

Amontons' First Law: The force of friction is directly proportional to the 
applied load. 

Amontons' Second Law: The force of friction is independent of the ap
parent area of contact. 
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Coulomb's Law of Friction: Kinetic friction is independent of the sliding 
velocity. 

They are empirical laws and called Coulomb's Law of Friction briefly. Still 
today, it is going on modification to apply wide area of tribological phenom
ena. Let F be the force acting on the interface of two bodies and decomposed 
into two parts; 

where n is the unit normal on the interface. In the case of unilateral contact 
which means that the contact is maintained only if the forces press the bodies 
each other, Coulomb's Law of Friction can be formulated as follows. It is 
necessary that Fn ::S O and 

{ IFrl < -f Fn: sti.ck ::::} 

IFrl = - f Fn: slip ::::} :3(:::::: 0 s.t. 

V=O, 

V = -(Fr (V =J 0), 

where f is the coefficient of friction and V denotes the sliding velocity. 
One of most important application of this kind of problems is an earth

quake in which fault ruptures occur between different lithospheric plates of 
the earth's surface under the huge pressure. As a mathematical model, it 
is described by a system of partial differential equations expressing the mo
tion and deformation of the plates together with the contact and friction 
conditions at the interface. Contact conditions for cracks are so-called non
penetration conditions defined as unilateral conditions on the displacements 
of bodies to exclude nonphysical phenomenon such as mutual penetration of 
crack faces, see [11] for the details. Due to such conditions, there are some 
difficulties in the mathematical analysis. In this paper, we introduce some 
theoretical results obtained in [9] and [5], further discuss dynamic unilat
eral contact problems with friction. A brief outline of the present paper is 
as follows. In Section 2, the problem for an interfacial crack between two 
dimensional linearized elastostatic materials is considered. The Coulomb's 
law of friction and non-penetration condition are assumed to hold on the 
whole crack surface. Then the existence of the solution is shown by using 
penalization method. Moreover, asymptotic expansions of the solution near 
the crack tip are derived. In Section 3, a similar problem treated in [5] is 
considered. On the crack faces the non-penetration condition and Tresca 
friction condition which is an approximation of Coulomb friction ( e.g. [12]) 
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are imposed. On the other part of the interface, both of adhesion forces and 
friction force are taken into account. A formula for the derivative of the 
energy functional with respect to the crack length, which can be represented 
as a path-independent integral (I-integral), is discussed as well as some nu
merical results. In Section 4, we mention about dynamic unilateral contact 
problems. In my knowledge, there are a few mathematical results dealing 
with the existence of a solution to such kinds of problems ( cf. [3, 4, 17]). 
Then, we overview the related known results and clarify the main difficulty. 

2 The interface crack with Coulomb friction 

Let n c IR.2 be a bounded domain with Lipschitz boundary and be divided 
into two Lipschitz domains 

n(l) := n n {x2 > O} and n(2) := n n {x2 < O} 

by the x1-axis. We suppose that each n(k) (k = 1, 2) is a dissimilar isotropic 
homogeneous linearized elasticity. The interface of n(k) (k = 1, 2) is denoted 
by r' and a linear crack r lies on the interface r'. Two crack tips are located 
at the origin O tJ_ an of the coordinate system x = (x1 , x2 ) and at a point 
P E an, see Figure 1 for an illustration of the geometry. 

• 
: X2 

r • (1) Xl 

p iO • (2) 

Figure 1: the domain n 

By u(k) = (u?))i=l,2 and a(k) = (at))i,j=l,2 we denote the displacement 
vector and the stress tensor, respectively. ,\(k) and µ(k) are Lame constants 

~(k) + 3µ(k) 
satisfying µ(k) > 0 and ,\(k) + µ(k) > 0. We denote -;:,,(k) = _ The 

,\(k) + µ(k) 

superscripts k = 1 and k = 2 refer to the materials in n(1) and n(2). 
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According to [14], the stationary linearized elasticity equation for a homo
geneous isotropic material is obtained from the constitutive law, called the 
generalized Hooke's law, and the equilibrium conditions without any body 
forces; 

(2.1) 

{ 
>.. (k) in the state of plane strain, 

). (k) = 2,\ (k) µ(k) 

>,_(k) + 2µ(k) in the state of plane stress. 

Here the relation between the displacement vector and the stress tensor is 
given by the form 

with the second order identity tensor I. 
Now we consider the following boundary value problem ( *): for given 

surface force g E L2 (80) such that g = 0 near P, and a small constant 
friction coefficient f E (0, 1), find uC1) E H 1(fJ(1)) and uC2) E H 1(fJ(2l) 
satisfying 

µ(1) L,u(l) + (>.(1) + µ(l))'v('v. u(l)) = 0 in fJ(l) 
' 

µ(2) L,u(2) + (>.(2) + µ(2))'v('v. u(2)) = 0 in fJ(2) 
' 

a-C1)n = g on anc1l nan 

(*) a-C2)n = g on anc2l nan 
[ui] = [u2] = [CT12] = [CT22] = 0 on r'\r, 

[CT22] = 0, CT~~) :S 0, [u2] 2 0, CT~~) [u2] = 0, on r, 

[ ] - I (k) I (k) (k) [ ] (k) I [ ] I -CT12 - 0, CT12 :'.S - fCT22 , CT12 U1 + fCT22 U1 - 0 on r. 

We denote jump of u at r' by [u] := uC1) - uC2) on r' and the unit outward 
normal to 80 by n = (n1 , n 2). On the conditions at the crack, the boundary 
traction is continuous across the crack and the non-penetration inequality 
[u2] 2 0 enforces the complementarity conditions together with Coulomb's 

' 

' 
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Law of Friction. It is note here that we adopt [u1] instead of the sliding 
velocity because the problem ( *) is a static problem. One can see that 
conditions on r includes the following three states; 

Case 1: open crack 
[u2] > 0, ai~) = a~~) = O; 

Case 2: Stick state 
[u2] = 0, [u1] = 0, [a22] = [a12] = 0, a~~) :::; 0, lai~) I :::; - fa~~); 

Case 3: slip state 
[u2] = 0, [ui] =/= 0, [a22] = [a12] = 0, a~~) :::; 0, ai~) ±fa~~) = 0, where 
the upper sign "+" is taken for [ui] > 0 on r and the lower sign "-" 
is taken for [ui] < 0 on r. 

Next, we discuss the existence of the solution of problem(*). Firstly we 
introduce some notations. Let £, be a bilinear form which represents the 
strain energy 

r ~ avi 
£,D(u, v) := lr ~ O"ij(u) ax- dx. 

D i,j=l,2 J 

In what follows we use simplified notations u and a which means that u = 
u(l), a = a(l) in Q(l), u = u(2), a = a-(2) in n(2). We denote a space of all 
rigid displacements by 'R, = {(c1 + c0x2, c2 - c0x 1 ) Ve= (c1, c2, c0) E IR3}. In 
addition, we assume for g the necessary compatibility condition in the form 

{ g . p dSx = 0, V p E R. 
lan 

We set a solution space which is a convex set on H 1 space, 

Next, we introduce the Hilbert space, so-called Lions-Magenes sapce [15] 

11 -where the function p E C0 ' (r) such that p > 0 and the limit of 
p( x) / dist ( x, 0 or P) as x ---+ 0 or P exists and attains a nonzero finite 
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value. It follows from the definition that the space Ht62 (r) is characterized 
by the following equivalence; 

{ s on r E Hl/2(r'). 
8 = 0 on r' \ r 

By using the Green formulae the problem ( *) can be reduced the quasi
variational inequality, see [9] and [13] for the detail of derivation: find u E K* 
satisfying for an arbitrary v E K* 

t'ri\r(u,v - u) - (!0"22, l[v1]l - l[ui]l)r ~ { g · (v - u)dSx, (2.2) 
lari 

where (·, ·)r is the duality pairing between H~112(r) and Ht6\r). It is not 
obvious to show the existence of solution of (2.2). Let consider the case that 
f = 0 or the load on the crack F = j0"22 ~ 0 is given, which is so-called 
the Tresca friction problem. Since this problem is described as a convex 
minimation problem, it is easy solvable by using standard techniques, e.g. 
[3]. Indeed, in this case (2.2) is rewritten as 

t'ri\r(u,v-u)-(F,l[vi]l-l[u1]l)r~ r g-(v-u)dSx. (2.3) 
lari 

We introduce the potential energy functional in the form P(u) = IT(u)+I(u) 
where 

IT(u) = ~t'ri\r(u,u)- r g. u dSx, I(u) = (F, l[ui]l)r-
2 lari 

Then one can see that I is positive, continuous and convex, and II is convex 
and continuous, namely lower semicontinuous, and differentiable, see [13]. 
Therefore, the problem (2.3) becomes to find the solution of the following 
variational inequality: 

u EK*, IT'.u(v - u) + I(v) - I(u) ~ 0 \Iv EK*, 

which is equivalent to the minimization problem P(u) = inf P(v). By 
VEK. 

virtue of the Korn inequality; there exists a positive constant C0 such that 
for all u E H 1 ( S1 \ f) \ R 

Collull~1(ri\r) ::; t'ri\r(u, u), 
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the coercivity of the functional II is ensured. This guarantees the existence 
of a solution of the minimization problem. 

However, in a case of the Coulomb friction (2.2), above standard methods 
are not valid because convexity is lost, that is, it cannot be described as a 
minimization problem. To overcome the difficulty, in [16] Tikhonov's fixed 
point theorem is used and the idea bring many results in frictional contact 
problems, refer [4]. More precisely, let u be a solution of (2.3). We consider 
a mapping T: fa-22 (u) = T(F). Then, one sees that a solution of the quasi
variational inequality (2.2) is obtained as a fixed point of T. Let u 1 and u 2 

be solutions of, \:fvk E IC, k = l, 2, 

En\r(uk,vk - uk) - (Fk, l[v~]l - l[u~l)r ~ r g. (vk - uk) dSx, Jan 
By summation of two inequalities with v 1 = u 2 ,v2 = u 1 

En\r(u1 - u 2 ,u1 - u 2 )::; (F1 - F2, l[ui]I - l[ui]l)r 

Applying the Korn and Holder inequalities, we have 

lla-22(u1) - a-22(u2)ll~1 < cllu1 - u2lli 
2 

< cllF1 - F2ll-1(ll[ui]ll1 + ll[ui]ll1) 2 2 2 
This implies the Holder continuity of the mapping T, however, it is not 
enough for the existence of a fixed point. The common assumptions which 
guarantee the existence are that the friction coefficient is sufficiently small, 
and it has a compact support which was used in [13]. In [9] the latter 
assumption is removed by use of the topological sensitivity technique based 
on the estimate associated with the Saint-Venant principle. The statement 
is as follows. 

Theorem 1 (Theorem 3.1. in [9]). If f < 01
1
02 ::; 1 holds, then there 

exists a solution u E IC of the quasi-variational inequality (2.2). 

Here C1 and C2 are positive constants depending on ,\ (k), µ(k) for k = 
1, 2, and on the geometry of n, and are appeared in the following estimates 
derived from continuity of the trace operator; there exist C1 and C2 such 
that 1 ::; C1 C2 < oo and 

II [u] IIH~62(r) ::; C1 llull1,n\r 

llullH~1;2(r) ::; C2llull1,n\r 

\:Ju E H 1 (D \ r) \ R, 

\:Ju E H 1 (0 \ f) \ 'R, satisfying (2.1). 
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Next, we derive convergent series expansions of the solution of ( *) near the 
crack tip O. Due to this, we assume no switches among the three cases open 
crack, stick state and slip state near the crack tip. We introduce a polar 
coordinate system (r, 0) with respect to the origin 0, where 0 < r « l and 
-Jr< 0 < Jr. 

Proposition 1 ( [9], [7]). There exist complex numbers an, bn satisfying 
some inequality conditions and a rigid displacement p 0 E R such that for 
k = 1,2 

u(k) (r, 0) 
00 

n=O 
00 

+ L rn+l {Re [bn] c~k)(E, 0) + Im [bn] D~k\E, 0)} + Po· (2.4) 
n=O 

The series is convergent, absolutely in H 1 and uniformly on compact sets 
in the neighborhood of O. Here we can explicitly obtain angular functions 
A~k)(E, 0), B~k)(E, 0), C~k)(E, 0), D~k\E, 0) fork = l, 2 and each cases; open 
crack, stick state and slip state, respectively. The singularity exponent s is 
given as follows. 

Case 1: open crack s = ! + iE with E = _!_ log ( 1 + /3/3) and a Dundurs 
2 21r 1 -

µ(2)(F;,(1) _ 1) _ µ(l)(F;,(2) _ 1) 
parameter f3 = µ( 2)(F;,(l) + l) _ µ(l)(F;,( 2) + l); 

Case 2: Stick state s = 0; 

Case 3: slip state cot 1r s = ~ f f3, where the upper sign "- " is taken for 
[ ui] > 0 on r and the lower sign "+" is taken for [ ui] < 0 on r. 

1 1 
Especially, if f3 =I= 0, then 0 < s < 2. If f3 = 0, thens= 2. 

Remark 1. In Proposition 1, coefficients an and bn satisfy some inequality 
conditions due to the non-penetration inequality and Coulomb's Law of Fric
tion. For example, in the open crack case, the condition [u2] > 0 is rewritten 
as a condition for an in the form 

00 

L(-ltr½+nRe [anr-ic] > 0. (2.5) 
n=O 
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The coefficients of leading terms in the expansion (2.4) (i.e. a0) are called, 
in fracture mechanics, stress intensity factors. In the case of homogeneous 
material (i.e. E = 0) (2.5) leads to Re[a0] 2 0 which corresponds to the 
results of [ 1 j. 

3 The interface crack with Thesca friction in 
a spring-type adhesive model 

In this section, we introduce results obtained in [5]. Let O' C ffi.2 be a bounded 
domain with Lipschitz boundary such that 80' = rN u rD, rN n rD = 0, 
1r DI > 0. The domain O' consists of two parts fl+ and n_ and the interface 
is denoted as I;, that is, I; = 80+ n 80_. We assume that 80+ and 80_ 
satisfy the Lipschitz condition and lr~I > 0, where r~ = 80± n r D· In 
our consideration, the domains fl+ and fl_ correspond to linearized elastic 
bodies bonded to each other along the part r a C I;_ The rest part of I; is 
a crack (full delamination) and denoted as re· Namely, I; is divided into 
two parts re and ra such that I;= re Ura, re n ra = 0. On re the non
penetration condition and Tresca friction condition are imposed. On r a it is 
adhesively bonded, which means to take into account both of adhesion forces 
and friction force. We assume spring-type condition modeling a thin adhesive 
layer to describe the interaction of bodies. See Figure 2 for an illustration of 
the general geometry of O'. 

n 
'T ----f ~----- ----------

n _ 

Figure 2: the domain O' 
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We use same notation in Section 2 and the superscripts + and - refer 
the materials n+ and n_. Also, we denote u'$,, = u± . n, u$- = u± . r, 
a'$,, = <T±n · n, a$ = <T±n · r. Here we consider the following boundary 
value problem. For given surface force f± E L2(rt) (rt = rN nan±), 
frictional force g E C1 (I:) (g ~ 0) and symmetric positive definite matrix A, 
our problem is to find u = (u+, u-) satisfying 

µ±Lc,u± + (>.± + µ±tv("v · u±) = 0 m n±, 

<T±n = f± on rt, 
u± =0 on r~, 

[un] ~ 0, [an] = 0, [ar] = 0 on I:, 
(t) 

an :s; 0, an[un] = 0 on re, 

I a r I :s; g, a r [ ur] = g I [ ur] I on re, 

an - A[u] · n :s; 0, (an - A[u] · n)[un] = 0 on fa, 

lar - A[u] · rl :s; g, (ar - A[u] · r)[ur] = gl[ur]I on fa. 

Similar to the problem ( *), we assume a non-penetration condition on re 
and also a frictional condition with a given frictional force g, so-called Tresca 
friction condition, instead of the Coulomb's friction. Moreover, on r a an 
adhesion force described as A is taken into account. 

Next, we consider the problem (t) in the weak sense by using the potential 
functional. The total energy is defined as 

where P±( u±) = !t:n± ( u±, u±) - f f · u± dSx is the potential and surface 
2 lr± 

N 

energy, S( u+, u-) = ! f A[u] · [u] dSx is the adhesive-layer energy and 
2 Jra 

F(u+,u-) := lgl[ur]I dSx is the frictional energy. Now we define the 

spaces V± = { u ± E H 1 ( n±) : u ± = 0 on r~} and the convex closed set of 
admissible displacements 
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Then the problem (t) can be reduced to find (u+, u-) E Kt such that 

(3.1) 

It follows from the calculus of variation that there exists a unique solution 
of the minimization problem (3.1) and it yields a variational inequality 

t'n+(u+,v+ - u+) + t'n_(u-,v- - u-) 

+ r A[u]. [v - u] dSx + r g(l[v-r]I - l[u-r]I) dSx lra 1'2:, 
> { I+ · ( v+ - u+) dSx + { 1- · ( v- - u-) dSx 

ht h; 
for an arbitrary ( v+, v-) E Kt, which is necessary and sufficient optimality 
condition for solvability of the problem (3.1). 

Moreover, the derivative of the energy functional with respect to the crack 
length is calculated in [5] and it can be represented as a path-independent 
integral, so-called ]-integral. In [5], by using a non-overlapping domain 
decomposition method for the bonded structure we have done some numerical 
experiments. 

4 Dynamic contact on crack faces with fric
tion 

Mathematical analysis for contact problems with friction has been well stud
ied in the static case, e.g. Section 2 and 3. One can say that dynamic models 
are more realistic than static models, however, the analysis is indeed so dif
ficult. In reference to well-organized books [3, 4], we overview the related 
known results and clarify the main difficulty. 

In the dynamic case the inertial term is added into the static governing 
equation (2.1), 

putt= µL.u + (>.. + µ)V(V · u). (4.1) 

Also, taking into account the viscosity effect ( material has short memory), 
we consider a viscoelastic model (so-called the Kelvin-Voigt model), that 
is, replacing the Cauchy stress by the sum of elastic stress and dissipative 
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stress ( e.g. [2, 6, 8, 10]). As a consequence, it yields the system of linearized 
viscoelasticity equations 

putt= µl::::.u + (~ + µ)'V('V · u) + 77l::::.u + (( + 77)'\J('V · u). (4.2) 

Here 77 and ( are viscosity coefficients. 
If we consider the crack problem, on the crack the following conditions are 

imposed. 

[an]= 0, 

[CT-r] = 0, 

[un] 2: 0, [un]an = 0, 

[(ut)-r] ·£Tr= gl[(ut)-r]I-
(4.3) 

(4.4) 

( 4. 3) is the non-penetration condition as mentioned in the static case. ( 4.4) 
implies the friction condition; Tresca friction condition if the frictional force 
g is given; Coulomb's law of friction if g is given by -gan. One can say that 
( 4.4) is a reasonable condition depending on the sliding velocity in contrast 
with the static case depending on a tangential part of displacements. In the 
variational form of the problems, the terms 

appear and the term coming from viscosity is added in the case of viscoelas
ticity. One of main difficulties is due to the hyperbolic property of a dynamic 
elastic equation. As a way to avoid it, we consider a viscoelastic problem be
cause a smoothing effect for the solution can be expected. Additionally, it is 
difficult because the contact condition ( 4.3) is written in the displacement, 
however the friction condition (4.4) is expressed in the velocity. 

The following table shows the results of dynamic models of contact prob
lems with or without friction in books [3] and [4], but not crack problems. 

elastic viscoelastic 
contact x (Sec. 4. 1.3 in [4]) 0 

wave, half sp. Sec. 4.2 .2 in [4] 
friction Tresca: Sec. 5.5 in [3] Tresca: Sec. 4.4 in [4] 

Coulomb: open Coulomb: open 
contact Tresca: Sec. 4.4.1 in [4] 

+ X Coulomb: Contact condition in 
friction velocit ies (Chap. 5 in [4]) 

Coulomb: non-local ([17]) 
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For dynamic contact problems without friction, mathematical analysis for 
the elastic problem is so hard. Therefore, we only have the results for the 
special case such as the wave equation in a half-space. However, in the case 
of viscoelasticity, existence results for the contact problems have been given 
owing to the viscosity term. For frictional problems, in the case of given 
friction (Tresca friction), existence results of a variational solution have been 
shown in both of elastic [3] and viscoelastic [4] cases. Then, extension of the 
results to crack problems can be expected. As regard of Coulomb friction 
case, we still have as open problems. For dynamic contact problems with 
friction, elastic problem is so difficult because even the contact problem is 
left unresolved. For viscoelasticity, the existence results are obtained in a 
given friction case [4]. For the Coulomb friction case, if we assume the 
contact condition in velocities not displacements, then the existence of the 
solution can be shown. Indeed, by taking the velocity as the test function we 
can get the good estimate of the solution and gain the regularity ( cf. [2] and 
[6]). In this case the existence proof is similar to that in the static case. If 
the contact condition is formulated in the displacements, then the regularity 
is proved for the displacements only; and the possible gain of regularity is 
not sufficient in order to get the required regularity of the velocities. It seems 
that is main difficulty of this problem. As one of other ways to overcome 
the difficulty, instead of Coulomb's friction, there is a non-local condition, 
also called averaged friction, which is a kind of approximation of Coulomb's 
friction condition by mollifying the traction in the friction term, see [17] for 
the details. 

In future research we will consider to extend the results to crack problems 
and also the possibility of application to fault rupture in earthquakes as well 
as inverse problems. 
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