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A Note on Solutions of Real Options Model with a Quadratic
Flow Function®

Makoto Goto
Faculty of Economics and Business
Hokkaido University

1 Introduction

This paper investigates solutions of real options model in which the flow function has a quadratic
form. Real options model with a quadratic flow function is often used in a price maker’s invest-
ment problem, for example, Cournot competition in the duopoly setting. In such models, we
use the inverse demand function and derive the optimal production quantities. Of course, we
have a quadratic form of the system of value-matching and smooth-pasting conditions when we
derive the optimal investment threshold since the flow function has a quadratic form.

Then, we should have simple questions. Are there any possibility of existence of two different
thresholds? Is the solution obtained strictly optimal? What is characteristics of thresholds? In
this paper, we demand the answer to these questions by investigating Verification Theorem. By
so doing, we can find conditions for unique threshold and ensure optimality of the solution.

The simplest example for a quadratic flow function is given in the following example.

Example 1 (Monopoly) We consider that a firm produce an item in a monopoly. Inverse

demand function is given by

px,q) = x —ngq, (1)
dXt = /j,Xtdt + O'XtWt, X() =, (2)

where ¢ is the production quantity, X; is the demand shock modeled by a geometric Brownian
motion, p is the instantaneous expected growth rate of X;, o (> 0) is the instantaneous volatility

of X, and W; is a standard Brownian motion. Profit flow function is given by

m(x,q) = (p(x.q) — C)g = —ng* + (x — O)q, (3)

where C' is the production cost. Then, we find the optimal production quantity, by the first
order condition d7/dq = 0,

« r—C
=, (4)
and the optimal profit flow
. 2 —2Cz + C?
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2 Problem and Solution

2.1 Settings

We consider the following investment problem:

F(T) = sup J('TaT) = ’](m77-*)7 (6)
TET
o0
Har) = | [ e - o). )
where p (> 0) is the discount rate, I is the investment cost, f(z) is the quadratic profit flow
function

f(x) = bea® + byx 4+ by, by >0, (8)

and 7 is the stopping time
7=inf{t >0:X; € D} (9)

associated with the stopping region D. We find the optimal stopping time 7* over the set of
admissible stopping times 7.
Then, we denote some useful algebra:

J(z,7) =E {e*fﬂ ( / * rlt=) F(Xy)dt — I>]

T

X2 X,
:E{e*”( b2 X 2+b1 +b_°_1>}

p—2u—0® pu—p p
= E [e—p‘r (G,QXE + a1 X +ag— I)}
= E[eg(X,)] (10)
that is, we define
a, = bn =: bn , n=0,1,2. (11)

p—(np+nln—102/2) "~ p—29d,
We assume
P> 0n, n<2 (12)

for conversion of Eq. (10), which results in ag > 0.

2.2 Solution

In order to solve Eq. (6), we can utilize well-known HJB equation:

where £ is the differential operator

1, d d



We consider a twice differential function satisfying Eq. (13) ¢ and the stopping time maximizing

Lo
™ =inf{t>0: X, > X*}, (15)

where X ™ is the optimal investment threshold to be solved.

Then, we have transformed HJB equation

Lo(x) =0, for z < X*,

(16)
o(x) = g(x), for x> X*.
By value-matching and smooth-pasting conditions, we find
Ajxhr, for r < X*,
o(x) = (17)
asx? + a1z +ag— I, for x> X*,
az(X*)Z +a1 X +ag—1
A = 18
1 X | 18)
X —(B1 = Va1 + /(81 — 1)2a] — 4B1(B1 — 2)az(ag — 1) (19)
2(51 — 2)az '
where 81 > 1 is a positive root of the characteristic equation.
3 Questions
Question 1 Are there any possibility of existence of two different thresholds?
Answer: First, we show Eq. (19) is positive. We can easily prove
p>0p = p1>n, (20)

so the denominator of Eq. (19) is positive. Signs of square root in Eq. (19) is divided into

(B1 = 1)%a3 — 4B1(B1 — 2)az(ag — I), (21)
¥ ¥

therefore, I > ag is required so that this is positive. If a; < 0 then the numerator of Eq. (19) is
positive. If a; > 0 then
((B1 = 1)%a? = 4B1(B1 — 2)az(ao — 1)) — (b1 — V)a1)?
= 461(/31 — 2)(12(] — (lo) >0 (22)

and the numerator of Eq. (19) is positive. Therefore, Eq. (19) can be an investment threshold.

Second, we show another solution

(Br — 1)ar —\/(B1 — 1)2a3 — 4B1(B1 — 2)az(ag — 1)

Xe= 2(B1 — 2)az

(23)
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is negative. If a; > 0 then the numerator of Eq. (23) is negative. If a; < 0 then

(=(B1 = Dar)? = ((B1 — 1)%a] — 431 (B — 2)ag(ag — 1))
= 4ﬂ1(/31 — 2)0,2(61(] — I) <0 (24)

and the numerator of Eq. (23) is negative. Therefore, Eq. (23) cannot be an investment threshold

and Eq. (19) is the unique solution and the investment threshold. O
Question 2 Is the solution (19) strictly optimal?
Answer: We can utilize Verification Theorem in stochastic control theory.

Theorem 1 (Verification Theorem) Suppose ¢ is a twice differential function satisfying HJB
equation of the stopping problem (6)—(9). Then,

1. For any stopping time T,
o(z) > J(z, 7). (25)
2. Given the following stopping time ezists,
7" = argmax{Lo(z)}, (26)

the solution of HJB equation coincides the value function, that is,

and T is the optimal solution of the problem.

In other words, as long as Verification Theorem holds, solving HJB equation gives the optimal

solution of the stopping problem. Now, we have to check the inequalities of HJB equation:

o(x) > g(x), forxz < X*,

(28)

Lo(x) <0, foraz> X"

For z < X*, we have

O1(z) = g(x) — ¢(z) = asa® + a1z 4+ ag — I — A1z™, (29)
$1(0) = ag — I < 0, (30)
P1(X7) =0, (31)
Py (2) = 2a97 + ay — P Ay L (32)
1(0) = (33)
(X)) = ( ) = ¢(XT) =0, (34)
W (x) = 2a9 — 1 (Br — 1) Ay~ (35)

Eq. (35) ensures 9 (x) has unique inflection point. Therefore, ¥ (z) < 0.
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Figure 1: Value function for the base case

For x > X*, we have

o) == Lo(x) = Lg(x) = —bya® — byx — by + pl. (36)
P2(X7) = LH(XT) <0, (37)
9(0) = —00 < 0, (38)
(.I) *ngl‘ - bl (39)
If by > 0 then we find 4 (z) < 0. If by < 0 then
P(00) = —00< 0, (40)
() = ~20p< 0. (41)
Therefore, if 14(X*)< 0 holds then 12(z) < 0. O

Question 3 What is characteristics of thresholds?

Answer: To this end, we implement some numerical analyses. We choose the basic parameter

set:
n=0,0=02 p=01 bp=1 by =-2, bp=1, I =20,
then we have
az =16.67, a; = —20, ag =10, ag — I = —10, B =2.79, X* = 3.35.

Figure 1 and 2 show value function and sensitivity analysis of X* w.r.t. o for the base case,
respectively. Figure 3 and 4 show behavior of ¢ (z) and (x) for the base case, respectively.
Second, we choose b; = 0.5, then we have a; = 5, X* = 1.15 and others are same with the
base case. Figure 5 and 6 show value function and sensitivity analysis of X* w.r.t. o for by = 0.5,
respectively. Figure 7 and 8 show behavior of ¢ (z) and 2(x) for by = 0.5, respectively.
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Figure 2: Sensitivity analysis of X* w.r.t. o for the base case
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Figure 4: Behavior of ¢5(z) for the base case
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Figure 5: Value function for b; = 0.5
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Figure 6: Sensitivity analysis of X* w.r.t. o for by =0.5
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Figure 7: Behavior of v (z) for by = 0.5
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Figure 8: Behavior of ¢y (x) for by = 0.5
Next, we choose by = —1, then we have a9 = —10, X* = 4.22 and others are same with

the base case. Figure 9 and 10 show value function and sensitivity analysis of X* w.rt. o
for by = —1, respectively. Figure 11 and 12 show behavior of 1 (z) and ¥y(z) for by = —1,
respectively.

Finally, we choose I = 5, then we have ag — I = 5, X* = 2.25 and others are same with
the base case so that the requirement I > ag is no longer satisfied. Figure 13 and 14 show
value function and sensitivity analysis of X* w.r.t. o for I = 5, respectively. Figure 15 and 16
show behavior of ¢;(z) and w9(z) for I = 5, respectively. We can see that X, is positive in
Figure 14 and v, (z) is positive in Figure 15 which means the solution is not optimal. Therefore,
the requirement I > ag must be satisfied in order to the optimality.

O

4 Conclusion

In this paper, we have investigated solutions of real options model in which the flow function
has a quadratic form. We have shown the solution is unique and optimal as long as as > 0 and
I > ag are satisfied. Additionally, a; > 0 and ag < 0 could be allowed. Also we find investment
threshold is larger when o is larger which means the same characteristics as the case with a

linear flow function.

Faculty of Economics and Business
Hokkaido University, Sapporo 060-0809, Japan
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Figure 9: Value function for by = —1
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Figure 10: Sensitivity analysis of X* w.r.t. o for by = —1
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Figure 11: Behavior of ¢ (z) for by = —1

Figure 12: Behavior of ¢y(z) for by = —1
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Figure 13: Value function for I =5
2.0- ——
1.57
1.0- — X
o5¢
0.01
0.10 0.15 0.20 0.25 0.30

g

Figure 14: Sensitivity analysis of X* w.r.t. o for I =5
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Figure 15: Behavior of ¢ (z) for I =5
2.
— ()
—— ()
O.
=
<
—9
—4 .
0 1 2 3

Figure 16: Behavior of ¢(x) for I =5





