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Singular limit problem for the Allen-Cahn equation 
with a zero Neumann boundary condition 

1 Intrduction 

on non-convex domains 

Takashi Kagaya 
Institute of Mathematics for Industry, 

Kyushu University 

A family of hyper-surfaces is called mean curvature flow if the normal velocity coincides with 
the mean curvature vector. Since the mean curvature flow is a formal L2 gradient flow of 
surface area, the flow basically converges to a point in finite time if the initial surface is 
closed, compact and embedded. However, singularities can develop in some mean curvature 
flow before the flow shrinks to a point and various researchers have been interested in the 
structure of singularities, for example, the blow-up late of the second fundamental form, the 
behavior of flow around blow-up time and so on. In this paper, our aim is to construct a 
global-in-time measure-theoretic weak solution to the mean curvature flow with right angle 
condition taking the analysis on singularities into account. For the details of the connection 
between our weak solution and the mean curvature flow with right angle condition, see Remark 
2.4. 

In the following, let !1 C ]Rn be a bounded domain with smooth boundary. We consider 
the following Allen-Cahn equation with a zero Neumann boundary condition on the domain 
!1 C JR.n: 

{ 

W'(u,:) 
atue: = /).ue: - --2-, 

E: 
au0 av =o, 
u0 (x, 0) = u0 ,o(x ), 

(x, t) E !1 x (0, oo), 

(x,t) E an X (0,oo), 

x E !1. 

(1.1) 

Here, c > 0 is a parameter, vis the outer unit normal to the boundary an and we assume a 
double well potential WE C3 (JR) satisfies the following conditions: 

(Wl) W(±l) = 0 and W(s) > 0 for sf= ±1, 

(W2) there exists a constant -1 < 'Y < 1 such that W' < 0 in ('Y, 1) and W' > 0 in (-1, 'Y), 
(W3) there exist constants 0 <a< 1 and f3 > 0 such that W"(s) 2: f3 for a S Isl S 1. 

A typical example of such Wis (1- s2)2 / 4, for which we may set a = -/213, f3 = l and 'Y = 0. 
The Allen-Cahn equation (1.1) is the L2 gradient flow of 

Ee;[u] := r clv'ul2 + W(u) dx 
lo 2 c 
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sped up by the factor 1/E. Heuristically, for a given family of functions {us}O<s<l with 
sup0 E 0 [u0 ] < oo, Us is close to a characteristic function, with a transition layer of width 
approximately E and slope approximately C / E. Thus n is mostly divided into two regions 
{ 11,0 ~ 1} and { u0 ~ -1} for sufficiently small E. With this heuristic picture, one may expect 
that the following diffused interface energy 

(1.2) 

behaves more or less like surface measures of moving phase boundaries, where 

(1.3) 

Furthermore, one may also expect that the motion of the "transition layer" is a mean curvature 
flow with the right angle condition on an because a formal £ 2 gradient flow of the surface 
area is its mean curvature flow. In order to give a rigorous proof of this kind of singular 
limit problem for the Allen-Cahn equation (1.1), we have to introduce weak solutions to the 
mean curvature flow with the right angle condition. For example, Mizuno and Tonegawa [10] 
constructed Brakke's mean curvature flow with a generalized right angle condition (a measure 
theoretic weak solution) via the singular limit problem of the Allen-Cahn equation (1.1), and 
Katsoulakis, Kossioris and Reitich [9] proved a connection of the singular limit problem of 
(1. 1) to the unique viscosity solutions of a level set formulation of the mean curvature flow with 
the right angle condition. However, they assumed the convexity of the domain in each paper. 
Accordingly, we prove the convergence of (1.2) to Brakke's mean curvature flow appeared in 
[10] without the assumption of the convexity of the domain. We note that the connection 
between (1.1) and the level set formulation of the mean curvature flow with the right angle 
condition without the assumption of the convexity of the domain was proved by [2, 3]. We 
also discuss the behavior of the Brakke's mean curvature flow with a generalized right angle 
condition in Remark 2.4. 

2 Notions 

We note some notions related geometric measure theory to define Brakke's mean curvature 
flow with a generalized right angle condition. 

2.1 Homogeneous maps and rectifiable measures 

Let G(n, n - 1) be the space of (n - 1)-dimensional subspace of JRn. For SE G(n, n - 1), we 
identify S with the corresponding orthogonal projection of ]Rn onto S. For two elements A 
and B of Hom(JRn,JRn), we define a scalar product as 

A-B := LAijBij· 
i,j 

The identity of Hom(JRn, JRn) is denoted by I. 
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&M 

Figure 1: Picture of geometric notions of a smooth manifold. 

We recall some notions related to varifold and refer to [1, 13] for more details. We say 
that a Radon measure µ on ]Rn is rectifiable if there exist an Hn-l measurable countably 
(n - 1)-rectifiable set M C ]Rn and a locally Hn-l integrable function 0 defined on M such 
that 

µ(¢) = 0Hn-llM(¢) = JM 0(x)¢(x) dHn-l(x) for ¢ E Cc(lRn). 

Here, we note that the approximate tangent space TanxM E G(n, n-1) of M exists H,n-1-a.e. 
on M. Therefore, we can define the first variation 

8µ(g) := { Vg(x)·TanxM dµ(x) = { 0(x)Vg(x)·TanxM dHn- 1(x) for g E CJ(JRn;JRn) 
}~n }M 

ifµ is rectifiable. Let 118µ11 be the total variation when it exists, and if 118µ11 is locally bounded, 
we may apply the Riesz representation theorem and the Lebesgue decomposition theorem (see 
[4, Theorem 1.38, Theorem 1.31]) to 8µ with respect toµ. Then, we obtain aµ measurable 
function hµ: M--+ lRn, a Borel set 8µ C ]Rn such that µ(8µ) = 0 and a 118µ11 laµ measurable 
function Vµ : 8µ--+ ]Rn with lvµI = 1 118µ11-a.e. on 8µ such that 

8µ(g) = - { (hµ,g) dµ+ { (vµ,g) dll8µII for g E cJ(JRn;JRn). (2.1) J~n laµ 
The vector field hµ is called the generalized mean curvature vector of µ, the vector field vµ 
is called the (outer-pointing) generalized co-normal ofµ and the Borel set 8µ is called the 
generalized boundary of µ. 

Remark 2.1 For a smooth and oriented hyper-surface M C ]Rn (with boundary), the diver
gence theorem 

{_ div 111g dHn-l = - {_ (h111 , g) dHn-l + { _ (v111 , g) dHn- 2 for g E CJ(JRn; JRn) 
JM li.J laM 

holds, where div 111 is the divergence on M, h111 is the mean curvature vector of M and v111 is 

the co-normal vector of M {see Figure 1). Since div111g coincide with v'g · TanxM, we may 

see that hµ, Vµ and 8µ defined by (2.1) also coincide with h111 , v111 and 8M, respectively, if 
µ = Hn-llM• 

We also remark that, for any rectifiable µ such that 118µ11 is a Radon measure, hµ is 
perpendicular to M µ-a.e. on M if the density function 0 ofµ is integer µ-a.e. on M {see 
{1/). 
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In order to discuss a contact angle condition of µ on an, we have to introduce a tangential 
component of oµ on an which is defined by 

whenµ is rectifiable and sptµ CTI. If the total variation ll8µlJ0 +8µlo II is absolute continuous 
with respect to µ, then by the Riesz representation theorem and the Lebesgue decomposition 
theorem to 8µlJ0 +8µlo with respect toµ, we obtain aµ measurable function ht: M---+ ]Rn 

such that 

(2.2) 

where MC TI is the countably (n - 1)-rectifiable set associated toµ. 

Remark 2.2 Since oµ(g) coincides with (8µlJ0 +oµlo)(g) for any g E C}(lRn; lRn) with 
(g, v) = 0 on an, we obtain by (2.1) and (2.2) 

- r (hµ, g) dµ + r (vµ, g) dll8µ11 = - r (ht, g) dµ 
JJ'il.n laµ JJ'il.n 

for any g E C} (lRn; lRn) with (g, v) = 0 on an ifµ satisfies the following: 

(Vl) µ is rectifiable and sptµ c n, 
(V2) 118µ11 is a Radon measure, 

(V3) ll8µlJ0 +8µloll is absolute continuous with respect toµ. 

By a simple calculation, we may see that 

• the generalized boundary 8µ is a subset of an, 

• the generalized co-normal vector field vµ is perpendicular to an 118µ11-a.e. on 8µ, 

• the vector field ht coincides with the generalized mean curvature vector hµ µ-a.e. inn 
and the projection of hµ onto the tangent space of an (i.e. TanxBn(hµ)) µ-a.e. on an. 

Therefore, we can say µ satisfies a "right angle condition" in the sense of measure ifµ fulfills 
the conditions (Vl )-(V3). 

2.2 Brakke's mean curvature flow with a generalized right angle condition 

We define a measure theoretic weak solution to the mean curvature flow with the right angle 
condition. 

Definition 2.3 Let {µthE[O,oo) be a family of Radon measures on ]Rn. We say that {µt} is a 
Brakke 's mean curvature fiow with a generalized right angle condition if 

(Bl) µt satisfies (Vl)-(V3) and the density function gt of µt is integer µt-a.e. on n n Mt, 
where Mt is the countably ( n - l )-rectifiable set associated to µt, for a. e. t E [O, oo), 

(B2) the vector field ht, defined by (2.2) for µt and a.e. t E [O, oo) is of the class Lf0 c(dµtdt), 
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Figure 2: An example of the mean curvature flow with the right angle condition. 

an 

Figure 3: A stationary solution to Brakke's mean curvature flow with a generalized right angle 
condition such that M n n consists of line segments. 

(B3) for any¢ E C}(lRn x [O, oo ); JR+) with (V¢, v) = 0 on Em x [O, oo) and O::; ti < t2 < oo, 

lt2 1t2 Im l(¢(·,t)) ::; -¢1h~,l 2 +(V¢,h~,)+at¢dldt. 
t=ti ti ]Rn 

Now, we also note the definition of the mean curvature flow with the right angle condition 
in the classical sense and some relation with the weak solution. 

Remark 2.4 The long time existence of the mean curvature flow with the right angle con
dition was proved by /14}. Its mean curvature flow is defined as the following: Let M be 
a compact, smooth and orientable (n - !)-dimensional manifold with compact and smooth 
boundary aM. If a family of smooth immersions F: M x [O, T) -+ JR.n construct a geometric 
flow {Mt}= {F(M,t)} such that 

on aMt = F(aM, t) can, on 

where v M' is the normal velocity vector of Mt, we say that Mt is a mean curvature flow with 
the right angle condition. Since F is a smooth map, Mt does not change the topology and 
it is possible that Mt moves to the outside n. For example, in Figure 2, the moving hyper
surface Mt touch the boundary an at time t 1 E (0, T) and pass through it. From a physical 
point of view, we would like to construct a mean curvature flow "only inside n" by letting 
topological changes occur. Since topological changes are ones of the singularities, we study a 
weak solution to the mean curvature flow in the sense of Brakke. 

Here, we discuss the behavior of the Brakke's mean curvature flow defined in Definition 
2.3. If we assume that a Brakke 's mean curvature flow with a generalized right angle condition 
µt is described as µt = 1-ln-l lM, for some smooth and orientable (n - 1)-dimensional sub
manifold Mt in ]Rn with compact and smooth boundary a Mt, we may see that for any t > 0 
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(i) Mt CTI, 

(ii) aMt can and Vj;Jt is perpendicular to an on aMt, 

(iii) vM, = hM, on Mt n n. 

The property {i) follows from sptµt c TI and we do not know if annMt = aMt. We also note 
that the definition of Brakke 's mean curvature flows with a generalized right angle condition 
do not tell us the behavior of an n Mt immediately. Indeed, 11,n-1 lao and 11,n-l lM, where 
M C TI is a hyper-surface composed of a minimal surface M n n and the remaining part 
Mn an, are stationary solutions to the Brakke 's mean curvature flow with a generalized right 
angle condition {see Figure 3). The motion of a measure 11,n-l lM' seems possible to converge 
to the stationary solution 11,n-l lM in finite time, and in this case, Mt does not change the 
topology. Therefore, analysis on the behavior of the Brakke's mean curvature flow with a 
generalized right angle condition, in particular construction of a motion with some topological 
changes, is a future work. 

We also note that, in broad strokes, the boundary condition of a viscosity solution to a 
level set formulation of the mean curvature flow with the right angle condition is defined in a 
"weak sense" and the behavior of the level set flow around boundary is not well known (see 
[2, 3, 6, 9, 12} for more details). For example, Giga /5} constructed a viscosity solution v in 
the case n = 2 so that the zero level set of v(·, t) fattens in finite time to > 0. By using this 
solution, we can construct two curvature flows with the right angle condition, which start frow 
same initial curve, so that one of the flows is separated into two curves for any t > to and 
the other does not change the topology. 

3 Assumptions and main result 

3.1 Assumptions of initial functions 

Hereafter, we assume the following assumptions for the initial function u,s,O E C 1 (IT) of (1.1): 

(Al) lluc,ollL=(fl) ::C:: 1, 

(A2) there exists Do > 0 such that sup J cl'i7u,,o(y)l 2 + W(u,,o(y)) dy < Dorn-l xEfl,r>O Br(x)nfl 2 € - ' 

(A3) there exists c1 > 0 such that supxEfl cfVu,s,ol ::C:: c1, 

(A4) there exist c2 > 0 and ..\ E [3/5, 1) such that supxEfl el'i7u,2o(x)l2 - W(u,/(x)) ::C:: c2C-\ 

(A5) a~~0 (x) = 0 for x E an. 

Here, let Do, c1, c2 and ..\ E [3/5, 1) be some universal constants. By the standard parabolic 
existence and regularity theory, for each E > 0, there exists a unique solution ue with 

UE E C([0, oo); C1(TI)) n C00 (TI x (0, oo)). 

We also note that the boundedness of the domain n and the assumption (A2) imply 

supEEJue;,o] ::C:: c3 
i 

(3.1) 
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for some constant c3 depending only on n, Do and the diameter of n. Only the conditions 
(Al), (3.1) and the regularity u0 E H 1(n) are assumed in [10]. Therefore, we note a choice 
of initial functions satisfying the assumptions (Al)-(A5) in the following remark. 

Remark 3.1 We note that for a surfacer with 90 degree contact angles on an it is possible 
to construct diffuse approximations that satisfy the assumptions (Al)-(A5) as the following. 
Our construction is standard as in /7, 11 ). Let nd be 

nd := {(y1,y') E ]Rn: YI E JR, IY'I < d} 

for d > 0 and define I' := nd n {Y1 = 0}. By the standard existence theory for ordinary 
differential equations, we may choose the unique function q E C4(JR) such that 

q(0) = 0, lim q(s) = ±1, q'(s) = J2W(q(s)) in JR. 
s--+±oo 

Then it is easy to see that the C4 function v6 .(y) := q(yi/ Ei) defined on Tid satisfies 

1 EilVvc•l2 W(vo.) n I n ----'---'-''- + --'- dy :S O"Wn-1r - forr > 0, Yo E JR , 
Br(Yo)nOd 2 Ci 

c·IVv (y)I < maxJ2W(s) cilVvc,(Y)l2 W(vo,(y)) Jory End, (3.2) 
i 0

' - lsl-<'.1 ' 2 ci 

(Vvc,, vd) = 0 on and, 

where a-:= J~1 J2W(s) dx and vd is the out ward unit normal to and. Now we assume that 

U is a neighborhood of I' and that cf; is a bijective C 1 map from U onto U := ef;(U) such that 

¢(nd n U) = n nu, ¢(and n U) = an nu, sup IIv¢-1(x)II :S 1, sup IIV¢(y)II :SC 
xEU yEU 

for a suitable d > 0 and a constant C > 0, where II · II is the operator norm. By using this 
mapping, (3.2) implies that u6 ,,o(x) := v6 , o ¢-1(x) satisfies the assumptions (A1)-(A5) with 
a positive constant Do depending only on a-, n and C, ci = 1 and c2 = 0 on the set TI n U. 
By expanding u6 ,,o as a mostly constant function to satisfy the assumptions outside of U, we 
may see the possibility of the initial assumptions in the present paper. In this construction, 
the diffused interface energy for u6 ,,o should behave like the surface measure of the surface 
r := ¢(I') and r intersects an with 90 degrees. 

3.2 Main result 

Our goal is to extend the convergence theory in [10] to remove the assumption of the convexity 
of the domain as the following. 

Theorem 3.2 ([8]) Let n c JR.n be a bounded domain with smooth boundary. Assume (A1)
(A5) and let u6 be the unique solution of (1.1) for c > 0. Define a Radon measureµ~ by 
(1.2). Then, there exist a sub-sequence { cihEN converging to 0 as i --+ oo and a set of Radon 
measures µt on JR.n such that µt -' µt ( i --+ oo) in the sense of measure for all t ?: 0. 
Furthermore, µt is a Brakke 's mean curvature flow with a generalized right angle condition 
defined by Definition 2.3. 

Remark 3.3 The integrality of the limit Radon measures µt in the interior of n follows from 
{16}. 
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an 

Figure 4: Picture of ((x) and x. 

4 Outline of proof 

As we mentioned in Section 1, the equation (1.1) is a £ 2-gradient flow of Ee;, therefore we 
obtain the uniformly boundedness of Ec;[uc;(·, t)] with respect tot> 0 and E > 0 by applying 
(3.1). Roughly speaking, this fact and the compactness of Radon measure imply the conver
gence µ~ ----' µt ( i • oo). Here, we discuss the rectifiability of µt (i.e. the condition (Vl)). 
We note 'that the condition sptµ C TT obviously follows from the convergence µt ----' µt and 
the inclusion sptµ~ C TT for any E > 0. 

One of the key arguments to prove the rectifiability of µt is a characterization by the 
(n - 1)-dimensional backward heart kernel. For y E JR.n and s > 0, let P(y,s) be the (n - 1)
dimensional backward hear kernel, namely, 

l lx-yl 2 

P(y,s)(x, t) := ( ( ))n-l e- 4(s-t) 
47f s - t 2 

for x E JR.n, t < s. (4.1) 

Roughly speaking, the heart kernel P(y,si(-, t) converges to (n - 1)-dimensional delta function 
on (n - 1)-dimensional hyper-surface as t • sin the sense of distribution. For example, if M 
is a smooth k-dimensional sub-manifold in JR.n such that y is a interior point of M, then 

lim f P(y,s)(x, t) dHk(x) = {~ 
tts}M 

00 

if k = n, 

if k = n-1, 

if k :Sn - 2. 

Therefore, the "dimension" of µt can be analyzed by µt(P(y,s)(·, t)) and this analysis is a first 
step to prove the rectifiablity of µt. The Huisken or Ilmanen type monotonicity formula is an 
inequality to control the time development of µt (P(y,s) ( ·, t)), thus we define some notions to 
present the statement of the monotonicity formula. 

The following notions are related to the reflection argument. Define 1,, as 

K, := llprincipal curvature of an11L''°(8!1) · 

For s > 0, define a subset N 8 of JR.n by 

Ns := { X E JR.n : dist(x, an) < s }. 
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There exists a sufficiently small 
c4 E (o, (611r1i 

depending only on an such that all points x E N6q have a unique point ((x) E an such that 
dist(x, an)= Ix - ((x)I (see also Figure 4). By using this ((x), we define the reflection point 
X of X with respect to an as 

x := 2((x) - x. 

We also fix a function T/ E C 00 (JR) such that 

0 ~ T/ ~ 1, !~ ~ 0, sptTJ C [0,q/2), T/ = 1 on [0,q/4]. 

For s > t > 0 and x, y E Nc4 , we define the truncated version of the ( n - 1 )-dimensional 
backward heat kernel and the reflected backward heat kernel as 

Pl,(y,s)(x, t) := TJ(lx - Yl)P(y,s) (x, t), P2,(y,s) (x, t) := TJ(lx - Yl)P(y,s) (x, t), 

where P(y,s) is defined as in (4.1). For x E N2q \ Nq and y E NC4;2, we have 

- - C4 C4 Ix - YI 2> Ix - ((y)l - l((y) - YI > c4 - 2 = 2 -

Thus we may smoothly define p2 ,(y,s) = 0 for x E ]Rn\ Nq and y E Nc4 ; 2 . We also define the 
discrepancy function ~"' as 

for (x, t) E TI x [0, oo). 

Proposition 4.1 (Boundary monotonicity formula [10]) There exist constants O < c5, Cfi < 
CXl depending only on n, C3 and an such that 

:t (crecs(s-t)¼ L Pl,(y,s)(x, t) + P2,(y,s)(x, t) dµ;,(x)) 

< cs(s-t)¼ ( + i Pl,(y,s) (x, t) + P2,(y,s)(x, t) t: ( t) d ) 
_ e Cfi ( ) c,6 , x, x 

11 2s-t 

(4.2) 

for alls> t > 0, y E NC4;2 and i EN, 

!!_ (crecs(s-t)¼ { p (x t) dµt. (x)) < ec5 (s-t)¼ ( + { Pl,(y,s) (x, t) t: ( t) d ) 
dt Jn l,(y,s) ' "' - Cfi Jn 2(s - t) "'"' x, x (4.3) 

for all s > t > 0, y E ]Rn\ Nc4 ; 2 and i E N, where er is the constant defined by (1.3). 

The proof of Proposition 4.1 in [10] does not require the convexity of n, thus we can 
apply this monotonicity formula to our problem. In order to control the time evolution of 
µt(P(y,s)(-, t))(~ µt(P1,(y,s)(-, t) + P2,(y,s)(-, t))), we have to take the limit i ---+ oo for both 
inequalities ( 4.2) and ( 4.3). Therefore, analysis on the behavior of the discrepancy function 
~"' with respect to i is one of the key arguments. In the following, we study the upper bound 
of the discrepancy function. 
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4.1 Preparation 

In this section, we note some lemmas to discuss estimates on the upper bound of the discrep
ancy function. A key lemma is the following equality to control the normal derivative of the 
discrepancy function. 

Lemma 4.2 Let Ax be the second fundamental form of 8!1 at x E 8!1. Then 

8 IVu,:;1 2 
Bv-2- = Ax(v'u,:;, Vu,:;) for (x, t) E 8!1 x (0, oo). 

This equality can be proved by using only the Neumann boundary condition of (1.1). We 
also note that Lemma 4.2 and the Neumann boundary condition of (1.1) imply that for any 
(x,t) E 8!1 x (0,oo) 

if !1 is convex, 

even if !1 is not convex. 

Another key lemma is an estimate which follows from the scaling argument. Let 

!1,:; = {y E ]Rn : ciY E !1} 

and define the function 

We note that 
1,,t:; := llprincipal curvature of 8!1dl£oo(an,;) = ciK, 

holds and V,:; satisfies 

{
87 V,:; = b.v: - W'(v,:;) in !1,:; x (0, oo), 

(v'v,:;,v,:J-0 on 8!1,:,x(0,oo), 

(4.4) 

(4.5) 

where V,:; is the outward unit normal to 8!1,:;. The standard gradient estimate depends on 
the second fundamental form of the boundary of the domain. Therefore, "uniformly gradient 
estimate" of V,:; holds by ( 4.5), namely, IVv,:, I is uniformly bounded with respect to x, t and ci 
if supxEri,;,iEN IVv,:;(x, 0) I is finite. Since the boundedness of v'v,:; at initial time is equivalent 

to the assumption (A3), we obtain the following estimate. 

Lemma 4.3 There exists a constant c7 depending only on c1, c4 and W such that 

sup cilv'u,:;I:::; c7 
nx [D,oo) 

for all 0 < ci < 1. 
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Remark 4.4 By the scaling argument, we can obtain the uniformly boundedness of the second 
derivatives of V,:i if we assume the uniformly boundedness of its derivatives at initial time. 
Therefore, roughly speaking, the estimate IV2u,:i I ~ c;2 follows from the scaling argument 
under suitable assumptions, which gives the estimate I (Vte:i, v) I ~ c;2. On the other hand, 
by combining (4.4) and Lemma 4.3, we obtain 

8 2 -1 
8v te:i S KC7ci for (x, t) E 8D, x [0, oo) (4.6) 

which is better than the estimate following from the scaling argument in the viewpoint of the 
oder of ci. 

We also note that the estimate ~"i ~ c;1 can be obtained by Lemma 4.3 since SUPx,t lue:,I S 
l follows from the maximum principle and the assumption ( A 1). Our aim is to obtain a better 
estimate of the upper bound of the discrepancy function in the viewpoint of the oder of ci. 

4.2 Upper bound of discrepancy function on CONVEX domains 

First, we discuss the upper bound of discrepancy in the case that fl, is convex. By the Allen
Cahn equation (1.1) and a simple calculation, we obtain 

(4.7) 

Here, we have used the Cauchy-Schwarz inequality 

We note that ~"i is obviously non-positive if IVu,:i I = 0. Therefore, if D, is convex, the 
maximum principle for the discrepancy function works well by virtue of (4.4) and (4.7), and 
Mizuno and Tonegawa [10] proved the uniformly boundedness ~"i S C for some C > 0 being 
independent of x, t and ci via this argument. 

4.3 Upper bound of discrepancy function on NON-CONVEX domains 

Our aim is to extend the convergence theory in [10] to remove the assumption of the convexity 
of the domain. Therefore, we estimate the upper bound of the discrepancy function without 
the assumption of the convexity of the domain as the following. 

Proposition 4.5 There exists a constant cs depending only on n, K, c1, c2, c4, W and fl, such 
that 

cilVue:il2 W(ue:J ->. sup --~- - --- < csc • 
Ox[O,oo) 2 Ci - ' 

(4.8) 

for any O < ci < 1, where..\ is the constant in the assumption (A4). 

In the following, we assume 3/5 < ..\ < 1 for simplicity. We define a function c/Je:i E C 00 (IT) 
based on the distance function dist( 8D, •) from 8[1, by 

¢e:Jx) := K(c~ + l)'lf!(dist(8D,x)/ci), 
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where 'l/; E C00 ([0, oo ); JR+) satisfies 

'l/;(s)=s forsE[0,c4/2], 'l/;'(s)=0 forsE[c4,oo), l'l/J'l:Sl, l'l/J"l:S4/c4. 

By applying the standard estimates of the derivatives of the distance function dist(8O, ·), we 
obtain 

(4.9) 

and 
( 4.10) 

for some positive constant M1 depending only on n, K,, c4 and c7. Define G E C00 (1R) by 
G(s) := 1- (s -ry)2 /8, where ry is the constant in the assumption (W2). We note that G(u,J 
satisfies 

(4.11) 

Let le:, is a modified discrepancy function defined by 

~ -A f:c:,(x, t) := f:c:,(x, t) - ci G(uc:J + <Pc:;(x). 

Then, by virtue of (4.10) and (4.11), we may see the equivalence 

f:c:, ;S c;A in O X [0, 00) ~ le:, ;S c;A in O X [0, 00). 

Therefore, it is sufficient to prove the estimate on the left hand side of the equivalence. By a 
similar argument for (4.7), we obtain 

By applying the inequalities (4.10) and (4.11), it implies 

8 c _ t:,.C < _ 2(v'lc:,, (W'(uc:J + cf-AG'(uc:J)v'uc:, - v'r/;) 
tc.,c:, ',,e; - 21'1"'7 12 

ci vUc:, 

M2 c;A 2 M1 . + 3I I - -lv'uc:,I + - 2 on {(x,t) En x (0,oo). lv'uc:,1-/= 0}, 
ci v'uc:, 4 ci 

( 4.12) 
where M2 is a positive constant depending only on M1 and suplsl:SI IW'(s)I. On the other 
hand, (4.6) and (4.9) imply 

8 ~ 
ovf:c:,<0 on 8Ox(0,oo). 
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Therefore, we can apply a modified maximum principle for the modified discrepancy function. 
Indeed, if we assume 

~ ~ -A 
[;0i(y,T) = sup [;0.(x,t) = Cci 

(x,t)E!1x (O,T) 

for sufficiently large C > 0 and a fixed time T > 0, then y is a interior point of !1 and ( 4.12) 
at the point (y, T) shows 

0 < 6 (/2s + c-:-2) - C c-:-1-2A _ 1 i i 2 i , 

where the constants 01 and 02 are positive and independent of Ei and T > 0. However this 
is a contradiction for sufficiently large i E N because the right hand side diverges to -oo as 
i --+ oo. Therefore, we have the conclusion. 

Remark 4.6 Roughly speaking, Lemma 4.2 and (4.7) give improved estimates for the order 
of Ei, which are better than the estimates following from the scaling argument (see Remark 
4.4). The inequality ( 4.8) corresponds to one kind of "interpolation inequality" between the 
inequalities ( 4.6) and ( 4. 7), thus the fractional exponent ,\ appears in ( 4.8). 

4.4 Vanishing of the discrepancy 

By applying the inequality (4.8), we can prove 

1t2 ec5(s-t)¼ r Pl,(y,s)(x, tl + P;,(y,s)(x, t) E;c:.(x, t) dxdt--+ 0 as i--+ 00 
h k 2s-t 

for O :::; t1 < t2 :::; s. Therefore, we can take the limit i --+ oo for ( 4.2). The proof is based 
on the argument by [15]. Here, we note that we have to modify the argument to include the 
reflection argument. 
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