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Learning the constitutive relation of polymeric flows with memory

Naoki Seryo, Takeshi Sato,” John J. Molina®," and Takashi Taniguchi *
Department of Chemical Engineering, Kyoto University, Kyoto 615-8510, Japan

® (Received 12 April 2020; accepted 26 June 2020; published 21 July 2020)

We develop a learning strategy to infer the constitutive relation for the stress of polymeric flows with memory.
We make no assumptions regarding the functional form of the constitutive relations, except that they should be
expressible in differential form as a function of the local stress- and strain-rate tensors. In particular, we use a
Gaussian process regression to infer the constitutive relations from stress trajectories generated from small-scale
(fixed strain-rate) microscopic polymer simulations. For simplicity, a Hookean dumbbell representation is used
as a microscopic model, but the method itself can be generalized to incorporate more realistic descriptions. The
learned constitutive relation is then used to perform macroscopic flow simulations, allowing us to update the
stress distribution in the fluid in a manner that accounts for the microscopic polymer dynamics. The results using
the learned constitutive relation are in excellent agreement with full multiscale simulations, which directly couple
micro/macro degrees of freedom, as well as the exact analytical solution given by the Maxwell constitutive
relation. We are able to fully capture the history dependence of the flow, as well as the elastic effects in the fluid.
We expect the proposed learning/simulation approach to be used not only to study the dynamics of entangled
polymer flows, but also for the complex dynamics of other soft-matter systems, which possess a similar hierarchy

of length and timescales.
DOI: 10.1103/PhysRevResearch.2.033107

I. INTRODUCTION

Polymeric materials are ubiquitous in our modern indus-
trial societies, having transformed our food, infrastructure,
and modes of transportation. Not surprisingly, the 20th cen-
tury has been dubbed the “Polymer age” by Rubinstein and
Colby [1]. There is a growing demand for producing more
high-functioning polymeric products, and to do this in a cost-
effective way. Unfortunately, there is still much we do not
understood about polymer physics, particularly with regards
to the fabrication method of sophisticated polymer products.
At present, one of the preferred manufacturing methods for
polymeric materials is polymer melt processing, where a
molten polymer is extruded or molded into the desired shape,
before allowing it to cool and solidify [2]. To accomplish these
requirements, we need to understand not only the macroscopic
flow behavior of the polymer process, but also the microscopic
dynamics of the polymer chains, in order to reliably control
the resultant properties of the product. However, it is not
easy to understand such properties using only experimental
observations, due to the hierarchy of length and timescales
needed to characterize the microscopic polymer dynamics and
the macroscopic flow. Computer simulations, which provide
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an alternative and complimentary approach, have become
an indispensable tool for studying such systems. Molecular
dynamics (MD) simulations provide access to the detailed
dynamics of polymer chains, but they are unable to deal
with the macroscopic flow, because of the prohibitive cost.
Computational fluid dynamics (CFD) simulations, with an
appropriate constitutive equation for the stress tensor of the
polymeric material [3], can predict the macroscopic flow
behavior, but cannot provide any microscopic information
on the constituent polymer chains. To address this issue and
elucidate the microscopic origin of the flow problems at hand,
multiscale simulation (MSS) methods, which make it possible
to simultaneously consider the dynamics at both scales, have
been extensively developed over the last twenty years. Within
the MSS approach, the macroscopic and microscopic degrees
of freedom are coupled through the stress and strain-rate
tensor fields. Originally proposed by Laso and Ottinger in
1993 [4,5], with the so-called CONNFFESSIT model, these
types of approaches represent the state of art in polymer
rheology, as they provide a rigorous connection between the
microscopic and macroscopic degrees of freedom [6-16].
However, given the computational complexity, they have been
limited to simple flow geometries and small system sizes, and
have yet to be widely adopted within industry.

In this paper, we demonstrate how to leverage the power
of machine learning techniques to accelerate the MSS to the
point where they are competitive with existing macroscopic
descriptions, without any significant loss of accuracy. In par-
ticular, we will show that it is possible to learn the constitutive
relation from training data generated from small system size
microscopic simulations. To this end, we adopt a simple
microscopic description, which models the polymers as non-
interacting Hookean dumbbells. We note that the proposed
method is applicable to any microscopic polymer model, the
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Hookean dumbbell model has been chosen for its simplicity.
As is well known, in the limit when the number of dumbbells
goes to infinity, the time evolution equation for the stress
of such an ensemble converges to an analytic expression.
This makes it possible to give a stringent assessment of our
proposed ML approach. We then perform simulations at fixed
strain-rates, in order to measure the time evolution of the
stress. This information is used as the training data for a Gaus-
sian process (GP) regression, in order to learn the correspond-
ing constitutive relation. A GP approach avoids over-fitting
of the data and allows us to incorporate unknown and/or
noisy data within a Bayesian framework, in a convenient and
efficient manner [17-20]. The learned constitutive relations
are then used in macroscopic flow simulations, opening the
possibility of probing length and timescales that would be
unreachable with standard MSS techniques. Previous work
by Zhao et al. has used a similar approach to learn the
constitutive relation of generalized Newtonian fluids [21], but
as proposed, the method cannot be applied to non-Newtonian
viscoelastic materials that exhibit a history dependent flow.
A recent extension of this method has used GP to learn the
effective viscosity and relaxation time needed to parametrize
a given viscoelastic constitutive relation [22]. In both cases,
however, the functional form of the constitutive equation is a
fixed input of the method. Here we show that this restriction
can be lifted, and that the constitutive relation itself can be
learned.

Compared to full MSS (using Hookean dumbbells), we
obtain speedups of around two orders of magnitude, and we
expect this will only increase when more realistic (computa-
tionally expensive) polymer models are used, as the cost of
performing the macroscopic flow simulations remains con-
stant. Finally, we note that the proposed learning strategy,
which is here used to learn the constitutive relation of poly-
meric flows from microscopic data, is not limited only to
polymeric materials. In fact, we envision similar approaches
being used to bridge between length and timescales in other
soft-matter systems, such as colloidal dispersions or cellular
tissues.

II. MULTISCALE SIMULATIONS
A. Macroscopic model

In order to consider the memory effects inherent to poly-
mer flows we adopt a Lagrangian particle description to
describe the dynamics of the fluid. This allows us to account
for the convection of the polymer chains and the corre-
sponding strain-rate history dependence on their dynamics.
In particular, we will use the smooth particle hydrodynamics
(SPH) method (see Appendix for details) [23]. The system
is discretized into fluid particles, carrying mass, momentum,
and all relevant hydrodynamic variable for the problem under
consideration.

Let x; and v; be the position and velocity of particle i; its
time evolution is determined by the following equations:

dxi .

= (1
d‘l),’ 1
— =P V(0= phl +Fx), 2
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FIG. 1. Schematic representation of the MSS method used to
study the micro/macro coupling of polymeric flows. The fluid is
discretized into fluid particles carrying mass and momentum, as well
as microscopic polymer simulators. Solving for the dynamics of the
polymers, under the macroscopically obtained velocity gradient k,
allows us to compute the microscopic polymer contribution to the
local stress o. The resultant stress distribution is then used to solve
for the macroscopic flow dynamics.

where p; is the density of the fluid particle and F (x;) is any
external force acting on the particle (at position x;). The first
term on the right-hand side of Eq. (2) corresponds to the forces
on the particle due to internal stresses in the fluid (with p the
pressure field). The stress o comes from the time-dependent
state of the polymer chains, i.e., the orientation and stretching
of the dumbbells. The pressure p; is defined via the following
quasi-incompressible equation of state:

2 \7
i = ﬂ[(i) _ 1] 3)
Y £0

with ¢, the speed of sound and p, the initial density. Since
we are interested in low-Reynolds number flows, we use
y =1[24].

All that remains is to specify how o is computed. The
simplest approach would be to adopt a constitutive equation
(e.g., Oldroyd-B), instead, within a MSS approach, we place
microscopic polymer simulators inside each fluid particle, in
order to directly couple the microscopic and macroscopic
degrees of freedom [8,9,13—15]. The choice is then reduced
to that of defining an appropriate microscopic model for the
polymeric fluid.

B. Microscopic model

To describe the rheological properties of the polymeric
fluid, We choose the simplest possible microscopic model,
that of noninteracting Hookean dumbbells. Thus we place
N, polymer chains inside each of the N, fluid particles,
with each polymer chain represented by two point particles
connected by a Hookean spring (Fig. 1). While more realistic
microscopic models are known, such as the finite-extensible
Hookean dumbbell model [25], the Rouse model [26], the
Kremer-Grest beads-spring model [27], the Doi-Edwards rep-
tation model [28], and the slip-link models [29-33], the basic
Hookean dumbbell model offers one main advantage over the

033107-2



A Self-archived copy in RBALEHARY KD b

Kyoto University Research Information Repository ?I
KURENAI iL

https://repository.kulib.kyoto-u.ac.jp Universty Research Inormaton Fposto

K 5

/' KYOTO UNIVERSITY

LEARNING THE CONSTITUTIVE RELATION OF ...

PHYSICAL REVIEW RESEARCH 2, 033107 (2020)

others. In the limit when the number of dumbbells goes to
infinity, the exact analytical constitutive equation for the stress
is known and corresponds to that of a Maxwell viscoelastic
fluid. This provides us with analytical results against which
we can test our proposed learning strategy. However, the
learning method we propose is not contingent on this choice,
and in fact, will be most useful when considering more so-
phisticated polymer models, for which full MSS can become
prohibitively expensive.

Since we do not consider interactions between dumbbells,
the configuration of the system can be described solely in
terms of the distance vector r between the two beads com-
posing the dumbbell. The dynamics of the chains are then
determined by the following Langevin equation for r [25,34]:

dr

P kr—2Hrt 1t )
dt—l(or c r 3

k="Vo, &)

where H is the spring constant, « is the velocity gradi-
ent tensor, ¢ is the friction coefficient, and & is a random
force satisfying the fluctuation-dissipation theorem, (§) = 0
and (E(1)&(t')) = 4kgT ¢15(t — t'), with | the unit tensor. The
polymer contribution to the stress tensor can be expressed in
Kramers’ form as [35]

o=nH{Fr —kgT1), 6)

where 7 is the number density of dumbbells, kg is the Boltz-
mann constant, and 7T is the temperature. From Eqs. (4)-(6),
the following constitutive equation for the stress tensor can be
derived:

do

t t t 4H
E=0’~K+K~G+nkBT(K+ IC)—TO’, 7

which corresponds to the upperconvected Maxwell model.

C. Nondimensionalized equations

To facilitate the simulation and analysis, we will rewrite
the previous equations in nondimensional form, introducing
basic units for both macroscopic and microscopic descrip-
tions. These two sets are labeled with an uppercase (M) and
lowercase (m) superscript, for macroscopic and microscopic
units, respectively. At the macroscopic level, the characteristic
scales are set by the length L and velocity U of the flow
problem under consideration, and the corresponding fluid-
advection time scale T™ = L/U. Together with the shear-
viscosity of the fluid 7,, and the initial (target) density p,, we
use these characteristic scales to set the units of density, time,
length, and stress to be py™ = pg, 1u™ =™ (M =L,
and oo™ = n,/T™ = n,U/L, respectively. With these units,
the equations governing the macroscopic dynamics, Eqgs. (1)—
(3), become

dx,» ~ (8)
— =V,
dt
A% = . ~
Ref =79 [V-(@—pDlk +FX)), ©
pi=Cs*(B— 1), (10)

where a tilde (%) denotes an adimensional variable. Here,
the control parameters are the Reynolds number, defined as
Re = poUL /0, = poU? /oo™, and the dimensionless artifi-
cial sound speed Cs? = ¢2pg™#,™ /.

At the microscopic level, the characteristic scales are given
by the equilibrium length of the dumbbells lq = «/3kzT /H,
the dumbbell relaxation time t™ = A = ¢ /4H, and the shear
viscosity of the Maxwell fluid ny, = nkgTA. To facilitate
comparisons between the microscopic and macroscopic mod-
els, we will use the same time and stress units for both,
o™ = ;™ and oy™ = gy™ = nkgTt™ /™, while the
microscopic unit of length is taken to be the equilibrium
dumbbell length [;™ = leq- Thanks to the coupling between
the macroscopic flow and the microscopic chain dynamics, the
Deborah number, defined as the ratio of timescales associated
to the microscopic dumbbell relaxation and macroscopic fluid
advection, De = t™/t™_ has appeared in the definition of
the unit stress, 0™ = o™ = pkpT De. With these micro-
scopic units, Egs. (4)—(7) become

U I L1 (11)
—~< =K-Tr— —Tr —é,
d 2De 3De
" 3 (e 1
= — 1), 12
5 De(m 3) (12)
de e e o1
—_— = . . - — —O0, ]3
= =0 K+F a+De(:c+ K) De? (13)

with the Deborah number De as the only control parameter.

Note that & = k1o™ and & = /1™ /(4ksT )&, with () = 0
and (£(t)&(1")) = 16(t — ). Finally, we stress that, while we
have chosen ™ as unit of time, it can also be useful to use the
dumbbell relaxation time 7™ = A as a reference. Scaled time
values using both units are directly related by the Deborah
number, with 7 = ¢/t™ = (¢/1)De.

In summary, the MSS method amounts to solving Egs. (8)—
(12). With the Reynolds number Re, the Deborah number De,
and the dimension-less artificial sound speed Cs as the main
control parameters. Unless stated otherwise, we focus on the
Deborah number regime 103 < De < 10, at low-Reynolds
numbers Re < 1; with the sound-speed Cs = 10 chosen to
keep the density variations within <3% [24], while still al-
lowing for a relatively large simulation time step A7 ~ 107°.
The strain-rate tensor is evaluated at the macroscopic level and
used as input for the microscopic simulators, in order to evolve
the configuration of the polymers (dumbbells). Then, the poly-
mer contribution to the stress is computed and used as input to
the macroscopic flow simulation, in order to update the fluid
velocity, and the process is repeated (see Fig. 1). This method
has been successfully used to study a polymer melt-spinning
process [14], as well as flows of well-entangled polymer melts
in a contraction-expansion channel (with the dumbbell model
replaced by the Doi-Takimoto slip-link model) [15]. Unfortu-
nately, while the predictive capabilities of such a bottom-up
approach represent the current state-of-the-art in the field
of polymer simulations, their heavy computational cost has
mostly limited them to relatively simple flow-geometries in
2D. To address this issue, we propose a learning strategy based
on Gaussian processes, in order to uncouple the microscopic
and macroscopic degrees of freedom in the governing equa-
tions. However, our method remains multiscale, in the sense
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that the microscopic model is used to generate the training
data used to learn the appropriate constitutive equation, i.e.,
how to evolve o. This will allow us to consider the time
evolution of the stress at the macroscopic level, but in a
way that satisfies the dynamics of the underlying microscopic
polymer model.

III. LEARNING METHOD

A. Gaussian processes (GP)

Formally, a Gaussian process is defined as “a collection
of random variables, any finite number of which have a joint
Gaussian distribution” [19]. It provides a (prior) probability
distribution over functions f, allowing us to use known values
of the function, the so-called “training” data, to infer the val-
ues of the function at new “test” positions. Let f(x) be a func-
tion from R” to R, which is sampled at N values of the input
x,x, cRP (i=1,...,N). We denote by X = (xi,...,xy)
the D x N design matrix, and f = f(X) = (f1, ..., fy) the
corresponding output matrix, with f; = f(x;). The f; are
considered to be correlated random variables, where the cor-
relation between any two of them, f; and f;, is assumed to
be a function only of the input values, x; and x;. The joint
distribution for the f; is a multivariate Gaussian, specified in
terms of an average function w(x) and a correlation function
k(x,x).

The probability of observing function values f at X, given
u and k, is

1

X)X, u, k)=
pUfFXOIX, w, k) V)N det K(X, X)

X exp [—%‘Sf(X) KX, Xx)™! -5f(X)},

(14)

where 6 f = f — u, and K(X, X) denotes the N x N corre-
lation matrix, whose (i, j)th entry is defined as K(A, B);; =
k(A;, B;). Note that a GP is uniquely defined in terms of its
average and correlation functions,

(f(x)) = u(x), s)
Bf)Sf(x) = k(x,x"). (16)

Without loss of generality, and in the absence of any infor-
mation about f, one can take wu(x) = 0, which leaves only
k to be specified. Note that no assumptions have been made
regarding the functional form of f, the correlation function
k only determines the higher-order properties of the family
of functions from which f is drawn, such as continuity,
differentiability, and periodicity. Following Rassmussen and
Williams [19], we also use the following shorthand notation
to specify a GP:

f~ N, K, a7

which should be interpreted according to Eq. (14). The fact
that the function values at different positions (f(x) and f(x'))
are correlated, with (8 f(x)8f(x")) = k(x, x’), is what allows
us to make predictions. Basically, the data for f(x), measured
at the “training” points x, allow us to “learn” how the data are

correlated. This is done by inferring the hyperparameters @
of the correlation function k, given the training data set. These
hyperparameters @ determine the precise shape of k, and thus
the properties of the random functions f drawn from the GP.
Once we have learned how, and to what degree, the function
values are correlated with each other, we use this information,
together with the known values of f at the training points
x, to predict the values of the function f, at new “test”
locations x,.

Assuming the N input values consist of n training points
and m test points, we partition the input and output data into
training and test data sets, to arrive at the following (prior)

joint distribution:

[f} - N([um] [K(X,X> K(X,X»D (18)

I XD | [ KX,, X) KX, X))
where X = (x,...,x,) is now the design matrix for the
training points and X, = (x4, ..., X») that of the test points.
Thus the correlation submatrices K(X,X), K(X,X,) =
'K(X.,X),and K(X,, X,) have dimensions n x n,n X m, and
m x m, respectively. We stress the fact that Eqs. (17) and (18)
are equivalent, at this point, we have simply relabeled the
points as belonging to either the training or test data sets. In
addition, if the training data are not known exactly, but subject
to noise, we can account for this by adding the corresponding
contribution to the covariance submatrix. For example, in
the presence of Gaussian noise with variance o2, we would
simply replace K (X, X) with K(X, X) 4 62l

The benefit of using GP comes from the Gaussian form of
the distributions, since this allows us to perform most of the
calculations analytically. In particular, the conditional distri-
bution for the function values at the test points, conditioned
on the training data, can be obtained from Bayes’ rule as
p(f. ) =p(f,, f)/p(f), and it results in yet another GP
[19]

FAf ~ N, %),
v=pX.,)+KX..X) KX, X)""-5f(X),

Y =KX, X,)-KX,.X) KX,X)"' KX,X,).
19)

The prediction for the function values at the test points is then
given by the mean v, with the covariance matrix X providing
a measure of the uncertainty at each point. Conceptually, one
can interpret this prediction as the result of drawing random
functions from the prior f ~ N(u, K), and keeping only
those that are consistent with the measured training data. The
average and variance of the functions that remain will coincide
withvand ¥, ie., f, ~ N(v, 2).

We have used a squared-exponential kernel for all our GP
regressions. For a 1D regression problem, the kernel is defined
as

k(x,x"; T, 1) = Ikge(x, x5 1),
(x — x')?
212 '

Here, ® = (I', ) are the hyperparameters that must be in-
ferred from the data, with T specifying the amplitude of
the function variance and / the characteristic length scale

ksg(x, x';1) = exp |:— (20)
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over which the function is varying in the x dimension. This
commonly used squared-exponential kernel results in GPs that
are infinitely differentiable, but other choices are possible, and
might be more suitable for a given learning problem. Kernels
for higher-dimensional function spaces can be defined by
taking sums or products of 1D kernels [19,36]. As an example,
the following are valid GP kernels for 2D functions, with input
x = (x1,x)

ksum (¢, X's T, 1y, b)) = D2 (ksg(x1, X153 11) + ks (x2, X535 1)),
Kna (e, x5 T, 11, ) = Tksp(x, %75 11) - ksg(x2, X35 1o).

In principle, we have independent sets of hyperparameters
for each dimension, but for simplicity, when using additive
kernels we will assume that the amplitude of the variance is
equal along all dimensions, i.e., ' =T"] = I',.

B. GP accelerated multiscale simulations

The idea of learning a constitutive relation for polymer
flows from microscopic data is not entirely new. Indeed,
previous work by Zhao et al. [21] has considered this pre-
cise problem, in order to perform macroscopic polymer flow
simulations without having to introduce an arbitrary consti-
tutive relation. In this work, they have assumed a general-
ized Newtonian model, and used simple-shear simulations
to learn the apparent viscosity 7P = g,,/y, of (inelastic)
non-Newtonian fluids as a function of the shear rate y. When
performing the macroscopic flow simulations, the maximum
shear rate (computed from the second invariant of the strain-
rate tensor) is taken as the local shear rate, and used within a
GP regression scheme in order to obtain n(app), and thus the
local shear stress oy, = n@Py. In practice, this amounts to
placing a GP prior on the stress tensor itself

o~ N, K). 21

However, as acknowledged by the authors, this excludes
many interesting rheological properties of (viscoelastic) non-
Newtonian fluids, as it does not allow for any type of his-
tory dependence in the flow, and relies on a separation of
timescales between the microscopic and macroscopic dynam-
ics. This history dependence, which arises from the internal
stresses, is one of the most significant features of polymeric
flows. Subsequent work by Zhao et al. [22] has considered vis-
coelastic flows, but the learning is restricted to parametrizing
a constitutive relation with a predetermined functional form.
Therefore the goal of the current work is to generalize the
learning strategy, so that it can be used to model viscoelastic
polymeric fluids without having to specify any constitutive
relation.

Following Zhao et al. [21,22], we also use small-scale
microscopic simulations of polymer chains at fixed strain rates
to generate the training data necessary to learn the constitutive
relation. However, we now place a GP prior on the time
derivative of the stress tensor

d .
JGEGNN(M,K) (22)

not on the stress tensor itself (or the effective viscosity). This
difference allows us to consider the time-dependent memory
effects crucial to describe the dynamics of polymer chains.

Even in the absence of polymer entanglement, this memory
effect is non-negligible, thanks to the finite relaxation time of
the polymer stretching and reorientation. No assumptions are
made regarding the form of the constitutive equation, except
for the fact that it should be expressed in differential form, as
a function of the local instantaneous stress o and strain-rate
k tensors. This includes most commonly used differential
models, such as the Maxwell, Jeffreys, and Oldroyd fluids
[3]. Finally, while it is possible to consider correlated output,
we use a separate GP for each independent component of the
stress tensor, resulting in D(D + 1)/2 GP regressions in D
dimensions.

Here, we have assumed a separation of length scales be-
tween the microscopic and macroscopic descriptions, such
that at the microscopic level the system can be considered to
be homogeneous, i.e., all field gradients are effectively zero. It
is only at the macroscopic level where field gradient induced
phenomena are incorporated. The appropriate microscopic
length scale needed for this approximation to be valid will
depend on the precise flow problem being studied. For the
systems presented here, it is given by the characteristic size of
the polymer chains. It is still possible (in principle) to apply
the same type of learning strategy to microscopic models in
which field gradients are not homogeneous. In such cases, the
constitutive relations would be functions of the local stresses,
strains, and their gradients. However, such considerations lie
outside the scope of the current work.

A schematic diagram of the three-step learning strategy,
consisting of data generation, learning, and prediction steps,
is given in Fig. 2. For the first step, we performed fixed strain-
rate simulations of the 3D microscopic model, corresponding
to either simple-shear or planar elongational flow

0 7 0 0 0 0
ke — 1o 0 0], y 0 0], (23)
0 0 O 0 0 O
e 0 O
K(elongational) =10 —£ 0 (24)
0O 0 O

with y and ¢ the shear and elongational flow rates, respec-
tively. These particular flows are chosen because the learned
constitutive relations will be used in simulations with an im-
posed 2D flow, where the z direction is assigned to be neutral.
However, if one wants to apply this strategy to a more complex
situation, additional applied flows, with different deformation
rate tensors, will need to be used during the learning process.
All simulations were started from a random and isotropic
initial configuration of the polymer chains ({(¢) = 0). The
simulations were performed until a steady state was reached,
such that >~ 0. Each simulation provides us with a trajectory
(t,a(t)), from which we can compute (). We randomly
chose a fraction of these tuples (k, o, ¢) to serve as training
data for the GP regression, with input x = (k, ¢') and output
f(x) = 0. To compute ¢, we use a finite-difference approx-
imation over a characteristic timescale At®. To reduce the
noise in the measurements for o and/or g, it is recommended
to apply a data smoothing operation, the details of which are
given below.
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f(@)=6(x,0)
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Generate Training Data
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Prediction
Uncertainty
—

Predict New Data

FIG. 2. Schematic representation of the GP-MSS strategy used to learn the constitutive relation of polymeric flows from microscopic
data. (1) We perform small-scale microscopic simulations at fixed strain-rate k, in order to obtain the input («, o) and output ¢ training data.
(2) Placing a GP prior on the constitutive relation, ¢ ~ N (i, K), the training data are used to learn the hyper-parameters @ (specifying
the function variance and length scales) of the GP, by maximizing the posterior distribution for ®. (3) The probability distribution for the
constitutive relation at new “test” inputs (k,, a,) is then specified by a conditional GP, i.e., 6,|0 ~ N (v, ¥). We take the average value to be
the best estimate, o, = v, and use this within a macroscopic simulation, in order to update the stress at each point in the fluid. The prediction
uncertainty is given by the corresponding covariance ¥, and it can be used to perform on-the-fly diagnostics [21].

The second step is to train the model, i.e., to determine the
hyperparameters @ of the kernel function k(x, x"), as well as
any unknown uncertainties in the test data for . The posterior
probability distribution for the hyperparameters, given the
model and measured training data, is determined from Bayes’
theorem as

p(OIX, f) x p(fIX, ©)p(O), (25)

where the likelihood p(f|X, ®) is given by the corresponding
GP, Eq. (14), and p(®) is a suitably chosen prior for the
hyperparameters. A full Bayesian treatment, in which we inte-
grate out the hyperparameters and propagate the uncertainties
during the simulation is possible, but for simplicity, we will
consider only a pointwise solution. For the 1D problem con-
sidered below, we take the posterior average

0" = / d® © p(@X. f) (26)

estimated from Hamiltonian Monte Carlo (HMC) simula-
tions. For the 2D problem, we instead use a stochastic
gradient-based optimization method [37] to maximize the log-
posterior, and find the “optimal” value

@(()map) = arg maxe logp(O|X, f) 7

Finally, the optimized ®, are used to parametrize the
conditional distributions for the test data f,|f, as defined in
Eq. (19). In practical terms, we use the (conditional) mean
v = (d,) as our prediction for the constitutive relation, such
that the stress of each fluid particle is updated according to

o,(t + At) = 0,(1) + (6.); A1, (28)

where (g,); is a function of the training data x = (k, 0), as
well as the instantaneous (test) strain rate and stress tensors at
the position of particle i, x, = (K, 0.) = (k;(t), 0:(t)).

We refer to this method, which uses a constitutive relation
learned through a Gaussian process regression scheme, within

a macroscopic flow simulation, as a GP accelerated multi-
scale simulation, or GP-MSS. We are mainly interested in
learning this constitutive relation from microscopic polymer
simulations, but to check the consistency of this approach,
we will also consider learning from the constitutive relations
themselves (e.g., from the upperconvected Maxwell model).

C. Algorithmic complexities

To understand the benefits of our proposed GP-MSS ap-
proach with respect to a standard MSS, we should consider the
complexities of both algorithms. Since both methods employ
the same macroscopic description for the flow, any gains
or losses will be found in the calculation of the stresses.
For the MSS, this is done by solving for the microscopic
dynamics of the polymer chains. Assuming a coarse-grained
entanglement model, the time and memory requirements will
scale as O(Ny x N, x z), with z the number of entanglement
points per chain (for the case of noninteracting dumbbells
we have z = 1). Our experience shows that N, x z should be
of the order of 10*~10° or larger, in order to obtain reliable
stress measurements. The complexity associated to the GP
learning procedure is divided in two: the training step and the
prediction step. The former is the most expensive of the two,
scaling in time as (’)(nlzmimng), and in memory as O (Miining)
[38,39]. However, we note that this procedure only needs
to be done once, the resulting constitutive relation can then
be used to perform arbitrarily complex flow simulations. To
evaluate the performance of the GP-MSS, we focus then on
the cost of making new predictions to update the stresses, as
given by Eq. (28). This involves evaluating the average of the
conditional GP at the test positions X ,, corresponding to the
values of k¥ and o for each fluid particle. From Eq. (19), we
see that we must compute expressions of the form K(X,, X) -
(K(X,X)™"-8f(X)), where the term in parenthesis depends
only on the training points X. This term, which evaluates
to a vector of length nyyining, can also be precomputed. The
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FIG. 3. Schematic representation of the two standard flow prob-
lems we have used to test our learning strategy, simple-shear flow
and pressure driven flow. For the former, we consider a simplified
1D description, while for the latter we take into account the full 2D
nature of the stress and strain-rate tensors.

prediction step can then be reduced to a simple matrix-vector
multiplication, which scales as O(Ny X Ryaining ). However, the
memory requirements are still only O(Aaining). The asymp-
totic ratio of the GP-MSS to MSS stress calculation time is
then O (Miaining/ (N X z)), which highlights the importance of
generating a minimal high-quality training data set. The rule
of thumb is to have the number of training points be smaller
than the number of degrees of freedom in the microscopic
polymer chain simulator. For the MSS simulations considered
here, we need N, =~ 105 dumbbells to obtain reliable flow
predictions. Using a random sampling protocol to generate the
training data, we can achieve this same level of accuracy using
Piraining 22 103 training point. Although this does not account
for the constant proportionality factors associated to each of
the calculation costs, this two order of magnitude speedup is
in agreement with the results of our simulations. The issue
of generating an optimal training data set, which in this case
will maximize the time saving with respect to the MSS, while
keeping the same level of accuracy, is at the heart of most
ML problems. It is quite likely such a protocol will have to be
tailored to the specific microscopic model one wishes to study,
as well as the macroscopic flow regimes to be simulated.
For the systems studied here, random sampling proved to be
enough, but it is not sure whether or not this will generalize to
more complex setups.

IV. RESULTS

We will consider two basic flow problems in order to val-
idate our proposed learning strategy (see Fig. 3): (1) simple-
shear flow and (2) pressure driven flow. Given their symmetry,
the flow in both systems is effectively one-dimensional, but
a complete description of their dynamics requires that we
account for all components of the stress, and their coupling
to the flow. Furthermore, if this approach is to be applied
to general geometries, it should be capable of learning the
appropriate form of the constitutive relation for the stress
without any simplifying assumptions (although it can be use-
ful to introduce this additional information in specific cases).
To show how our learning procedure can be extended as the
dimensionality of the system increases, we will study (1) the
simple-shear flow problem in 1D and the (2) pressure-driven
flow problem in 2D.

For the simple-shear flow case, we assume that vy =0
and the strain-rate and stress tensors have only one nonzero
component, i.e., the xy component. The learning problem
i§ then 2D, since the constitutive relation is of the form
0 vy(Kxy, Oyy). For the pressure-driven case, we consider the
full 2D nature of the stress and strain-rate dependence,
such that the learning problem is now seven-dimensional,
aa,g(/cxx, Ky K}X, KW, Orrs ax,,, av‘) For the flows, we are con-
51dermg Koz = K.« =0, and since Tr(¥) = 0, we have that
Kuw = —Kyy. Instead of explicitly introducing such relation-
ships into the model, we have preferred to learn them di-
rectly from the training data. As we have chosen a system
of noninteracting Hookean dumbbells for our microscopic
polymer model, we are able to compare our results with the
exact analytical constitutive equation, Eq. (13). Thus we can
check the convergences and sensitivity of our results, both in
terms of the number of dumbbells N, used in the microscopic
simulations, as well as the number of training points used in
the GP regression nigining. Finally, since the absolute value of
the local stress tensor is not a physically measurable quantity,
as opposed to the forces or velocities, we prefer to evaluate
the accuracy of the learning strategy by comparing the error
in the macroscopic predictions for the forces in the fluid and
the flow velocities.

A. Simple-shear flow (2D learning)

To arrive at an effective 1D description for this simple-
shear flow problem we have assumed the stress is a function
of y only, and that the system starts from a relaxed state
Gup(t = 0) = 0. The Maxwell constitutive relation, Eq. (13),
then takes the following form:

TG 1) = Di[%xy@, 1) = 3,G, 1), (29)
e
where 6, (1) = Gy (t) = 0, () = 0y (t) = Gy (t) = 0

Microscopic training data were generated by perform-
ing fixed shear-rate simulations for a system of N, =
103, 10*, and 10° noninteracting dumbbells in 3D for two
different Deborah numbers, De = 1 and 10. In each case, we
used nine different values of the adimensionalized shear rate
Ky within the range [— 150 150], including ¥y, = 0. The time
step was set to A7 = 10~* and the simulations were performed
up to a maximum time of Tmax = 5De. The trajectory of the
stress Gy, (t) was then smoothed using a Gaussian filter with
a width of 5 x 1073t™_ in order to reduce the noise in the
estimates for 3xy. The time derivative of the stress, obtained
from the smoothed data, was computed using the following

finite-difference approximation:
Gy (1) — Gy (T — At)

AT

0O, 1) = (30)
The resulting (tN, Oy, G’Xy) data are then partitioned into ten
(possibly overlapping) randomly selected intervals over Gy,
of width (max (Gyy) — min (0,))/10. Averaging over the
points contained in each interval allows us to define a cor-
responding pair of input x = (ny, va) and output f(x) = va
training points. The variance €? in &y, within each interval,
is used as an estimate of the measurement error, and added
to the corresponding covariance submatrix K(X, X), in order
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to perform the GP regression [see Eq. (18)],i.e., K(X, X);; =
kX, X ;) + eierij.
We use a product kernel for this 2D regression problem
x = (x1,x2) = (Oyy, Kyy), such that
ke, x') = Dksp(xr, X131 - ksp (6, X35 1), (€29)]
We thus have three hyperparameters, I" and the two length
scales for &, and Ky, so that ® = (T, 1, I,). We use indepen-

dent and uniform logarithmic priors, p(In ®;) o const, which
are scale-invariant, such that

P©) = p(I) - pl) - (1) oc =+ - .
r L b

To train the model, we performed Hamiltonian Monte Carlo
simulations, using the no-U-turn sampler (NUTS), with the
PYMC3 python package [40—42]. The optimal parameters ®q
are then taken to be the averages over the posterior distribution
O and used to define the conditional GP for the constitutive
relation. Figure 4 shows the results of this learning procedure
for the case of De = 10. We are able to learn the Maxwell
constitutive relation, Eq. (29), providing excellent predictions
over a wide range of parameters. However, the prediction
error increases the farther we get from the training points,
as expected. This highlights the importance of generating a
well chosen training data set, representative of the region in
function space one is interested in. It is reassuring to note that
even with the naive random sampling strategy outlined above,
we are able to obtain precise predictions for the constitutive
relation. While this is due to the simplicity of the function,
we will show below that this approach also generalizes to
more complicated functional forms and higher dimensions.
Using this learned constitutive relation, we performed flow
simulations under simple shear, at Re = 10, and compared
the results to those obtained from standard MSS (with mi-
croscopic dumbbell simulators), as well from the Maxwell
constitutive equation.

Considering the one-dimensional nature of the flow prob-
lem, one can use a simple Eulerian description instead of the
Lagrangian one. Thus the system was discretized in the verti-
cal y direction, using 128 grid points, with the velocity of the
top and bottom walls set to ¥ = 1 and 0, respectively. Starting
from a quiescent fluid, a velocity wave will start at the top
wall, and propagate through the channel, bouncing back and
forth at the walls, before a steady-state linear velocity profile
is obtained.! This transient regime is more pronounced at high
De, as evidenced by the three kicks in the time evolution of
the stress at De = 10, corresponding to the arrival of the wave
front. For comparison, at De = 1 only one kick is observed
[see Figs. 5(a) and 5(b)]. The excellent agreement obtained
between the MSS and GP-MSS predictions for the stress is
further evidence of the success in learning the constitutive
relation. The stress fluctuations obtained from the MSS at
long times are a consequence of the large statistical fluctu-
ations that come from using a finite number of dumbbells.

ISee Ref. [43] for the time evolution of the velocity profile, for the
simple-shear flow case, obtained from MSS and GP-MSS, as well as
the exact solution given by the Maxwell constitutive relation. Results
for De = 1 and 10 are provided.

e Training Data
— GP Prediction
--- Maxwell Constitutive Equation

m 0

XX XXXX XX

100

50

Ty
[an]
X
X

—50

XK XX

—100

De 210,

050 —100 -0 0 50 100 150
Ray

XX XXXX XX

FIG. 4. The learned constitutive relation for the 1D simple shear
flow problem at De = 10 using N, = 10> dumbbells for the micro-
scopic model. (Top) Training points, GP prediction, and the exact
Maxwell constitutive equation (N, = oo limit). (Middle) Color map

. . . . ~Maxwell . ~
showing the exact constitutive relation o, , as a function of k,,

and &,. (Bottom) Color map showing the absolute error between the
GP prediction and the exact solution. The markers in the bottom two
graphs show the location of the training data set.
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FIG. 5. [(a) and (b)] Time evolution of the stress obtained from simple-shear flow simulations (Re = 10) with the learned constitutive

equation (GP-MSS) as well as those from the full MSS, using microscopic dumbbell simulators (N, =

10%). Dark (light) colored lines

correspond to small (large) values of the channel height y. Atr = 0, a velocity wave starts at y = 1 and propagates down the channel, bouncing
back at the lower wall. [(c) and (d)] Maximum absolute error in the velocity, for all points in the channel, obtained from the MSS and GP-MSS
predictions. The error is computed with respect to the results of the (exact) Maxwell constitutive equations, [0, — YM*>¥D| Results for different
number of dumbbells N, = 103, 10*, and 10° used in the microscopic simulations are shown.

It is encouraging to see that the GP-MSS predictions do not
show such behavior. This is because our learning strategy
properly accounts for the measurement error in the training
data, allowing us to infer the “true” function. To further test
our ability to capture the history dependence of the flow, we
have also considered an oscillatory shear flow (not shown),
and obtained a similar level of agreement between MSS and
GP-MSS predictions. We note that a generalized Newtonian
approach, which assumes the stress ¢ is a function of k, would
not be able to capture this memory effect.”

Figures 5(c) and 5(d) shows the maximum absolute error
in the predicted velocities, among all points in the system,
as a function of the number of dumbbells N, used in the
microscopic simulations. This error is evaluated with respect
to the velocities obtained from macroscopic simulations with
the exact constitutive relation. Not surprisingly, given the
good agreement in the stress profiles, the velocities also co-
incide. There is however a small offset in the transient regime

2See Ref. [43] for the time evolution of the velocity profile, for
oscillatory-shear flow, obtained from MSS and GP-MSS, as well
as the exact solution given by the Maxwell constitutive relation.
Simulations are performed by setting the velocity of the top wall to
be v, = U cos (wt), where the magnitude U and frequency w of the
shear flow are set by the Deborah and (squared) Womersley numbers,
De = 1 and Wo? = L?pw/n = 20, respectively. For comparison pur-
poses, we have also shown simulation results for a corresponding
generalized Newtonian fluid, i.e., assuming a constitutive relation
of the form o, = n®P(y) -y (with y the shear rate, and n®® the
effective viscosity), for which there is no memory effect.

(see footnote 1), with the GP-MSS velocity wave showing a
slight delay (advance) with respect to the MSS or Maxwell
predictions at De = 1 (10). This is the main source error
reported in Figs. 5(c) and 5(d), and is due to the small number
of training data around this particular point in (k, &) space.
Two aspects deserve to be highlighted. First, in all cases, we
have considered, the error of the GP-MSS results is of the
same order of magnitude as the MSS results. While the error
can be two times larger, for times near the beginning of the
start-up flow, it can also be considerably smaller, particularly
at steady-state. This is most obvious for the case with small
number of dumbbells N, = 103, Second, the error decreases
considerably as N, — oo, as this decreases the statistical
errors in both the MSS and the training data used to learn the
constitutive relations. However, we note that the accuracy of
the GP-MSS will also be affected by the quality of the training
points. In the case of De = 10, for example, we happened to
obtain slightly better results for N, = 10* than for N, = 10°.

B. Pressure-driven flow (7D learning)

For the pressure driven-flow problem, we will consider
the full 2D nature of the system. The learning problem then
cons1sts of three GP regressions, one each for o, ny and
Gyys all of them functions in a seven-dimensional space x =
(Kixs Kxys Kyxs Kyys Oxxs Oxys Oyy). Given the increased complex-
ity with respect to the effective 1D flow considered previously,
which resulted in a 2D learning problem, we have simplified
the procedure to generate the training data. This is not directly
related to the type of flow, but rather to the dimensionality
of the problem. Microscopic 3D simulations for N, < 10°
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noninteracting dumbbells at fixed strain-rate are performed.
We considered both simple-shear and planar elongational
flows within the range |k,p| < 150. We chose 11 different
values for each of Ky, Kyy, and Ky, in addition, results for
Kyx were obtained by taking the transpose of those at /cx} The
simulation time step was fixed to A7 = 107°, the maximum
time was set to be fyx = 10De, and the corresponding o(t)
trajectories where saved and used to generate the training data.
For this, we randomly selected N ~ 10° points (7, Kys, Oap),
and included the initial state Gog(t = 0) = 0. Then, we use
each point to define a time interval of width 0.17™, with
(M the polymer relaxation time. For the training data, we
take the stress to be the average stress within the time interval,
whereas the time derivative of the stress 3"& g is taken to be the
difference at the two end-points, i.e., using a coarse- gralned
time step of A7 =~ 0.05De. The measurement error for &,z
cannot be ignored, but it is also not easy to evaluate in this
high-dimensional space. Therefore we introduce this error €,g
as an additional hyperparameter that should be learned from
the data. It is in such situations where the benefit of adopting
a Bayesian approach pays off.

To summarize, we place a GP prior on each 6,4, such that
Gap = f(x) ~ N (0, K(X, X)). For the covariance matrix, we
have K(X,X);; = k(X;, X ;) + €%8;;, with the measurement
error assumed to be constant, equal for all x. Here, we have
used an additive first-order kernel, such that

ke, x') = T2 Y k™ (xep, ' 5314)
A

(32)

with A =1,...,7 specifying one of the seven possible in-
put components of X = (Kyy, Kyy, Kyxs Kyys Oxxs Oy, Oyy). The
choice of an additive kernel is motivated by the fact that it
allows for nonlocal interactions, making it less susceptible to
the curse of dimensionality and allowing for better extrapo-
lation in regions far way from the training data. In contrast,
a multiplicative Kernel will rapidly revert to the mean away
from the training data [[36], Chaps. 2.4 and 6.1]. This is not
an issue for the 2D learning problem considered previously,
as it was easy to generate a large enough sample of training
points. For each 1D kernel k) we have one associated
hyperparameter or length scale /,, for a total of seven length
scale hyperparameters. Together with I' and the (unknown)
measurement error €,4 associated to the training data for o',
this results in a total of nine hyperparameters needed to learn
each G,p. Note that we are assuming that the measurement
error is constant, i.e., it does not depend on x, although it can
be different for the different components of the constitutive
relation. The optimal values were obtained by maximizing
the log-posterior, Eq. (25), assuming a constant prior for the
hyperparameters (p(®) = const). For this, we use ADAM,? a
stochastic gradient descent algorithm [37,44], as implemented
in GPYTORCH [38,39].

This learmng procedure results in three distinct functions
Gxxa va, and o o,y of seven variables. The most interesting,

3We mainly used the default parameters proposed by Kingma and
Ma for machine learning problems, namely, the step size is « =
1072, the hyperparameters are 8; = 0.9, 8, = 0.999, and & = 1078,
We have set the maximum number of iterations to be 500.

Ntraining
e 6 x 10°
£0.25 el 3 % 107
B Eh) ) y
0.00F
1IF\ - GP-MSS (N, = 107)

* Constitutive Equation

Oy

FIG. 6. GP predictions (cross symbols) for the constitutive re-
lation ¢, learned using Rining = 1,3 and 6 X 10° training points
(generated from microscopic simulations with N, = 10° dumbbells).
Exact results (dot symbols) were obtained from the Maxwell con-
stitutive relation, corresponding to the N, — oo limit. The data
clearly show that the results improve as the number of training points
increases, as expected. A caret (T) indicates data that have been scaled
to lie in the range [—1, 1], with the input (x5, o) and output (64p)
scaled separately, to facilitate visualization.

nontrivial components of the constitutive relations (for the
flows we are considering) are the xx and xy components,
visualized in Fig. 6 for three different number of training
POINts Aaining = 1, 3 and 6 x 10° generated from microscopic
simulations of N, = 10° dumbbells.* As for the 1D problem
considered above, we compare our results with data generated
from the exact Maxwell constitutive relation (N, — 00), and,
as expected, obtain better agreement as 7ining INCTreases.
Finally, for comparison purposes, we have also learned the
constitutive relation from training data generated from the
exact solution, i.e., the Maxwell model (N, — ©0).

We used the learned constitutive relations to perform 2D
simulations for the pressure driven flow problem, comparing
our GP-MSS results with those of the conventional MSS and
the exact Maxwell constitutive relation. We perform SPH
simulations for all three cases, in a channel whose width
L, = 0.6 (along the flow direction) is about half its height
L, = 1. The fluid is discretized using 540 particles, initially
arranged on a regular lattice within the system, corresponding
to a 18 x 30 (width x height) array of particles. The initial
distance between each particle is b = 1/30, the smoothing
length is h = 1.5b, and the cut-off length is R. =3h. We
performed simulations at Re = 10~ 2 for De <10 2 which is
enough to observe elastic effects in the flow. Figure 7 shows
the time evolution of the velocity at the center of the channel

4See Ref. [43] for the full constitutive relation map used in the
learning procedure for the 2D pressure driven flow problem, for the
case of Nining = 1 X 10° points, together with data generated from
the exact Maxwell constitutive relation. In addition, we also plot
the trajectory data [k(r), o(¢), ()] obtained from GP-MSS (De =
1 x 1072) for three representative points ¥ ~ 0, 1/4, 1/2 along the
channel. Simulation results using the exact constitutive relation are
also given.
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FIG. 7. Time evolution of the velocity, at ¥ = 0.5, for the
pressure-driven flow problem (Re = 1072). Results for three dif-
ferent De are shown, together with the corresponding Newtonian
fluid (De = 0). Results obtained using the (solid line) exact Maxwell
constitutive equation are compared with (open symbols) GP-MSS
using a constitutive relation learned from (7ining = 10%) noiseless
training points generated from the Maxwell model.

(y=0.5) for De=1,2 and 10 x 1073, as obtained from
GP-MSS using the constitutive relation learned from exact
training data (N, — ©0), SPH simulations using the Maxwell
constitutive equation, and a corresponding Newtonian fluid
(De = 0). The default parameters for these 2D (SPH) MSS
and GP-MSS are summarized in Table I.

As expected, at a steady state, the system is indistinguish-
able from a Newtonian fluid. However, at short times 7 <
0.1, effects due to the elastic energy stored in the dumbbells
are visible. This is seen in the velocity oscillations around
the Newtonian values, for which the overshoot can result
in speeds that are more than three times the steady-state
value. These elastic effects become more important as De
is increased, and even results in large negative (transient)
velocities at De > 1072, The differences between the GP-
MSS results, using the learned constitutive equation, and those
from the exact constitutive equation are negligible. While

TABLE I. Default (nondimensionalized) parameter values used
for the 2D MSS and GP-MSS simulations.

Parameter Description Value

Re Reynolds number 1072

De Deborah number 1073-10"
Cs artificial sound-speed 10

AT time step 10°¢

N, Number of dumbbells (MSS) 103-10°

Ny Number of fluid particles 540 =18 x 30
(ZX, Zy) System size (0.6, 1.0)

b Initial particle size 1/30

n Smoothing length 156

R, Cutoff length 3n

F e External driving force (12,0)
Ryraining GP training points 1 x 10°-6 x 10°
AT© GP coarse-graining window 0.05De

these GP-MSS relied on a constitutive relation learned from
exact noiseless data (N, — o0), using a finite number of
dumbbells N, to generate the training data yields similar level
of agreement, as will be shown below.

First, although there is a small difference between the
learned constitutive relation and the exact solution (see Fig. 6),
particularly for the &\, component, the macroscopic predic-
tions are in excellent agreement. This can be seen when look-
ing at the forces in the fluid, as shown in Fig. 8 for three dif-
ferent positions along the height of the channel. Indeed, GP-
MSS results using constitutive equations learned (Maining =
10%) from the exact solution (N, — 00) or from microscopic
simulations (N, = 10°) are indistinguishable from each other
at this scale, and they coincide with macroscopic simulation
results using the Maxwell constitutive relation, although there
is a small lag in the forces for the N, = 10° MSS case. Second,
we show that increasing the number of training points results
in more accurate constitutive relations, and thus more reliable
macroscopic flow simulations. We used the three constitutive
relations of Fig. 6, generated from Aggining = 1, 3, and 6 X
103 training points, to perform GP-MSS, and compared the
predicted velocity profiles with the exact solution, as given
by SPH simulations using the Maxwell constitutive relation.’
Figure 9 shows the maximum absolute error in the velocity as
a function of time. Increasing the number of training points
dramatically reduces the error in the simulations. Further-
more, the simulations using the constitutive relation learned
onN, = 10° dumbbells give the same level accuracy as those
using the constitutive relation learned from the exact solution.
All things being equal, increasing the number of training
points will give better results; however, what matters is the
quality of the training data set. This is the reason why the
best results are obtained with the constitutive relations learned
from the exact data, even though only a relatively small
number of training points are used.

V. CONCLUSIONS

We have developed a learning strategy that is able to
infer the constitutive relation of polymer melt flows from
a small number of microscopic or coarse-grained polymer
simulations. For this, we have used a Bayesian learning
approach based on Gaussian process (GP) regressions. GPs
provide a probability distribution over functions, allowing us
to infer the most likely values, given known training data. In
addition, we can estimate the uncertainty in the predictions,
as well as incorporate unknown or incomplete data (e.g.,
measurement errors). Previous work has shown how one can
use this type of approach to learn the effective viscosity of
a polymer melt flow, as a function of the local shear rate

5See Ref. [43] for the time evolution of the velocity profile obtained
from GP-MSS at De = 1072 (open symbols), using constitutive
relations learned from ngising = 1, 3, 6 X 10° points (generated from
microscopic simulations with N, = 10° dumbbells), as well as the
exact solution given by the Maxwell constitutive relation (solid line).
Results obtained using a constitutive relation learned from ngining =
1 x 10* points generated from the exact constitutive relation are also
shown (filled symbols).
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FIG. 8. Scaled force at three locations along the height of the
channel, aty ~ 1/2, 1/4, and 0, for the pressure-driven flow problem
(Re = 1072). Results are from GP-MSS, using a constitutive rela-
tion obtained from microscopic simulations (N, = 10° dumbbells),
as well as from the exact constitutive equation (N, — o0), with
Miraining = 10%. Exact results, obtained from simulations using the
Maxwell constitutive relation are also shown.

[21], or to parametrize a viscoelastic constitutive relation [22].
Here, we demonstrate that a learning scheme that includes
memory effects can be developed, which is crucial in order to
describe the flow dynamics of entangled polymers in complex
flow geometries. This method has great potential for polymer
processing, as it will allow us to consider flow problems
relevant to industrial settings. In addition, we believe that
similar learning strategies can be designed for other soft-

0.4p 72 ”trgining
. De =10 10* (N, = o0)
S 0.3f 10°
N — 3.10°
—6-10°
£0.2
£
80.1
E .
0.0

FIG. 9. Maximum absolute error in the velocity obtained from
GP-MSS of the pressure-driven flow, max (v — D™D yging con-
stitutive relations learned on different number of training points (gen-
erated from microscopic simulations using N, = 10° dumbbells).
Results using a constitutive relations learned from the exact solution
(N, = 00) are also shown. The simulations were performed at Re =
De = 1072,

matter systems, where the presence of multiple length and
timescales gives rise to complex dynamical behavior that is
expensive to simulate directly.

To validate the method, we have adopted the simplest
possible microscopic polymer model, that of an ensemble
of noninteracting Hookean dumbbells, since the exact con-
stitutive equation is known in this case. This model was
used in fixed strain-rate x simulations, under simple-shear
and planar elongation, to generate the required training data.
For this, the time evolution of the stress o(¢) was used to
estimate the time derivative . Assuming that the constitutive
relation can be written in differential form, as a function
of the local strain rate and stress, the goal is to learn the
function o(k, o). Thus the training data consist of input
points (k, ) and the corresponding output 6. We randomly
selected a subset of ~10° points and used them within a GP
regression scheme in order to determine the optimal posterior
distribution p(d,|k, 0, k., 0,) for the constitutive equation o,
at new input test points (., 0, ), for which ¢ is not known.
This conditional probability distribution is a GP, with average
and covariance that are functions of both the training and test
points.

We set the average (0.), over the posterior distribution,
to be our best prediction for the constitutive relation, and
this function was then used within a macroscopic simulation
in order to predict the flow behavior. In this way, we were
able to carry out all our simulations at the macroscopic level,
without having to impose any constitutive relation. Again, all
we assumed was that the time derivative of the stress is a
function of the local stress and strain-rate tensors. The appro-
priate constitutive equation is learned from a (relatively) small
number of microscopic simulations. The resultant method,
which we have referred to as GP-MSS, gives results that are as
accurate as conventional MSS, at a fraction of the cost. With
our nonoptimized PYTHON+NUMPY code, the difference in
runtime between the full MSS (using 10° dumbbells) and the
GP-MSS (with nyaining = 103 training points) is ~100 times
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for the 2D pressure driven flow problem. We note that the
GP-MSS run only marginally slower than simulations using
the Maxwell constitutive relations. Thus we get the best of
both worlds, achieving run times comparable to macroscopic
simulations, without sacrificing the accuracy provided by
a microscopic polymer description. We expect the speedup
afforded by the GP-MSS to improve dramatically when more
realistic, and complex, microscopic polymer models are used.
However, the reliability and efficiency of the GP-MSS will
depend on the quality and size of the training data set. Thus
care should be taken when devising the data generating pro-
tocol. As an added benefit to our approach, we note that it
is also possible to maintain (consistent) information on the
microscopic degrees of freedom, for example, by adopting a
multifidelity representation [45,46]. In this case, a small num-
ber of microscopic simulators could be introduced in order
to provide accurate (localized) stress measurements, which
are then fused together with the approximate predictions
provided by the learned constitutive relation. In future work,
we will apply this learning approach to tackle the problem of
entangled polymer melt flows. This will allow us to consider
3D flows in complex geometries, which have so far remained
out of reach for standard MSS techniques.
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APPENDIX: THE SPH METHOD
1. Introduction

The smooth particle hydrodynamics (SPH) method, a
particle-based method originally developed to solve astro-
physics problems, provides a computationally convenient way
to solve the Navier-Stokes equation in a Lagrangian frame-
work [23]. The fluid is discretized into a number Ny of
fluid particles that carry mass, momentum, and energy. Any
function of the system can then be expressed as an inter-
polation over the (disordered) fluid particles, which serve as
interpolation points. Consider a scalar quantity A and a vector
quantity V, which depend on position. The value of A(x) or
V (x), at a given position x, which need not correspond to the
position of any of the fluid particles, is given by

Ax) = /A(x’)W(x —x', hdx', (A1)
V(x) = /V(x/)W(x —x', h)dx' (A2)

with similar expressions for higher-order tensor fields. Here,
W(x, h) is a smoothing or interpolating kernel that should
integrate to unity and tend to a delta function in the limit when
the smoothing length /4 goes to zero. In this work, we adopt a

Gaussian interpolating kernel

W, h) =

L [_HHP} )
N

with r a D-dimensional distance vector and || - || the L2-norm,
. 1/2 .
ie., |r|l = (ZD r?) / . We note that derivatives of these

i=17i
functions can be easily evaluated, as the derivative operator
can be transferred to the kernel, for which analytic results can

be computed in advance. Thus

VA(x) = /dx’A(x/)VxW(x —x', h),

V. Vix)= fdx/V(x’) -V Wx—x',h).

Numerically, these integrals are replaced by sums over the
fluid particles, i.e., the interpolating points, such that

Ax) = /dx’A(x')W(x —-x)

— S AW —x) (Ad
jerw H

with m; and p; the mass and density of the ith fluid par-
ticle. To reduce the computational burden, these sums have
been truncated to only include fluid particles within a cutoff
region R(x) centered at x, such that |x; —x|| <R, = 3h.
For notational simplicity, in what follows we will denote
these truncated sums using a primed summation symbol. As
an example, the density of each element can be computed
by taking A = p and evaluating the function at x = x;, with
A =A(x;)and W;; = W(x; — x;)

pi=y_imiW (A5)

with the mass a constant.

To solve the equations of motion for the fluid particles,
Egs. (1) and (2), we need to evaluate the forces acting on
each particle, which involves computing the divergence of the
stress tensor. Instead of directly discretizing V - o, the “golden
rules” of SPH state that formulas should be rewritten to place
the density inside the differential operators [23]. In this way,
the forces are evaluated using the following expression:

ol —pl
p1V.(a—pl)zv.<"pp)+”p2pr. (A6)

Therefore the time derivative of the fluid particle velocity v;,
Eq. (2), is given by

dv; o—pl o—pl
A N VW
dt z]:m][< p? )i " < p? )j] !

+ F(x)). (A7)

Finally, the equations of motion for the SPH particles are
discretized in time and integrated using the following second-
order scheme:

1 dv,- "
O =X vl Ar+ —( = ) (Ar)?
2m; \ dt

vn+l_vn+ 1 dl),' ”+1+ dvi " At (Ag)
T om |\ dr dt '
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2. Modified SPH

Rigid boundaries, be they fixed walls or moving particles,
can be incorporated within the SPH framework by discretizing
them with boundary or wall particles. However, using the
standard SPH method introduced above, an unnatural flow
is observed in the presence of such boundaries. To remove
these artifacts, the values of the first and second derivatives
of the physical quantities of interest can be used within the
weighted averages [48], to arrive at the so-called modified
SPH (MSPH). The appropriate expressions can be obtained
by starting from the second-order Taylor expansion of the
quantity of interest. For a scalar quantity A(x;), we have

Alx;) ~ A(x;) + VA(x;) - (x; — x;)
+ %l(xj —x;) - ViViA(x;) - (xj — X)),
Aj = A+ VA -xji+ 3%, - VVA; - x; (A9)

with x;; = x; — x;. Multiplying both sides of Eq. (A9) by the
volume element m;/p; times the smoothing function W;; and
summing over all particles, we obtain

, Mj
AW
m; m;
=D WA+ Y Wi - VA
Pj Pj

1 ,Mj t .
+ 5 ij—jWijxﬂxﬂ . VVA,', (AIO)

which relates A to its first- and second-order derivatives. To
solve this equation, we then need the corresponding relations
for VA and VVA, which are given in Egs. (A11) and (A12)

m; m;
E /J—jA]VlVVUZ E ;—IV,WUA,
Pj Pj
, M
+ E jp—jVivvijxji . VA,'

1 , M
=3 ij_jvwlz‘jtxjixji : VVA;,, (All)

m; m;
Z/j_jAjViViVVij = Z}—JViViWiin
Lj Lj
, Mj
+ Zj;ViViMiji . VA,
j

1 ,mj t .
+ 5 ij—jV,»V,»\/Vijxﬁxﬁ . VVA,
(A12)

Equations (A10)-(A12) can be conveniently expressed in
matrix form as follows:

tiZBi-fi

where f; =' (A;, VA;, VVA,) is a vector whose entries are
formed from A; and its derivatives. In 2D this results in six

(A13)

independent components, thanks to the commutativity of the
partial derivatives, such that

&

(A14)

L <

X

Xy
iyy

oh
If
SEYYE
=

where commas are used to denote partial derivatives, d,4; =
Aiq and 0,08A; = A; «p. Likewise, the vector t; is composed
using W;; and it’s derivatives

K m;j K
=2 A
J

(A15)

where CD{; (K=1,...,6) are the components of ®;; =
(Wi;, ViW,;, V;VW;;), given by

=

J

J.x

SES

. (A16)

ij,xx

SRS

ij.xy

S

ijyy
Finally, the B; matrix is defined as

KL mj kAL
B; ZZ,;‘DU@U
j

(A17)
J
with @iLj the components of the ©;; vector, given by

1
(xi — x;)
i —yj)
30— x;)?

(xi —x)(vi —yj)
%()’i —y;)?
Within the MSPH method, we use f; = Bfl -t; to define
the physical quantity A; of particle i at position x;. Similar
expressions can be defined for vector quantities and higher

order tensors.

@, = (A18)

3. Boundary conditions

To enforce the no-slip boundary condition at the fluid/solid
interface, we use a virtual particle method [15,49]. The virtual
particles are placed by reflecting the outermost layer of wall
particles with respect to the boundary. Then, the velocity
vector at the positions of these virtual particles v"™ is
computed using the MSPH method, and the velocities of
the symmetric wall particles are set according to vgwa”) =
—o"™ I this way, the weighted average of the particle
velocities at the boundary is guaranteed to be zero.
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