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Abstract
Species distribution models are widely used in conservation planning, but obtaining the 
necessary occurrence data can be challenging, particularly for rare species. In these cases, 
citizen science may provide insight into species distributions. To understand the distribu-
tion of the newly described and Critically Endangered Amazona lilacina, we collated spe-
cies observations and reliable eBird records from 2010–2020. We combined these with 
environmental predictors and either randomly generated background points or absence 
points generated from eBird checklists, to build distribution models using MaxEnt. We 
also conducted interviews with people local to the species’ range to gather community-
sourced occurrence data. We grouped these data according to perceived expertise of the 
observer, based on the ability to identify A. lilacina and its distinguishing features, knowl-
edge of its ecology, overall awareness of parrot biodiversity, and the observation type. We 
evaluated all models using AUC and Tjur  R2. Field data models built using background 
points performed better than those using eBird absence points (AUC = 0.80 ± 0.02, Tjur 
 R2 = 0.46 ± 0.01 compared to AUC = 0.78 ± 0.03, Tjur  R2 = 0.43 ± 0.21). The best perform-
ing community data model used presence records from people who were able recognise a 
photograph of A. lilacina and correctly describe its distinguishing physical or behavioural 
characteristics (AUC = 0.84 ± 0.05, Tjur  R2 = 0.51± 0.01). There was up to 92% over-
lap between the field data and community data models, which when combined, predicted 
17,772  km2 of suitable habitat. Use of community knowledge offers a cost-efficient method 
to obtain data for species distribution modelling; we offer recommendations on how to 
assess its performance and present a final map of potential distribution for A. lilacina.

Keywords Local ecological knowledge · MaxEnt · Psittaciformes · Citizen science · 
Ecuador
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Introduction

Understanding species distributions is essential for conservation planning (Wilson et  al. 
2005) but for species that are rare, sparsely distributed, or inconspicuous, this informa-
tion is often lacking. In such cases, species distribution models (SDMs) and their outputs, 
can be particularly useful, as long as they are based on ecological theory and built using 
accurate data (Guisan and Thuiller 2005). SDMs allow the probability of occurrence to 
be predicted in un-surveyed areas, which can inform future field investigations and have 
many important conservation applications (e.g. Pearce and Lindenmayer 1998; Araújo 
et al. 2004). For all SDMs, species presence data are needed. Traditionally this comes from 
direct species observations or museum records, but more recently scientists have looked 
to integrate different sources of data, such as citizen science, to make better inferences of 
the true distribution of species (Amano et al. 2016; Coxen et al. 2017; Fletcher et al. 2019; 
Steen et al. 2019; Isaac et al. 2020).

The quality of outputs gained from SDMs is affected by factors such as data type, 
sampling bias and imperfect detection (Lahoz-Monfort et al. 2014; Guillera-Arroita et al. 
2015). MaxEnt is one of the most commonly used methods for deriving SDMs and has 
been shown to produce useful models even when dealing with small sample sizes (Wisz 
et al. 2008; Elia et al. 2015). Whilst other methods require absence data to be collected, 
MaxEnt uses presence data combined with a background sample drawn randomly from the 
study area (Phillips et al. 2006, Phillips and Dudík 2008; Elith et al. 2011). Both presence-
absence and presence-background data methods have limitations; namely that presence 
data often do not represent an unbiased sample of locations at which the species is present, 
and that absence data can lead to the inclusion of false absences (Guillera-Arroita et  al. 
2015). These limitations must be considered against the proposed use of model outputs; for 
instance, presence-background data may be sufficient when outputs are to be used to direct 
further field investigations, but insufficient if outputs are to directly inform land manage-
ment for conservation (Lahoz-Monfort et al. 2014). The predictive ability of models may 
also be reduced if imperfect detection is not accounted for, and may result in outputs being 
more likely to predict areas in which the species is easier to observe, rather than where it 
is more likely to occur. It is therefore essential that the effects of imperfect detection are 
minimised by ensuring a sufficiently large sampling effort at surveyed locations (Lahoz-
Monfort et al. 2014).

For species where field observations are lacking, citizen science data is a valuable and 
widely used resource (Brook and McLachlan 2008) which can help determine species pres-
ence, absence or abundance (Melovski et al. 2018; Díaz-Ruiz et al. 2019; Ghoshal et al. 
2019; Skroblin et  al. 2021). Some methods allow large volumes of data to be collected 
more cost effectively than traditional field survey methods, for example postal surveys 
(FitzGibbon & Jones 2006), telephone interviews (Mallory et al. 2003) and social media 
(Pace et al. 2019). Often this information is used to supplement ‘expert’ data by guiding 
further field surveys (Hart & Upoki 1997; O’Brien et al 1998; Chaiyes et al. 2017) but in 
some cases it is shown to be just as accurate as the equivalent ‘expert’ data, providing that 
some form of filter for reliability is incorporated (Polfus et al. 2014). Recently, a number 
of studies have even shown that georeferenced occurrence data collected through citizen 
science platforms and online biodiversity databases such as eBird, can be used to build 
accurate SDMs (Bradsworth et al. 2017; Coxen et al. 2017; Fournier et al. 2017; Saunders 
et al. 2020). However, it is important to note that all opportunistically collected citizen sci-
ence data present additional challenges such as spatial biases and variation in observer skill 
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(Isaac and Pocock 2015; Johnston et al. 2020) and online recording schemes such as eBird 
create barriers by requiring observations to be collected and submitted in a particular way.

Within all types of citizen science data, there is variation in accuracy. For example stud-
ies have shown that ‘freelisting’ (Bernard 2006), a quick survey method where participants 
are asked to list the species they see in their local area, can result in people reporting spe-
cies that do not occur and omitting ones that do (Can and Togan 2009; Díaz-Ruiz et al. 
2019). However, the cost efficiency of citizen science may compensate for reduced accu-
racy depending the data collected and extent of errors (Gardiner et  al. 2012). If citizen 
science data are to be used to infer information about distribution, and as input data for 
the creation of SDMs, some method of boosting data accuracy or accounting for level of 
expertise is essential (Kosmala et  al. 2016; Johnston et  al. 2019). Previous studies have 
used prior selection of participants i.e. only interviewing key informants selected by com-
munity leaders due to their perceived expertise (Mallory et al. 2003; Lopes et al. 2018). 
Others have developed some kind of scoring system, to determine data accuracy (Frey 
et  al. 2013) by only regarding contributions from participants who are able to recognise 
photographs of the study species and provide accurate location information (Ghoshal et al. 
2019), or by using photographs of non-native species to assess participants identification 
skills (O’Brien et al. 1998).

To further our understanding of the distribution of a newly described and Critically 
Endangered parrot species Amazona lilacina (Biddle et  al. 2020; BirdLife International. 
2020), we:

1. Built distribution models using all known locality records of A. lilacina from our own 
observations, those from expert ornithologists, and reliable eBird records (2010–2020);

2. Collected data on local peoples’ experiences and observations of wild A. lilacina through 
structured face-to-face interviews;

3. Grouped community interview data based on different quality filters and used these data 
to build distribution models;

4. Determined the best performing distribution models built from species records and com-
munity reports, and compared their outputs in order to direct future field investigation.

Methods

Study area

Amazona lilacina, a species recently split from the A. autumnalis group, is found in the 
coastal region of Ecuador where its small population is sparsely distributed around dry for-
ests and mangrove ecosystems (Biddle et al 2020). These habitats are described as amongst 
the most imperilled ecosystems on earth (Dodson and Gentry 1991). During the day-time 
A. lilacina is highly inconspicuous, feeding silently in the forest canopy in small groups 
which presents difficulty in using traditional field survey methods to collect presence data 
(Ridgely and Greenfield 2001a). However, in the evenings birds will form conspicuous 
groups and fly to communal roost sites (Berg and Angel 2006) which means that communi-
ties living anywhere on this flight path, are often aware of the species presence.

The rural coastal communities are considered to be in the most deprived areas of Ecua-
dor, with almost one quarter of all people living in multidimensional poverty (Mideros 
2012). The deprivation gap regarding food and water, education, communication, and 
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housing, is greater here than in any other part of the country (Mideros 2012). Within our 
sampled communities (Fig.  1a), people mainly make a living as farmers, fishers or crab 
fishers, and 60% have either none, or only primary level schooling. Many communities in 
this region are highly inaccessible, especially in the rainy season and 57% of people we 
surveyed had lived in their village their entire lives. The flow of information into and out of 
these communities is reported to be infrequent, with only 40% of households having access 
to one form of telecommunication (radio, television, phone, computer) (Mideros 2012).

Field observations and eBird records

Observational data were collected during ten field trips led by RB, lasting two to three 
weeks each (November 2012, January and August 2014, November 2015, August 2016, 
January and March 2017, February 2018, January and August 2019). Data collection was 
informed by: (1) existing information on known distribution and habitat use (Juniper and 
Parr 1998; Ridgely and Greenfield 2001a, b; Berg and Angel 2006; Forshaw and Knight 
2010; Athanas and Greenfield 2016); (2) information on habitat distribution from Google 
Earth and the Ministerio del Ambiente ecosystem map; (3) direct communication with 
local NGOs, ornithologists, local guides and bird tour companies. All sightings of perched 
A. lilacina made by RB, ISP, MP, Fundación Pro-Bosque staff, Fundación Jambeli staff, 
and Juan Freile between 2010 and 2020 were georeferenced (sightings of birds in flight 
were omitted).

Fig. 1  a Locations of all households taking part in interviews, all records of Amazona lilacina collated 
between 2010 – 2020 and, b eBird absence points, representing all complete checklists that did not report 
A. lilacina, and random background points matching the number of eBird absence points available, within a 
30 km buffer of all A. lilacina presence records



1807Biodiversity and Conservation (2021) 30:1803–1823 

1 3

All eBird data for Ecuador, including observations and sampling data were downloaded 
in December 2020. To ensure that no records were missed due to changing taxonomic 
nomenclature, data were filtered to include all birds recorded as A. autumnalis (which 
included A. a. lilacina and A. a. salvini) between 01/01/2010 and 31/12/2020. Records 
that were not deemed as A. lilacina based on either photographic evidence or location (i.e. 
within the Esmeraldas province) were removed, as were records that were already repre-
sented by our own observations (within 1 km). To avoid misrepresentation of location, all 
records that were reported as “general area” which implies the record does not correspond 
to that exact location were removed, as were records with survey effort > 5 h and > 5 km in 
length (Johnston et al 2019). Finally, locations of parrots within urban locations in the big 
city of Guayaquil (visualised on Google Earth) were removed to avoid escaped pets or cap-
tive birds being included in models.

Distribution models from field observations and eBird records

The MaxEnt function of the package ‘dismo’ (Hijmans et al. 2020) in R (version 3.6.0, R 
Core Team 2019) was used to create species distribution models from field observations 
and eBird records, referred to from now on as the field models. These were first built using 
eBird absence points generated by filtering for all complete checklists within our study area 
that did not report the presence of A. autumnalis (A. a. salvini or A. a. lilacina) (Fig. 1b). 
Absence points were also limited to checklists that were < 5 km in length, < 5 h in duration 
and with fewer than ten observers (Johnston et al. 2019), and to a buffer of 30 km from all 
field observations and eBird records. Our second and third field models were built using 
random background points generated in ArcGIS (Version 10.8.1) from within the same 
buffer: the second model had 4597 and the third had the same number as eBird absences 
available (458). Spatial autocorrelation was controlled for by limiting points to one per 
1 km using the R package ‘spThin’ (Aiello-Lammens et  al. 2015). A set of interpolated 
bioclimatic predictor variables available from WorldClim (https:// www. world clim. com/ 
biocl im) representing different measures of temperature and rainfall, plus additional pre-
dictors thought to have some biological significance for the species were used: Normalised 
Difference Vegetation Index (NDVI) from the monthly MODIS product over the period 
2010–2015 as a proxy of vegetation cover; distance to mangrove (Hamilton and Casey 
2016) and distance to the nearest river (Military Geographic Institute, IGM). Predictors 
were checked for pairwise correlation across random points within the study area, using 
pair plots (Zuur et  al. 2010); where correlation coefficients between pairs of predictors 
were ≥ 0.70, the less biologically meaningful predictor was removed. The final variables 
were; distance to the mangrove, distance to a river, annual mean NDVI and NDVI season-
ality, mean diurnal temperature range, annual mean temperature and temperature season-
ality, precipitation of wettest month, precipitation of coldest quarter and precipitation of 
driest month. To allow comparison between the field and community models, we averaged 
predictor values across 9  km2 at all points used in all models to reflect respondents’ refer-
ence to their ‘local area’, which could encompass areas of community owned land > 1 km 
away from their house. To ensure this did not affect model outputs or accuracy we trialled 
models built using predictor values at the exact location, compared to those averaged over 
9  km2, and found no difference.

Models were evaluated with AUC and Tjur  R2 (Tjur 2009) over five-fold cross valida-
tion; the mean evaluation metrics and their standard deviation are presented. AUC meas-
ures how well model predictions discriminate between presence and absence (Wisz et al. 

https://www.worldclim.com/bioclim
https://www.worldclim.com/bioclim
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2008). Tjur  R2 represents the difference between the mean model value at the presence 
locations and the mean value at the absence / background locations. All the data were 
included in the final models. Finally, we present variable importance scores, with permuta-
tion values > 10%, with a high value indicating that the model depends heavily on that vari-
able (Phillips et al. 2006) and response plots for the most accurate field model.

Community questionnaires and response filtering

Researcher–led questionnaires were carried out to identify areas that were reported by 
local people to be occupied by A. lilacina. Communities were chosen to be included in this 
study due to their close proximity to dry lowland forests (within approximately 10 km), 
identified using the Ministerio del Ambiente ecosystem map. Furthermore, all communi-
ties surveyed were inside or within 70 km of the species Extent of Occurrence (Biddle et al 
2020). A pilot study was conducted after which interviews were carried out in January-July 
2017. Questionnaires were conducted in Spanish by a local Ecuadorian researcher (ISP), 
with only the interviewer and respondent present (Tourangeau and Yan 2007). We aimed 
to survey a minimum of three households per community representing a cross section of 
demographic groups, but often this depended on the availability of participants and the size 
of the community. In all cases, prior verbal consent was obtained, and although less than 
fifteen people did not complete interviews, interviewees could decline from contributing 
once the purpose of the research was explained (Online Resource 1).

The location of each questionnaire, normally by the participant’s house, was recorded 
and participants were asked to respond with reference to their immediate local area which 
included their house, garden, and local community land. Demographic information regard-
ing age, gender, level of schooling, and how long they had lived in the village, was col-
lected, but interviews were anonymous, and data were coded to ensure that no individuals 
could be identified. Interviewees were not made aware of the species in concern before 
starting the interview, during which they were asked to name and describe which parrot 
species (if any) they see in their local area, then confirm from a selection of ten parrot 
photographs (the order of which was rotated at random between surveys) (Table 1). If a 

Table 1  Photographs of ten parrot species were presented to questionnaire participants

The chance of observation is rated as likely (if the species range covers the entire study area), possible (if 
the species range covers more than half of the study area) or unlikely (if the species range covers less than 
half of the study area) (Freile and Restall 2018)

Parrot species Chance of observation Species status

1. Southern Mealy Amazon Amazona farinosa Unlikely Rare
2. Blue-headed Parrot Pionus menstruus Possible Common
3. Bronze-winged Parrot Pionus chalcopterus Possible Uncommon
4. Red-masked Parakeet Psittacara erythrogenys Likely Common
5. Great Green Macaw Ara ambiguus Unlikely Very rare
6. Pacific Parrotlet Forpus coelestis Likely Common
7. Grey-cheeked Parakeet Brotogeris pyrrhoptera Possible Uncommon
8. Lilacine or Ecuadorian Amazon Amazona lilacina Possible Rare
9. Brown-headed Parrot Poicephalus cryptoxanthus Not present Not present
10. Yellow-crowned Amazon Amazona ochrocephala Not present Not present
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participant confirmed they currently (within the last year) see A. lilacina at their location, 
they were then asked a number of questions designed to help assess the accuracy of this 
information. Each interview (Online Resource 2) took approximately 20 min to complete.

To examine the influence of accuracy of community data, we filtered responses accord-
ing to the ability to recognise the species, knowledge of its distinguishing features, overall 
awareness of parrot biodiversity, and observation type (i.e., if the bird was seen flying, 
nesting, perched or feeding). We created six groups of responses to represent realistic sce-
narios that may be used to select which observations to include in distribution investiga-
tions (Table 2). We created a further 11 groups which represented all possible combina-
tions of groups three-six, for example group seven represented a group of participants who 
had answered correctly for all of groups three, four, five and six (Online Resource 3).

Distribution models from community data

We created distribution models based on groups of community data with varying levels of 
accuracy as listed in Table 2; the community models. Each participant’s response was asso-
ciated with a location representing a 1  km2 pixel on our distribution maps. These presence 
locations were combined with environmental variables and background points following 
the same methods as for the field model. All background points were restricted to buffers 
of 30 km from community survey presence points. We averaged predictor values across the 
9  km2, as for the field model, to reflect respondents’ reference to their ‘local area’, which 
could encompass additional areas of community owned land. In order to evaluate the accu-
racy of the community data models, we use the same methods as for the field models; AUC 
and Tjur  R2 (Tjur 2009) over five-fold cross validation. We present these, alongside permu-
tation values where their contribution to the model is > 10% for all models, and the habitat 
suitability output and response plots for the best performing model.

Model comparison

Once we had identified the best performing field observation model and community data 
model, we compared the overlap between their habitat suitability outputs. These outputs 
are interpreted as maps of potential distribution with values indicating the level of habi-
tat suitability for each pixel, on a scale of zero to one. There are several methods used to 
compare model outputs (Galante et al. 2018). We chose Moran’s I which represents the dif-
ference between suitability values at each cell, and the relative rank coefficient which esti-
mates the probability that the relative suitability ranking for a patch of habitat cells is the 
same for the two models (Warren and Seifert 2011). We calculated these using the niche 
overlap function in ENMTools (Warren et al. 2010). Both methods produce metrics which 
range from zero (no overlap) to one (complete overlap).

To predict areas of potential distribution, it was necessary to classify areas as either 
‘suitable’ or ‘unsuitable’ depending on their model value. Many thresholding rules are jus-
tified for presence-only occurrence data (Peterson et al. 2011). We chose the 10% omission 
rate threshold (Galante et al. 2018) where the model value which includes 90% of the val-
ues predicted at the presence locations used to create that model, is applied as a threshold 
to the habitat suitability output to distinguish between presence and absence. We calcu-
lated and applied this independently to the two best performing models. We present a final 
combined map of distribution that represents areas predicted as suitable or not by either 
of the final models. We extracted the values for the top three predictor variables from the 
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best performing models, in areas where both models predicted presence, compared to areas 
where only the field model or only the community model did, and plotted these using the R 
package ‘ggplot2′ (Wickham 2016).

Predictors of community data performance

Once the best performing community data model been determined, a generalized linear 
mixed model (GLMM) was conducted in R (version 3.6.0, R Core Team, 2019) using the 
package ‘lme4′ (Bates et al. 2020). The binomial response of whether or not a participant 
was included in the response group used to build that model was analysed to determine any 
effects of participants’ social demographics: gender, level of schooling, age and number of 
years in the village. Only communities where at least one wild A. lilacina observation had 
been reported were included, and the community location was included as a random effect. 
We checked for correlation between the age and number of years spent in the village using 
Pearson’s product-moment correlation, and between gender and level of schooling (some 
or none) using a Chi-squared test of independence, and only included non-correlated vari-
ables in our GLMM.

Results

Field observations and distribution model

Our field observations generated a total of 132 occurrence points. A further 14 locations 
from eBird were included, to create a final dataset of 146 A. lilacina presence locations. 
These were reduced to 59 (47 field observations and 12 eBird records) during the spa-
tial rarefication process, combined with either: 458 eBird absence points (model 1); 4597 
randomly generated background points (model 2) or; 458 randomly generated background 
points (model 3) and entered into model building with the ten non-correlated predictor var-
iables. The resulting mean of five-fold cross validation AUCs were 0.78 ± 0.03, 0.80 ± 0.02, 
0.79 ± 0.02 and the resulting mean of five-fold cross validation Tjur  R2s were 0.43 ± 0.21, 
0.46 ± 0.01 and 0.41 ± 0.01 for models 1 to 3, respectively. Therefore, field model 2 was 
considered to be the best performing model (Table 3). The habitat suitability output from 
model 2 shows that the suitable habitat follows the Chongón Colonche mountain range, 
from Guayaquil north-west towards the coast, with additional suitable areas in the far south 
of the country bordering Peru, and the north of the study area in mid-Manabí (Fig. 2a). 
Environmental variables that showed a permutation importance of > 10% were annual 
mean NDVI, distance to the mangrove, and temperature seasonality and response plots 
(Fig. 2b) suggest that suitability of habitat is associated with close distance to mangrove 
and a relatively high annual mean NDVI. 

Community questionnaires and reliability scoring

A total of 404 people from 72 communities took part in questionnaires, including 183 
women and 221 men, with an average of 5.6 households per community (min 2, max 
23). There was a variety of schooling levels, from none (31), primary (214), second-
ary (128), to university (31) and in how long participants had lived in their commu-
nity (1–84 years) but the majority (88%) had lived there for ten or more years. Of the 
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404 participants, 393 reported seeing parrots in general. Although it was posed in our 
questionnaires that participants should answer with reference to birds seen in the wild, 
when asked “where did you see this bird?” 15 respondents replied “as a pet” - these 15 
responses were removed from the community models.

Distribution models from community data

After filtering community data based on the six groups in Table 1, and creating com-
bination groups where participants answered positively for multiple categories, each 
group had a sample size of  ≥27 (27–155). After spatial thinning all datasets con-
tained ≥18 (18–67) georeferenced occurrence points. Each group of points was com-
bined with 3,931 background points and the same ten non-correlated predictor vari-
ables as those included in the field models. Models were built based on groups  one 
to six of data, and then all 11 possible combinations of groups three to six. None of 
the combination models improved the performance of the model (Online Resource 3). 
The mean of five-fold cross validation AUC for the six main models was > 0.74 ± 0.03 
and Tjur  R2 > 0.39 ± 0.02. Based on these values, model 3 is the best performing com-
munity model (Table 4). The habitat suitability map of community model 3 shows a 
similar area of suitable habitat to the field data model, but with additional increased 
suitability predicted along the coastline (Fig. 3a). Environmental variables with a per-
mutation importance of > 10% were distance to mangrove and temperature seasonality, 
and response plots for this model suggest that suitability of habitat is associated with 
areas closer to mangroves (Fig. 3b). 

Fig. 2  a The habitat suitability output from the best performing field model which is built using 59 species 
records and 4597 background points b The variable response plots for this model
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Model comparison

After calculating and applying thresholds to the best performing field and community mod-
els, the field model predicts 13,969  km2 of suitable habitat and the community model pre-
dicts 13,067  km2 (Table 5). When we combine these threshold habitat suitability outputs, 
they overlap in 9314  km2 of predicted suitable habitat, the community data model predicts 
a further 3753  km2 that the field data does not, and the field data model predicts a further 
4655  km2 that the community model does not (Fig. 4). The top three predictor variables 
from both of these models were; distance to mangrove, temperature seasonality and mean 
annual NDVI. When plotting the values from predicted presence areas by both models, just 
the field model or just the community model, areas that are predicted by only the commu-
nity model have a slightly lower mean annual NDVI and are closer to mangroves than areas 
only predicted by the field model (Fig. 5). There is a high level of overlap between the field 
data and community data habitat suitability outputs (before applying a threshold). The rela-
tive rank coefficient, which estimates the probability that the relative suitability ranking for 
a patch of habitat cells is the same for the two models, is 0.82, and the Moran’s I, which 
represents the difference between suitability values at each cell, is 0.92 (Table 5).  

Predictors of community data performance

Of the 52 communities where at least one observation of wild A. lilacina was made, and 
thus species presence was likely, 35% (105/304) of participants were included in commu-
nity data group with the best model performance. These 105 participants (70 men and 35 
women) were able to either name or recognise a photo of the species, and describe one 

Fig. 3  a The habitat suitability output from the best performing community data model, built using 53 
reports where participants were able to recognise a photograph of the species and provide one or more 
physical or behavioural characteristics specific to A. lilacina. b The variable response plots for this model
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Fig. 4  After calculating and 
applying thresholds indepen-
dently to the two best performing 
models, their predicted suitable 
habitat overlaps in 9314  km2, but 
the community data model pre-
dicts a further 3753  km2 that is 
suitable, and the field data model 
predicts a further 4655  km2 that 
is suitable for A. lilacina 

Fig. 5  Box plots showing predictor values in areas predicted as suitable (after applying a threshold) by both 
the best performing community and field data models, only the field data model, and only the community 
data model. The predictors with a permutation importance of   > 10% in the final models were included; 
mean annual NDVI a distance to mangrove b and temperature seasonality c 
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of its distinguishing physical or behavioural characteristics (Table  6). There was a high 
correlation coefficient of 0.70 (p < 0.001) between the number of years lived in the vil-
lage and the age of a participant. Additionally, gender and level of schooling were signifi-
cantly correlated  (X2 = 8.24, df = 1, p = 0.004). Therefore, we only included the number of 
years a participant had lived in the village, and the participant’s gender in our GLMM. 
This revealed that of participants living in areas where A. lilacina was likely to be pre-
sent, men were more likely to be included in the better performing community data group 
than women (Coefficient value: 0.62 ± 0.31, p = 0.04), which is likely due to their spending 
more time outdoors in traditionally male working roles. The number of years a participant 
had lived in the community (Coefficient value: 0.012 ± 0.007, p = 0.14) had no significant 
effect.

Discussion

We found that both field data and citizen science data in the form of community surveys 
were able to produce accurate species distribution models and their outputs had an overlap 
of 92%. When using field data, we found that models built using background points per-
formed better than those built using absence points generated by eBird checklists, possibly 
due to the low frequency of eBird records in our study area. When using community data, 
we found the best performing models were those built using reports from observers who 
could name or recognise a photograph of A. lilacina and correctly describe at least one dis-
tinguishing physical or behavioural characteristic.

Recent studies have shown that web-based citizen science projects and online biodi-
versity databases can be used to build reliable species distribution models (e.g. Saunders 
et  al. 2020; Langham et  al. 2015; Fournier et  al. 2017). This study presents evidence 
that in areas where there are substantial barriers to web-based citizen science projects, 
for example in socio-economically deprived areas (e.g. Hobbs and White 2012), com-
munity surveys can overcome these barriers and produce accurate species distribution 
models. This is of particular use for newly described and rare species. Gender disas-
sociation in local ecological knowledge is not uncommon (Kai et al. 2014; Aswani et al. 
2018); we found that men were more likely to provide accurate answers than women 
and suggest that this is due to a gender difference in traditional working roles (Voeks 

Table 6  The gender, level of schooling, and mean number of years lived in the village, for all participants 
that lived in communities where parrots were likely to be present, and for those who were included in the 
best performing community data group (group 3)

Response group Gender n Level of schooling Number of years 
in the village 
(mean)Some None

All responses Total 304 279 25 34
Women 138 134 4 30
Men 166 145 21 37

Community data group 3 Total 105 100 5 36
Women 35 35 0 32
Men 70 65 5 38
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2007; Ayantunde et al. 2008) which allows men to spend more time outdoors. Erosion 
of local ecological knowledge is a global trend (Aswani et  al. 2018) and we support 
the continuation of community wide engagement projects to minimise this risk, with a 
focus on support for women to enable them to engage with conservation.

After applying thresholds to our best performing field and community data models, 
they overlapped in their predictions of suitable habitat by 92% (in 9314  km2). The level 
of overlap we see between our community and field data models is greater than seen 
in similar comparison of eBird community data and field-based satellite tracking data 
of Band-tailed Pigeons Patagioenas fasciata (Coxen et al. 2017). Our community data 
model predicts a further 3753  km2 of suitable habitat that our field data model does not. 
These areas were closer to mangroves than areas predicted only by the field data model. 
This may be due to a factor of species detectability; A. lilacina are more detectable 
(highly vocal) when flying over to mangrove communal roost sites, so perhaps more 
likely to be seen by local communities in this habitat compared to when they are forag-
ing inconspicuously in the dry forest (Ridgely and Greenfield 2001a). It is also possible 
that these areas represent locations in which local people have memories of the species 
occurring in the past, in which they no longer occur and thus were not recorded during 
field surveys. Our field data model predicts a further 4655  km2 of suitable habitat that 
our community data models do not, and in areas with a slightly higher mean annual 
NDVI than areas predicted only by the community model.

Similarly to Frey et al. (2013), we found variation in the accuracy of community data 
models built using different methods to filter interview responses. Our best performing 
model used a filter whereby participants needed to recognise a photograph of the spe-
cies and provide a reliable description of how they distinguish it from other parrot spe-
cies in their area. This suggests that, particularly in areas where many similar taxa may 
occur, the key to assessing the accuracy of information may be simply to ensure that 
participants are referring to the correct species. This draws parallels with checks that are 
in place for citizen science online databases such as eBird where records are flagged for 
systematic review and confirmed by a regional expert prior to their acceptance (Sullivan 
et al. 2014). It also supports the work of Frey et al. (2013) who conclude that, for easily-
identifiable species at least, distribution modelling is possible using anecdotal reports. 
Our second best community data model (1) greatly underestimated the predicted area of 
suitable habitat. This group was based on the ‘freelisting’ method, where participants 
needed to name the parrot species in their area without any prior information or prompt-
ing. Previous studies using the freelisting method have yielded questionable results (e.g. 
Can and Togan 2009; Díaz-Ruiz et al. 2019) and we believe in our case, it was due to a 
very small sample size of participants who had the required natural history expertise to 
name this rare parrot species without any prompting or information.

We found that using identification of other parrot species, to measure overall biodi-
versity knowledge and therefore accuracy of answers, did not produce the most accu-
rate results. This may be due to A. lilacina’s unique daily migration behaviour, in some 
cases flying directly over villages and becoming conspicuous to many community mem-
bers, not just those that are skilled at identifying multiple parrot species. Alternatively, 
it is possible that the two parrot species whose identification we assessed as a meas-
ure of reliability are incorrectly believed to be common and widespread throughout our 
study area (Ridgely and Greenfield 2001b; Freile and Restall 2018). Identification of 
other closely related species was not a good measure of data quality either in surveys 
investigating the distribution of a native pheasant species – results showed frequent 



1820 Biodiversity and Conservation (2021) 30:1803–1823

1 3

misidentification of an ‘imposter’ pheasant photograph, but reliable information about 
the native pheasant was still generated (O’Brien et al. 1998).

Our distribution models based on field data and high quality community knowledge rep-
resent the first of their kind for the newly described and Critically Endangered A. lilac-
ina, and have important conservation implications. With an estimated population size of 
just ~ 1,000 birds, and a suggested recent 60% population decline in parts of the range (Bid-
dle et  al. 2020), our results have identified new areas to survey. It is important to note 
that our model predictors did not include factors such as poaching that may have a strong 
impact on occupancy (Robinson et  al. 2010). Whilst conducting community surveys for 
this study, we discovered a new large roost, unknown previously to local and international 
ornithologists, located near a socio-economically deprived coastal community, on a man-
grove island. Even local residents, because of the conflict with pirates, deem this area as 
unsafe. We therefore recommend that when parts of a species range fall within areas that 
are rarely visited by outsiders, the combined knowledge of communities local to that spe-
cies is likely to be much greater than that of external scientists or researchers, and should 
thus be used to enhance and supplement traditional field survey methods.

Supplementary Information The online version contains supplementary material available at https:// doi. 
org/ 10. 1007/ s10531- 021- 02169-9.
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