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A B S T R A C T   

This paper presents the spatial variation of the annual maximum daily rainfall (AMDR) in more than 900 
catchments of England and Wales over the last century with respect to different spatial features including 
geographic location, elevation, size, orientation and shape of catchments. A spatial pattern extraction and 
recognition (SPER) toolbox is employed to extract the spatial features of catchments where the AMDR is 
modelled by a well-tested Generalized Extreme Value (GEV) distribution. The results show that the GEV pa
rameters μ and σ exhibit similar patterns and are usually larger with higher elevations. Increasing catchment size 
can decrease parameters due to areal averaging, however, in the middle-sized transition regions of the rainfall 
variation, e.g., east Wales, the trend reverses. For areas at higher elevation, parameters are greater in the west- 
northwest-oriented catchments while parameters in west-northwest or east-northeast-oriented catchments at 
lower elevation are similar or smaller than those with a north-south orientation. An elongated shape catchment 
usually has smaller parameters than a rounded-shape one. These findings reveal the heterogeneity of extreme 
rainfall distribution in space with respect to different spatial characteristics of catchments even under the same 
climate, which lays a basis for further catchment-based analysis concerning the relationship between hydro
logical response and geomorphic properties.   

1. Introduction 

Extreme rainfall events have been observed to become more frequent 
since the 1950s in many regions of the world, which is challenging the 
current storm design practices (Burn et al., 2011; Stott et al., 2016; 
Taylor et al., 2017). Quantifying the behaviour of flood-triggering 
rainfall at extreme levels is an essential step in flood risk management 
(FRM; Coles and Tawn, 1996). Although rainfall as one part of the global 
hydrological circle that is boundless, FRM is usually carried out at 
different scales associated with one or several regions of interest which 
are defined within a hydrological or political boundary (Elsebaie, 2012). 
Therefore, the analysis on rainfall variation studied at various scales 
such as city, country, climatic zone and the globe is very important and 
of concern of flood risk managers and stakeholders (Kumar et al., 2010; 
Phuong et al., 2019). In recent decades, many studies focused on the 
variability of rainfall in time and space at different scales based on 
gauged records (Buishand et al., 2008; Jung et al., 2017; Pedersen et al., 
2010; Villarini et al., 2010; Zheng et al., 2016). For example, Archer and 
Fowler (2018) broke the long-term gauged rainfall and streamflow 

datasets of Great Britain into two scenarios and selected five events to 
illustrate typical characteristics of rainfall-runoff regarding different 
geographic locations; other researchers analyzed gauged rainfall ex
tremes corresponding to their hydrological response in the river catch
ments of different sizes (Anquetin et al., 2010; Lobligeois et al., 2014; 
Sangati et al., 2009). 

Thanks to the advances in environmental monitoring technology, 
more spatially disaggregated, grid-based hydro-climatic datasets have 
become more accessible to the research community with steady im
provements in both spatial-temporal resolution and quality, including 
those from weather radars such as the NIMROD system (Fairman Jr 
et al., 2017), satellite, such as GPM (Islam et al., 2014), as well as those 
from model simulations. Therefore, processing these huge-sized data to 
support large scale variation analysis of grid-by-grid hydroclimatic ex
tremes which contains high risks has become an important issue to 
address (Peleg et al., 2018). One of such examples is the series of pub
lications from the UK Climate Impacts Programme (UKCIP) (Banwell 
et al., 2018; Kendon et al., 2019; Lowe et al., 2018) where analyses over 
climate model (CM) grids are aggregated over various political regions 
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to provide support to stakeholders and local governments. Prein et al. 
(2017) studied the observed and simulated changes in local precipita
tion extremes over the contiguous US. Wang and Xuan (2020) randomly 
generated a large number of regions of interest and quantified the grid- 
based rainfall extremes with respect to regions’ location, size and shape 
over the last century in Great Britain and Australia. Therefore it is clear 
that the variation of the spatial distribution of area-oriented rainfall is 
not only closely related to the climate (Batisani and Yarnal, 2010), its 
local features and processes such as the topography, urbanization and 
the scale and orientation of the study regions can also affect the rainfall 
amount (Buytaert et al., 2006; Tomasella et al., 2019). 

Although there is an increasing number of applications in these new 
available, large-scaled, grid-based data, these efforts are often frustrated 
by the insufficient length of the required data records and most studies 
focus only on the spatiotemporal quantification of rainfall at the average 
level instead of the extremes. For the extreme rainfall studies, most of 
them suffer from a limited number of study regions therefore the 
exploration and comparison of different locative features that can affect 
rainfall extremes are not generalized. For example, many studies have 
analyzed and indicated the links between the extreme rainfall and 
spatial factors such as slopes and elevation (Johansson and Chen, 2003; 
Sanchez-Moreno et al., 2014; Staub et al., 2014), however, additional 
factors such as the direction of rainfall storms, the shape and orientation 
of catchments that are also recognized as significant factors in runoff 
generation (Shaw, 2005), have yet been fully studied especially at the 
extreme level. Besides, testing and quantifying the long-term changes at 
such level by using grid-based data is a significant and not-fully studied 
topic as well. 

Motivated by these, we made use of a century-long grid-based rain
fall dataset with high spatial and temporal resolutions (1 × 1 km2 and 
daily), and more than 900 catchments in Great Britain (GB), aiming to 
quantify the behaviour of catchment-based rainfall extremes in the last 
century. To the concern of great importance in the engineering design, 
we address how rainfall extremes are affected by the catchment features 
i.e., geographic location, elevation, size, shape and orientation. A 
toolbox known as the Spatial Pattern Extraction and Recognition (SPER) 
developed by the authors is employed for extracting the spatial features 
of these catchments. Then the annual maximum daily rainfall (AMDR) of 
each catchment is extracted and fitted with the widely used and tested 
Generalized Extreme Value (GEV) distributions of which the spatial 
variation is then analyzed with regards to the GEV parameters. This 
procedure is assisted with the high-performance computing (HPC) re
sources provided by Super Computing Wales (https://www. 
supercomputing.wales) due to the huge size of the datasets and the 
intensive computation demand. 

The remainder of this paper is organized as follows: Section 2 de
scribes the data and methods. Then the spatial features of catchments 
and the simulation results of the AMDR fitted by the GEV model are 
analyzed in section 3.1. Both the qualitative and quantitative results of 
spatial variation of AMDR with respect to catchment location, size, 
shape and orientation, represented by the parameters are presented in 
detail in section 3. Finally, the results are further discussed in section 4 
while the conclusions and recommendations of future study and appli
cations are given in section 5. 

2. Materials and methods 

2.1. Datasets and catchments 

This study makes use of two datasets: one is the century-long dataset 
named the “Gridded Estimates of daily Areal Rainfall” (GEAR) which is 
derived from the UK Met Office national database of observed precipi
tation from the UK rain gauge network using the natural neighbour 
interpolation method; and the other is the grid-based elevation data 
named as “Ordnance Survey Terrain 5” (OS Terrain 5) covering the 
whole Great Britain (GB). 

The GEAR dataset is a grid-based (1 × 1km2) rainfall estimation 
covering the mainland of GB from 01/01/1898 to 31/12/2010 and the 
coordinates are the National Grid Reference (Survey, 1946) which is a 
projected map coordinate system with the easting (x-) and northing (y-) 
expressed in linear kilometres (Tanguy et al., 2016). The geographical 
origin of the GEAR data matrix starts from the location of 400 km west, 
100 km north of the true Origin (49◦N, 2◦W), spreading 700 km east
ward and 1250 km northward. The recorded rainfall values are provided 
as daily rainfall, i.e. the total rainfall amount over a predefined 24-h (9 
AM–9 AM) period which refers to the 24 h after the reporting day. 

The OS Terrain 5 dataset is supplied as a whole set of GB divided into 
5 km by 5 km tiles. These tiles are identified by quoting the National 
Grid reference of the southwest corner of the area they cover and the 
dataset is published as both grid (with 5-m post spacing) and contours 
(with 5-m interval). In this study, we apply the grid type where each tile 
includes 100 by 100 (10000) grids whose size is 50 × 50 m2. In this 
study, to make the spatial resolution of two datasets consistent, we 
convert the resolution of the OS Terrain 5 data by firstly resampling the 
OS Terrain 5 data in the 50 × 50 m2 grids, and then taking the average of 
height to match the 1 × 1km2 grids of the GEAR dataset. The comparison 
of conversion is presented in the supplementary Fig. S1. 

In this study, the shapefiles for recording the boundary of the 903 
catchments of England and Wales are provided by the UK Centre for 
Ecology and Hydrology (Morris and Flavin, 1990) in the same co
ordinates (i.e., the National Grid Reference) with the GEAR data and 
shown in Fig. 1. 

2.2. Method 

Fig. 2 presents the four steps of this study which are specified as: 

Fig. 1. The 903 catchments in England and Wales.  

H. Wang and Y. Xuan                                                                                                                                                                                                                         

https://www.supercomputing.wales
https://www.supercomputing.wales


Atmospheric Research 266 (2022) 105968

3

1) Extract the time series of annual maximum daily rainfall (AMDR) of 
each catchment with the assistance of high-performance computing 
(HPC).  

2) Fit the time series obtained at every catchment with generalized 
extreme value distribution with the goodness of fit tested by boot
strapping KS and AD tests.  

3) Extract the spatial features (location, size, shape and orientation of 
catchment) by employing the SPER toolbox and elevation by using 
OS Terrain 5 Data directly.  

4) Analyse how the spatial features affect the spatial dependency of 
areal rainfall extremes. 

2.2.1. Time series extraction and HPC involvement 
For each catchment, the areal daily rainfall is calculated by taking 

the arithmetic average. The maximum value of each year is then selected 
to generate the annual maxima series, i.e., annual maximum daily 
rainfall, (AMDR). There is a huge amount of data to be processed, e.g., 
around 600 gigabytes of grid-based daily rainfall data (1 × 1 km, 365 
days/year, 113 years) covering the UK and 903 catchments in our case, 
which causes a heavy overhead of a typical desktop PC that usually 
features 4 processing cores and a limited memory capacity. To increase 
the operation efficiency, we employed supercomputers from the High- 
performance Computing (HPC) Wales (https://www.supercomputing. 
wales) to assist the extraction of the data. The supercomputing hubs of 
HPC Wales have a total of 13,080 processing cores, connecting to high- 
speed memory and storage, and can deliver 1 petaflop of computing 
power (Flanagan et al., 2020). Supercomputers of HPC Wales are Linux- 
powered and use the Slurm batch scheduler/script to allocate and push 
the jobs or programme to supercomputers and run (more operation 
details can be checked in https://portal.supercomputing.wales/). In this 

study, the programme for extracting catchment rainfall is coded in Py
thon and multiprocess is used for paralleling the jobs to increase the 
computation speed. 

2.2.2. Generalized Extreme Value (GEV) model and goodness of fit tests 
The AMDR time series extracted at each catchment is fitted by the 

GEV distribution whose cumulative distribution function (CDF) is 
defined as (Embrechts et al., 2013): 

F(x; σ, μ, ξ) =

⎧
⎪⎪⎨

⎪⎪⎩

exp
[
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−
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σ

) ]
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, (1)  

F is defined for 1 + ξ(x − μ)/σ > 0, − ∞  < μ < ∞, σ > 0 and − ∞  < ξ <
∞, where μ is the location parameter, σ is the scale parameter, and ξ is 
the shape parameter (De Haan et al., 2006). There are three types of 
distribution in the GEV family, which are distinguished by their shape 
parameters (Coles et al., 2001). The type I distribution, also known as 
the Gumbel distribution, refers to the case where ξ = 0; while the types II 
and III are known as the Fréchet distribution and the Weibull distribu
tion corresponding to the cases where ξ > 0 and ξ < 0 respectively. These 
three parameters are estimated by using Maximum likelihood method. 

It is worth revisiting the implication of parameters of the GEV 
models. The location parameter μ indicates the mode of the time series 
which is consistent with the most frequent AMDR in our cases, while the 
scale parameter σ indicates its average dispersion for each AMDR from μ 
(equals 

̅̅̅
6

√
/π multiplying by the standard deviation if ξ = 0) (Izaguirre 

et al., 2010). In other words, the larger σ, the more spread-out the dis
tribution is. Conversely, the smaller the parameter, the more com
pressed the distribution is (Kantar and Şenoğlu, 2008; Mann, 1967). In 
our study, if σ is estimated to be increasing, the occurrence probability of 

Fig. 2. The four-step methodology of the study.  
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extreme AMDR, i.e. rainfall ranked in the higher positions will also 
increase. 

To test whether GEV can fit the time series of AMDR well, we 
employed two different methods: the Kolmogorov-Smirnov (KS) test 
(Kolmogorov, 1933; Smirnov, 1948) and Anderson-Darling (AD) test 
(Anderson and Darling, 1952, 1954). These two tests have been widely 
used to test whether a given data sample is drawn from a particular type 
of probability distribution (the reference distribution). In this case, the 
reference distribution is GEV distribution and the null hypothesis H0 for 
both tests is that the AMDR X (x1,x2,…,xn) is drawn from GEV distri
bution and the alternative hypothesis H1 states against H0. Besides, the 
L-moment ratio diagrams are also employed to compare the fitted GEV 
distribution with the statistical characteristics of AMDR itself. 

2.2.2.1. KS test. The KS test detects the greatest vertical distance, the 
so-called KS test statistic (Dn), between empirical cumulative distribu
tion function of the observed AMDR Fn(x) and the cumulative distribu
tion function of the reference GEV distribution F(x). The equation for 
test statistics is given by (Kolmogorov, 1933; Smirnov, 1948): 

Dn = sup
x

∣Fn(x) − F(x)∣ (2)  

where sup
x 

is the least upper bound of the set of distances. Fn(x) can be 

calculated by 1n
∑n

i=1IXi≤x where IXi≤x is an indicator function and equals 
1 if Xi ≤ x or 0 if otherwise. If H0 holds, Dn tend to be small. Conversely, 
large values of Dn are expected. The criteria are to reject the null hy
pothesis at a 0.05 significance level if Dn is greater than the critical value 
(0.198). 

2.2.2.2. AD test. Similar to the KS test, the AD statistic (A2) is used in 
the AD test to detect how well the data follow a reference distribution, i. 
e., GEV distribution in this study. The smaller A2 indicates a better 
fitness of the data by given distribution. Different from the KS test, the 
AD test weights more heavily in the tails of the distribution for extreme 
data and A2 is given as (Anderson and Darling, 1954): 

A2 = − n −
1
n

∑n

i=1
(2i − 1){lnF(Xi)+ ln[1 − F(Xn− i+1) ] }, (3) 

If A2 is greater than the critical value (2.502) at the 0.05 significance 
level, the null hypothesis is rejected. The critical value is approximated 
depending on the sample size only and not on the distribution. 

2.2.3. Bootstrapping technique involved in the goodness of fit tests 
One of the most significant limitations when using the non- 

parametric KS test in evaluating the fitness is that the reference distri
bution (i.e., the reference GEV distribution F(x) in Eq. 2) has to be fully 
specified and data-independent (Fasano and Franceschini, 1987). In 
other words, the KS test becomes invalid if the three GEV parameters are 
estimated using the same data whose distribution is going to be tested. 
Therefore, the challenge is how to determine the reference GEV distri
bution appropriately. One possible approach is to use the bootstrapping 
technique to simulate the reference. We broadly followed Lilliefors 
(1967) and developed a bootstrapping method to establish the reference 
distribution under the null hypothesis H0 and the general procedure can 
be found in Eduardo (2020). 

Step 1: Estimate a set of parameters θ̂ of the GEV distribution, from 
the sample of AMDR (x1, x2, …, xn) by using the maximum likelihood 
(ML) method; 

Step 2: Compute the KS statistic Dn from X and the cumulative dis
tribution function (CDF) of the GEV distribution with the parameters of 
θ̂, e.g., F

θ̂
; 

Step 3: Perform bootstrap resampling for a predefined number of 
times J; for each iteration j = 1, 2, …, 5000:  

1. simulate a bootstrapped sample (x1j, x2j, …, xnj) from F
θ̂
;  

2. estimate a new set of parameters θ̂ j from the bootstrapped sample 
(x1j, x2j, …, xnj) using the same ML method;  

3. compute the statistic Dnj from (x1j, x2j, …, xnj) and F
θ̂ j

; 

Step 4: Obtain the p-value approximation: 

p − value ≈
1
J

∑J

j=1
1Dnj>Dn , (4)  

2.2.4. Spatial feature extraction using the SPER toolbox 
The spatial pattern extraction and recognition (SPER) toolbox is an 

effective tool developed to provide an automatic extraction and classi
fication of hydroclimatic patterns by their spatial features i.e., location, 
size, orientation, and shape, as well as the physical features, i.e., the 
areal average, total volume, the spatial distribution. We employed the 
stable algorithm incorporated in the toolbox for automatically identi
fying the spatial features of catchments that are linked to rainfall ex
tremes. Since the boundary has already been predefined by the 
catchment shapefiles (see Fig. 3) which are the inputs of the toolbox, the 
rainfall grids inside this boundary are then regarded as the region of 
interest (ROI) where areal AMDR is extracted with the assistance of HPC. 
In the meantime, a four-step algorithm is carried out, corresponding to 
four outputs and more details can be seen in supplementary Text S1. The 
location of the catchment is represented by the coordinates of its geo
metric centroids consistent with the GEAR dataset and the size is 
calculated as the product of the number of inside grids and the grid size 
(i.e., the resolution). The toolbox can also find the two principal axes of 
an ROI along which the product of inertia of ROI is zero and the longer 
axis is the major one while the shorter is the minor perpendicular to the 
major axis. The orientation of ROI (see ω in Fig. 3) is then defined as the 
angle of the major axis from the North in a clockwise direction (i.e., 
northeast, positive) and anti-clockwise direction (i.e., northwest, nega
tive). Finally, the minimum encompassing rectangle is identified by the 
toolbox (see the green rectangle in Fig. 3) and the shape of ROI (sp) is 
indexed by the ratio of the height divided by the width, which is used to 
characterise the elongation of the ROI. 

An example catchment is demonstrated in Fig. 3. For each catchment 
there are three indexes for representing the three spatial features: 1) 
location index (x- and y- of the geometric centroid, e.g., Easting 301.59 
km, Northing 318.56 km); 2) size index s (e.g., 190 km2); 3) orientation 
index ω (Northwest 51.05o) and shape index sp (e.g., 2.59 which is 
regarded as a relatively elongated shape). 

3. Results and discussions 

3.1. Spatial features of catchments in England and Wales 

The suitability of GEV is assessed by using the bootstrapping KS and 
AD tests. The distribution of the p-value of all catchments is calculated 
by both tests as shown in Fig. 4a where the p-value indicates the per
centage of iteration when the null hypothesis cannot be rejected at the 
significant level of 0.05. The results show that the GEV distribution can 
fit well as the p-value in the majority of cases is closed to 1 and more 
than 95% of cases pass the KS and AD tests. 

The subfigures b, c, d and e of Fig. 4 present the spatial distribution of 
catchments with respect to their spatial features, i.e., the elevation H, 
size S, orientation angle ω and shape sp. The highest elevation is 
observed in the Scottish Highland, generally more than 800 m. Then 
North England and North Wales are also relatively high with an average 
elevation higher than 400 m and the rest of England is the lowest. In 
addition, it can be observed that the size of most catchments (around 
99%) in England and Wales are less than 600 km2 while only the 
catchments located near the boundary between England and Scotland 
have a larger size which is greater than 1000 km2. The catchment sizes 

H. Wang and Y. Xuan                                                                                                                                                                                                                         



Atmospheric Research 266 (2022) 105968

5

vary greatly because these catchments are actually sub-catchments of 
the same river basin. The orientation of these catchments is indicated by 
the major angle ω referring to the North direction. In other words, ω =
0 indicates the orientation of catchment is north-south direction; the 
positive ω (presented by reddish colour) indicates a north-east orienta
tion while the negative angle (presented by bluish colour) is a north- 
west orientation; and ω equaling to ±90o means the orientation of 
catchment is east-west direction. It can be observed that the catchments 
near the north coastlines tend to be northeast orientated while the ones 
near east coastlines are northwest orientated. Moreover, the catchments 
located at the boundary of Wales and England tend to be north-south 
orientated indicating a very light red or blue colour (i.e., ω closed to 
0). Referring to the shape of catchments shown in Fig. 4d, the shape of 
most catchments (61%) is relative rounded or elliptical and their sp is in 
the range of 1.0 and 2.0. sp to the rest majority is less than 4.0 indicating 
an elongated shape. 

To explore more about the catchment characteristics, Fig. 4f and 
Fig. 4g are generated where the spread of the shape index sp of smaller 
regions is greater than that of larger regions; while the elongated shape 
has a much higher probability of being accompanied with a small size, 
the large size of catchment tends to have a relatively rounded shape in 
both England and Wales. The relationship between the catchment shape 
and orientation is insignificant although the catchments with an elon
gated shape tend to have a northwest or northeast orientation (ω around 
±50o). 

3.2. Spatial variation of AMDR with respect to location and elevation 

Fig. 5 presents the spatial patterns of the AMDR represented by the 
three GEV parameters in the catchments over England and Wales (a, b 
and c); and how these parameters are related to the catchment elevation 
(d, e and f). Out of all catchments, there are around 80% follow the 
Fréchet distribution (ξ > 0, shown in reddish colour in Fig. 3a), mainly 
located in middle and eastern England of lower elevation; only 16% 
follow the reversed Weibull distribution (ξ < 0, shown in bluish colour), 
mainly located in the vicinity of Manchester and Liverpool and middle- 
western Wales where the elevation is relatively high (see Fig. 4b); and 

the rest (4%) following Gumbel distribution (ξ = 0). 
Subfigures b and c of Fig. 5 present the spatial variation of the GEV 

parameters σ and μ by which the behaviour of AMDR can be para
meterised and depicted. It can be observed that both σ and μ present a 
similar spatial pattern where a higher μ is usually accompanied by a 
higher σ. Meanwhile, along the same Northing coordinate, the param
eters of the western region, especially in western Wales and the Lake 
District of England, are much greater than those of the eastern area such 
as middle and east England. By contrast, the change of the parameters in 
the catchments located at the same Easting coordinate is not remarkable 
and the only difference is that σ and μ of the catchments in North En
gland are higher than the South areas. Such spatial pattern can be 
described as “west high, east low” and the difference is not linearly 
either - there is a significant decrease occurring in the west while the 
gradient of such decrease is much smaller in the east. As μ can reflect the 
level of the most frequent AMDR in the last century and σ can somehow 
tell the occurrence probability of those extreme events, the parameter
ization quantification can be translated as: the most frequent AMDR in 
the west is usually higher than the east and those areas with a higher 
most frequent AMDR are usually observed to have a higher probability 
of the occurrence of extreme AMDR. The corresponding Fig. 5e and 5f 
are presented to show the general relationship between the GEV pa
rameters and the catchment elevation H which is demonstrated by trend 
lines. In general, both parameters have a positive trend that catchments 
with a higher elevation have a higher level of most frequent AMDR as 
well as a higher occurrence probability of extremes. A plausible expla
nation is that the local topography can play an important role in 
enhancing extreme rainfall via processes such as the uplifting of moist 
air. 

3.3. Spatial variation of AMDR with respect to catchment size 

The UK Meteorological Office usually classifies rainfall into four 
categories according to the rate of precipitation (Jebson, 2007): “slight” 
(0~2 mm/h or roughly 0~5 mm/day), “moderate” (2~10 mm/h or 
5~25 mm/day), “heavy” (10~50 mm/h or 25~125 mm/day), and 
“violent” (>50 mm/h or 125 mm/day). To be more specific, in this 

Fig. 3. The SPER toolbox and its application on the catchment-based analysis.  
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Fig. 4. The goodness of fit test results (a) and spatial features of study catchments (b-g).  
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study, we added several classes and divided the catchment-based AMDR 
at the most frequent level (w.r.t. μ) into 5 groups, i.e., slight (<10 mm/ 
day, 1.0% of all catchments), moderate (10~25 mm/day, 25.6%), high 
(25~50 mm/day, 70.3%), extreme (50~100 mm/day, 3.0%), very 
extreme (>100 mm/day, 0.1%). The location of catchments belonging 
to these five groups as well as the GEV parameters σ and μ changing over 
catchment size are shown in Fig. 6, respectively. Catchments with 
moderate AMDR level are mainly located in east England while those at 
the extreme level are located in the Lake District and North and West 
Wales near the coast. 

In general, with the increase of catchment size, both parameters 
show a decreasing trend especially in the south and east England 
(“Moderate” group), middle-west Wales and the Lake District 
(“Extreme” group), which is caused by areal averaging and the same 
with the ROI-based study. However, for the “High” group with a middle 
level of the most frequent AMDR, a decreasing trend can be observed 
when the catchment size is either relatively small (e.g., less than 200 
km2) or relatively large (e.g., greater than 500 km2). However, there is 
an increasing trend shown in the catchments of medium sizes (400– 500 
km2). This phenomenon shows that the change of parameters over 
catchment sizes is strongly affected by their geographic locations. For 
example, for the catchments in this group (those mainly located near the 
boundary of the high and extreme AMDR areas; see the catchments with 
the size of 400– 500 km2 in Wales and southern England in Fig. 4c), if 
increasing the catchment size involves more grids with higher AMDR, 
the corresponding parameters μ and σ will also increase because the 
reduction caused by areal averaging cannot be compensated by the 
involvement of more heterogeneous grids of higher rainfall. Such effect 
can go the other way as well when more grids of lower AMDR are 
included. This can explain the result for the “Extreme” group where an 
increasing trend is observed when the size is in the range of 200– 300 
km2. For the small catchments located in the Lake District and middle- 
west Wales where the AMDR are extreme, larger catchments tend to 
include more grids with higher rainfall thereby increasing μ and σ. 

3.4. Spatial variation of AMDR with respect to catchment orientation and 
shape 

Comparing with the location, elevation and size of the catchments, 
the effect of catchment orientation and shape is not that significant; 
however, in order to demonstrate such relation more clearly, we fit the 
result using local linear regression (LLR; Baíllo and Grané, 2009; Fan, 
1993) as the background of subfigures in Fig. 7 to help the analysis. One 
of the most commonly used methods for carrying out LLR is Locally 
Weighted Scatterplot Smoothing (LOWESS; Cleveland, 1979; Moran, 
1984) which can generate a smooth curve or surface to help figure out 

the relationship or trend between the two GEV parameters and the 
catchment features, i.e., the orientation and shape in this case. More 
details of the procedure and residual analysis are included in supple
mentary Text S2. 

For the catchments in the “Moderate” group, there is a small differ
ence between the west-northwest oriented and east-northeast oriented 
catchments on σ and μ which tend to be smaller than that of the north 
orientation. However, both σ and μ tend to decrease when the shape 
becomes more and more elongated. For those in the “High” group, the 
majority of the catchments show small differences on both parameters 
between the west-northwest and east-northeast orientation while the μ 
parameters for the catchments with north-northeast orientation are 
usually higher than those of the catchments with north-northwest 
orientation. Generally, the two parameters decrease with an increased 
sp but smaller-sized catchments witness a converse trend. For the 
“Extreme” group, the pattern of the parameters changing over the 
orientation is distributed symmetrically with ω = 0 (North) where 
catchments with a west-northwest orientation usually have higher pa
rameters than east-northeast orientation. On the whole, several patterns 
can be summarised as:  

1) In middle-west Wales and the Lake District of England where AMDR 
is high, both levels of the most frequent AMDR and occurrence 
probability of extremes are higher in the catchment orientated in a 
west-northwest direction than others.  

2) For the rest area of Wales and England, generally, the level of the 
most frequent AMDR and occurrence probability of extremes in the 
catchments whose orientations are west-northwest or east-northeast 
are almost the same and lower than that the north-south oriented 
catchments.  

3) The level of the most frequent AMDR and occurrence probability of 
extremes in the catchments with an elongated shape are usually 
lower than others with a relatively rounded shape.  

4) Catchment orientation and shape are not as much significant as their 
locations and sizes concerning the spatial effect on AMDR. 

4. Discussion 

In recent decades, many efforts have been devoted to improving the 
performance of physically-based models such as the rainfall-runoff 
model in simulating and forecasting floods by optimizing the 
complexity of the structure, refining the spatial and temporal resolution, 
even involving various data-driven techniques e.g., machine learning. 
They aim to gain a better understanding and description of the real 
world. However, the simulation path of physical-based models can 
inevitably associate with uncertainties that can propagate and lead to 

Fig. 4. (continued). 
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Fig. 5. Spatial variation of AMDR with respect to catchment location represented by the GEV parameters ξ (a), σ (b) and μ (c); and the relationship between these 
three parameters and the catchment elevation (H) is presented in d,e,f respectively. 
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inaccurate results. In flood risk management, rainfall is one of the 
essential inputs of many physically-based models which hydrologists 
have developed, applied and tested for decades. As the uncertainty, even 
the error of the model cannot be simply separated from that associated 
with the rainfall input, understanding the spatial variability and scale in 
the behaviour of rainfall, especially at extreme levels is important for 
identifying and analyzing the sensitivity of such spatial variability to the 
model output. Some publications have assessed the changes of the 
rainfall input in some catchments e.g., Crespo et al. (2011), Guan et al. 
(2016), Smith et al. (2004), Shou and Lin (2020), however, they are 
limited by the number of catchments and not many of them are at the 
extreme level. More spatial properties should be considered. 

In this study, thanks to the developed SPER toolbox, the spatial 
features such as geographic location, size, orientation and shape can be 
extracted from an arbitrary catchment and quantified as the specific 
indexes which are used to further analyse the relationship between these 
spatial features and hydrological variables. It is specially designed for 
the new, popular grid-based environmental datasets, which has been 
ready to apply in many other cases. In our case, we employed the SPER 
toolbox to extract and quantify the spatial features of more than 900 
river catchments in England and Wales and find that most of them 
(around 99%) are less than 600 km2 in size while only a few near the 
boundary between England and Scotland are larger than 1,000 km2. The 
catchments in the west tend to be northeast orientated while those near 
the east coastlines are northwest orientated. The catchments at the 

boundary between Wales and England tend to be north-south orientated. 
And the shape of more than half catchments (61%) is relatively rounded 
or elliptical. Besides, the deviation among the shape of smaller catch
ments is greater than that of larger catchments and the elongated shape 
has a much higher probability to be observed in small-sized catchments, 
however, the large catchment tends to have a relatively rounded shape 
in England and Wales. These are closely dependent on the topography e. 
g., the orographic effects of mountains areas in the west where a 
watershed starts at the highest points on the landscape that divide one 
valley or drainage from another and lead to the northeast, relatively 
elongated catchments. 

GEV distribution is a widely used distribution for depicting the 
extreme behaviour of hydrometeorological variables in hydroclimatic 
science, which can also fit very well in the time series of catchment- 
based areal annual maximum daily rainfall in England and Wales. The 
majority of the fitted GEV (around 80%) follow the Fréchet distribution 
(ξ > 0). One of the main results from fitting the GEV model is that those 
catchments with higher elevation usually get a higher level of the most 
frequent AMDR and occurrence probability of extremes, as reflected by 
the GEV parameters μ and σ. The spatial patterns of both μ and σ are 
similar, which can be described as “west high, east low” with a non- 
linear change, i.e., there is a significant decreasing trend from west to 
east, but the gradient of change in the east is much smaller. 

Generally, both parameters show a similar decreasing trend when 
catchment size increases especially in the regions where AMDR is 

Fig. 6. Categories of the five groups according to the level of AMDR and GEV parameters σ and μ changing with catchment size in the catchments with “Moderate”, 
“High” and “Extreme” levels of AMDR. 
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relatively moderate or very high. It is because, in these areas such as East 
England, the Lake District and middle-west Wales, the spatial distribu
tion of grid rainfall is relatively homogeneous thereby such reduction on 
parameters is mainly caused by statistical average. However, for those 
catchments having a high level of AMDR especially located at/near the 
boundary where rainfall changes abruptly, those catchments that have a 
medium size (e.g., 400– 500 km2) can witness an increasing trend of 

parameters with the increase of size. It can be attributed that increasing 
size in these areas can involve more heterogeneous grid rainfall that the 
reduction caused by areal average cannot compensate. This phenome
non shows that the change of parameters over catchment sizes can be 
also affected by their geographic locations. 

Compared with other spatial features, the effect of catchment 
orientation and shape is not as significant, however, several results and 

Fig. 7. The GEV parameters σ and μ change over orientation ω (a) and shape sp (b) of catchments in the three groups where “LLR” is short for “local linear regression” 
and the directions “North”, “West”, “East” are abbreviated as “N”, “W” and “E”. 
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the underlying reason are worth studying, which is shown in Fig. 8. The 
orientations of the relatively-dry catchment with the low level of annual 
maximum rainfall tend to be east-west dominated (ω > 60oor < − 60o) 
and the majority are elongated (sp > 2.5). However, the catchments that 
received extreme AMDR have almost different features where the 
orientation is mainly dominated by north-south (north-northwest or 
north-northeast; − 45o ≤ ω ≤ 60o)) and the shape is relatively rounded 
(sp < 1.5). For the moderate and high level of AMDR, the distribution of 
orientation is more even when sp < 3.5 whilst more catchments are 
north-west orientated. A possible reason is that the prevailing wind di
rections in the regional sea of the UK are between south-southwest and 
northwest (Offshore Energy SEA, 2009), which brings a huge amount of 
vapours from the sea and causes extremes rainfall in northwest orien
tation catchments, especially near coasts. 

To be more specific, three widely used statistical tests are employed 

to analyse the significance of the impact of these features on the two 
GEV parameters. The significance level is 0.05 and the features whose p- 
value is less than 0.05 are recognized as significant. More details can be 
found in supplementary Text S3 while Table 1 presents the correlation 
coefficient of each feature and the possible combination. Similar to the 
previous findings, geographic location and elevation are considered as 
the most significant factors affecting areal rainfall extremes; besides the 
combined impact of location with size and location with orientation is 
also significant while the impact of size, orientation and shape are less 
significant. 

However, the correlation among these spatial features and the 
behaviour of the areal rainfall extremes represented by the GEV pa
rameters does not necessarily imply a causal relationship. This study 
focuses more on revealing the sampling impacts, i.e., how parameters 
co-vary with different selections of regions’ characteristics. Such ‘im
pacts’ from different factors, i.e., the locations, elevation, size, shape 
and orientation of the catchments, can lead to different determinations 
of areal rainfall extremes. Surely, the underlying climatology is the 
driving factor that causes the spatial variation of rainfall extremes, and 
further work is recommended to explore the link between the clima
tology and the factors we presented in this study. 

5. Conclusions 

In this paper, we present a study analyzing the spatial variation of the 
catchment-oriented extreme daily rainfall of 903 catchments covering 
England and Wales of Great Britain (GB) by using a century-long grid- 
based dataset with high spatial and temporal resolutions. Meanwhile, 
we employed a Spatial Pattern Extraction and Recognition (SPER) 
toolbox to extract the spatial features of all catchments, i.e., geographic 
location, elevation, size, orientation and shape. The annual maximum 
daily rainfall (AMDR) is extracted from each catchment, fitted by 
Generalized Extreme Value (GEV) distribution and tested by the boot
strapping KS and AD test. The GEV parameters μ and σ are used for 

Fig. 7. (continued). 

Fig. 8. The distribution of catchments of the five groups with respect to their 
orientation ω and shape sp. The directions “North”, “West”, “East” are abbre
viated as “N”, “W” and “E”. 
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demonstrating the behaviour of extreme rainfall and quantified with 
respect to the spatial features of the huge amount of catchments. 

These findings highlight that the determination of area rainfall ex
tremes can be affected by the spatial characteristics of the studying 
catchments and such impacts should be considered for further 
catchment-based analysis referring to the hydrological response and 
geomorphic properties. Future work is recommended to investigate 
closely the underlying datasets with respect to potential inconsistency in 
the resolution of the data and a comparative study with long-term, single 
gauge observations are likely to make conclusions more robust. 

Data availability 

The GEAR dataset and catchments in England and Wales, provided 
by the Centre of Hydrology and Ecology (CEH), is available in the public 
domain online at doi:https://doi.org/10.5285/33604ea0-c238-4488 
-813d-0ad9ab7c51ca for the GEAR dataset and https://nrfa.ceh.ac. 
uk/content/catchment-boundary-and-areas for more details of catch
ments; and the elevation of UK (i.e., the OS Terrain 5 dataset) is avail
able at https://www.ordnancesurvey.co.uk/business-government/ 
products/terrain-5. The SPER toolbox employed in the study is avail
able at GitHub (https://github.com/wanghan924/SPER-toolbox). The 
source code is provided subject to a GPL V3 license. 
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